JPH04219359A - Electrically conductive zinc oxide sintered compact - Google Patents
Electrically conductive zinc oxide sintered compactInfo
- Publication number
- JPH04219359A JPH04219359A JP2411711A JP41171190A JPH04219359A JP H04219359 A JPH04219359 A JP H04219359A JP 2411711 A JP2411711 A JP 2411711A JP 41171190 A JP41171190 A JP 41171190A JP H04219359 A JPH04219359 A JP H04219359A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- sintered body
- powder
- density
- resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 77
- 239000011787 zinc oxide Substances 0.000 title claims description 34
- 239000002245 particle Substances 0.000 claims abstract description 16
- 239000011812 mixed powder Substances 0.000 claims abstract description 11
- 238000005477 sputtering target Methods 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 21
- 239000010409 thin film Substances 0.000 abstract description 17
- 238000002156 mixing Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 238000001354 calcination Methods 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 21
- 238000004544 sputter deposition Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 241000157468 Reinhardtius hippoglossoides Species 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、導電性酸化亜鉛焼結体
及びその製造方法並びにその用途に関する。導電性酸化
亜鉛焼結体は、スパッタリング法、特に直流マグネトロ
ンスパッタリング法によって透明性、導電性に優れた透
明導電性酸化亜鉛薄膜を成膜することができる。これら
の酸化亜鉛薄膜は、近年、太陽電池やディスプレ−機器
の透明電極や、帯電防止用の導電性コ−ティングとして
の需要が高まっている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive zinc oxide sintered body, a method for manufacturing the same, and uses thereof. From the conductive zinc oxide sintered body, a transparent conductive zinc oxide thin film having excellent transparency and conductivity can be formed by a sputtering method, particularly a DC magnetron sputtering method. In recent years, demand for these zinc oxide thin films has increased as transparent electrodes for solar cells and display devices, and conductive coatings for antistatic purposes.
【0002】0002
【従来の技術】導電性金属酸化物の透明導電性薄膜は、
主に金属酸化物のスパッタリングにより形成されている
が、ここで用いる金属酸化物としては異種元素として錫
をド−プしたインジュウム酸化物(ITO)、異種元素
としてアンチモンをド−プした酸化スズ(ZAO)が工
業的に用いられている。[Prior Art] A transparent conductive thin film of conductive metal oxide is
It is mainly formed by sputtering of metal oxides, and the metal oxides used here include indium oxide (ITO) doped with tin as a different element, and tin oxide (ITO) doped with antimony as a different element. ZAO) is used industrially.
【0003】しかし、ITOは、透明性が大であり低抵
抗な薄膜形成が可能である反面、インジウムが高価で経
済的に難点があり、さらに化学的に不安定であるため適
応範囲に制限があった。また、TAOは、安価で化学的
にも比較的安定であるが、高抵抗の薄膜しか得られず必
ずしも充分な材料とはいえなかった。[0003] However, although ITO has high transparency and can be formed into a thin film with low resistance, it is economically difficult because indium is expensive, and furthermore, it is chemically unstable, which limits its applicability. there were. Furthermore, although TAO is inexpensive and relatively chemically stable, it cannot be said to be a sufficient material because only a thin film with high resistance can be obtained.
【0004】最近、異種元素としてアルミニウム等をド
−プした酸化亜鉛をスパッタリングすることによりIT
O並みに低抵抗で透明性に優れた透明導電性薄膜が得ら
れることが報告されている(J.Appl.Phys.
,55,p.1029(1988))。Recently, IT has been developed by sputtering zinc oxide doped with a different element such as aluminum.
It has been reported that a transparent conductive thin film with a resistance as low as O and excellent transparency can be obtained (J. Appl. Phys.
, 55, p. 1029 (1988)).
【0005】酸化亜鉛は、安価な上に化学的にも安定で
、透明性、導電性にも優れた透明導電性材料である。
しかし、これまでのスパッタリングに用いられていた異
種元素含有酸化亜鉛焼結体は、抵抗率が数キロΩcm以
上の高抵抗のものであったため、適用できるスパッタリ
ング法が高周波スパッタリングに限定され、工業的な直
流スパッタリングは使用できなかった。Zinc oxide is a transparent conductive material that is inexpensive, chemically stable, and has excellent transparency and conductivity. However, the zinc oxide sintered bodies containing different elements that have been used for sputtering so far have a high resistivity of several kiloΩcm or more, so the applicable sputtering method is limited to high-frequency sputtering, and industrial DC sputtering could not be used.
