Nothing Special   »   [go: up one dir, main page]

JP5050452B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5050452B2
JP5050452B2 JP2006237508A JP2006237508A JP5050452B2 JP 5050452 B2 JP5050452 B2 JP 5050452B2 JP 2006237508 A JP2006237508 A JP 2006237508A JP 2006237508 A JP2006237508 A JP 2006237508A JP 5050452 B2 JP5050452 B2 JP 5050452B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
manganese
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006237508A
Other languages
Japanese (ja)
Other versions
JP2008059980A (en
Inventor
田渕  徹
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2006237508A priority Critical patent/JP5050452B2/en
Publication of JP2008059980A publication Critical patent/JP2008059980A/en
Application granted granted Critical
Publication of JP5050452B2 publication Critical patent/JP5050452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な物質を含む負極を備えた非水電解質二次電池に関するものである。 The present invention provides 1 V vs. 1 The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode containing a substance capable of inserting / extracting lithium ions at a potential of Li / Li + or higher.

近年、携帯電話およびデジタルカメラなどの電子機器の電源として、小形で軽量な非水電解質二次電池が広く用いられている。非水電解質二次電池の正極にはリチウム遷移金属複合酸化物、負極には炭素材料、電解質にはリチウム塩を含んだカーボネートが一般的に使用されており、この電池はエネルギー密度が高いことを特徴として実用化されている。   In recent years, small and lightweight non-aqueous electrolyte secondary batteries have been widely used as power sources for electronic devices such as mobile phones and digital cameras. Generally, lithium transition metal composite oxides are used for the positive electrode of nonaqueous electrolyte secondary batteries, carbon materials are used for the negative electrode, and carbonates containing lithium salts are used for the electrolyte. It has been put to practical use as a feature.

非水電解質二次電池の負極に炭素材料を用いた場合、電解液の還元分解が生じる電位領域にまで電位を下げて利用されるため、実際には、初充電時に炭素材料の表面で電解液の分解が生じることによって負極表面上に形成されるSEI(Solid Electrolyte Interface)が、その後の電解液の分解を抑制する。しかしながら、負極の電位が高くなった場合や高温にさらされた場合、SEIが電解液中に溶解し、再び炭素材料の表面で電解液の分解が生じる。   When a carbon material is used for the negative electrode of a non-aqueous electrolyte secondary battery, it is used by lowering the potential to a potential region where the electrolytic solution undergoes reductive decomposition. SEI (Solid Electrolyte Interface) formed on the negative electrode surface due to the decomposition of the electrolyte suppresses the subsequent decomposition of the electrolytic solution. However, when the potential of the negative electrode becomes high or exposed to a high temperature, SEI dissolves in the electrolytic solution, and decomposition of the electrolytic solution occurs again on the surface of the carbon material.

非水電解質二次電池の負極活物質に炭素材料とは異なる化合物を用い、電解液の還元分解が生じない電位領域で充放電を行う技術の検討は以前から行われてきた。例えば、特許文献1にはチタン酸リチウム(Li4/3Ti5/3)を用いる技術、非特許文献1にはLi7/3Ti5/3)を用いる技術、特許文献2や特許文献3には酸化チタン(TiO)を用いる技術、特許文献3にはNbを用いる技術、特許文献4にはNbを用いる技術が開示されている。 A technique for charging / discharging in a potential region in which reductive decomposition of an electrolytic solution does not occur using a compound different from a carbon material as a negative electrode active material of a non-aqueous electrolyte secondary battery has been performed for a long time. For example, Patent Document 1 discloses a technique using lithium titanate (Li 4/3 Ti 5/3 O 4 ), Non-Patent Document 1 discloses a technique using Li 7/3 Ti 5/3 O 4 , Patent Document 2 Patent Document 3 discloses a technique using titanium oxide (TiO 2 ), Patent Document 3 discloses a technique using Nb 2 O 3 , and Patent Document 4 discloses a technique using Nb 2 O 5 .

また、特許文献5には、リチウム遷移金属複酸化物を正極活物質に用いた正極と、黒鉛質炭素を負極活物質に用いた負極とを用いたセルにおいて、負極中にマンガンイオンを存在させることによって、充放電サイクルに伴う容量や出力の低下を抑制する技術が開示されている。特許文献5では、初充電によりマンガンイオンが負極表面で還元され、遷移金属として析出し、金属マンガンが非水電解液の分解を促進する触媒作用を発揮し、負極表面上に安定な皮膜を形成することによって、その後の充放電にともなう非水電解液の分解を抑制している。   Patent Document 5 discloses that in a cell using a positive electrode using a lithium transition metal double oxide as a positive electrode active material and a negative electrode using graphitic carbon as a negative electrode active material, manganese ions are present in the negative electrode. Thus, a technique for suppressing a decrease in capacity and output associated with a charge / discharge cycle is disclosed. In Patent Document 5, manganese ions are reduced on the negative electrode surface by the initial charge and deposited as a transition metal, and the metal manganese exhibits a catalytic action that promotes the decomposition of the nonaqueous electrolytic solution, thereby forming a stable film on the negative electrode surface. By doing so, decomposition of the non-aqueous electrolyte accompanying subsequent charging / discharging is suppressed.

しかしながら、特許文献6にも記載されているように、チタン酸リチウムを用いた負極では、還元電位がLi/Liに対して約1.5Vと高いため、非水電解液の分解によって皮膜を形成するかどうかについては不明であり、また、負極表面に析出したマンガンなどの遷移金属が触媒作用を発揮する機構があるかどうかについても不明であった。 However, as described in Patent Document 6, in the negative electrode using lithium titanate, since the reduction potential is as high as about 1.5 V with respect to Li / Li + , the film is formed by the decomposition of the nonaqueous electrolytic solution. It is unclear whether it is formed or not, and it is also unclear whether there is a mechanism by which transition metals such as manganese deposited on the negative electrode surface exert a catalytic action.

また、負極活物質にリン酸コバルト化合物や酸化コバルトを添加する技術はいくつか開示されている。例えば特許文献7には、負極活物質に炭素、アルミニウム、アルミニウム合金を用いた非水電解質二次電池において、負極活物質にリン酸コバルト水和物を含ませる技術が開示されており、また、特許文献8には、負極活物質である炭素物質の内部にCoなどの酸化物を分散させる技術が開示されている。 Further, several techniques for adding a cobalt phosphate compound or cobalt oxide to the negative electrode active material have been disclosed. For example, Patent Document 7 discloses a technique of including cobalt phosphate hydrate in a negative electrode active material in a nonaqueous electrolyte secondary battery using carbon, aluminum, and an aluminum alloy as a negative electrode active material. Patent Document 8 discloses a technique in which an oxide such as Co 3 O 4 is dispersed inside a carbon material that is a negative electrode active material.

さらに、特許文献9には、負極活物質に炭素材料やLiTi12などを用い、その表層部の一部にマンガン化合物を含ませることで、水の分解で発生する水素をマンガン化合物(具体例としてはMnOのみが記載)で吸収する技術が開示されている。
特開平07−335261号公報 特開平11−307120号公報 特開2004−079426号公報 特開平05―114420号公報 特開2005−085545号公報 特開2001−210324号公報 特開平11−191417号公報 特開2004−349253号公報 特開2001−313077号公報 J.Jiang,J.Chen and J.R.Dahn,J.Electrochem.Soc.,151,A2082(2004)
Furthermore, in Patent Document 9, a carbon material, Li 4 Ti 5 O 12 or the like is used as the negative electrode active material, and a manganese compound is included in a part of the surface layer portion, whereby hydrogen generated by the decomposition of water is removed from the manganese compound. (A specific example is only MnO 2 is described).
JP 07-335261 A JP-A-11-307120 JP 2004-079426 A JP 05-114420 A JP 2005-085545 A JP 2001-210324 A JP 11-191417 A JP 2004-349253 A JP 2001-313077 A J. et al. Jiang, J. et al. Chen and J.H. R. Dahn, J .; Electrochem. Soc. , 151, A2082 (2004)

非水電解質二次電池の負極活物質に、チタン酸リチウム、酸化チタン、五酸化ニオブなどの、1Vvs.Li/Li以上の電位領域でレドックス反応(リチウムイオンの挿入・脱離)が生じる化合物を用いた場合、負極活物質にグラファイト等の炭素系材料を用いた場合と比較して、充放電サイクル性能に優れている。 The negative electrode active material of the non-aqueous electrolyte secondary battery includes 1 V vs. 1 such as lithium titanate, titanium oxide, niobium pentoxide. When using a compound that causes a redox reaction (insertion / desorption of lithium ions) in a potential region of Li / Li + or higher, compared to the case of using a carbon-based material such as graphite as the negative electrode active material, the charge / discharge cycle Excellent performance.

しかしながら、非水電解質二次電池の負極活物質にチタン酸リチウム、酸化チタン、五酸化ニオブなどを用い、40℃以上の高温で保存した場合、電池の内部抵抗の増加が大きいという問題があった。   However, when lithium titanate, titanium oxide, niobium pentoxide or the like is used as the negative electrode active material of the non-aqueous electrolyte secondary battery and stored at a high temperature of 40 ° C. or higher, there is a problem that the internal resistance of the battery is greatly increased. .

一方、負極活物質としての炭素系材料にマンガンイオン、リン酸コバルト水和物、Coを添加した例や、負極活物質としてのチタン酸リチウムにマンガン化合物を添加した例はあるものの、電池を高温で保存した場合の内部抵抗への影響は不明であった。 On the other hand, although there are examples in which manganese ions, cobalt phosphate hydrate, and Co 3 O 4 are added to a carbon-based material as a negative electrode active material, and examples in which a manganese compound is added to lithium titanate as a negative electrode active material, The effect on internal resistance when the battery was stored at high temperature was unknown.

なお、負極活物質がチタン酸リチウム、酸化チタンおよび酸化ニオブなどの場合に、二酸化マンガン以外のマンガン化合物やコバルト化合物を添加することについては検討されておらず、その影響は不明であった。   In addition, when the negative electrode active material is lithium titanate, titanium oxide, niobium oxide, etc., addition of manganese compounds other than manganese dioxide and cobalt compounds has not been studied, and the effect has not been known.

そこで本発明の目的は、1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な物質を負極活物質に用いた非水電解質二次電池における、高温での内部抵抗の上昇を抑制し、自己放電を低減した非水電解質二次電池を提供することにある。 Therefore, the object of the present invention is 1 V vs. In the non-aqueous electrolyte secondary battery using a material capable of inserting / extracting lithium ions at a potential of Li / Li + or higher as a negative electrode active material, an increase in internal resistance at high temperature is suppressed and self-discharge is reduced. The object is to provide a non-aqueous electrolyte secondary battery.

請求項1の発明は、正極活物質と負極活物質と非水電解質とを備えた非水電解質二次電池において、前記負極活物質の表面に化合物Xが存在し、前記負極活物質は1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な化合物であり、前記化合物Xは、二酸化マンガン以外の酸化マンガン、リン酸マンガン、フッ化マンガン、酸化コバルト、リン酸コバルト、フッ化コバルトからなる群から選ばれた少なくとも1種であることを特徴とする。 The invention of claim 1 is a nonaqueous electrolyte secondary battery comprising a positive electrode active material, a negative electrode active material, and a nonaqueous electrolyte, wherein the compound X is present on the surface of the negative electrode active material, and the negative electrode active material is 1 Vvs. Li / Li + is a compound capable of inserting / extracting lithium ions at a potential of not less than Li / Li + , and the compound X includes manganese oxide other than manganese dioxide, manganese phosphate, manganese fluoride, cobalt oxide, cobalt phosphate, fluorine It is at least one selected from the group consisting of cobalt halides.

請求項2の発明は、上記非水電解質二次電池において、負極活物質に対する化合物Xの割合が0.1質量%以下であることを特徴とする。   The invention of claim 2 is characterized in that, in the non-aqueous electrolyte secondary battery, the ratio of the compound X to the negative electrode active material is 0.1% by mass or less.

請求項3の発明は、上記非水電解質二次電池において、負極活物質が一般式LiTi(1.0≦x≦2.4、1≦y≦2)で表されるチタン酸リチウムであることを特徴とする。 According to a third aspect of the present invention, in the nonaqueous electrolyte secondary battery, the negative electrode active material is titanium represented by the general formula Li x Ti y O 4 (1.0 ≦ x ≦ 2.4, 1 ≦ y ≦ 2). It is characterized by being lithium acid lithium.

本発明において、負極活物質は1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な化合物であり、この負極活物質の表面に化合物Xが存在し、前記化合物Xは、二酸化マンガン以外の酸化マンガン、リン酸マンガン、フッ化マンガン、酸化コバルト、リン酸コバルト、フッ化コバルトからなる群から選ばれた少なくとも1種とすることにより、高温での内部抵抗の上昇を抑制し、自己放電を低減した非水電解質二次電池を得ることができる。内部抵抗の上昇は、負極表面上での電解液の分解反応によると考えられる。自己放電が少なくなるのは、その反応が抑制されるためと推測される。 In the present invention, the negative electrode active material is 1 V vs. Li / Li + is a compound capable of inserting / extracting lithium ions at a potential of not less than Li / Li + , and compound X is present on the surface of the negative electrode active material, and the compound X is manganese oxide other than manganese dioxide, manganese phosphate By using at least one selected from the group consisting of manganese fluoride, cobalt oxide, cobalt phosphate, and cobalt fluoride, the increase in internal resistance at high temperatures is suppressed and self-discharge is reduced. A secondary battery can be obtained. The increase in internal resistance is thought to be due to the decomposition reaction of the electrolyte solution on the negative electrode surface. The reason for the reduced self-discharge is presumed to be that the reaction is suppressed.

その理由は、負極活物質の表面に存在する化合物Xが、炭素材料の表面のマンガンのように電解液溶媒の分解反応の触媒として機能するのではなく、電解液溶媒の分解を抑制する保護成分として機能するものと推定され、その結果、電池を40℃以上の高温で保存した場合においても、電解液溶媒の分解がほとんど起こらなくなるものである。   The reason is that the compound X present on the surface of the negative electrode active material does not function as a catalyst for the decomposition reaction of the electrolytic solution solvent like manganese on the surface of the carbon material, but a protective component that suppresses the decomposition of the electrolytic solution solvent As a result, even when the battery is stored at a high temperature of 40 ° C. or higher, decomposition of the electrolyte solvent hardly occurs.

また、負極活物質に対する化合物Xの割合が0.1質量%以下とすることにより、化合物Xの電解液溶媒の分解を抑制する保護成分として機能がより高くなり、40℃以上の高温貯蔵後の自己放電がより低減し、容量保持率の増加が顕著となる。   In addition, when the ratio of the compound X to the negative electrode active material is 0.1% by mass or less, the function becomes higher as a protective component that suppresses the decomposition of the electrolyte solution solvent of the compound X, and after high-temperature storage at 40 ° C. or higher. Self-discharge is further reduced, and the increase in the capacity retention rate becomes remarkable.

さらに、負極活物質に一般式LiTi(1.0≦x≦2.4、1≦y≦2)で表されるチタン酸リチウムを用いた場合、より充放電サイクル性能が良好となる。 Furthermore, when the lithium titanate represented by the general formula Li x Ti y O 4 (1.0 ≦ x ≦ 2.4, 1 ≦ y ≦ 2) is used as the negative electrode active material, the charge / discharge cycle performance is better. It becomes.

本発明は、正極活物質と負極活物質と非水電解質とを備えた非水電解質二次電池において、前記負極活物質の表面に化合物Xが存在し、前記負極活物質は1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な化合物であり、前記化合物Xは、二酸化マンガン以外の酸化マンガン、リン酸マンガン、フッ化マンガン、酸化コバルト、リン酸コバルト、フッ化コバルトからなる群から選ばれた少なくとも1種であることを特徴とする。また、この非水電解質二次電池において、負極活物質に対する化合物Xの割合が0.1質量%以下であることを特徴とする。 The present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode active material, a negative electrode active material, and a nonaqueous electrolyte, wherein the compound X is present on the surface of the negative electrode active material, and the negative electrode active material is 1 Vvs. Li / Li + is a compound capable of inserting / extracting lithium ions at a potential of not less than Li / Li + , and the compound X includes manganese oxide other than manganese dioxide, manganese phosphate, manganese fluoride, cobalt oxide, cobalt phosphate, fluorine It is at least one selected from the group consisting of cobalt halides. In the nonaqueous electrolyte secondary battery, the ratio of the compound X to the negative electrode active material is 0.1% by mass or less.

本発明に用いる負極活物質としては、1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な物質であれば、特に制限はなく、種々の材料を適宜使用できる。例えば、チタン酸リチウム、酸化チタン、酸化ニオブなどが挙げられる。 The negative electrode active material used in the present invention is 1 V vs. There is no particular limitation as long as it is a substance that can insert and desorb lithium ions at a potential of Li / Li + or higher, and various materials can be used as appropriate. For example, lithium titanate, titanium oxide, niobium oxide, and the like can be given.

これらの中では、充放電サイクル性能が良好であるため、チタン酸リチウムが好ましい。チタン酸リチウムとしては、一般式LiTi(1.0≦x≦2.4、1≦y≦2)で表されるものが好ましい。一般式LiTiにおいてxやyがこの範囲からはずれると、チタン酸リチウムの結晶構造の安定性が劣り、充放電サイクル性能が低下する。 Among these, lithium titanate is preferable because charge / discharge cycle performance is good. Examples of the lithium titanate, are preferably those represented by the general formula Li x Ti y O 4 (1.0 ≦ x ≦ 2.4,1 ≦ y ≦ 2). When x and y deviate from this range in the general formula Li x Ti y O 4 , the stability of the crystal structure of lithium titanate is inferior and the charge / discharge cycle performance deteriorates.

酸化チタンとしてはTiO、Ti、アナターゼ型TiO、ルチル型TiO等を用いることができ、また、酸化ニオブとしてはNbO、NbO、Nb、Nb等を用いることができる。 TiO, Ti 2 O 3 , anatase TiO 2 , rutile TiO 2 or the like can be used as titanium oxide, and NbO, NbO 2 , Nb 2 O 3 , Nb 2 O 5 or the like is used as niobium oxide. be able to.

本発明において、化合物Xは負極活物質の表面での電解液溶媒の分解を抑制する保護成分として機能するものである。したがって、化合物Xは負極活物質の表面に存在する必要がある。化合物Xは、負極活物質の表面の一部に存在していればよいが、負極活物質の表面全体を覆ったり、負極活物質の内部に存在していてもよい。   In the present invention, the compound X functions as a protective component that suppresses the decomposition of the electrolyte solvent on the surface of the negative electrode active material. Therefore, the compound X needs to exist on the surface of the negative electrode active material. Although the compound X should just exist in a part of surface of a negative electrode active material, the whole surface of a negative electrode active material may be covered or it may exist in the inside of a negative electrode active material.

負極活物質の表面に存在する化合物Xとしては、酸化マンガン(MnO、Mn、Mn)、リン酸マンガン(Mn(PO)、フッ化マンガン(MnF、MnF)、酸化コバルト(CoO、Co、Co、CoO)リン酸コバルト(Co(PO)、フッ化コバルト(CoF、CoF)などを用いることができる。 As the compound X existing on the surface of the negative electrode active material, manganese oxide (MnO, Mn 2 O 3 , Mn 2 O 7 ), manganese phosphate (Mn 3 (PO 4 ) 2 ), manganese fluoride (MnF 2 , MnF) 3 ), cobalt oxide (CoO, Co 2 O 3 , Co 3 O 4 , CoO 2 ), cobalt phosphate (Co 3 (PO 4 ) 2 ), cobalt fluoride (CoF 2 , CoF 3 ), and the like can be used. .

本発明の非水電解質二次電池において、負極活物質に対する化合物Xの割合が0.1質量%を超えると、抵抗が上昇しはじめる。したがって、負極活物質に対する化合物Xの割合は0.1質量%以下が好ましい。また、負極活物質に対する化合物Xの割合が0.01質量%より小さい場合には効果が小さくなるため、負極活物質に対する化合物Xの割合は0.01質量%以上とすることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, when the ratio of the compound X to the negative electrode active material exceeds 0.1% by mass, the resistance starts to increase. Therefore, the ratio of compound X to the negative electrode active material is preferably 0.1% by mass or less. Further, since the effect is small when the ratio of the compound X to the negative electrode active material is smaller than 0.01% by mass, the ratio of the compound X to the negative electrode active material is preferably set to 0.01% by mass or more.

本発明の非水電解質二次電池に用いる正極活物質としては、特に制限はなく、種々の材料を適宜使用できる。例えば、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、さらにはこれらの遷移金属とリチウムとの複合酸化物LiMO2-δ(ただし、Mは、Co、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5である複合酸化物)、またはこれらの複合酸化物にAl、Mn、Fe、Ni、Co、Cr、Ti、およびZnからなる群から選択される少なくとも一種の元素、または、P、Bなどの非金属元素を含有して使用することができる。 There is no restriction | limiting in particular as a positive electrode active material used for the nonaqueous electrolyte secondary battery of this invention, A various material can be used suitably. For example, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and complex oxides Li x MO 2−δ of these transition metals and lithium (however, , M represents Co, Ni, or Mn, and 0.4 ≦ x ≦ 1.2 and 0 ≦ δ ≦ 0.5), or these composite oxides may include Al, Mn, Fe, Ni , Co, Cr, Ti, and Zn, or at least one element selected from the group consisting of Zn, or nonmetallic elements such as P and B can be used.

さらに、リチウムとニッケルの複合酸化物、すなわちLiNiM1M22-δで表される正極活物質(ただし、M1、M2はAl、Mn、Fe、Ni、Co、Cr、Ti、およびZnからなる群から選択される少なくとも一種の元素、または、P、Bなどの非金属元素を表し、0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.5である複合酸化物)などを用いることができる。 Further, the composite oxide of lithium and nickel, i.e. the positive electrode active material (however represented by LiNi p M1 q M2 r O 2 -δ, M1, M2 is Al, Mn, Fe, Ni, Co, Cr, Ti, and It represents at least one element selected from the group consisting of Zn, or a nonmetallic element such as P or B, 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, 0 ≦ δ ≦ Composite oxide of 0.5) or the like can be used.

なかでも、高電圧、高エネルギー密度が得られ、サイクル性能も優れることから、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・ニッケル・マンガン複合酸化物、またはこれらの複合酸化物のコバルト、ニッケル、マンガンの一部が他の元素で置換された複合酸化物が好ましい。   Among these, high voltage, high energy density, and excellent cycle performance, lithium-manganese composite oxide, lithium-cobalt composite oxide, lithium-cobalt-nickel composite oxide, lithium-cobalt-nickel-manganese A composite oxide or a composite oxide in which a part of cobalt, nickel, or manganese of these composite oxides is substituted with another element is preferable.

正極に用いられる結着剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(FEP)、ポリテトラフルオロエチレン(PTFE)、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ジエン三元共重合体、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(ABS)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体からなる群から選択される少なくとも1種を使用することができる。   There is no restriction | limiting in particular as a binder used for a positive electrode, A various material can be used suitably. For example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (FEP), polytetrafluoroethylene (PTFE), fluorinated polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene- At least one selected from the group consisting of butadiene rubber (SBR), acrylonitrile-butadiene rubber (ABS), fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof can be used. .

正極に用いられる導電剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、Ni、Ti、Al、Feまたはこれらの二種以上の合金もしくは炭素材料が挙げられる。なかでも、炭素材料を用いることが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、気相成長炭素繊維、アセチレンブラック、ケッチェンブラック、ニードルコークスなどの無定形炭素が挙げられる。   There is no restriction | limiting in particular as a electrically conductive agent used for a positive electrode, A various material can be used suitably. For example, Ni, Ti, Al, Fe, or an alloy or carbon material of two or more kinds thereof can be given. Among these, it is preferable to use a carbon material. Examples of the carbon material include amorphous carbon such as natural graphite, artificial graphite, vapor-grown carbon fiber, acetylene black, ketjen black, and needle coke.

正極合剤を混合する際に用いる溶媒としては非水溶媒または水溶液を用いることができる。非水溶媒には、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン(MEK)、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)などを挙げることができる。また、これらに分散剤、増粘剤などを加えてもよい。   As a solvent used when mixing the positive electrode mixture, a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone (MEK), cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropyl Examples include amine, ethylene oxide, and tetrahydrofuran (THF). Moreover, you may add a dispersing agent, a thickener, etc. to these.

負極に用いられる結着剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、正極に用いる結着剤と同じもののほかに、カルボキシメチルセルロース(CMC)、カルボキシ変成ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、ポリプロピレンまたはこれらの誘導体などからなる群から選択される少なくとも1種を使用することができる。   There is no restriction | limiting in particular as a binder used for a negative electrode, A various material can be used suitably. For example, in addition to the same binder used for the positive electrode, carboxymethyl cellulose (CMC), carboxy-modified polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, polypropylene Alternatively, at least one selected from the group consisting of these derivatives and the like can be used.

負極合剤を混合する時に用いる溶媒としては、極の結着剤を混合する際に用いる非水溶媒と同じものを用いることができ、また、これらに分散剤、増粘剤などを加えてもよい。   As the solvent used for mixing the negative electrode mixture, the same non-aqueous solvent used for mixing the electrode binder can be used, and a dispersant, a thickener, etc. can be added to these. Good.

本発明に用いる電極の集電体基板としては、鉄、銅、ニッケル、ステンレス鋼(SUS)、アルミニウムを用いることができる。また、その形状としては、シート、発泡体、焼結多孔体、エキスパンド格子などが挙げられる。さらに、その集電体に任意の形状で穴を開けたものを用いることができる。   As the current collector substrate of the electrode used in the present invention, iron, copper, nickel, stainless steel (SUS), or aluminum can be used. Examples of the shape include a sheet, a foam, a sintered porous body, and an expanded lattice. Further, a current collector having a hole in an arbitrary shape can be used.

本発明に用いる電解液の有機溶媒としては、特に制限はなく、種々の材料を適宜使用できる。例えば、エーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類などを用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系炭化水素類が好ましい。   There is no restriction | limiting in particular as an organic solvent of the electrolyte solution used for this invention, A various material can be used suitably. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons, esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. Among these, ethers, ketones, esters, lactones, halogenated hydrocarbons, carbonates, and sulfolane hydrocarbons are preferable.

さらに、これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、γ−バレロラクトン、ジメトキシエタン、ジエトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチル、およびホスファゼン誘導体およびこれらの混合溶媒などを挙げることができる。   Further examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane, γ-butyrolactone, γ-valerolactone, dimethoxyethane, diethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, Vinylene carbonate, butylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfo Examples thereof include run, trimethyl phosphate, triethyl phosphate, and phosphazene derivatives, and mixed solvents thereof.

なかでも、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、メチルエチルカーボネート、およびジエチルカーボネートを単独でまたは2種以上を混合して使用することが好ましい。   Especially, it is preferable to use ethylene carbonate, propylene carbonate, (gamma) -butyrolactone, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate individually or in mixture of 2 or more types.

また、本発明に用いる溶質としては、特に制限はなく、種々の溶質を適宜使用できる。例えば、LiClO、LiBF、LiAsF、LiPF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF)、LiPF(C、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CCO)、LiI、LiAlCl、LiBCなどを単独でまたは2種以上を混合して使用することができる。なかでもイオン伝導性が良好なことから、LiPFを使用することが好ましい。さらに、これらのリチウム塩濃度は0.5〜2.0mol/dmとするのが好ましい。 Moreover, there is no restriction | limiting in particular as a solute used for this invention, A various solute can be used suitably. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 5 (CF 3 ), LiPF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 2 F 5 CO) 2 , LiI, LiAlCl 4 , LiBC 4 O 8 or the like can be used alone or in admixture of two or more. Of these, LiPF 6 is preferably used because of its good ion conductivity. Furthermore, the lithium salt concentration is preferably 0.5 to 2.0 mol / dm 3 .

また、電解質中にビニレンカーボネートやブチレンカーボネートなどのカーボネート類、ビフェニル、シクロヘキシルベンゼンなどのベンゼン類、プロパンスルトンなどの硫黄類、エチレンサルファイド、フッ化水素、トリアゾール系環状化合物、フッ素含有エステル類、テトラエチルアンモニウムフルオライドのフッ化水素錯体またはこれらの誘導体、ホスファゼンおよびその誘導体、アミド基含有化合物、イミノ基含有化合物、または窒素含有化合物からなる群から選択される少なくとも1種を含有しても使用できる。また、CO、NO、CO、SOなどから選択される少なくとも1種を含有しても使用できる。 Also included in the electrolyte are carbonates such as vinylene carbonate and butylene carbonate, benzenes such as biphenyl and cyclohexylbenzene, sulfurs such as propane sultone, ethylene sulfide, hydrogen fluoride, triazole-based cyclic compounds, fluorine-containing esters, tetraethylammonium It can be used even if it contains at least one selected from the group consisting of a fluoride fluoride complex of fluoride or a derivative thereof, phosphazene and derivatives thereof, an amide group-containing compound, an imino group-containing compound, or a nitrogen-containing compound. Moreover, it can be used even if it contains at least one selected from CO 2 , NO 2 , CO, SO 2 and the like.

本発明に用いるセパレータとしては、特に制限はなく、種々の材料を適宜使用できる。例えば、織布、不織布、合成樹脂微多孔膜などが挙げられ、なかでも、合成樹脂微多孔膜が好ましい。合成樹脂微多孔膜の材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリエチレン、ポリプロピレン、ポリブテンなどのポリオレフィンが用いられ、なかでもポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などのポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗などの面で好ましい。   There is no restriction | limiting in particular as a separator used for this invention, A various material can be used suitably. For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned, and among them, a synthetic resin microporous film is preferable. As the material of the synthetic resin microporous membrane, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and polyolefins such as polyethylene, polypropylene, and polybutene are used. Among them, polyethylene and polypropylene microporous membranes, Alternatively, a polyolefin microporous film such as a microporous film obtained by combining these is preferable in terms of thickness, film strength, film resistance, and the like.

また、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものを使用することができる。   In addition, materials, laminates of multiple microporous membranes with different weight average molecular weights and porosity, and appropriate additives such as various plasticizers, antioxidants, and flame retardants are contained in these microporous membranes You can use what you are doing.

また、上記電解質には固体またはゲル状のイオン伝導性電解質を組み合わせて使用することができる。組み合わせる場合、非水電解質電池の構成としては、正極、負極およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極、負極およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせが挙げられる。また、イオン伝導性電解質には有孔性高分子固体電解質膜も使用することができる。   In addition, the electrolyte can be used in combination with a solid or gel ion conductive electrolyte. When combined, the non-aqueous electrolyte battery includes a positive electrode, a negative electrode and a separator, an organic or inorganic solid electrolyte and the non-aqueous electrolyte, or an organic or inorganic solid electrolyte membrane as the positive electrode, negative electrode and separator. A combination with the non-aqueous electrolyte is mentioned. A porous polymer solid electrolyte membrane can also be used for the ion conductive electrolyte.

イオン伝導性電解質としてはポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリエチレングリコールおよびこれらの誘導体、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5−3x0.5+xTiO(R=La、Pr、Nd、Sm)、またはLi4−xGe1−xに代表されるチオリシコンを使用することができる。さらに、LiI−LiO−B系、LiO−SiO系などの酸化物ガラス、またはLiI−LiS−B系、LiI−LiS−SiS系、LiS−SiS−LiPO系などの硫化物ガラスを使用することができる。 Examples of the ion conductive electrolyte include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyethylene glycol and derivatives thereof, LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x R 0.5 + x TiO 3 (R = La, Pr, Nd, Sm), or using thiolysicon typified by Li 4-x Ge 1-x P x S 4 it can. Furthermore, oxide glass such as LiI-Li 2 O—B 2 O 5 system, Li 2 O—SiO 2 system, or LiI—Li 2 S—B 2 S 3 system, LiI—Li 2 S—SiS 2 system, Sulfide glass such as Li 2 S—SiS 2 —Li 3 PO 4 can be used.

本発明の電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、円筒形、コイン形、ボタン形、シート形電池などの様々な形状の非水電解質二次電池に適用可能である。   The shape of the battery of the present invention is not particularly limited, and the present invention is applied to non-aqueous electrolyte secondary batteries of various shapes such as a square, an ellipse, a cylinder, a coin, a button, and a sheet. Is possible.

つぎに、本発明の好適な実施例について説明する。しかし、本発明は以下の実施例に限定されるものではない。   Next, a preferred embodiment of the present invention will be described. However, the present invention is not limited to the following examples.

[実施例1〜18および比較例1〜3]
[実施例1]
二酸化マンガン(MnO)、水酸化リチウム(LiOH)および酸化アルミニウム(Al)を混合し、空気中にて700℃で10hr加熱して、正極活物質Li1.1Mn1.8Al0.1を得た。この正極活物質92質量%と導電材としてのアセチレンブラック3質量%とPVdF(結着剤)のNMP溶液(固形分比12質量%)5質量%とを混合してペーストを作製した。このペーストを厚み20μmのアルミニウム箔に塗布した後、80℃で乾燥した。その後150℃で真空乾燥した後、合剤層の多孔度が35%となるようにプレスして正極(P1)を得た。
[Examples 1 to 18 and Comparative Examples 1 to 3]
[Example 1]
Manganese dioxide (MnO 2 ), lithium hydroxide (LiOH) and aluminum oxide (Al 2 O 3 ) are mixed, heated in air at 700 ° C. for 10 hours, and positive electrode active material Li 1.1 Mn 1.8 Al 0.1 O 4 was obtained. A paste was prepared by mixing 92% by mass of this positive electrode active material, 3% by mass of acetylene black as a conductive material, and 5% by mass of an NMP solution (solid content ratio 12% by mass) of PVdF (binder). This paste was applied to an aluminum foil having a thickness of 20 μm and then dried at 80 ° C. Then, after vacuum drying at 150 ° C., the mixture layer was pressed so that the porosity of the mixture layer was 35% to obtain a positive electrode (P1).

二酸化チタン(TiO)と水酸化リチウム(LiOH)とを混合した後、空気中にて600℃で15hr加熱して、負極活物質LiTi12を得た。この負極活物質87質量%と導電材としてのアセチレンブラック5質量%とPVdF(結着剤)のNMP溶液(固形分比13質量%)8質量%とを混合してペーストを作製した。このペーストを厚み10μmの銅箔に塗布した後、80℃で乾燥した。その後150℃で真空乾燥した後、合剤層の多孔度が35%となるようにプレスして、チタン酸リチウム負極(N1)を得た。 Titanium dioxide (TiO 2 ) and lithium hydroxide (LiOH) were mixed and then heated in air at 600 ° C. for 15 hours to obtain a negative electrode active material Li 4 Ti 5 O 12 . A paste was prepared by mixing 87% by mass of this negative electrode active material, 5% by mass of acetylene black as a conductive material, and 8% by mass of an NMP solution (solid content ratio 13% by mass) of PVdF (binder). This paste was applied to a copper foil having a thickness of 10 μm and then dried at 80 ° C. Then, after vacuum drying at 150 ° C., the mixture layer was pressed so that the porosity of the mixture layer was 35% to obtain a lithium titanate negative electrode (N1).

つぎに、Mn(PFと炭酸リチウム(LiCO)とを、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。 Next, a non-aqueous treatment solution in which Mn (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) were dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 was prepared. . This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、対極としてリチウム電極を用いて、室温で、負極基準で、0.5mA/cmの電流を、15時間通電した。 A lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, and a lithium electrode was used as a counter electrode, and a current of 0.5 mA / cm 2 was applied at room temperature based on the negative electrode for 15 hours.

通電後、チタン酸リチウム負極を取り出して洗浄した後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)と酸素イオン(O2−)のピークが認められた。このことより、負極表面に酸化マンガン(MnO)が生成していることを確認した。なお、酸化マンガンの定量分析はおこなわなかった。実施例1と同様に、以下の実施例2〜18においても、負極活物質の表面に存在する化合物Xの定量分析はおこなわなかった。 After energization, the lithium titanate negative electrode was taken out and washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that manganese oxide (MnO) was generated on the negative electrode surface. In addition, the quantitative analysis of manganese oxide was not performed. As in Example 1, in Examples 2 to 18 below, quantitative analysis of Compound X present on the surface of the negative electrode active material was not performed.

このようにして準備した正極(P1)および負極(N1)を、厚さ2μm、多孔度45%の連通多孔体であるポリプロピレンセパレータを間に挟んで重ねて巻き、高さ50mm、幅34mm、厚さ5.2mmの容器中に挿入して、角形電池を組み立てた。最後に、この電池の内部にエチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比3:7の混合溶媒に1.2mol/dmのLiPFを溶解した非水電解液を注入することによって、設計容量15mAhの実施例1の非水電解質二次電池(A1)を得た。 The positive electrode (P1) and the negative electrode (N1) prepared in this way are wound with a polypropylene separator, which is a continuous porous body having a thickness of 2 μm and a porosity of 45%, being stacked therebetween, having a height of 50 mm, a width of 34 mm, and a thickness of The prismatic battery was assembled by inserting into a 5.2 mm container. Finally, a nonaqueous electrolytic solution in which 1.2 mol / dm 3 of LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 is injected into the battery. Thus, the nonaqueous electrolyte secondary battery (A1) of Example 1 having a design capacity of 15 mAh was obtained.

[実施例2]
Mn(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 2]
A non-aqueous treatment liquid was prepared by dissolving Mn (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸マンガン(Mn(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例2の非水電解質二次電池(A2)を得た。 The lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that manganese phosphate (Mn 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A2) of Example 2 was obtained in the same manner as in Example 1.

[実施例3]
Mn(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 3]
A non-aqueous treatment solution was prepared by dissolving Mn (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化マンガン(MnF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例3の非水電解質二次電池(A3)を得た。 The lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that manganese fluoride (MnF 2 ) was generated on the negative electrode surface. A non-aqueous electrolyte secondary battery (A3) of Example 3 was obtained in the same manner as Example 1 using the negative electrode thus prepared.

[実施例4]
Co(PFと炭酸リチウム(LiCO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。
[Example 4]
A non-aqueous treatment solution was prepared by dissolving Co (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) in a solvent mixture of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)と酸素イオン(O2−)のピークが認められた。このことより、負極表面に酸化コバルト(CoO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例4の非水電解質二次電池(A4)を得た。 The lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that cobalt oxide (CoO) was generated on the negative electrode surface. A non-aqueous electrolyte secondary battery (A4) of Example 4 was obtained in the same manner as Example 1 using the negative electrode thus prepared.

[実施例5]
Co(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 5]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例5の非水電解質二次電池(A5)を得た。 The lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. A nonaqueous electrolyte secondary battery (A5) of Example 5 was obtained in the same manner as Example 1 using the negative electrode thus prepared.

[実施例6]
Co(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 6]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

チタン酸リチウム負極(N1)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化コバルト(CoF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例6の非水電解質二次電池(A6)を得た。 The lithium titanate negative electrode (N1) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that cobalt fluoride (CoF 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A6) of Example 6 was obtained in the same manner as in Example 1.

[実施例7]
負極活物質にLiTi12の代わりに市販のアナターゼ型二酸化チタン(TiO)を用い、チタン酸リチウム負極(N1)と同様にして、酸化チタン負極(N2)を得た。
[Example 7]
A commercially available anatase type titanium dioxide (TiO 2 ) was used in place of Li 4 Ti 5 O 12 as the negative electrode active material, and a titanium oxide negative electrode (N2) was obtained in the same manner as the lithium titanate negative electrode (N1).

Mn(PFと炭酸リチウム(LiCO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。 A non-aqueous treatment liquid was prepared by dissolving Mn (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)と酸素イオン(O2−)のピークが認められた。このことより、負極表面に酸化マンガン(MnO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例7の非水電解質二次電池(A7)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that manganese oxide (MnO) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A7) of Example 7 was obtained in the same manner as in Example 1.

[実施例8]
Mn(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 8]
A non-aqueous treatment liquid was prepared by dissolving Mn (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸マンガン(Mn(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例8の非水電解質二次電池(A8)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that manganese phosphate (Mn 3 (PO 4 ) 2 ) was generated on the negative electrode surface. A nonaqueous electrolyte secondary battery (A8) of Example 8 was obtained in the same manner as Example 1 using the negative electrode prepared in this manner.

[実施例9]
Mn(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 9]
A non-aqueous treatment solution was prepared by dissolving Mn (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化マンガン(MnF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例9の非水電解質二次電池(A9)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that manganese fluoride (MnF 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A9) of Example 9 was obtained in the same manner as in Example 1.

[実施例10]
Co(PFと炭酸リチウム(LiCO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。
[Example 10]
A non-aqueous treatment solution was prepared by dissolving Co (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) in a solvent mixture of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)と酸素イオ(O2−)のピークが認められた。このことより、負極表面に酸化コバルト(CoO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例10の非水電解質二次電池(A10)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that cobalt oxide (CoO) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A10) of Example 10 was obtained in the same manner as in Example 1.

[実施例11]
Co(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 11]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例11の非水電解質二次電池(A11)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A11) of Example 11 was obtained in the same manner as in Example 1.

[実施例12]
Co(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 12]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

二酸化チタン負極(N2)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化コバルト(CoF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例12の非水電解質二次電池(A12)を得た。 The titanium dioxide negative electrode (N2) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that cobalt fluoride (CoF 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A12) of Example 12 was obtained in the same manner as Example 1.

[実施例13]
負極活物質にLiTi12の代わりに市販の五酸化ニオブ(Nb)を用い、チタン酸リチウム負極(N1)と同様にして、五酸化ニオブ負極(N3)を得た。
[Example 13]
A commercially available niobium pentoxide (Nb 2 O 5 ) was used instead of Li 4 Ti 5 O 12 as the negative electrode active material, and a niobium pentoxide negative electrode (N3) was obtained in the same manner as the lithium titanate negative electrode (N1).

Mn(PFと炭酸リチウム(LiCO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。 A non-aqueous treatment liquid was prepared by dissolving Mn (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)と酸素イオン(O2−)のピークが認められた。このことより、負極表面に酸化マンガン(MnO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例13の非水電解質二次電池(A13)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that manganese oxide (MnO) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A13) of Example 13 was obtained in the same manner as Example 1.

[実施例14]
Mn(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 14]
A non-aqueous treatment liquid was prepared by dissolving Mn (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸マンガン(Mn(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例14の非水電解質二次電池(A14)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that manganese phosphate (Mn 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A14) of Example 14 was obtained in the same manner as Example 1.

[実施例15]
Mn(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはマンガンイオン(Mn2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 15]
A non-aqueous treatment solution was prepared by dissolving Mn (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains manganese ions (Mn 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、マンガンイオン(Mn2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化マンガン(MnF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例15の非水電解質二次電池(A15)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of manganese ions (Mn 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that manganese fluoride (MnF 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A15) of Example 15 was obtained in the same manner as Example 1.

[実施例16]
Co(PFと炭酸リチウム(LiCO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と炭酸イオン(CO 2−)とを含む。
[Example 16]
A non-aqueous treatment solution was prepared by dissolving Co (PF 6 ) 2 and lithium carbonate (Li 2 CO 3 ) in a solvent mixture of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and carbonate ions (CO 3 2− ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)と酸素イオン(O2−)のピークが認められた。このことより、負極表面に酸化コバルト(CoO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例16の非水電解質二次電池(A16)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and oxygen ions (O 2− ) were observed. From this, it was confirmed that cobalt oxide (CoO) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A16) of Example 16 was obtained in the same manner as in Example 1.

[実施例17]
Co(PFとリン酸リチウム(LiPO)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む。
[Example 17]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium phosphate (Li 3 PO 4 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and phosphate ions (PO 4 3− ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例17の非水電解質二次電池(A17)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were observed. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A17) of Example 17 was obtained in the same manner as in Example 1.

[実施例18]
Co(PFと六フッ化リン酸リチウム(LiPF)とを、ECとDECの体積比3:7混合溶媒に溶解した非水処理液を準備した。この非水処理液にはコバルトイオン(Co2+)とリチウムイオン(Li)と六フッ化リン酸イオン(PF )とを含む。
[Example 18]
A non-aqueous treatment liquid was prepared by dissolving Co (PF 6 ) 2 and lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of EC and DEC in a volume ratio of 3: 7. This non-aqueous treatment liquid contains cobalt ions (Co 2+ ), lithium ions (Li + ), and hexafluorophosphate ions (PF 6 ).

五酸化ニオブ負極(N3)をこの非水処理液中に浸漬し、実施例1と同様の条件で通電し、洗浄後、その表面をXPSで分析した。その結果、コバルトイオン(Co2+)とフッ素イオン(F)のピークが認められた。このことより、負極表面にフッ化コバルト(CoF)が生成していることを確認した。このようにして準備した負極を用い、実施例1と同様にして、実施例18の非水電解質二次電池(A18)を得た。 A niobium pentoxide negative electrode (N3) was immersed in this non-aqueous treatment solution, energized under the same conditions as in Example 1, washed, and then its surface was analyzed by XPS. As a result, peaks of cobalt ions (Co 2+ ) and fluorine ions (F ) were observed. From this, it was confirmed that cobalt fluoride (CoF 2 ) was generated on the negative electrode surface. Using the thus prepared negative electrode, a nonaqueous electrolyte secondary battery (A18) of Example 18 was obtained in the same manner as in Example 1.

[比較例1]
チタン酸リチウム負極(N1)を非水処理液で処理せずに用いたこと以外は実施例1と同様にして、比較例1の非水電解質二次電池(B1)を得た。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery (B1) of Comparative Example 1 was obtained in the same manner as in Example 1 except that the lithium titanate negative electrode (N1) was used without being treated with a nonaqueous treatment liquid.

[比較例2]
二酸化チタン負極(N2)を非水処理液で処理せずに用いたこと以外は実施例1と同様にして、比較例2の非水電解質二次電池(B2)を得た。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery (B2) of Comparative Example 2 was obtained in the same manner as in Example 1 except that the titanium dioxide negative electrode (N2) was used without being treated with a nonaqueous treatment liquid.

[比較例3]
五酸化ニオブ負極(N3)を非水処理液で処理せずに用いたこと以外は実施例1と同様にして、比較例3の非水電解質二次電池(B3)を得た。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery (B3) of Comparative Example 3 was obtained in the same manner as in Example 1 except that the niobium pentoxide negative electrode (N3) was used without being treated with the nonaqueous treatment liquid.

実施例1〜18および比較例1〜3の非水電解質二次電池(A1〜A18、B1〜B3)に用いた負極活物質および負極活物質の表面に存在する化合物Xの種類を表1にまとめた。   Table 1 shows the types of the negative electrode active materials used in the nonaqueous electrolyte secondary batteries (A1 to A18, B1 to B3) of Examples 1 to 18 and Comparative Examples 1 to 3 and the compound X present on the surface of the negative electrode active materials. Summarized.

Figure 0005050452
Figure 0005050452

[貯蔵試験]
実施例1〜18および比較例1〜3の非水電解質二次電池(A1〜A18、B1〜B3)を、25℃において、1CmAの定電流で2.65Vまで充電し、続いて2.65Vの定電圧で3時間充電した後、1CmAの定電流で1.5Vまで放電して1サイクル目の放電容量を測定し、これを「初期放電容量」とした。また、放電後の内部抵抗を1KHzの交流法で測定し「初期内部抵抗」とした。
[Storage test]
The nonaqueous electrolyte secondary batteries (A1 to A18, B1 to B3) of Examples 1 to 18 and Comparative Examples 1 to 3 were charged to 2.65 V at a constant current of 1 CmA at 25 ° C., followed by 2.65 V. After charging at a constant voltage of 3 hours, the battery was discharged to 1.5 V at a constant current of 1 CmA, and the discharge capacity at the first cycle was measured. This was defined as “initial discharge capacity”. Moreover, the internal resistance after discharge was measured by an alternating current method of 1 KHz and was set as “initial internal resistance”.

つぎに、同じ充電条件で充電した後、80℃で2日間貯蔵した。その後、25℃で5hr保持した後、1CmAの定電流で1.5Vまで放電した。この時の放電容量を「80℃貯蔵後放電容量」とし、放電後の内部抵抗を1KHzの交流法で測定し「80℃貯蔵後内部抵抗」とした。なお、「初期放電容量」に対する「80℃貯蔵後放電容量」の割合を「容量保持率(%)」とし、「初期内部抵抗」に対する「80℃貯蔵後内部抵抗」の比率を「内部抵抗増加比」とした。これらの測定結果を表2にまとめた。   Next, after charging under the same charging conditions, it was stored at 80 ° C. for 2 days. Then, after maintaining at 25 ° C. for 5 hours, the battery was discharged to 1.5 V with a constant current of 1 CmA. The discharge capacity at this time was defined as “discharge capacity after storage at 80 ° C.”, and the internal resistance after discharge was measured by an alternating current method of 1 KHz to be “internal resistance after storage at 80 ° C.”. Note that the ratio of “discharge capacity after storage at 80 ° C.” to “initial discharge capacity” is “capacity retention ratio (%)”, and the ratio of “internal resistance after storage at 80 ° C.” to “initial internal resistance” is “internal resistance increase” Ratio ". These measurement results are summarized in Table 2.

Figure 0005050452
Figure 0005050452

表2の結果より、負極活物質であるチタン酸リチウム(LiTi12)、アナターゼ型二酸化チタン(TiO)、五酸化ニオブ(Nb)の表面に、酸化マンガン、リン酸マンガン、フッ化マンガン、酸化コバルト、リン酸コバルト、フッ化コバルトが存在している実施例1〜18の非水電解質二次電池の場合、負極活物質の表面に酸化マンガンなどが存在していない比較例1〜3の非水電解質二次電池の場合と比べて、内部抵抗増加比が小さく、また、容量保持率は大きくなっていることから、高温での副反応が少ないことがわかった。 From the results of Table 2, manganese oxide and phosphoric acid were formed on the surfaces of lithium titanate (Li 4 Ti 5 O 12 ), anatase-type titanium dioxide (TiO 2 ), and niobium pentoxide (Nb 2 O 5 ) as negative electrode active materials. In the case of the nonaqueous electrolyte secondary battery of Examples 1 to 18 in which manganese, manganese fluoride, cobalt oxide, cobalt phosphate, and cobalt fluoride are present, manganese oxide or the like is not present on the surface of the negative electrode active material. Compared to the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 3, the internal resistance increase ratio was small, and the capacity retention ratio was large, indicating that there were few side reactions at high temperatures.

この理由は明らかではないが、酸化マンガンなどの物質が負極活物質の表面で電解液の分解を低減する保護成分の役割を担っているものと考えられる。この機構はSEIが形成される負極活物質に黒鉛を用いたときとは異なり、チタン酸リチウム(LiTi12)、アナターゼ型二酸化チタン(TiO)、五酸化ニオブ(Nb)を負極に用いた場合の特有の効果である。 Although the reason for this is not clear, it is considered that a substance such as manganese oxide plays a role of a protective component that reduces decomposition of the electrolytic solution on the surface of the negative electrode active material. Unlike the case where graphite is used as the negative electrode active material in which SEI is formed, this mechanism is different from lithium titanate (Li 4 Ti 5 O 12 ), anatase-type titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5). ) Is a characteristic effect when used for the negative electrode.

[実施例19〜21]
[実施例19]
実施例1の負極活物質に用いたチタン酸リチウム(LiTi12)とリン酸コバルト(Co(PO)とを100:1の重量比で混合し、さらにボールミルで機械的に混合して、負極活物質とした。この負極活物質の表面をXPSで分析した結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。この負極活物質を用いて負極(N1)の場合と同様にして負極(N4)を作製し、この負極(N4)を用い、実施例1と同様にして、実施例19の非水電解質二次電池(A19)を得た。
[Examples 19 to 21]
[Example 19]
Lithium titanate (Li 4 Ti 5 O 12 ) and cobalt phosphate (Co 3 (PO 4 ) 2 ) used for the negative electrode active material of Example 1 were mixed at a weight ratio of 100: 1, and further machined with a ball mill. The negative electrode active material was mixed. As a result of analyzing the surface of this negative electrode active material by XPS, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were recognized. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using this negative electrode active material, a negative electrode (N4) was produced in the same manner as in the case of the negative electrode (N1), and using this negative electrode (N4), the nonaqueous electrolyte secondary of Example 19 was obtained in the same manner as in Example 1. A battery (A19) was obtained.

[実施例20]
実施例7の負極活物質に用いたアナターゼ型二酸化チタン(TiO)とリン酸コバルト(Co(PO)とを100:1の重量比で混合し、さらにボールミルで機械的に混合して、負極活物質とした。この負極活物質の表面をXPSで分析した結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。この負極活物質を用いて負極(N2)の場合と同様にして負極(N5)を作製し、この負極(N5)を用い、実施例1と同様にして、実施例20の非水電解質二次電池(A20)を得た。
[Example 20]
Anatase-type titanium dioxide (TiO 2 ) and cobalt phosphate (Co 3 (PO 4 ) 2 ) used for the negative electrode active material of Example 7 were mixed at a weight ratio of 100: 1 and further mechanically mixed with a ball mill. Thus, a negative electrode active material was obtained. As a result of analyzing the surface of this negative electrode active material by XPS, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were recognized. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using this negative electrode active material, a negative electrode (N5) was produced in the same manner as in the case of the negative electrode (N2). Using this negative electrode (N5), the nonaqueous electrolyte secondary of Example 20 was obtained in the same manner as in Example 1. A battery (A20) was obtained.

[実施例21]
実施例13の負極活物質に用いた五酸化ニオブ(Nb)とリン酸コバルト(Co(PO)とを100:0.95の重量比で混合し、さらにボールミルで機械的に混合して、負極活物質とした。この負極活物質の表面をXPSで分析した結果、コバルトイオン(Co2+)とリン酸イオン(PO 3−)のピークが認められた。このことより、負極表面にリン酸コバルト(Co(PO)が生成していることを確認した。この負極活物質を用いて負極(N3)の場合と同様にして負極(N6)を作製し、この負極(N6)を用い、実施例1と同様にして、実施例21の非水電解質二次電池(A21)を得た。
[Example 21]
Niobium pentoxide (Nb 2 O 5 ) and cobalt phosphate (Co 3 (PO 4 ) 2 ) used for the negative electrode active material of Example 13 were mixed at a weight ratio of 100: 0.95 and further machined with a ball mill. The negative electrode active material was mixed. As a result of analyzing the surface of this negative electrode active material by XPS, peaks of cobalt ions (Co 2+ ) and phosphate ions (PO 4 3− ) were recognized. From this, it was confirmed that cobalt phosphate (Co 3 (PO 4 ) 2 ) was generated on the negative electrode surface. Using this negative electrode active material, a negative electrode (N6) was produced in the same manner as in the case of the negative electrode (N3), and using this negative electrode (N6), the nonaqueous electrolyte secondary of Example 21 was obtained in the same manner as in Example 1. A battery (A21) was obtained.

[貯蔵試験]
実施例19〜21の非水電解質二次電池(A19〜A21)について、実施例1と同様の条件で貯蔵試験をおこない、初期放電容量、80℃貯蔵後放電容量、容量保持率(%)、初期内部抵抗、80℃貯蔵後内部抵抗、内部抵抗増加比を求めた。その結果を表3にまとめた。
[Storage test]
For the nonaqueous electrolyte secondary batteries (A19 to A21) of Examples 19 to 21, a storage test was performed under the same conditions as in Example 1, and the initial discharge capacity, the discharge capacity after 80 ° C. storage, the capacity retention rate (%), The initial internal resistance, the internal resistance after storage at 80 ° C., and the internal resistance increase ratio were determined. The results are summarized in Table 3.

Figure 0005050452
Figure 0005050452

表3の結果より、負極活物質の表面にリン酸コバルトを存在させる方法が、実施例5、実施例11および実施例17のように、負極をコバルトイオン(Co2+)とリチウムイオン(Li)とリン酸イオン(PO 3−)とを含む非水処理液に浸漬し、アノード通電する方法と、実施例19〜21のように、負極活物質とリン酸コバルトとを直接ボールミルで混合する方法とではほとんど差がなく、高温での副反応が少なくなることがわかった。 From the results shown in Table 3, the method in which cobalt phosphate is present on the surface of the negative electrode active material is the same as in Example 5, Example 11, and Example 17, in which the negative electrode is made of cobalt ions (Co 2+ ) and lithium ions (Li + ) And a phosphate ion (PO 4 3− ) in a non-aqueous treatment solution, and the anode is energized, and the negative electrode active material and cobalt phosphate are directly mixed by a ball mill as in Examples 19-21. It was found that there was almost no difference between the method and the side reaction at high temperature.

[実施例22〜27]
[実施例22]
実施例1の負極活物質に用いたチタン酸リチウム(LiTi12)とリン酸マンガン(Mn(PO)とを100:1.9の重量比で混合し、さらにボールミルで機械的に混合して、チタン酸リチウムの表面にリン酸マンガン(Mn(PO)が存在した負極活物質を得た。この負極活物質をICPで測定した結果、チタン酸リチウムに対するマンガンの割合は0.2質量%であった。この負極活物質を用いたこと以外は実施例1と同様にして、実施例22の非水電解質二次電池(A22)を得た。
[Examples 22 to 27]
[Example 22]
Lithium titanate (Li 4 Ti 5 O 12 ) and manganese phosphate (Mn 3 (PO 4 ) 2 ) used for the negative electrode active material of Example 1 were mixed at a weight ratio of 100: 1.9, and further ball mill To obtain a negative electrode active material in which manganese phosphate (Mn 3 (PO 4 ) 2 ) was present on the surface of lithium titanate. As a result of measuring this negative electrode active material by ICP, the ratio of manganese to lithium titanate was 0.2% by mass. A nonaqueous electrolyte secondary battery (A22) of Example 22 was obtained in the same manner as Example 1 except that this negative electrode active material was used.

[実施例23]
チタン酸リチウムとリン酸マンガンとを100:0.91の重量比で混合したこと以外は実施例22と同様にして、チタン酸リチウムに対するマンガンの割合が0.1質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例1と同様にして、実施例23の非水電解質二次電池(A23)を得た。
[Example 23]
A negative electrode active material in which the ratio of manganese to lithium titanate was 0.1% by mass was performed in the same manner as in Example 22 except that lithium titanate and manganese phosphate were mixed at a weight ratio of 100: 0.91. A nonaqueous electrolyte secondary battery (A23) of Example 23 was obtained in the same manner as Example 1 except that this negative electrode active material was produced.

[実施例24]
チタン酸リチウムとリン酸マンガンとを100:0.45の重量比で混合したこと以外は実施例22と同様にして、チタン酸リチウムに対するマンガンの割合が0.049質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例1と同様にして、実施例24の非水電解質二次電池(A24)を得た。
[Example 24]
Except that lithium titanate and manganese phosphate were mixed at a weight ratio of 100: 0.45, a negative electrode active material having a manganese ratio of 0.049% by mass with respect to lithium titanate was obtained in the same manner as in Example 22. A nonaqueous electrolyte secondary battery (A24) of Example 24 was obtained in the same manner as Example 1 except that this negative electrode active material was produced.

[実施例25]
チタン酸リチウムとリン酸マンガンとを100:0.33の重量比で混合したこと以外は実施例22と同様にして、チタン酸リチウムに対するマンガンの割合が0.036質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例1と同様にして、実施例25の非水電解質二次電池(A25)を得た。
[Example 25]
Except that lithium titanate and manganese phosphate were mixed at a weight ratio of 100: 0.33, a negative electrode active material having a manganese ratio of 0.036% by mass with respect to lithium titanate was obtained in the same manner as in Example 22. A nonaqueous electrolyte secondary battery (A25) of Example 25 was obtained in the same manner as Example 1 except that this negative electrode active material was produced.

[実施例26]
チタン酸リチウムとリン酸マンガンとを100:0.15の重量比で混合したこと以外は実施例22と同様にして、チタン酸リチウムに対するマンガンの割合が0.016質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例1と同様にして、実施例26の非水電解質二次電池(A26)を得た。
[Example 26]
A negative electrode active material in which the ratio of manganese to lithium titanate is 0.016% by mass is performed in the same manner as in Example 22 except that lithium titanate and manganese phosphate are mixed at a weight ratio of 100: 0.15. A nonaqueous electrolyte secondary battery (A26) of Example 26 was obtained in the same manner as in Example 1 except that this negative electrode active material was produced.

[実施例27]
チタン酸リチウムとリン酸マンガンとを100:0.10の重量比で混合したこと以外は実施例22と同様にして、チタン酸リチウムに対するマンガンの割合が0.01質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例1と同様にして、実施例27の非水電解質二次電池(A27)を得た。
[Example 27]
A negative electrode active material in which the ratio of manganese to lithium titanate was 0.01% by mass was performed in the same manner as in Example 22 except that lithium titanate and manganese phosphate were mixed at a weight ratio of 100: 0.10. A nonaqueous electrolyte secondary battery (A27) of Example 27 was obtained in the same manner as in Example 1 except that this negative electrode active material was produced.

[貯蔵試験]
実施例22〜27の非水電解質二次電池(A22〜A27)について、実施例1と同様の条件で貯蔵試験をおこない、初期放電容量、80℃貯蔵後放電容量、容量保持率(%)、初期内部抵抗、80℃貯蔵後内部抵抗、内部抵抗増加比を求めた。その結果を表4にまとめた。なお、表4において「Mnの割合」は、負極活物質中におけるチタン酸リチウムに対するマンガンの割合(質量%)を示すものとする。また、表4には比較のため、比較例1の結果も示した。
[Storage test]
For the non-aqueous electrolyte secondary batteries (A22 to A27) of Examples 22 to 27, a storage test was performed under the same conditions as in Example 1, initial discharge capacity, discharge capacity after 80 ° C. storage, capacity retention rate (%), The initial internal resistance, the internal resistance after storage at 80 ° C., and the internal resistance increase ratio were determined. The results are summarized in Table 4. In Table 4, “ratio of Mn” indicates the ratio (mass%) of manganese to lithium titanate in the negative electrode active material. Table 4 also shows the results of Comparative Example 1 for comparison.

Figure 0005050452
Figure 0005050452

表4の結果より、負極活物質であるチタン酸リチウム(LiTi12)の表面にリン酸マンガン(Mn(PO)が存在している実施例22〜27の電池(A22〜A28)の場合、存在していない比較例1の電池(B1)の場合と比べて、容量保持率が増加しており、高温での自己放電が少ないことがわかった。 From the results of Table 4, the batteries of Examples 22 to 27 in which manganese phosphate (Mn 3 (PO 4 ) 2 ) is present on the surface of lithium titanate (Li 4 Ti 5 O 12 ) that is the negative electrode active material ( In the case of A22 to A28), it was found that the capacity retention rate was increased and the self-discharge at high temperature was small compared to the case of the battery (B1) of Comparative Example 1 which did not exist.

特に、ICP分析による負極活物質中におけるチタン酸リチウムに対するマンガンの割合が0.1質量%以下の実施例23〜27の電池(A23〜A27)において、より容量保持率が大きくなることがわかった。   In particular, in the batteries of Examples 23 to 27 (A23 to A27) in which the ratio of manganese to lithium titanate in the negative electrode active material by ICP analysis was 0.1% by mass or less, it was found that the capacity retention ratio was further increased. .

また、実施例22〜27の電池(A22〜A28)では、比較例1の電池(B1)と比べて、内部抵抗増加比が小さいこともわかった。   It was also found that the batteries of Examples 22 to 27 (A22 to A28) had a smaller internal resistance increase ratio than the battery (B1) of Comparative Example 1.

[実施例28〜33]
[実施例28]
正極活物質にはLiNi0.5Mn1.5を用い、実施例1で用いたLi1.1Mn1.8Al0.1の場合と同様にして正極(P2)を作製した。また、チタン酸リチウム(LiTi12)とリン酸マンガン(Mn(PO)とを100:1.9の重量比で混合し、さらにボールミルで機械的に混合して、チタン酸リチウムの表面にリン酸マンガン(Mn(PO)が存在した負極活物質を得た。この負極活物質をICPで測定した結果、チタン酸リチウムに対するマンガンの割合は0.2質量%であった。この負極活物質を用いたこと以外は実施例1と同様にして、実施例28の非水電解質二次電池(A28)を得た。
[Examples 28 to 33]
[Example 28]
LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material, and the positive electrode (P2) was produced in the same manner as Li 1.1 Mn 1.8 Al 0.1 O 4 used in Example 1. did. Further, lithium titanate (Li 4 Ti 5 O 12 ) and manganese phosphate (Mn 3 (PO 4 ) 2 ) are mixed at a weight ratio of 100: 1.9, and mechanically mixed with a ball mill, A negative electrode active material in which manganese phosphate (Mn 3 (PO 4 ) 2 ) was present on the surface of lithium titanate was obtained. As a result of measuring this negative electrode active material by ICP, the ratio of manganese to lithium titanate was 0.2% by mass. A nonaqueous electrolyte secondary battery (A28) of Example 28 was obtained in the same manner as Example 1 except that this negative electrode active material was used.

[実施例29]
チタン酸リチウムとリン酸マンガン(Mn(PO)とを100:0.91の重量比で混合したこと以外は実施例28と同様にして、チタン酸リチウムに対するマンガンの割合が0.1質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例28と同様にして、実施例29の非水電解質二次電池(A29)を得た。
[Example 29]
Except that lithium titanate and manganese phosphate (Mn 3 (PO 4 ) 2 ) were mixed at a weight ratio of 100: 0.91, the ratio of manganese to lithium titanate was 0.00. A non-aqueous electrolyte secondary battery (A29) of Example 29 was obtained in the same manner as in Example 28 except that a negative electrode active material of 1% by mass was prepared and this negative electrode active material was used.

[実施例30]
チタン酸リチウムとリン酸マンガン(Mn(PO)とを100:0.45の重量比で混合したこと以外は実施例28と同様にして、チタン酸リチウムに対するマンガンの割合が0.049質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例28と同様にして、実施例30の非水電解質二次電池(A30)を得た。
[Example 30]
Except that lithium titanate and manganese phosphate (Mn 3 (PO 4 ) 2 ) were mixed at a weight ratio of 100: 0.45, the ratio of manganese to lithium titanate was 0.00 as in Example 28. A non-aqueous electrolyte secondary battery (A30) of Example 30 was obtained in the same manner as in Example 28 except that a negative electrode active material of 049% by mass was prepared and this negative electrode active material was used.

[実施例31]
チタン酸リチウムとリン酸マンガン(Mn(PO)とを100:0.33の重量比で混合したこと以外は実施例28と同様にして、チタン酸リチウムに対するマンガンの割合が0.036質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例28と同様にして、実施例31の非水電解質二次電池(A31)を得た。
[Example 31]
Except that lithium titanate and manganese phosphate (Mn 3 (PO 4 ) 2 ) were mixed at a weight ratio of 100: 0.33, the ratio of manganese to lithium titanate was 0.00. A non-aqueous electrolyte secondary battery (A31) of Example 31 was obtained in the same manner as in Example 28 except that a negative electrode active material of 036% by mass was prepared and this negative electrode active material was used.

[実施例32]
チタン酸リチウムとリン酸マンガン(Mn(PO)とを100:0.15の重量比で混合したこと以外は実施例28と同様にして、チタン酸リチウムに対するマンガンの割合が0.016質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例28と同様にして、実施例32の非水電解質二次電池(A32)を得た。
[Example 32]
Except that lithium titanate and manganese phosphate (Mn 3 (PO 4 ) 2 ) were mixed at a weight ratio of 100: 0.15, the ratio of manganese to lithium titanate was 0.00. A non-aqueous electrolyte secondary battery (A32) of Example 32 was obtained in the same manner as in Example 28 except that a negative electrode active material of 016% by mass was prepared and this negative electrode active material was used.

[実施例33]
チタン酸リチウムとリン酸マンガン(Mn(PO)とを100:0.10の重量比で混合したこと以外は実施例28と同様にして、チタン酸リチウムに対するマンガンの割合が0.01質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例28と同様にして、実施例33の非水電解質二次電池(A33)を得た。
[Example 33]
Except that lithium titanate and manganese phosphate (Mn 3 (PO 4 ) 2 ) were mixed at a weight ratio of 100: 0.10, the ratio of manganese to lithium titanate was 0.00. A non-aqueous electrolyte secondary battery (A33) of Example 33 was obtained in the same manner as in Example 28 except that a negative electrode active material of 01% by mass was prepared and this negative electrode active material was used.

[比較例4]
チタン酸リチウム負極(N1)を用いたこと以外は実施例28と同様にして、比較例4の非水電解質二次電池(B4)を得た。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery (B4) of Comparative Example 4 was obtained in the same manner as in Example 28 except that the lithium titanate negative electrode (N1) was used.

[貯蔵試験]
実施例28〜33の非水電解質二次電池(A28〜A33)および比較例4の非水電解質二次電池(B4)について、実施例1と同様の条件で貯蔵試験をおこない、初期放電容量、80℃貯蔵後放電容量、容量保持率(%)を求めた。その結果を表5にまとめた。なお、表5において「Mnの割合」は、負極活物質中におけるチタン酸リチウムに対するマンガンの割合(質量%)を示すものとする。
[Storage test]
For the nonaqueous electrolyte secondary batteries (A28 to A33) of Examples 28 to 33 and the nonaqueous electrolyte secondary battery (B4) of Comparative Example 4, a storage test was performed under the same conditions as in Example 1, and the initial discharge capacity, After storage at 80 ° C., the discharge capacity and capacity retention rate (%) were determined. The results are summarized in Table 5. In Table 5, “Mn ratio” represents the ratio (mass%) of manganese to lithium titanate in the negative electrode active material.

Figure 0005050452
Figure 0005050452

表5の結果より、負極活物質であるチタン酸リチウム(LiTi12)の表面にリン酸マンガン(Mn(PO)が存在している実施例28〜33の電池(A28〜A33)の場合、存在していない比較例4の電池(B4)の場合と比べて、容量保持率が増加しており、高温での自己放電が少ないことがわかった。特に、負極活物質中におけるチタン酸リチウムに対するマンガンの割合が0.1質量%以下の実施例29〜33の電池(A29〜A33)において、より容量保持率が大きくなることがわかった。 From the results of Table 5, the batteries of Examples 28 to 33 in which manganese phosphate (Mn 3 (PO 4 ) 2 ) is present on the surface of lithium titanate (Li 4 Ti 5 O 12 ) that is the negative electrode active material ( In the case of A28 to A33), it was found that the capacity retention rate was increased and the self-discharge at high temperature was small as compared with the case of the battery (B4) of Comparative Example 4 which did not exist. In particular, it was found that the capacity retention ratio was higher in the batteries of Examples 29 to 33 (A29 to A33) in which the ratio of manganese to lithium titanate in the negative electrode active material was 0.1% by mass or less.

[実施例34〜39]
[実施例34]
正極活物質にはLiNi1/3Co1/3Mn1/3を用い、実施例1で用いたLi1.1Mn1.8Al0.1の場合と同様にして正極(P3)を作製した。また、チタン酸リチウム(LiTi12)とリン酸マンガン(Mn(PO)とを100:1.9の重量比で混合し、さらにボールミルで機械的に混合して、チタン酸リチウムの表面にリン酸マンガンが存在した負極活物質を得た。この負極活物質をICPで測定した結果、チタン酸リチウムに対するマンガンの割合は0.2質量%であった。この負極活物質を用いたこと以外は実施例1と同様にして、実施例34の非水電解質二次電池(A34)を得た。
[Examples 34 to 39]
[Example 34]
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and in the same manner as Li 1.1 Mn 1.8 Al 0.1 O 4 used in Example 1, the positive electrode ( P3) was prepared. Further, lithium titanate (Li 4 Ti 5 O 12 ) and manganese phosphate (Mn 3 (PO 4 ) 2 ) are mixed at a weight ratio of 100: 1.9, and mechanically mixed with a ball mill, A negative electrode active material in which manganese phosphate was present on the surface of lithium titanate was obtained. As a result of measuring this negative electrode active material by ICP, the ratio of manganese to lithium titanate was 0.2% by mass. A nonaqueous electrolyte secondary battery (A34) of Example 34 was obtained in the same manner as in Example 1 except that this negative electrode active material was used.

[実施例35]
チタン酸リチウムとリン酸マンガンとを100:0.91の重量比で混合したこと以外は実施例34と同様にして、チタン酸リチウムに対するマンガンの割合が0.1質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例34と同様にして、実施例35の非水電解質二次電池(A35)を得た。
[Example 35]
A negative electrode active material in which the ratio of manganese to lithium titanate is 0.1% by mass is performed in the same manner as in Example 34 except that lithium titanate and manganese phosphate are mixed at a weight ratio of 100: 0.91. A nonaqueous electrolyte secondary battery (A35) of Example 35 was obtained in the same manner as Example 34 except that this negative electrode active material was produced.

[実施例36]
チタン酸リチウムとリン酸マンガンとを100:0.45の重量比で混合したこと以外は実施例34と同様にして、チタン酸リチウムに対するマンガンの割合が0.049質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例34と同様にして、実施例36の非水電解質二次電池(A36)を得た。
[Example 36]
Except that lithium titanate and manganese phosphate were mixed at a weight ratio of 100: 0.45, in the same manner as in Example 34, a negative electrode active material in which the ratio of manganese to lithium titanate was 0.049% by mass A nonaqueous electrolyte secondary battery (A36) of Example 36 was obtained in the same manner as Example 34 except that this negative electrode active material was produced.

[実施例37]
チタン酸リチウムとリン酸マンガンとを100:0.33の重量比で混合したこと以外は実施例34と同様にして、チタン酸リチウムに対するマンガンの割合が0.036質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例34と同様にして、実施例37の非水電解質二次電池(A37)を得た。
[Example 37]
A negative electrode active material in which the ratio of manganese to lithium titanate is 0.036% by mass is performed in the same manner as in Example 34 except that lithium titanate and manganese phosphate are mixed at a weight ratio of 100: 0.33. A nonaqueous electrolyte secondary battery (A37) of Example 37 was obtained in the same manner as Example 34 except that this negative electrode active material was produced.

[実施例38]
チタン酸リチウムとリン酸マンガンとを100:0.15の重量比で混合したこと以外は実施例34と同様にして、チタン酸リチウムに対するマンガンの割合が0.016質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例34と同様にして、実施例38の非水電解質二次電池(A38)を得た。
[Example 38]
A negative electrode active material in which the ratio of manganese to lithium titanate is 0.016% by mass is performed in the same manner as in Example 34 except that lithium titanate and manganese phosphate are mixed at a weight ratio of 100: 0.15. A nonaqueous electrolyte secondary battery (A38) of Example 38 was obtained in the same manner as Example 34 except that this negative electrode active material was produced.

[実施例39]
チタン酸リチウムとリン酸マンガンとを100:0.10の重量比で混合したこと以外は実施例34と同様にして、チタン酸リチウムに対するマンガンの割合が0.010質量%である負極活物質を作製し、この負極活物質を用いたこと以外は実施例34と同様にして、実施例39の非水電解質二次電池(A39)を得た。
[Example 39]
A negative electrode active material in which the ratio of manganese to lithium titanate is 0.010% by mass is performed in the same manner as in Example 34 except that lithium titanate and manganese phosphate are mixed at a weight ratio of 100: 0.10. A nonaqueous electrolyte secondary battery (A39) of Example 39 was obtained in the same manner as Example 34 except that this negative electrode active material was produced.

[比較例5]
チタン酸リチウム負極(N1)を用いたこと以外は実施例34と同様にして、比較例5の非水電解質二次電池(B5)を得た。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery (B5) of Comparative Example 5 was obtained in the same manner as in Example 34 except that the lithium titanate negative electrode (N1) was used.

[貯蔵試験]
実施例34〜39の非水電解質二次電池(A34〜A39)および比較例5の非水電解質二次電池(B5)について、実施例1と同様の条件で貯蔵試験をおこない、初期放電容量、80℃貯蔵後放電容量、容量保持率(%)を求めた。その結果を表6にまとめた。なお、表6において「Mnの割合」は、負極活物質中におけるチタン酸リチウムに対するマンガンの割合(質量%)を示すものとする。
[Storage test]
For the nonaqueous electrolyte secondary batteries (A34 to A39) of Examples 34 to 39 and the nonaqueous electrolyte secondary battery (B5) of Comparative Example 5, a storage test was performed under the same conditions as in Example 1, and the initial discharge capacity, After storage at 80 ° C., the discharge capacity and capacity retention rate (%) were determined. The results are summarized in Table 6. In Table 6, “Mn ratio” indicates the ratio (mass%) of manganese to lithium titanate in the negative electrode active material.

Figure 0005050452
Figure 0005050452

表6の結果より、負極活物質であるチタン酸リチウム(LiTi12)の表面にリン酸マンガン(Mn(PO)が存在している実施例34〜39の電池(A34〜A39)の場合、存在していない比較例5の電池(B5)の場合と比べて、容量保持率が増加しており、高温での自己放電が少ないことがわかった。特に、負極活物質中におけるチタン酸リチウムに対するマンガンの割合が0.1質量%以下の実施例35〜39の電池(A35〜A39)において、より容量保持率が大きくなることがわかった。 From the results of Table 6, batteries of Examples 34 to 39 in which manganese phosphate (Mn 3 (PO 4 ) 2 ) is present on the surface of lithium titanate (Li 4 Ti 5 O 12 ) that is the negative electrode active material ( In the case of A34 to A39), it was found that the capacity retention rate was increased and the self-discharge at a high temperature was small compared to the case of the battery (B5) of Comparative Example 5 which did not exist. In particular, it was found that in the batteries of Examples 35 to 39 (A35 to A39) in which the ratio of manganese to lithium titanate in the negative electrode active material was 0.1% by mass or less (A35 to A39), the capacity retention ratio was further increased.

なお、正極活物質に、一般式LiMn2−x−yAl(0.8≦x≦1.2、y=0.03)でされるマンガン酸リチウム、一般式LiMn2−x−yAl(x=1.0、0.01≦y≦0.1)で表されるマンガン酸リチウム、一般式LiMn2−x−y−zNiCo(0.8≦x≦1.2、y=0.33、z=0.33)で範囲表されるニッケル・コバルト・マンガン酸リチウム、一般式LiMn2−x−y−zNiCo(x=1.0、0.16≦y≦0.5、0≦z≦0.67)で表されるニッケル・コバルト・マンガン酸リチウムを用いた時、また、負極活物質に一般式LiTi(1.0≦x≦2.4、1≦y≦2)で表されるチタン酸リチウムを用いた時も同様の効果が得られた。 Note that the positive electrode active material includes lithium manganate represented by the general formula Li x Mn 2−xy Al y O 4 (0.8 ≦ x ≦ 1.2, y = 0.03), the general formula Li x Mn. Lithium manganate represented by 2-xy Al y O 4 (x = 1.0, 0.01 ≦ y ≦ 0.1), general formula Li x Mn 2-xy- Ni y Co z Nickel / cobalt / lithium manganate represented by O 2 (0.8 ≦ x ≦ 1.2, y = 0.33, z = 0.33), general formula Li x Mn 2-xyz When using nickel / cobalt / lithium manganate represented by Ni y Co z O 2 (x = 1.0, 0.16 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.67), and negative electrode using lithium titanate represented in the active material by a general formula Li x Ti y O 4 (1.0 ≦ x ≦ 2.4,1 ≦ y ≦ 2) When we obtained the same effect as well.

以上のように、非水電解質二次電池の負極活物質に、1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な物質を用いた場合、正極活物質や負極活物質の種類が異なる場合においても、負極活物質の表面に酸化マンガン、リン酸マンガン、フッ化マンガン、酸化コバルト、リン酸コバルト、フッ化コバルトからなる群から選ばれた少なくとも1種(=化合物X)が存在する場合に、高温貯蔵時の内部抵抗の増加が小さく、高温での自己放電が少ない電池が得られ、特に、負極活物質に対する化合物Xの割合が0.1質量%以下の場合にその効果が顕著であることがわかった。 As described above, the negative electrode active material of the non-aqueous electrolyte secondary battery is 1 Vvs. When a material capable of inserting / extracting lithium ions at a potential of Li / Li + or higher is used, manganese oxide and phosphoric acid are formed on the surface of the negative electrode active material even when the types of the positive electrode active material and the negative electrode active material are different. When there is at least one selected from the group consisting of manganese, manganese fluoride, cobalt oxide, cobalt phosphate, and cobalt fluoride (= compound X), the increase in internal resistance during high-temperature storage is small, and at high temperatures Thus, it was found that the effect is remarkable when the ratio of the compound X to the negative electrode active material is 0.1% by mass or less.

Claims (4)

正極活物質と負極活物質と非水電解質とを備えた非水電解質二次電池において、前記負極活物質の表面に化合物Xが存在し、前記負極活物質は、チタン酸リチウム、酸化チタンおよび酸化ニオブからなる群から選ばれた少なくとも1種の1Vvs.Li/Li以上の電位でリチウムイオンの挿入・脱離が可能な化合物であり、前記化合物Xは、二酸化マンガン以外の酸化マンガン、リン酸マンガン、フッ化マンガンおよびフッ化コバルトからなる群から選ばれた少なくとも1種であることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery including a positive electrode active material, a negative electrode active material, and a non-aqueous electrolyte, compound X is present on the surface of the negative electrode active material, and the negative electrode active material includes lithium titanate, titanium oxide, and oxide. At least one 1 V vs. 1 selected from the group consisting of niobium . The insertion and extraction capable compound of lithium ions Li / Li + potential greater than said compound X, manganese oxide other than manganese dioxide, manganese phosphate, from the group consisting of manganese fluoride and full Tsu cobalt A non-aqueous electrolyte secondary battery, which is at least one selected. 前記負極活物質に対する前記化合物Xの割合が0.1質量%以下であることを特徴とする請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of the compound X to the negative electrode active material is 0.1% by mass or less. 正極活物質と負極活物質と非水電解質とを備えた非水電解質二次電池において、前記負極活物質の表面に化合物Xが存在し、前記負極活物質は、チタン酸リチウム、酸化チタンおよび酸化ニオブから選択される1Vvs.Li/LiIn a non-aqueous electrolyte secondary battery including a positive electrode active material, a negative electrode active material, and a non-aqueous electrolyte, compound X is present on the surface of the negative electrode active material, and the negative electrode active material includes lithium titanate, titanium oxide, and oxide. 1 V vs. selected from niobium. Li / Li + 以上の電位でリチウムイオンの挿入・脱離が可能な化合物であり、前記化合物Xは、酸化コバルトまたはリン酸コバルトであり、前記負極活物質に対する前記化合物Xの割合が0.1質量%以下であることを特徴とする非水電解質二次電池。It is a compound capable of inserting / extracting lithium ions at the above potential, and the compound X is cobalt oxide or cobalt phosphate, and the ratio of the compound X to the negative electrode active material is 0.1% by mass or less. There is a nonaqueous electrolyte secondary battery. 前記負極活物質が一般式LiThe negative electrode active material has the general formula Li x TiTi y O 4 (1.0≦x≦2.4、1≦y≦2)で表されるチタン酸リチウムであることを特徴とする請求項1〜3の何れかに記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is lithium titanate represented by (1.0 ≦ x ≦ 2.4, 1 ≦ y ≦ 2).
JP2006237508A 2006-09-01 2006-09-01 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5050452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237508A JP5050452B2 (en) 2006-09-01 2006-09-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237508A JP5050452B2 (en) 2006-09-01 2006-09-01 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008059980A JP2008059980A (en) 2008-03-13
JP5050452B2 true JP5050452B2 (en) 2012-10-17

Family

ID=39242459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237508A Expired - Fee Related JP5050452B2 (en) 2006-09-01 2006-09-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5050452B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325002B2 (en) 2013-11-01 2016-04-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US10910617B2 (en) 2016-11-18 2021-02-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300502B2 (en) 2008-03-13 2013-09-25 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
JP5121614B2 (en) * 2008-07-18 2013-01-16 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
JP5319312B2 (en) * 2009-01-21 2013-10-16 株式会社東芝 Negative electrode active material for batteries, non-aqueous electrolyte battery and battery pack
JP5667753B2 (en) * 2009-08-25 2015-02-12 株式会社東芝 Nonaqueous electrolyte battery, active material used therefor, method for producing the same, and battery pack
CN102569722B (en) * 2012-02-20 2016-09-07 宁德新能源科技有限公司 A kind of lithium rechargeable battery and positive pole thereof
CN104185915A (en) 2012-04-18 2014-12-03 株式会社Lg化学 Electrode for secondary battery, and secondary battery comprising same
JP2014067610A (en) * 2012-09-26 2014-04-17 Kaneka Corp Process of manufacturing nonaqueous electrolyte secondary battery and manufactured battery
JP5665828B2 (en) * 2012-10-18 2015-02-04 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
JP6465630B2 (en) * 2014-11-28 2019-02-06 積水化学工業株式会社 Secondary battery and method for manufacturing secondary battery
JP5807730B1 (en) * 2015-03-04 2015-11-10 宇部興産株式会社 Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
CN106463717B (en) * 2015-03-12 2019-09-10 株式会社东芝 Nonaqueous electrolyte battery and battery pack
US10439226B2 (en) * 2016-04-06 2019-10-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack, and vehicle
CN107799755B (en) * 2017-10-31 2020-09-25 攀钢集团攀枝花钢铁研究院有限公司 Method for coating titanium nitride on surface of lithium titanate particle
CN114497469B (en) * 2020-11-11 2023-12-22 成都爱敏特新能源技术有限公司 Silicon monoxide-cobalt fluoride-graphene composite negative electrode material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055241B2 (en) * 1997-04-24 2008-03-05 松下電器産業株式会社 Nonaqueous electrolyte secondary battery
JPH11191417A (en) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof
KR100560539B1 (en) * 2003-11-17 2006-03-15 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR100560546B1 (en) * 2003-11-27 2006-03-15 삼성에스디아이 주식회사 Electrode for lithium secondary battery and lithium secondary battery comprising same
JP2006012433A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4794893B2 (en) * 2005-04-12 2011-10-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325002B2 (en) 2013-11-01 2016-04-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US10910617B2 (en) 2016-11-18 2021-02-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2008059980A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5050452B2 (en) Nonaqueous electrolyte secondary battery
EP3518334B1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising said additive
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
JP7038965B2 (en) Non-aqueous electrolyte solution and lithium secondary battery containing it
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
KR20160133521A (en) Long-life lithium-ion batteries
JP5066831B2 (en) Nonaqueous electrolyte secondary battery
CN109906532B (en) Nonaqueous electrolyte secondary battery
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JPH0997627A (en) Nonaqueous electrolyte and lithium secondary battery
JP5217281B2 (en) Nonaqueous electrolyte secondary battery
EP4439722A1 (en) Positive electrode active material, electrochemical device comprising positive electrode active material, and electronic device
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP5224158B2 (en) Nonaqueous electrolyte secondary battery
JP2000149986A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2007294654A (en) Electrochemical capacitor
JP5028965B2 (en) Non-aqueous electrolyte secondary battery
JP5228393B2 (en) Lithium ion secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2006004822A (en) Nonaqueous electrolyte battery
JP6394978B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015018601A (en) Nonaqueous electrolyte secondary battery
JP2001023689A (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees