Nothing Special   »   [go: up one dir, main page]

JP5018552B2 - ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby - Google Patents

ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby Download PDF

Info

Publication number
JP5018552B2
JP5018552B2 JP2008048895A JP2008048895A JP5018552B2 JP 5018552 B2 JP5018552 B2 JP 5018552B2 JP 2008048895 A JP2008048895 A JP 2008048895A JP 2008048895 A JP2008048895 A JP 2008048895A JP 5018552 B2 JP5018552 B2 JP 5018552B2
Authority
JP
Japan
Prior art keywords
zno
vapor deposition
deposition material
powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008048895A
Other languages
Japanese (ja)
Other versions
JP2008255472A (en
Inventor
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008048895A priority Critical patent/JP5018552B2/en
Publication of JP2008255472A publication Critical patent/JP2008255472A/en
Application granted granted Critical
Publication of JP5018552B2 publication Critical patent/JP5018552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、例えば太陽電池などに用いられる透明導電膜や、液晶表示装置、エレクトロルミネッセンス表示装置、タッチパネル装置の透明圧電センサーの透明電極、また表示装置を構成するアクティブマトリクス駆動装置、帯電防止導電膜コーティング、ガスセンサー、電磁遮蔽パネル、圧電デバイス、光電変換装置、発光装置、薄膜型二次電池などに用いられる膜を成膜するために用いられるZnO蒸着材及びその製造方法並びにそれにより形成されたZnO膜に関するものである。 The present invention relates to a transparent conductive film used for, for example, a solar cell, a liquid crystal display device, an electroluminescence display device, a transparent electrode of a transparent piezoelectric sensor of a touch panel device, an active matrix driving device constituting the display device, and an antistatic conductive film coatings, gas sensors, electromagnetic shielding panels, piezoelectric devices, photoelectric conversion devices, light-emitting device, formed thereby ZnO deposition material and a manufacturing method thereof as well as used for forming the film used like a thin film type secondary battery The present invention relates to a ZnO film.

近年、太陽電池などの光電変換装置などを製造する場合には、透明導電膜が不可欠である。従来の透明導電膜としては、ITO膜(錫をドープしたインジウム酸化物膜)が知られている。ITO膜は、透明性に優れ、低抵抗であるという利点を有する。   In recent years, a transparent conductive film is indispensable when manufacturing photoelectric conversion devices such as solar cells. An ITO film (indium oxide film doped with tin) is known as a conventional transparent conductive film. The ITO film has the advantages of excellent transparency and low resistance.

一方、太陽電池や液晶表示装置等にあっては、その低コスト化が求められている。しかし、インジウムが高価なことから、ITO膜を透明導電膜として用いると、その太陽電池も必然的に高価なものになってしまう難点があった。また、太陽電池などを製造する場合などには、透明導電膜上にアモルファスシリコンをプラズマCVD法により成膜することになるが、その際に、透明導電膜がITO膜であると、プラズマCVD時の水素プラズマにより、ITO膜が劣化するという問題点もあった。   On the other hand, cost reduction is required for solar cells, liquid crystal display devices, and the like. However, since indium is expensive, when an ITO film is used as a transparent conductive film, the solar cell inevitably becomes expensive. In addition, when manufacturing solar cells or the like, amorphous silicon is deposited on the transparent conductive film by plasma CVD. At that time, if the transparent conductive film is an ITO film, There was also a problem that the ITO film deteriorated by the hydrogen plasma.

これらの点を解消するために、一層安価に作製することのできるAl、B、Siなどの導電活性元素をドープした酸化亜鉛系膜を太陽電池等の透明導電膜として使用することが提案され、この酸化亜鉛系膜をスパッタリングにより形成するための酸化亜鉛系スパッタリング用ターゲットが提案されている(例えば、特許文献1参照。)。この酸化亜鉛系スパッタリング用ターゲットによると、上記導電活性元素を亜鉛に対して所定量含有させることにより極めて低抵抗な酸化亜鉛系焼結体が得られ、この焼結体は、原料粉末が微細で高分散性を有するほど焼結密度が向上し導電性が向上するとされている。
特開平6−2130号公報(特許請求の範囲の請求項2,請求項3及び請求項4)
In order to eliminate these points, it has been proposed to use a zinc oxide-based film doped with a conductive active element such as Al, B, and Si that can be produced at a lower cost as a transparent conductive film such as a solar cell, A zinc oxide-based sputtering target for forming this zinc oxide-based film by sputtering has been proposed (for example, see Patent Document 1). According to this zinc oxide-based sputtering target, an extremely low resistance zinc oxide-based sintered body can be obtained by containing a predetermined amount of the conductive active element with respect to zinc. It is said that the higher the dispersibility, the higher the sintered density and the higher the conductivity.
JP-A-6-2130 (Claims 2, 3 and 4 of Claims)

しかし、上記従来の酸化亜鉛系スパッタリング用ターゲットを用いて高速成膜するために高電圧をかけながらスパッタリングを行うと、異常放電が発生しやすく、放電状態が不安定でターゲットが不均一に消耗し、得られた膜に組成ずれが生じて低抵抗の膜を得ることが困難となる不具合があった。一方、投入電力を小さくして電圧を低くすると成膜速度が遅くなり、酸化亜鉛系膜の成膜効率は大幅に低下する不具合があった。
本発明の目的は、ITO膜に迫る高い導電率の膜を高速成膜することのできるZnO蒸着材及びその製造方法並びにこれを用いたZnO膜を提供することにある。
However, if sputtering is performed while applying a high voltage to form a high-speed film using the conventional zinc oxide sputtering target, abnormal discharge is likely to occur, the discharge state is unstable, and the target is consumed unevenly. However, there was a problem that it was difficult to obtain a low-resistance film due to composition deviation in the obtained film. On the other hand, when the input power is reduced and the voltage is lowered, the film formation rate is reduced, and the film formation efficiency of the zinc oxide film is greatly reduced.
An object of the present invention is to provide a ZnO vapor deposition material capable of forming a film having a high conductivity approaching that of an ITO film at a high speed, a manufacturing method thereof, and a ZnO film using the same.