【0006】[0006]
【発明が解決しようとする課題】高周波スパッタリング
では基板温度が上昇すると、得られる酸化亜鉛透明性導
電膜の導電性が低下するという問題点があり、また、直
流スパッタリングで高抵抗な酸化亜鉛焼結体を成膜する
場合、投入可能な電力が著しく低い上、放電が非常に不
安定で、無理に電力を投入するとタ−ゲットが割れたり
バッキングプレ−トから剥離脱落するという問題を生じ
てしまうためこれまでの方法では充分な透明導電膜は得
られていなかった。[Problems to be Solved by the Invention] High-frequency sputtering has a problem in that when the substrate temperature rises, the conductivity of the resulting zinc oxide transparent conductive film decreases. When forming a film on a target, the amount of power that can be input is extremely low, and the discharge is extremely unstable. If the power is applied forcibly, the target may crack or peel off from the backing plate. Therefore, a sufficient transparent conductive film could not be obtained by the conventional methods.
【0007】[0007]
【課題を解決する手段】本発明者等は導電性酸化亜鉛焼
結体に関して鋭意検討を重ねた結果、平均粒径が1μm
以上の酸化亜鉛粉末と正三価以上の原子価を有する元素
の酸化物との混合物を1200℃以上の温度で焼結する
ことにより、抵抗率が10Ωcm以下、かつ焼結体密度
が3.4g/cm3〜4.5g/cm3である導電性酸
化亜鉛焼結体を得ることができ、更にこの焼結体をスパ
ッタリングタ−ケットとして用いることにより、直流ス
パッタリング法にて透明性、導電性に優れた透明導電性
酸化亜鉛薄膜を得ることができることを見出し本発明を
完成した。[Means for Solving the Problems] As a result of intensive studies on conductive zinc oxide sintered bodies, the present inventors found that the average particle size was 1 μm.
By sintering a mixture of the above zinc oxide powder and an oxide of an element having a valence of trivalent or higher at a temperature of 1200°C or higher, the resistivity is 10 Ωcm or less and the sintered body density is 3.4 g/cm. It is possible to obtain a conductive zinc oxide sintered body with a thickness of cm3 to 4.5 g/cm3, and furthermore, by using this sintered body as a sputtering turbot, it is possible to obtain a conductive zinc oxide sintered body with excellent transparency and conductivity using the DC sputtering method. The present invention was completed by discovering that a transparent conductive zinc oxide thin film can be obtained.
【0008】[0008]
【作用】以下本発明を詳細に説明する。[Operation] The present invention will be explained in detail below.
【0009】抵抗率が10Ωcm以下、焼結体密度が3
.4g/cm3〜4.5g/cm3である本発明の焼結
体は、平均粒径が1μm以上の酸化亜鉛粉末と正三価以
上の原子価を有する元素の酸化物との混合物を1200
℃以上の温度で焼結することによって得られる。詳しく
は、焼結体の抵抗率を10Ωcm以下にするために正三
価以上の原子価を有する元素が酸化亜鉛へ固溶する12
00℃以上の温度で焼結し、更にその焼結温度において
も焼結体密度を3.4g/cm3〜4.5g/cm3に
制御するために、焼結に対して比較的不活性な平均粒径
が1μm以上の酸化亜鉛と正三価以上の原子価を有する
元素の酸化物との混合粉末を用いることによって上記焼
結体密度のものを得るものである。[0009] Resistivity is 10 Ωcm or less, sintered body density is 3
.. The sintered body of the present invention having an average particle size of 4 g/cm3 to 4.5 g/cm3 is produced by mixing a mixture of zinc oxide powder with an average particle size of 1 μm or more and an oxide of an element having a valence of trivalent or higher at 1200 g/cm3 to 4.5 g/cm3.
Obtained by sintering at temperatures above ℃. Specifically, in order to make the resistivity of the sintered body 10 Ωcm or less, an element having a valence of positive trivalent or higher is dissolved in zinc oxide.
In order to sinter at a temperature of 00°C or higher and further control the sintered body density to 3.4 g/cm3 to 4.5 g/cm3 even at that sintering temperature, an average material that is relatively inert to sintering is used. A sintered body having the above-mentioned density is obtained by using a mixed powder of zinc oxide having a particle size of 1 μm or more and an oxide of an element having a valence of trivalent or higher.
【0010】酸化亜鉛焼結体の抵抗率を10Ωcm以下
にする方法について説明する。[0010] A method for reducing the resistivity of the zinc oxide sintered body to 10 Ωcm or less will be explained.
【0011】本発明の焼結体の抵抗率は10Ωcm以下
であることが必須である。それは、抵抗率が10Ωcm
を越える焼結体の場合、先にも示したように、工業的な
直流スパッタリングによる透明性、導電性に優れた酸化
亜鉛薄膜の安定した成膜が著しく困難となるからである
。もともと、酸化亜鉛の焼結体は抵抗率が高く絶縁体に
近いが、酸化亜鉛に正三価以上の原子価を有する元素を
固溶させることにより導電性を付与することができる。
したがって本発明では、酸化亜鉛中に正三価以上の原子
価を有する元素が固溶する1200℃以上、好ましくは
1200℃〜1450℃の温度で焼結する方法を見い出
した。It is essential that the resistivity of the sintered body of the present invention is 10 Ωcm or less. It has a resistivity of 10Ωcm
This is because if the sintered body exceeds 100%, it becomes extremely difficult to stably form a zinc oxide thin film with excellent transparency and conductivity by industrial direct current sputtering, as described above. Originally, a sintered body of zinc oxide has high resistivity and is close to an insulator, but conductivity can be imparted by dissolving in zinc oxide an element having a valence of trivalent or higher. Therefore, in the present invention, a method has been discovered in which zinc oxide is sintered at a temperature of 1200° C. or higher, preferably 1200° C. to 1450° C., in which an element having a valence of trivalent or higher is dissolved in solid solution.
【0012】本発明において、導電性を付与するために
添加する正三価以上の原子価を有する元素としては、3
A族のSc,Y,3B族のB,Al,Ga,In,Tl
,4A族のTi,Zr,Hf,Th,4B族のC,Si
,Ge,Sn,Pb,5A族のV,Nb,Ta,Pa,
5B族のAs,Sb,Bi,6A族のCr,Mo,W,
U,6B族のSe,Te,Po,7A族のMn,Tc,
Re,8族のFe,Co,Ni,Ru,Rh,Pd,O
s,Ir,Pt及びランタノイド、アクチノイド系列の
元素が適応できる。[0012] In the present invention, the elements having a valence of 3 or more that are added to impart conductivity include 3
Sc, Y of group A, B, Al, Ga, In, Tl of group 3B
, 4A group Ti, Zr, Hf, Th, 4B group C, Si
, Ge, Sn, Pb, V of group 5A, Nb, Ta, Pa,
5B group As, Sb, Bi, 6A group Cr, Mo, W,
U, 6B group Se, Te, Po, 7A group Mn, Tc,
Re, group 8 Fe, Co, Ni, Ru, Rh, Pd, O
S, Ir, Pt, and elements of the lanthanide and actinide series are applicable.
【0013】また、本発明の焼結体中に含まれる添加元
素の含有量は亜鉛に対して0.1atm%〜20atm
%で、特に好ましくは0.5atm%〜5atm%であ
る。[0013] Further, the content of the additional element contained in the sintered body of the present invention is 0.1 atm% to 20 atm% with respect to zinc.
%, particularly preferably 0.5 atm% to 5 atm%.
【0014】次に、酸化亜鉛焼結体の密度を3.4g/
cm3〜4.5g/cm3に制御する方法について説明
する。Next, the density of the zinc oxide sintered body was set to 3.4 g/
A method for controlling the amount of g/cm3 to 4.5 g/cm3 will be explained.
【0015】本発明の焼結体の焼結体密度は3.4g/
cm3〜4.5g/cm3である。焼結体密度が4.5
g/cm3を越える場合、低ガス圧領域でスパッタリン
グすると透明性、導電性に優れた薄膜が得られるが、高
ガス圧領域においては得られた薄膜が酸化されやすく高
抵抗なものが得られやすい。また、焼結体密度が3.4
g/cm3未満の場合、スパッタ時におけるタ−ゲット
表面の還元が著しく、得られる薄膜は高抵抗で着色した
ものとなり、更にタ−ゲットの機械的強度が小さく、も
ろくなるために好ましくない。The sintered body density of the sintered body of the present invention is 3.4 g/
cm3 to 4.5 g/cm3. Sintered body density is 4.5
If it exceeds g/cm3, a thin film with excellent transparency and conductivity can be obtained by sputtering in a low gas pressure region, but in a high gas pressure region, the obtained thin film is easily oxidized and a high resistance film is likely to be obtained. . In addition, the sintered body density is 3.4
If it is less than g/cm3, the reduction of the target surface during sputtering will be significant, the obtained thin film will have high resistance and be colored, and furthermore, the mechanical strength of the target will be low and it will become brittle, which is not preferable.
【0016】酸化亜鉛は焼結しやすく、酸化亜鉛単独の
ものを900℃程度の焼結温度で焼結すると理論密度5
.6g/cm3近くまで達する。一般的に、焼結体密度
の制御は焼結温度を低下させることによって可能である
。しかし、先にも示したが、焼結温度を低下させること
は異種元素の酸化亜鉛への固溶を抑制し、10Ωcm以
下の低抵抗の酸化亜鉛焼結体を得ることができないため
に本系においては焼結温度の低下による焼結体密度の制
御は適応できない。したがって本発明においては、平均
粒径が1μm以上、好ましくは1μm〜5μmである焼
結に対して比較的不活性な粉末を用いることにより、異
種元素の酸化亜鉛への固溶が可能な1200℃以上、好
ましくは1200℃〜1450℃の温度においても焼結
体密度を3.4g/cm3〜4.5g/cm3の範囲に
入ることを見出した。Zinc oxide is easy to sinter, and when zinc oxide alone is sintered at a sintering temperature of about 900°C, the theoretical density is 5.
.. It reaches close to 6g/cm3. Generally, the density of the sintered body can be controlled by lowering the sintering temperature. However, as mentioned earlier, lowering the sintering temperature suppresses the solid solution of different elements into zinc oxide, making it impossible to obtain a zinc oxide sintered body with a low resistance of 10 Ωcm or less. In this case, it is not possible to control the density of the sintered body by lowering the sintering temperature. Therefore, in the present invention, by using a powder that is relatively inert to sintering and has an average particle size of 1 μm or more, preferably 1 μm to 5 μm, the temperature at 1200° C. allows solid solution of different elements in zinc oxide. As mentioned above, it has been found that the density of the sintered body preferably falls within the range of 3.4 g/cm 3 to 4.5 g/cm 3 even at a temperature of 1200° C. to 1450° C.
【0017】更に、本発明で用いる原料粉末について説
明する。Further, the raw material powder used in the present invention will be explained.
【0018】本発明で用いる原料粉末は、平均粒径が1
μm以上の酸化亜鉛粉末と正三価以上の原子価を有する
元素の化合物の混合物である。The raw material powder used in the present invention has an average particle size of 1
It is a mixture of zinc oxide powder of μm or more and a compound of an element having a valence of trivalent or higher.
【0019】正三価以上の原子価を有する元素の化合物
は、熱分解によって酸化物となるものであるなら限定さ
れることなく用いることができ、先に示した各種元素の
酸化物、水酸化物、各種塩等を使用できる。Compounds of elements having a valence of trivalent or higher can be used without limitation as long as they become oxides by thermal decomposition, and include the oxides and hydroxides of the various elements listed above. , various salts, etc. can be used.
【0020】酸化亜鉛と正三価以上の原子価を有する元
素の化合物との混合方法は特に限定されず、ボ−ルミル
、振動ミル等の乾式や湿式で混合を行なえばよい。また
、異種元素の各種塩を水やアルコ−ル等の適当な溶媒に
溶かし、酸化亜鉛粉末とスラリ−状で混合してもよい。
更に、異種元素を均一に分散させるために、亜鉛成分と
異種元素成分を含有する混合溶液に適当な沈殿剤を添加
して共沈物を生成させ、これを熱処理して混合粉末を製
造してもよい。The method of mixing zinc oxide and the compound of an element having a valence of trivalent or higher is not particularly limited, and the mixing may be carried out in a dry or wet manner using a ball mill, a vibration mill, or the like. Alternatively, various salts of different elements may be dissolved in a suitable solvent such as water or alcohol, and mixed with zinc oxide powder in the form of a slurry. Furthermore, in order to uniformly disperse the different elements, a suitable precipitant is added to the mixed solution containing the zinc component and the different element components to form a coprecipitate, which is then heat treated to produce a mixed powder. Good too.
【0021】本発明で用いる原料粉末の平均粒径は1μ
m以上で、好ましくは1μm〜5μmである。平均粒径
が1μm未満の粉末は焼結に対して活性であり、それを
用いて焼結すると焼結体密度が4.5g/cm3以上の
ものしか得られないために好ましくなく、平均粒径が5
μmを越える粉末は成型性が著しく低下するために好ま
しくない。[0021] The average particle size of the raw material powder used in the present invention is 1μ.
m or more, preferably 1 μm to 5 μm. Powder with an average particle size of less than 1 μm is active in sintering, and sintering with it will only yield a sintered body with a density of 4.5 g/cm3 or more, which is undesirable. is 5
Powders exceeding .mu.m are not preferred because their moldability is significantly reduced.
【0022】平均粒径が1μm以上の粉末は、酸化亜鉛
粉末と正三価以上の原子価を有する元素の酸化物粉末と
の混合物を熱処理することによって得られる。熱処理は
、目的とする粒径に応じてその温度を選択すればよく、
800℃以上1300℃以下でよい。A powder having an average particle size of 1 μm or more can be obtained by heat-treating a mixture of zinc oxide powder and an oxide powder of an element having a valence of trivalent or higher. For heat treatment, the temperature can be selected depending on the target particle size.
The temperature may be 800°C or higher and 1300°C or lower.
【0023】本発明の焼結体は、上記の平均粒径が1μ
m以上の原料粉末を成型し、1200℃以上の温度で焼
結することによって得られる。The sintered body of the present invention has the above average grain size of 1 μm.
It is obtained by molding raw material powder of m or more and sintering at a temperature of 1200° C. or more.
【0024】成型方法は、目的とした形状に合った成型
方法を選んで成型すればよく、金型プレス法、鋳込み成
型法等が例示できるが、特に限定されるものではない。[0024] The molding method may be selected from a molding method suitable for the desired shape, and examples thereof include a mold press method and a cast molding method, but are not particularly limited.
【0025】次に成型した粉末を焼結するが、本発明の
焼結温度は1200℃以上が好ましく、特に好ましくは
1200℃〜1450℃である。焼結温度が1200℃
未満では、正三価以上の原子価を有する元素の酸化亜鉛
への固溶が不十分となり、10Ωcm以下の焼結体が得
られないために好ましくない。Next, the molded powder is sintered, and the sintering temperature in the present invention is preferably 1200°C or higher, particularly preferably 1200°C to 1450°C. Sintering temperature is 1200℃
If it is less than 1, the solid solution of the element having a valence of trivalent or higher into zinc oxide will be insufficient, and a sintered body with a resistance of 10 Ωcm or less will not be obtained, which is not preferable.
【0026】上記焼結時間は1〜数十時間で、好ましく
は2〜10時間である。この時間が1時間より短いと焼
結あるいは異種元素の酸化亜鉛への固溶は不十分であり
、必要以上に長くしても密度、導電性等は変化せず、経
済的に好ましくない。The sintering time is 1 to several tens of hours, preferably 2 to 10 hours. If this time is shorter than 1 hour, sintering or solid solution of different elements in zinc oxide will be insufficient, and if it is longer than necessary, the density, conductivity, etc. will not change, which is economically unfavorable.
【0027】また、焼結時の昇温速度は1〜300℃/
時間で、好ましくは50〜200℃/時間である。この
昇温速度が必要以上に速いと焼結は不十分であり、また
焼結時にクラック等が生じ好ましくない。一方、昇温速
度が必要以上に長い場合は、経済的に好ましくない。[0027] Also, the temperature increase rate during sintering is 1 to 300°C/
time, preferably 50 to 200°C/hour. If this temperature increase rate is faster than necessary, sintering will be insufficient and cracks will occur during sintering, which is not preferable. On the other hand, if the temperature increase rate is longer than necessary, it is economically unfavorable.
【0028】本発明の焼結雰囲気は特に限定されず、大
気中等で行なえばよい。The sintering atmosphere of the present invention is not particularly limited, and the sintering may be carried out in the air or the like.
【0029】以上のような方法で導電性酸化亜鉛焼結体
を得ることができる。このようにして得られた焼結体は
スパッタリングタ−ゲットとして用いることができる。A conductive zinc oxide sintered body can be obtained by the method described above. The sintered body thus obtained can be used as a sputtering target.
【0030】[0030]
【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこれに限定されるものではない。[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.
【0031】実施例1
酸化亜鉛粉末と酸化アルミニウム粉末をボ−ルミルで1
5時間混合した後、混合粉末を1000℃で熱処理し、
平均粒径が3μmの粉末を得た。 この粉末を直径3
インチの金型に入れ、1t/cm2の圧力で成型した後
、空気中、1400℃で焼結した。得られた焼結体は、
密度4.0g/cm3、1.2mΩcmの抵抗率を示し
た。焼結体密度は、焼結体質量を焼結体の直径と厚さか
ら算出した体積で割って求め、また抵抗率は通常の直流
4端子法により求めた。Example 1 Zinc oxide powder and aluminum oxide powder were mixed together in a ball mill.
After mixing for 5 hours, the mixed powder was heat treated at 1000°C,
A powder with an average particle size of 3 μm was obtained. This powder has a diameter of 3
The material was placed in an inch mold, molded at a pressure of 1 t/cm2, and then sintered in air at 1400°C. The obtained sintered body is
It exhibited a density of 4.0 g/cm3 and a resistivity of 1.2 mΩcm. The density of the sintered body was determined by dividing the mass of the sintered body by the volume calculated from the diameter and thickness of the sintered body, and the resistivity was determined by the usual DC four-probe method.
【0032】この焼結体をスパッタリングタ−ゲットと
して用い、直流スパッタリングにおいて、純アルゴン雰
囲気、スパッタ圧1.0Pa、投入電力4W/cm2、
基板温度150℃で成膜を行なった。Using this sintered body as a sputtering target, direct current sputtering was performed in a pure argon atmosphere, a sputtering pressure of 1.0 Pa, an input power of 4 W/cm2,
Film formation was performed at a substrate temperature of 150°C.
【0033】得られた薄膜は、膜厚が20,000nm
で、抵抗率は0.8mΩcmであり、光透過率は92%
であった。The obtained thin film had a thickness of 20,000 nm.
The resistivity is 0.8mΩcm and the light transmittance is 92%.
Met.
【0034】実施例2
酸化亜鉛粉末と酸化アルミニウム粉末をボ−ルミルで1
5時間混合した後、混合粉末を1200℃で熱処理し、
平均粒径が4.5μmの粉末を得た。この粉末を実施例
1と同様の方法で成型し、空気中、1400℃で焼結し
た。得られた焼結体の密度は3.8g/cm3、抵抗率
は1.5mΩcmであった。Example 2 Zinc oxide powder and aluminum oxide powder were mixed together in a ball mill.
After mixing for 5 hours, the mixed powder was heat treated at 1200°C,
A powder with an average particle size of 4.5 μm was obtained. This powder was molded in the same manner as in Example 1 and sintered at 1400° C. in air. The density of the obtained sintered body was 3.8 g/cm3, and the resistivity was 1.5 mΩcm.
【0035】この焼結体を実施例1と同様の方法でスパ
ッタリングした。This sintered body was sputtered in the same manner as in Example 1.
【0036】得られた薄膜は、膜厚が20,000nm
で、抵抗率は1.2mΩcmであり、光透過率は90%
であった。The obtained thin film had a thickness of 20,000 nm.
The resistivity is 1.2 mΩcm and the light transmittance is 90%.
Met.
【0037】実施例3
酸化亜鉛粉末と酸化インジウム粉末をボ−ルミルで15
時間混合した後、混合粉末を1000℃で熱処理し、平
均粒径が2.5μmの粉末を得た。この粉末を実施例1
と同様の方法で成型し、空気中、1400℃で焼結した
。得られた焼結体の密度は4.2g/cm3、抵抗率は
1.0mΩcmであった。Example 3 Zinc oxide powder and indium oxide powder were mixed in a ball mill for 15 minutes.
After mixing for a period of time, the mixed powder was heat treated at 1000° C. to obtain powder with an average particle size of 2.5 μm. This powder was used in Example 1.
It was molded in the same manner as above and sintered at 1400°C in air. The density of the obtained sintered body was 4.2 g/cm3, and the resistivity was 1.0 mΩcm.
【0038】この焼結体を実施例1と同様の方法でスパ
ッタリングした。This sintered body was sputtered in the same manner as in Example 1.
【0039】得られた薄膜は、膜厚が20,000nm
で、抵抗率は0.8mΩcmであり、光透過率は81%
であった。The obtained thin film had a thickness of 20,000 nm.
The resistivity is 0.8mΩcm and the light transmittance is 81%.
Met.
【0040】比較例1
酸化亜鉛粉末と酸化アルミニウム粉末をボ−ルミルで1
5時間混合し、平均粒径0.8μmの混合粉末を得た。
得られた混合粉末を実施例1と同様の方法で成型した後
、1000℃で焼結した。このようにして得られた焼結
体は、密度4.1g/cm3、抵抗率は2kΩcmであ
った。Comparative Example 1 Zinc oxide powder and aluminum oxide powder were mixed in a ball mill.
The mixture was mixed for 5 hours to obtain a mixed powder with an average particle size of 0.8 μm. The obtained mixed powder was molded in the same manner as in Example 1, and then sintered at 1000°C. The sintered body thus obtained had a density of 4.1 g/cm 3 and a resistivity of 2 kΩcm.
【0041】その焼結体をスパッタリングタ−ゲットと
して用い、実施例1と同様な条件で直流スパッタリング
を行なったが、安定したグロ−放電は得られなかった。
断続的なスパッタリングによって得られた薄膜は黒く着
色しており、膜厚が20,000nmで、抵抗率が、場
所により、2〜25mΩcmの範囲でばらついた。又、
光透過率も75%と低かった。Using the sintered body as a sputtering target, DC sputtering was carried out under the same conditions as in Example 1, but stable glow discharge could not be obtained. The thin film obtained by intermittent sputtering was colored black, had a thickness of 20,000 nm, and had a resistivity that varied from 2 to 25 mΩcm depending on the location. or,
The light transmittance was also as low as 75%.
【0042】[0042]
【発明の効果】本発明の導電性酸化亜鉛焼結体は、直流
スパッタリング用のタ−ゲットとして使用することがで
き、スパッタリングによって得られた酸化亜鉛薄膜は導
電性及び透明性に優れている。Effects of the Invention The conductive zinc oxide sintered body of the present invention can be used as a target for DC sputtering, and the zinc oxide thin film obtained by sputtering has excellent conductivity and transparency.
Claims (3)
、かつ抵抗率が10Ωcm以下、焼結体密度が3.4g
/cm3〜4.5g/cm3である導電性酸化亜鉛焼結
体。Claim 1: Contains an element with a valence of trivalent or higher, has a resistivity of 10 Ωcm or less, and has a sintered body density of 3.4 g
/cm3 to 4.5g/cm3.
素の酸化物との混合粉末から成り、平均粒径が1μm以
上の混合粉末を1200℃以上の温度で焼結することを
特徴とする請求項1に記載の導電性酸化亜鉛焼結体の製
造方法。2. A mixed powder consisting of zinc oxide and an oxide of an element having a valence of trivalent or higher and having an average particle size of 1 μm or more is sintered at a temperature of 1200° C. or higher. The method for producing a conductive zinc oxide sintered body according to claim 1.
らなるスパッタリングタ−ゲット。3. A sputtering target comprising the conductive zinc oxide sintered body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2411711A JPH04219359A (en) | 1990-12-19 | 1990-12-19 | Electrically conductive zinc oxide sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2411711A JPH04219359A (en) | 1990-12-19 | 1990-12-19 | Electrically conductive zinc oxide sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04219359A true JPH04219359A (en) | 1992-08-10 |
Family
ID=18520661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2411711A Pending JPH04219359A (en) | 1990-12-19 | 1990-12-19 | Electrically conductive zinc oxide sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04219359A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238375A (en) * | 2006-03-08 | 2007-09-20 | Tosoh Corp | ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM |
JP2007246294A (en) * | 2006-03-13 | 2007-09-27 | Osaka Univ | Aluminum-containing zinc oxide sintered compact and method of manufacturing the same |
WO2007125814A1 (en) * | 2006-04-26 | 2007-11-08 | Mitsubishi Materials Corporation | ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME |
WO2007141994A1 (en) * | 2006-06-08 | 2007-12-13 | Sumitomo Metal Mining Co., Ltd. | Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base |
WO2008023482A1 (en) * | 2006-08-24 | 2008-02-28 | Nippon Mining & Metals Co., Ltd. | Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target |
JP2008255474A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255478A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255473A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255472A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255476A (en) * | 2007-03-14 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255477A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255475A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2009510263A (en) * | 2005-09-29 | 2009-03-12 | ハー ツェー シュタルク インコーポレイテッド | Sputtering target, low resistance transparent conductive coating, method for forming such coating and composition for use in the conductive coating |
JP2009096713A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | Zno vapor deposition material, its production method, and zno film and the like formed therefrom |
JP2009097091A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097090A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097086A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097087A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097088A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097089A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009096714A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | Zno vapor deposition material, its production method, and zno film and the like formed therefrom |
EP2194158A1 (en) * | 2007-09-27 | 2010-06-09 | Mitsubishi Materials Corporation | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
JP2011021272A (en) * | 2009-06-17 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Zinc oxide based sintered compact tablet, and method for producing the same |
JP5550768B1 (en) * | 2012-07-03 | 2014-07-16 | Jx日鉱日石金属株式会社 | Sintered body and amorphous film |
-
1990
- 1990-12-19 JP JP2411711A patent/JPH04219359A/en active Pending
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510263A (en) * | 2005-09-29 | 2009-03-12 | ハー ツェー シュタルク インコーポレイテッド | Sputtering target, low resistance transparent conductive coating, method for forming such coating and composition for use in the conductive coating |
JP2007238375A (en) * | 2006-03-08 | 2007-09-20 | Tosoh Corp | ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM |
JP2007246294A (en) * | 2006-03-13 | 2007-09-27 | Osaka Univ | Aluminum-containing zinc oxide sintered compact and method of manufacturing the same |
WO2007125814A1 (en) * | 2006-04-26 | 2007-11-08 | Mitsubishi Materials Corporation | ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME |
JP2008088544A (en) * | 2006-04-26 | 2008-04-17 | Mitsubishi Materials Corp | ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME |
US8636927B2 (en) | 2006-04-26 | 2014-01-28 | Mitsubishi Materials Corporation | ZnO deposition material and ZnO film formed of the same |
WO2007141994A1 (en) * | 2006-06-08 | 2007-12-13 | Sumitomo Metal Mining Co., Ltd. | Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base |
US8389135B2 (en) | 2006-06-08 | 2013-03-05 | Sumitomo Metal Mining Co., Ltd. | Oxide sintered body, target, transparent conductive film obtained by using the same, and transparent conductive substrate |
US8728635B2 (en) | 2006-06-08 | 2014-05-20 | Sumitomo Metal Mining Co., Ltd. | Oxide sintered body, target, transparent conductive film obtained by using the same, and transparent conductive substrate |
WO2008023482A1 (en) * | 2006-08-24 | 2008-02-28 | Nippon Mining & Metals Co., Ltd. | Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target |
JP2008255473A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255477A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255475A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255472A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255478A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255474A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2008255476A (en) * | 2007-03-14 | 2008-10-23 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM |
JP2009097087A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
US20120119166A1 (en) * | 2007-09-27 | 2012-05-17 | Mitsubishi Materials Corporation | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
JP2009097088A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009097089A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2009096714A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | Zno vapor deposition material, its production method, and zno film and the like formed therefrom |
EP2194158A1 (en) * | 2007-09-27 | 2010-06-09 | Mitsubishi Materials Corporation | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
US20100243966A1 (en) | 2007-09-27 | 2010-09-30 | Mitsubishi Materials Corporation | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
JP2009096713A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | Zno vapor deposition material, its production method, and zno film and the like formed therefrom |
EP2194158A4 (en) * | 2007-09-27 | 2011-07-27 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM |
JP2009097086A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
US8231812B2 (en) | 2007-09-27 | 2012-07-31 | Mitsubishi Materials Corporation | ZnO vapor deposition material, process for producing the same, and ZnO film |
JP2009097090A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
US8409477B2 (en) | 2007-09-27 | 2013-04-02 | Mitsubishi Materials Corporation | ZnO vapor deposition material, process for producing the same, and ZnO film |
JP2009097091A (en) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE |
JP2011021272A (en) * | 2009-06-17 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Zinc oxide based sintered compact tablet, and method for producing the same |
JP5550768B1 (en) * | 2012-07-03 | 2014-07-16 | Jx日鉱日石金属株式会社 | Sintered body and amorphous film |
JP2014141386A (en) * | 2012-07-03 | 2014-08-07 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
JP2014141392A (en) * | 2012-07-03 | 2014-08-07 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
JP2014166950A (en) * | 2012-07-03 | 2014-09-11 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04219359A (en) | Electrically conductive zinc oxide sintered compact | |
JP2805813B2 (en) | Sputtering target and method for manufacturing the same | |
JP4234006B2 (en) | Sputtering target and transparent conductive film | |
JP4560149B2 (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
JP3746094B2 (en) | Target and manufacturing method thereof | |
EP2278041B1 (en) | Sputtering target and transparent conductive film obtainable by the target | |
TWI476159B (en) | Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film | |
JP4885274B2 (en) | Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film | |
JPH06340468A (en) | Crystal-oriented zinc oxide sintered compact | |
JP5296084B2 (en) | Oxide sintered body for manufacturing transparent conductive film | |
JPH11236219A (en) | Zinc oxide-base sintered compact and its production | |
JPH0688218A (en) | Sintered compact of zinc oxide system and its production and application | |
JP3827334B2 (en) | ITO sintered body and sputtering target | |
JPH11256320A (en) | Zno base sintered compact | |
KR950006208B1 (en) | Zinc oxide sintered body and preparation process thereof | |
JP4092764B2 (en) | ZnO-based sintered body | |
JP4823386B2 (en) | Oxide sintered body for manufacturing transparent conductive film | |
JP2000256059A (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
KR100891952B1 (en) | Oxide-based target for transparent conductive film and method for manufacturing the same, and oxide-based transparent conductive film | |
JPH11171539A (en) | Zno-base sintered compact and its production | |
JPH0316954A (en) | Oxide sintered product and preparation and use thereof | |
JP2002275624A (en) | Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom | |
JP2004175616A (en) | Zinc oxide-type sintered compact and its manufacturing method | |
JP2009179515A (en) | In4Sn3O12 POLYCRYSTALLINE POWDER, SINTERED COMPACT THEREOF, AND METHOD FOR PRODUCING THOSE | |
JP4724330B2 (en) | Tin-antimony oxide sintered compact target and method for producing the same |