請求項1に係る発明は、透明導電膜を成膜するために用いられるZnO蒸着材である。
その特徴ある構成は、ZnOを主成分としたペレットからなり、ペレットがCeとBの双方の元素を含み、CeがBよりも含有割合が高く、Ceの含有割合が〜14.9質量%、Bの含有割合が〜10質量%の範囲内であるところにある。
請求項1に係る発明では、ZnOを主成分としたペレットに、CeとBの2元素が上記含有割合で含むので、このZnO蒸着材を用いると、ITO膜に迫る高い導電性を有するZnO膜を成膜できる。
The invention according to claim 1 is a ZnO vapor deposition material used for forming a transparent conductive film.
The characteristic structure consists of a pellet mainly composed of ZnO, the pellet contains both elements of Ce and B, Ce is higher in content than B, and the content of Ce is 3 to 14.9% by mass. , B is in a range of 1 to 10% by mass.
In the invention according to claim 1, since two elements of Ce and B are contained in the above-described content ratio in the pellet mainly composed of ZnO, when this ZnO vapor deposition material is used, the ZnO film having high conductivity approaching that of the ITO film. Can be formed.

請求項2に係る発明は、請求項1に係る発明であって、CeとBの合計の含有割合が〜15質量%の範囲内であるZnO蒸着材である。
請求項2に係る発明では、ZnO蒸着材中のCeとBの合計の含有割合が〜15質量%の範囲内であることにより、導電特性及び分光特性において優れた効果が得られる。
The invention according to claim 2 is the ZnO vapor deposition material according to claim 1, wherein the total content ratio of Ce and B is in the range of 4 to 15% by mass.
In the invention according to claim 2, by the total content ratio of Ce and B in ZnO deposition material is in the range of 4-15 wt%, excellent effect in conductive properties and spectral characteristics.

請求項3に係る発明は、請求項1に係る発明であって、ZnOのペレットが多結晶体又は単結晶体であるZnO蒸着材である。
請求項3に係る発明では、ZnOのペレットが多結晶体か或いは単結晶体であるかの組織の相違ではなく、組成の相違によって効果が著しく変化するため、ZnOのペレットが多結晶である場合だけでなく、単結晶であっても請求項1に記載された範囲内の組成を有すれば、そのZnO蒸着材を用いてZnO膜を成膜すると、そのZnO膜はITO膜に迫る高い導電性が得られる。
請求項4に係る発明は、請求項1ないし3いずれか1項に記載のZnO蒸着材を製造する方法であり、ZnO粉末と、ZnO蒸着材中のCeの含有割合が3〜14.9質量%の範囲となるCeO 2 粉末と、ZnO蒸着材中のBの含有割合が1〜10質量%の範囲となるB 2 3 粉末と、バインダと、有機溶媒とを混合して濃度が30〜75質量%であって、ZnO蒸着材中のCeの含有割合がBの含有割合よりも高いスラリーを調製し、スラリーを噴霧乾燥して平均粒径が50〜250μmの混合造粒粉末を作製し、混合造粒粉末を所定の型に入れて所定の圧力で成形し、成形により得られた成形体を1000℃以上の温度で1〜10時間焼結してペレットからなる多結晶ZnO蒸着材を得ることを特徴とするZnO蒸着材の製造方法である。
The invention according to claim 3 is the invention according to claim 1, wherein the ZnO pellet is a polycrystalline or single crystal ZnO vapor deposition material.
In the invention according to claim 3, when the ZnO pellet is polycrystalline because the effect changes notably depending on the composition but not the difference in the structure of whether the ZnO pellet is polycrystalline or single crystal. In addition, if a ZnO film is formed using the ZnO vapor deposition material as long as it has a composition within the range described in claim 1 even if it is a single crystal, the ZnO film has a high conductivity approaching that of the ITO film. Sex is obtained.
The invention according to claim 4 is a method for producing the ZnO vapor deposition material according to any one of claims 1 to 3, wherein the content ratio of Ce in the ZnO powder and the ZnO vapor deposition material is 3 to 14.9 mass. % Concentration of CeO 2 powder, B 2 O 3 powder in which the content ratio of B in the ZnO vapor deposition material is in the range of 1 to 10% by mass , a binder, and an organic solvent are mixed to give a concentration of 30 to A slurry of 75 mass% with a Ce content in the ZnO vapor deposition material higher than the content of B is prepared, and the slurry is spray-dried to produce a mixed granulated powder having an average particle size of 50 to 250 μm. Then, the mixed granulated powder is put into a predetermined mold and molded at a predetermined pressure, and a molded body obtained by molding is sintered at a temperature of 1000 ° C. or more for 1 to 10 hours to obtain a polycrystalline ZnO vapor deposition material comprising pellets It is the manufacturing method of the ZnO vapor deposition material characterized by obtaining.

請求項に係る発明は、請求項1ないし3いずれか1項に記載のZnO蒸着材、或いは請求項4記載の製造方法により得られたZnO蒸着材をターゲット材とする真空成膜法により形成されたZnO膜である。
請求項に係る発明では、上記請求項1ないし3いずれか1項に記載のZnO蒸着材、或いは上記請求項5記載の製造方法により得られたZnO蒸着材を用いてZnO膜を成膜するため、このZnO膜は、ITO膜に迫る高い導電性が得られる。
The invention according to claim 5 is formed by a vacuum film forming method using the ZnO vapor deposition material according to any one of claims 1 to 3 or the ZnO vapor deposition material obtained by the manufacturing method according to claim 4 as a target material. ZnO film.
In the invention according to claim 5 , a ZnO film is formed using the ZnO vapor deposition material according to any one of claims 1 to 3 or the ZnO vapor deposition material obtained by the manufacturing method according to claim 5. Therefore, this ZnO film can have high conductivity approaching that of the ITO film.

請求項に係る発明は、請求項に係る発明であって、真空成膜法が電子ビーム蒸着法、イオンプレーティング法、スパッタリング法又はプラズマ蒸着法であるZnO膜である。 The invention according to claim 6 is the invention according to claim 5 , wherein the vacuum film formation method is a ZnO film which is an electron beam evaporation method, an ion plating method, a sputtering method or a plasma evaporation method.

以上述べたように、本発明の透明導電膜を成膜するために用いられるZnO蒸着材によれば、ZnOを主成分としたペレットからなり、ペレットがCeとBの双方の元素を含み、CeがBよりも含有割合が高く、Ceの含有割合が〜14.9質量%、Bの含有割合が〜10質量%の範囲内であるので、このZnO蒸着材を用いると、ITO膜に迫る高い導電性を有するZnO膜を成膜できる。本発明のZnO蒸着材は、添加元素としてCeとBの双方を含むため、イオン半径がZnより大きいCeにより歪んだ結晶を、イオン半径の小さいBを添加して回復整合させることにより、透過率の高いZnO膜が成膜でき、更に、緻密性に優れた膜を得られることにより、耐久性が高いZnO膜が成膜できる。
また、本発明に係るZnO膜は、本発明に係るZnO蒸着材、或いは本発明の製造方法により得られたZnO蒸着材を用いて成膜されるため、高い導電率、高い透過率が得られ、更に、膜の耐久性が向上する。
As described above, according to the ZnO vapor deposition material used to form the transparent conductive film of the present invention, the ZnO vapor deposition material is composed of pellets mainly composed of ZnO, and the pellets contain both elements of Ce and B. Is higher than B, the Ce content is 3 to 14.9% by mass, and the B content is in the range of 1 to 10% by mass. A ZnO film having high electrical conductivity can be formed. Since the ZnO vapor deposition material of the present invention contains both Ce and B as additive elements, a crystal distorted by Ce having an ionic radius larger than Zn is recovered and matched by adding B having a small ionic radius, thereby increasing the transmittance. A high-durability ZnO film can be formed, and a highly durable ZnO film can be formed by obtaining a film with excellent denseness.
Further, since the ZnO film according to the present invention is formed using the ZnO vapor deposition material according to the present invention or the ZnO vapor deposition material obtained by the production method of the present invention , high conductivity and high transmittance can be obtained. Furthermore, the durability of the membrane is improved.

次に本発明を実施するための最良の形態を説明する。
本発明者は、ZnO蒸着材及びこの蒸着材を用いて成膜されたZnO膜中の添加物種及びその含有量における導電性への影響を詳細に調査したところ、ZnOのペレット中に添加元素として含まれるCeとBの2元素のそれぞれの含有割合が大きく影響していることが確認された。ZnOのペレット中において、このCeとBの2元素の含有割合が増加するほど概して導電性は良好となるが、更に増加すると逆に劣化することから、製品への適用を考えた場合、これら2元素の最適な含有割合の範囲が存在することが判った。
Next, the best mode for carrying out the present invention will be described.
The present inventor has investigated in detail the effect of conductivity on the ZnO vapor deposition material and the additive species in the ZnO film formed using this vapor deposition material and its content. As an additive element in the ZnO pellet, It was confirmed that the content ratios of the two elements, Ce and B, were greatly affected. In the ZnO pellet, the conductivity generally becomes better as the content ratio of the two elements Ce and B increases. However, when the content is further increased, the conductivity deteriorates. It has been found that there is an optimum content range for the elements.

本発明に係るZnO蒸着材は、ZnOを主成分とし、CeとBの双方の元素を含有する。イオン半径が小さいBを使用することで膜の整合性を向上させることができる。添加元素としてCeとBの2種類の元素を含むため、導電に寄与する過電子を大量に発現させ維持することにより、高い導電率を有するZnO膜を成膜できる。本発明に係るZnO蒸着材中のCeは〜14.9質量%の範囲内とする。Ceが下限値である質量%になると、導電性が著しく低下し、上限値である14.9質量%を越えると、透過率が著しく低下するからである。また、Bは〜10質量%の範囲内とする。Bが下限値である質量%未満になると、導電性が著しく低下し、上限値である10質量%を越えると、蒸着時の組成ずれを生じさせるからである。このうち、Ce元素は3〜6質量%の範囲内が好ましく、Bは1〜3質量%の範囲内であることが好ましい。なお、緻密な結晶構造を維持するために、Ceの含有割合は、Bの含有割合よりも高くする。一方、Ceの含有割合がBの含有割合よりも高くなると、導電性及び透過率が悪化する。また、CeとBの合計の含有割合は〜15質量%の範囲内であることが好ましい。これらの添加元素は、ZnO蒸着材中に微量に含まれる場合には、ZnOマトリックスの粒界や粒内に粒状の析出物として存在するのではなく、ZnO蒸着材中に均一に分散している。また、ZnO蒸着材中では、CeはCeO2又はCe23のような酸化物として存在し、BはB23として存在すると考えられる。 The ZnO vapor deposition material according to the present invention contains ZnO as a main component and contains both elements of Ce and B. The use of B having a small ionic radius can improve the film consistency. Since two types of elements, Ce and B, are included as additive elements, a ZnO film having high conductivity can be formed by expressing and maintaining a large amount of overelectrons that contribute to conduction. Ce in the ZnO vapor deposition material according to the present invention is in the range of 3 to 14.9% by mass. This is because when Ce is 3 % by mass which is the lower limit, the conductivity is remarkably lowered, and when it exceeds 14.9% by mass which is the upper limit, the transmittance is remarkably lowered. B is in the range of 1 to 10% by mass. This is because when B is less than the lower limit of 1 % by mass, the conductivity is remarkably lowered, and when it exceeds 10% by mass of the upper limit, composition deviation occurs during vapor deposition. Among these, the Ce element is preferably in the range of 3 to 6% by mass, and B is preferably in the range of 1 to 3% by mass. In order to maintain a dense crystal structure, the Ce content is set higher than the B content. On the other hand, when the Ce content ratio is higher than the B content ratio, conductivity and transmittance deteriorate. Further, the total content of Ce and B is preferably in the range of 4 to 15% by mass. When these additive elements are contained in a trace amount in the ZnO vapor deposition material, they do not exist as granular precipitates in the grain boundaries and grains of the ZnO matrix, but are uniformly dispersed in the ZnO vapor deposition material. . In the ZnO vapor deposition material, Ce is present as an oxide such as CeO 2 or Ce 2 O 3 , and B is considered to be present as B 2 O 3 .

本発明に係るZnO蒸着材は、ZnOを主成分としたペレットからなる。このペレットは直径が5〜50mmであって、厚さが2〜30mmであることが好ましい。このペレットの直径を5〜50mmとするのは安定かつ高速な成膜の実施のためであり、その直径が5mm未満ではスプラッシュ等が発生する不具合があり、50mmを越えるとハース(蒸着材溜)への充填率が低下することに起因する蒸着における膜の不均一及び成膜速度の低下をもたらす不具合がある。また、その厚さを2〜30mmとするのは安定かつ高速な成膜の実施のためであり、その厚さが2mm未満ではスプラッシュ等が発生する不具合があり、30mmを越えるとハース(蒸着材溜)への充填率が低下することに起因する蒸着における膜の不均一及び成膜速度の低下をもたらす不具合がある。また、このZnOのペレットは、多結晶体であっても単結晶体であってもよい。   The ZnO vapor deposition material which concerns on this invention consists of a pellet which has ZnO as a main component. This pellet is preferably 5 to 50 mm in diameter and 2 to 30 mm in thickness. The diameter of the pellets is set to 5 to 50 mm for the purpose of stable and high-speed film formation. If the diameter is less than 5 mm, there is a problem that splash or the like occurs. There is a defect that causes non-uniformity of the film in vapor deposition and a decrease in the film formation rate due to a decrease in filling rate. Further, the thickness is set to 2 to 30 mm for the purpose of stable and high-speed film formation. If the thickness is less than 2 mm, there is a problem that splash or the like occurs. There is a defect that causes non-uniformity of the film in vapor deposition and a decrease in the film formation rate due to a decrease in the filling rate into the reservoir. The ZnO pellets may be polycrystalline or single crystal.

このように構成された本発明のZnO蒸着材では、3価又は4価の希土類元素であるCeを添加元素として含むため、2価であるZnに対して過剰のキャリア電子を発生させることにより、高い導電率を確保できる。また、希土類はZnO蒸着材に添加した場合、蒸着時の組成ずれを起こしにくい材料であり、膜で所望の組成比率を維持することができる。また、導電の機構としては、キャリア電子の強制投入以外に酸素欠損によるものがある。通常蒸着法では酸素ガスを導入するが、一般的には膜組成において酸素が不足状態となる。透明導電膜形成において酸素欠損を生成させ抵抗を下げる手法が採られるけれども、希土類元素を添加する場合、蒸発性能に優れるため制御しやすいといった特徴がある。本発明では、この特徴に加え、Bを添加元素として含むことで、ITOに迫る高い導電率を得ることができるものである。   In the ZnO vapor deposition material of the present invention configured as described above, since trivalent or tetravalent rare earth element Ce is added as an additive element, by generating excess carrier electrons with respect to divalent Zn, High conductivity can be secured. Moreover, when rare earth is added to the ZnO vapor deposition material, it is a material that hardly causes a composition shift during vapor deposition, and a desired composition ratio can be maintained in the film. In addition to the forced injection of carrier electrons, the conduction mechanism includes oxygen vacancies. In general vapor deposition, oxygen gas is introduced, but in general, oxygen is insufficient in the film composition. Although a method of generating oxygen vacancies and reducing the resistance is employed in forming the transparent conductive film, when a rare earth element is added, there is a feature that it is easy to control because of its excellent evaporation performance. In the present invention, in addition to this feature, by including B as an additive element, a high conductivity approaching that of ITO can be obtained.

次に、ZnO蒸着材の製造方法を、焼結法により作製する場合を代表して説明する。
先ず、高純度ZnO粉末と、ZnO蒸着材中のCeの含有割合が〜14.9質量%の範囲となる量のCeO2粉末と、ZnO蒸着材中のBの含有割合が〜10質量%の範囲となる量のB23粉末と、バインダと、有機溶媒とを混合して、濃度が30〜75質量%、好ましくは40〜65質量%のスラリーを調製する。高純度ZnO粉末は、純度が98%以上であることが好ましく、98.4%以上であることが更に好ましい。ZnO粉末の純度が98%以上であれば、不純物の影響による導電率の低下を抑えることができるからである。スラリーの濃度を30〜75質量%に限定したのは、75質量%を越えると上記スラリーが非水系であるため、安定した混合造粒が難しく、30質量%未満では均一な組織を有する緻密なZnO焼結体が得られ難いからである。ZnO粉末の平均粒径は0.1〜5.0μmの範囲内にあることが好ましい。0.1μm未満では、粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製し難い傾向があり、5.0μmを越えると、微細構造の制御が難しく、緻密なペレットが得られ難い傾向があるからである。
Next, the manufacturing method of a ZnO vapor deposition material is demonstrated on behalf of the case where it produces by a sintering method.
First, the high purity ZnO powder, the CeO 2 powder in an amount such that the Ce content in the ZnO vapor deposition material is in the range of 3 to 14.9% by mass, and the B content in the ZnO vapor deposition material is 1 to 10 mass. % and the amount of B 2 O 3 powder in the range of, and a binder, by mixing the organic solvent, the concentration is 30 to 75 wt%, preferably to prepare a 40-65 wt% of the slurry. The high purity ZnO powder preferably has a purity of 98% or more, more preferably 98.4% or more. This is because if the purity of the ZnO powder is 98% or more, a decrease in conductivity due to the influence of impurities can be suppressed. The concentration of the slurry is limited to 30 to 75% by mass. If the slurry exceeds 75% by mass, the slurry is non-aqueous, so that stable mixing granulation is difficult, and if it is less than 30% by mass, a dense structure having a uniform structure is obtained. This is because it is difficult to obtain a ZnO sintered body. The average particle size of the ZnO powder is preferably in the range of 0.1 to 5.0 μm. If it is less than 0.1 μm, the powder is too fine and agglomerates, so that the handling of the powder tends to be poor, and it tends to be difficult to prepare a high-concentration slurry. This is because it tends to be difficult to obtain.

CeO2粉末はCe存在量の偏在の防止とZnOマトリックスとの反応性及びCe化合物の純度を考慮した場合、1次粒子径がナノスケールの酸化セリウム粒子を添加することが好ましい。B23粉末は平均粒径が0.01〜1μmの範囲内のものを使用することが好ましい。0.01〜1μmの範囲内のものを使用すれば、B23粉末を均一に分散するのに好適であるからである。このうち、0.05〜0.5μmの範囲のものが特に好ましい。 In consideration of prevention of uneven distribution of Ce abundance, reactivity with the ZnO matrix and purity of the Ce compound, CeO 2 powder is preferably added with cerium oxide particles having a primary particle size of nanoscale. It is preferable to use a B 2 O 3 powder having an average particle diameter in the range of 0.01 to 1 μm. This is because the use of a powder having a diameter within the range of 0.01 to 1 μm is suitable for uniformly dispersing the B 2 O 3 powder. Among these, the thing of the range of 0.05-0.5 micrometer is especially preferable.

バインダとしてはポリエチレングリコールやポリビニールブチラール等を、有機溶媒としてはエタノールやプロパノール等を用いることが好ましい。バインダは0.2〜5.0質量%添加することが好ましい。   It is preferable to use polyethylene glycol or polyvinyl butyral as the binder, and ethanol or propanol as the organic solvent. The binder is preferably added in an amount of 0.2 to 5.0% by mass.

また高純度粉末とバインダと有機溶媒との湿式混合、特に高純度粉末と分散媒である有機溶媒との湿式混合は、湿式ボールミル又は撹拌ミルにより行われる。湿式ボールミルでは、ZrO2製ボールを用いる場合には、直径5〜10mmの多数のZrO2製ボールを用いて8〜24時間、好ましくは20〜24時間湿式混合される。ZrO2製ボールの直径を5〜10mmと限定したのは、5mm未満では混合が不十分となることからであり、10mmを越えると不純物が増える不具合があるからである。また混合時間が最長24時間と長いのは、長時間連続混合しても不純物の発生が少ないからである。 The wet mixing of the high purity powder, the binder, and the organic solvent, particularly the wet mixing of the high purity powder and the organic solvent that is the dispersion medium is performed by a wet ball mill or a stirring mill. In the wet ball mill, when ZrO 2 balls are used, wet mixing is performed for 8 to 24 hours, preferably 20 to 24 hours, using a large number of ZrO 2 balls having a diameter of 5 to 10 mm. The reason why the diameter of the ZrO 2 balls is limited to 5 to 10 mm is that mixing is insufficient when the diameter is less than 5 mm, and there is a problem that impurities increase when the diameter exceeds 10 mm. The reason why the mixing time is as long as 24 hours is that the generation of impurities is small even if the mixing is continued for a long time.

次に、上記スラリーを噴霧乾燥して平均粒径が50〜250μm、好ましくは50〜200μmの混合造粒粉末を得る。この造粒粉末を所定の型に入れて所定の圧力で成形する。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましく、所定の型は一軸プレス装置又は冷間静水圧成形装置(CIP(Cold Isostatic Press)成形装置)が用いられる。一軸プレス装置では、造粒粉末を750〜2000kg/cm273.55196.1MPa)、好ましくは1000〜1500kg/cm298.1147.1MPa)の圧力で一軸加圧成形し、CIP成形装置では、造粒粉末を1000〜3000kg/cm298.1294.2MPa)、好ましくは1500〜2000kg/cm2147.1196.1MPa)の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。 Next, the slurry is spray-dried to obtain a mixed granulated powder having an average particle size of 50 to 250 μm, preferably 50 to 200 μm. This granulated powder is put into a predetermined mold and molded at a predetermined pressure. The spray drying is preferably performed using a spray dryer, and the predetermined die is a uniaxial press device or a cold isostatic press (CIP (Cold Isostatic Press) molding device). In the uniaxial press apparatus, the granulated powder is uniaxially pressed at a pressure of 750 to 2000 kg / cm 2 ( 73.55 to 196.1 MPa), preferably 1000 to 1500 kg / cm 2 ( 98.1 to 147.1 MPa). In the CIP molding apparatus, the granulated powder is pressed at a pressure of 1000 to 3000 kg / cm 2 ( 98.1 to 294.2 MPa), preferably 1500 to 2000 kg / cm 2 ( 147.1 to 196.1 MPa). CIP molding. The reason why the pressure is limited to the above range is to increase the density of the molded body, prevent deformation after sintering, and eliminate the need for post-processing.

更に、成形体を所定の温度で焼結する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。これにより所望のZnOを主成分とするペレットが得られる。ペレットの相対密度は90%以上であることが好ましく、95%以上であることが更に好ましい。相対密度が90%以上であれば、成膜時のスプラッシュを低減できるからである。上記焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP、Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。   Further, the molded body is sintered at a predetermined temperature. Sintering is carried out at a temperature of 1000 ° C. or higher, preferably 1200 to 1400 ° C. for 1 to 10 hours, preferably 2 to 5 hours in the atmosphere, inert gas, vacuum or reducing gas atmosphere. Thereby, the pellet which has desired ZnO as a main component is obtained. The relative density of the pellets is preferably 90% or more, and more preferably 95% or more. This is because if the relative density is 90% or more, splash during film formation can be reduced. The above sintering is performed under atmospheric pressure, but when performing pressure sintering such as hot pressing (HP) sintering or hot isostatic pressing (HIP) sintering, an inert gas, It is preferable to carry out at a temperature of 1000 ° C. or higher for 1 to 5 hours in a vacuum or a reducing gas atmosphere.

次いで、得られたペレットの多結晶ZnO蒸着材をターゲット材として、真空成膜法により基板表面にZnO膜を形成する。本発明のZnO蒸着材を用いて成膜するのに適する真空成膜法としては、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法及びプラズマ蒸着法が挙げられる。これらの成膜方法により成膜される本発明のZnO膜は、本発明のZnO蒸着材を使用しているため、ITOに迫るような、比抵抗が3〜5×10-4Ω・cmの高い導電率、可視光透過率が90%以上の高い透過率が得られる。更に、イオン半径がZnより大きいCeにより歪んだ結晶を、イオン半径の小さいBを添加して回復整合させることにより、膜の耐久性も向上する。 Next, a ZnO film is formed on the substrate surface by a vacuum film-forming method using the obtained polycrystalline ZnO vapor deposition material in pellets as a target material. Examples of the vacuum film formation method suitable for forming a film using the ZnO vapor deposition material of the present invention include an electron beam vapor deposition method, an ion plating method, a sputtering method, and a plasma vapor deposition method. Since the ZnO film of the present invention formed by these film forming methods uses the ZnO vapor deposition material of the present invention, the specific resistance approaching that of ITO is 3 to 5 × 10 −4 Ω · cm. High conductivity and high transmittance with a visible light transmittance of 90% or more can be obtained. Furthermore, the durability of the film can be improved by adding a crystal having a ionic radius which is distorted by Ce larger than Zn and recovering and matching it by adding B having a small ionic radius.

なお、本発明で使用されるZnO粉末、B23粉末及び混合造粒粉末の平均粒径の値はレーザー回折法により算出又は測定される値である。 The value of the average particle diameter of ZnO powder, B 2 O 3 powder and mixing the granulated powder used in the present invention is a value calculated or measured by a laser diffraction method.

次に本発明の実施例を比較例とともに詳しく説明する。
参考例1>
先ず、ZnO粉末994.28gと、CeO2粉末2.50gと、B23粉末3.22gと、バインダと、有機溶媒とを湿式ボールミルを用い、湿式混合してスラリーを調製した。調製したスラリーを噴霧乾燥し、得られた混合造粒粉末を100.0MPaの圧力で加圧成形した後、1300℃の温度で焼結し、ZnO蒸着材を作製した。
Next, examples of the present invention will be described in detail together with comparative examples.
< Reference Example 1>
First, 994.28 g of ZnO powder, 2.50 g of CeO 2 powder, 3.22 g of B 2 O 3 powder, a binder, and an organic solvent were wet mixed using a wet ball mill to prepare a slurry. The prepared slurry was spray-dried, and the obtained mixed granulated powder was press-molded at a pressure of 100.0 MPa, and then sintered at a temperature of 1300 ° C. to produce a ZnO vapor deposition material.

得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が0.2質量%、B濃度が0.1質量%である多結晶ZnOのペレットであった。またペレットの直径及び厚さはそれぞれ5mm及び1.6mmであった。   The obtained ZnO vapor deposition material has a relative density of 95% and, as shown in Table 1 below, a polycrystalline ZnO pellet having a Ce concentration of 0.2% by mass and a B concentration of 0.1% by mass. Met. The diameter and thickness of the pellets were 5 mm and 1.6 mm, respectively.

次に、ガラス基板(無アルカリガラス)上に、上記ZnO蒸着材を用いて電子ビーム蒸着法により、膜厚200nmのZnO膜を成膜した。具体的には、直径50mm、深さ25mmの電子ビーム蒸着装置のハースに仕込まれた上記ZnO蒸着材に、到達真空度2.66×10-4Pa、酸素分圧1.33×10-2の雰囲気において、加速電圧10kV、ビームスキャンエリア約40mmφの電子ビームを照射、加熱することにより行った。 Next, a 200 nm-thick ZnO film was formed on a glass substrate (non-alkali glass) by the electron beam evaporation method using the ZnO evaporation material. Specifically, the ultimate vacuum degree is 2.66 × 10 −4 Pa and the partial pressure of oxygen is 1.33 × 10 −2 on the ZnO vapor deposition material charged in the hearth of the electron beam vapor deposition apparatus having a diameter of 50 mm and a depth of 25 mm. In this atmosphere, an electron beam having an acceleration voltage of 10 kV and a beam scan area of about 40 mmφ was irradiated and heated.

<実施例
ZnO粉末を930.9g、CeO2粉末を36.9g、B23粉末を32.2gとしたこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が3質量%、B濃度が1質量%であった。
<Example 1 >
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1 except that 930.9 g of ZnO powder, 36.9 g of CeO 2 powder and 32.2 g of B 2 O 3 powder were used, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the Ce concentration was 3% by mass and the B concentration was 1% by mass.

<実施例
ZnO粉末を829.7g、CeO2粉末を73.7g、B23粉末を96.6gとしたこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が6質量%、B濃度が3質量%であった。
<Example 2 >
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1, except that the ZnO powder was 829.7 g, the CeO 2 powder was 73.7 g, and the B 2 O 3 powder was 96.6 g, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the Ce concentration was 6% by mass and the B concentration was 3% by mass.

<実施例
ZnO粉末を494.98g、CeO2粉末を183.00g、B23粉末を322.02gとしたこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が14.9質量%、B濃度が10質量%であった。
<Example 3 >
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1, except that the ZnO powder was 494.98 g, the CeO 2 powder was 183.00 g, and the B 2 O 3 powder was 322.02 g, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the Ce concentration was 14.9% by mass and the B concentration was 10% by mass.

<比較例1>
ZnO粉末を999.43g、CeO2粉末を0.25g、B23粉末を0.32gとしたこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が0.02質量%、B濃度が0.01質量%であった。
<Comparative Example 1>
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1 except that 999.43 g of ZnO powder, 0.25 g of CeO 2 powder, and 0.32 g of B 2 O 3 powder were used, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the Ce concentration was 0.02 mass% and the B concentration was 0.01 mass%.

<比較例2>
ZnO粉末を754.3g、CeO2粉末を245.7gとし、B23粉末は添加しなかったこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が20質量%であった。即ち、得られたZnO蒸着材はBを含まない。
<Comparative example 2>
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1 except that the ZnO powder was 754.3 g, the CeO 2 powder was 245.7 g, and the B 2 O 3 powder was not added, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95% and, as shown in Table 1 below, the Ce concentration was 20% by mass. That is, the obtained ZnO vapor deposition material does not contain B.

<比較例3>
ZnO粉末を271.28g、CeO2粉末を245.70g、B23粉末を483.02gとしたこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、Ce濃度が20質量%、B濃度が15質量%であった。
<Comparative Example 3>
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1 except that 271.28 g of ZnO powder, 245.70 g of CeO 2 powder, and 483.02 g of B 2 O 3 powder were used, and a ZnO film was formed on the glass substrate. Was deposited. In addition, the obtained ZnO vapor deposition material had a relative density of 95%, and as shown in Table 1 below, the Ce concentration was 20 mass% and the B concentration was 15 mass%.

<比較例4>
ZnO粉末を516.98g、B23粉末を483.02gとし、CeO2粉末は添加しなかったこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、また以下の表1に示すように、B濃度が15質量%であった。即ち、得られたZnO蒸着材は、Ceを含まない。
<Comparative example 4>
A ZnO vapor deposition material was prepared in the same manner as in Reference Example 1 except that the ZnO powder was 516.98 g, the B 2 O 3 powder was 483.02 g, and the CeO 2 powder was not added, and a ZnO film was formed on the glass substrate. Was deposited. The obtained ZnO vapor deposition material had a relative density of 95% and a B concentration of 15% by mass as shown in Table 1 below. That is, the obtained ZnO vapor deposition material does not contain Ce.

<比較例5>
ZnO粉末を1000gとし、B23粉末及びCeO2粉末を添加しなかったこと以外は、参考例1と同様に、ZnO蒸着材を作製し、ガラス基板上にZnO膜を成膜した。なお、得られたZnO蒸着材は、相対密度が95%であり、Ce及びBを含まないZnO蒸着材であった。
<Comparative Example 5>
A ZnO vapor deposition material was prepared and a ZnO film was formed on a glass substrate in the same manner as in Reference Example 1 except that the ZnO powder was 1000 g and the B 2 O 3 powder and CeO 2 powder were not added. In addition, the obtained ZnO vapor deposition material was a ZnO vapor deposition material which has a relative density of 95% and does not contain Ce and B.

<比較試験及び評価>
参考例1実施例1〜及び比較例1〜5で成膜したZnO膜について、比抵抗及び透過率を測定した。その結果を以下の表1に示す。比抵抗は測定器(三菱化学株式会社 商品名:ロレスタ HP型、MCP−T410、プローブ:直列1.5mmピッチ)を用い、雰囲気が25℃において定電流印加による4端子4探針法により測定した。また透過率は分光光度計(株式会社日立製作所製 U−4000)を用い、可視光波長域(380〜780mm)について、成膜後の基板を測定光に対して垂直に設置して測定した。
<Comparison test and evaluation>
For the ZnO films formed in Reference Example 1 , Examples 1 to 3 and Comparative Examples 1 to 5, specific resistance and transmittance were measured. The results are shown in Table 1 below. The specific resistance was measured by a four-terminal four-probe method by applying a constant current at 25 ° C. using a measuring instrument (Mitsubishi Chemical Corporation, trade name: Loresta HP type, MCP-T410, probe: series 1.5 mm pitch). . The transmittance was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) in the visible light wavelength range (380 to 780 mm) by placing the substrate after film formation perpendicular to the measurement light.

Figure 0005018552
Figure 0005018552

表1から明らかなように、参考例1実施例1〜及び比較例1〜5と比較例1〜5を比較すると、参考例1実施例1〜及び比較例1〜5のZnO膜が有する比抵抗はいずれも比較例1〜5よりも低い結果となった。また透過率については、実施例1〜3のZnO膜が、比較例1及び5よりも若干低かったものの、比較例2〜4と比較すれば、十分に高い透過率が得られたと言える。このことから、本発明のZnO蒸着材が効果的であることが確認された。 As it is evident from Table 1, Reference Example 1, comparing the Comparative Examples 1-5 and Examples 1 3 and Comparative Examples 1-5, Reference Example 1, Examples 1 3 and Comparative Examples 1 to 5 ZnO The specific resistance of the film was lower than those of Comparative Examples 1-5. With respect to the transmittance, ZnO films of Examples 1 to 3, although was slightly lower than Comparative Example 1 and 5, in comparison with Comparative Example 2-4, it can be said that a sufficiently high transmittance is obtained. From this, it was confirmed that the ZnO vapor deposition material of the present invention is effective.

Claims (6)

透明導電膜を成膜するために用いられるZnO蒸着材において、
ZnOを主成分としたペレットからなり、
前記ペレットがCeとBの双方の元素を含み、
前記Ceが前記Bよりも含有割合が高く、
前記Ceの含有割合が〜14.9質量%、前記Bの含有割合が〜10質量%の範囲内である
ことを特徴とするZnO蒸着材。
In a ZnO vapor deposition material used for forming a transparent conductive film,
Consisting of pellets based on ZnO,
The pellet contains both elements of Ce and B;
The Ce content is higher than the B,
The ZnO vapor deposition material, wherein the Ce content is 3 to 14.9% by mass, and the B content is 1 to 10% by mass.
CeとBの合計の含有割合が〜15質量%の範囲内である請求項1記載のZnO蒸着材。 The ZnO vapor deposition material according to claim 1, wherein the total content of Ce and B is in the range of 4 to 15 mass%. ZnOのペレットが多結晶体又は単結晶体である請求項1記載のZnO蒸着材。   The ZnO vapor deposition material according to claim 1, wherein the ZnO pellet is a polycrystal or a single crystal. 請求項1ないし3いずれか1項に記載のZnO蒸着材を製造する方法であり、A method for producing a ZnO vapor deposition material according to any one of claims 1 to 3,
ZnO粉末と、ZnO蒸着材中のCeの含有割合が3〜14.9質量%の範囲となるCeOCeO in which the content ratio of Ce in the ZnO powder and the ZnO vapor deposition material is in the range of 3 to 14.9% by mass. 22 粉末と、ZnO蒸着材中のBの含有割合が1〜10質量%の範囲となるBB in which the content of B in the powder and ZnO vapor deposition material is in the range of 1 to 10% by mass 22 O 3Three 粉末と、バインダと、有機溶媒とを混合して濃度が30〜75質量%であって、前記ZnO蒸着材中のCeの含有割合がBの含有割合よりも高いスラリーを調製し、A powder, a binder, and an organic solvent are mixed to prepare a slurry having a concentration of 30 to 75% by mass, and the Ce content ratio in the ZnO vapor deposition material is higher than the B content ratio,
前記スラリーを噴霧乾燥して平均粒径が50〜250μmの混合造粒粉末を作製し、  The slurry is spray-dried to produce a mixed granulated powder having an average particle size of 50 to 250 μm,
前記混合造粒粉末を所定の型に入れて所定の圧力で成形し、  The mixed granulated powder is put in a predetermined mold and molded at a predetermined pressure,
前記成形により得られた成形体を1000℃以上の温度で1〜10時間焼結してペレットからなるZnO蒸着材を得るZnO蒸着材の製造方法。  The manufacturing method of the ZnO vapor deposition material which obtains the ZnO vapor deposition material which consists of a pellet by sintering the molded object obtained by the said shaping | molding at the temperature of 1000 degreeC or more for 1 to 10 hours.
請求項1ないし3いずれか1項に記載のZnO蒸着材、或いは請求項4記載の製造方法により得られたZnO蒸着材をターゲット材とする真空成膜法により形成されたZnO膜。 A ZnO film formed by a vacuum film forming method using the ZnO vapor deposition material according to any one of claims 1 to 3 or the ZnO vapor deposition material obtained by the manufacturing method according to claim 4 as a target material. 真空成膜法が電子ビーム蒸着法、イオンプレーティング法、スパッタリング法又はプラズマ蒸着法である請求項記載のZnO膜。 6. The ZnO film according to claim 5, wherein the vacuum film forming method is an electron beam vapor deposition method, an ion plating method, a sputtering method or a plasma vapor deposition method.
JP2008048895A 2007-03-09 2008-02-29 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby Expired - Fee Related JP5018552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048895A JP5018552B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007060172 2007-03-09
JP2007060172 2007-03-09
JP2008048895A JP5018552B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby

Publications (2)

Publication Number Publication Date
JP2008255472A JP2008255472A (en) 2008-10-23
JP5018552B2 true JP5018552B2 (en) 2012-09-05

Family

ID=39979345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048895A Expired - Fee Related JP5018552B2 (en) 2007-03-09 2008-02-29 ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby

Country Status (1)

Country Link
JP (1) JP5018552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409477B2 (en) 2007-09-27 2013-04-02 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113512A (en) * 2013-12-13 2015-06-22 三菱マテリアル株式会社 Oxide sputtering target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805813B2 (en) * 1988-08-09 1998-09-30 東ソー株式会社 Sputtering target and method for manufacturing the same
JP3301755B2 (en) * 1990-08-22 2002-07-15 東ソー株式会社 Sputtering target and manufacturing method thereof
JPH04219359A (en) * 1990-12-19 1992-08-10 Tosoh Corp Electrically conductive zinc oxide sintered compact
JP3128861B2 (en) * 1991-06-06 2001-01-29 東ソー株式会社 Sputtering target and method for manufacturing the same
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
JP4577924B2 (en) * 1999-06-29 2010-11-10 三井金属鉱業株式会社 Method for producing sputtering target containing zinc oxide
JP3826755B2 (en) * 2001-09-28 2006-09-27 株式会社村田製作所 ZnO film, method for producing the same, and light emitting device
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409477B2 (en) 2007-09-27 2013-04-02 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film

Also Published As

Publication number Publication date
JP2008255472A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
JP2008088544A5 (en)
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5411945B2 (en) Indium oxide-based sintered body and indium oxide-based transparent conductive film
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP5418752B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5418747B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418749B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418748B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5381725B2 (en) Method for producing ZnO vapor deposition material
JP5381724B2 (en) Method for producing ZnO vapor deposition material
JP5418750B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP6146773B2 (en) Oxide sintered body and manufacturing method thereof
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
JP6356290B2 (en) Oxide sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees