Nothing Special   »   [go: up one dir, main page]

JP2006004822A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2006004822A
JP2006004822A JP2004181257A JP2004181257A JP2006004822A JP 2006004822 A JP2006004822 A JP 2006004822A JP 2004181257 A JP2004181257 A JP 2004181257A JP 2004181257 A JP2004181257 A JP 2004181257A JP 2006004822 A JP2006004822 A JP 2006004822A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
battery
electrode active
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181257A
Other languages
Japanese (ja)
Other versions
JP4581503B2 (en
Inventor
Hisayuki Yamane
久幸 山根
Hideki Sasaki
佐々木  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004181257A priority Critical patent/JP4581503B2/en
Publication of JP2006004822A publication Critical patent/JP2006004822A/en
Application granted granted Critical
Publication of JP4581503B2 publication Critical patent/JP4581503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery containing a high capacity oxide of Si in a negative electrode and having high safety. <P>SOLUTION: In a nonaqueous electrolyte secondary battery equipped with a negative active material comprising a core and the surface layer having different composition each other, the core has an oxide containing Si and the surface layer has a compound containing Li and at least one element selected from N, P, and S, and the negative active material layer does not have exothermic peak at 20°C or less in DSC (differential scanning calorimetry). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非水電解質電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery.

近年、モバイル、デジタルカメラ等携帯電子機器の電源には、リチウムイオン電池などの非水電解質電池が広く用いられている。これらの機器の高性能化に伴い、その電源には高容量化および高出力化が求められており、非水電解質電池の高性能化が必要である。現在のリチウムイオン電池の負極活物質にはグラファイト等の炭素材料が、正極活物質にはリチウムコバルト酸化物等が用いられている。これらの活物質の高性能化とともに、新規な活物質の探索も広くおこなわれている。   In recent years, non-aqueous electrolyte batteries such as lithium ion batteries have been widely used as power sources for mobile electronic devices such as mobile and digital cameras. As these devices have higher performance, their power sources are required to have higher capacity and higher output, and higher performance of nonaqueous electrolyte batteries is required. A carbon material such as graphite is used for the negative electrode active material of current lithium ion batteries, and lithium cobalt oxide or the like is used for the positive electrode active material. Along with the improvement in performance of these active materials, search for new active materials is also widely performed.

新規な負極活物質には、Liと合金化するSi、Sn、Al、Pb、Zn等の金属およびその酸化物等がある(たとえば、N.Li, C.R.Martin, and B.Scrosati, Electrochemical and Solid−State Letters,,316(2000))。 New negative electrode active materials include metals such as Si, Sn, Al, Pb, and Zn that are alloyed with Li, and oxides thereof (for example, N. Li, CR Martin, and B. Scrosati, Electrochemical and Solid-State Letters, 3 , 316 (2000)).

その中で、Siの酸化物は1000mAh/g以上の大きい容量を示すので、次世代リチウムイオン電池用負極活物質としてとくに注目されている(特許文献1、特許文献2など)。   Among them, since the oxide of Si exhibits a large capacity of 1000 mAh / g or more, it is particularly attracting attention as a negative electrode active material for next-generation lithium ion batteries (Patent Document 1, Patent Document 2, etc.).

しかしながら、リチウムイオン電池などの非水電解質電池は電解液に可燃性の有機溶媒を用いているので、電池の誤使用によって安全性に不良を生じる可能性がある。Siの酸化物の容量はグラファイトのそれよりも大きいので、その可能性が増大する。   However, since non-aqueous electrolyte batteries such as lithium ion batteries use a flammable organic solvent in the electrolyte, there is a possibility that a safety failure may occur due to misuse of the battery. Since the capacity of the Si oxide is larger than that of graphite, the possibility increases.

特開平6−325765JP-A-6-325765 特表2000−515672Special table 2000-515672

上述したように、Siの酸化物は1000mAh/g以上の大きい容量を示すので、次世代リチウムイオン電池用負極活物質として有望である。しかしながら、リチウムイオン電池などの非水電解質電池は電解液に可燃性の有機溶媒を用いているので、電池の誤使用などによって、安全性に不良を生じる可能性がある。誤使用などがおこっても不良が生じないようにすること、すなわち安全性を向上させることは、実用上重要な課題である。   As described above, since Si oxides have a large capacity of 1000 mAh / g or more, they are promising as negative electrode active materials for next-generation lithium ion batteries. However, since non-aqueous electrolyte batteries such as lithium ion batteries use a flammable organic solvent in the electrolyte, there is a possibility that safety may be deteriorated due to misuse of the batteries. It is an important practical issue to prevent defects from occurring even if misused, that is, to improve safety.

本発明は上記のような事情に基づいて完成されたものであって、高容量のSiの酸化物を備え、さらに安全性の高い非水電解質電池を提供することを目的とする。   The present invention has been completed based on the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte battery that has a high-capacity Si oxide and is highly safe.

上記の目的を達成するための手段として、請求項1の発明は、リチウムイオンを吸蔵放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵放出可能で且つ互いに組成の異なる中核と表面層とを備えた負極活物質を備えた負極と、非水電解質からなる非水電解質二次電池において、前記負極活物質の前記中核はSiを含む酸化物を備え、前記表面層はB、N、P、Sのなかから選択したすくなくとも1種類の元素とLi元素とを含む化合物を備え、かつ負極活物質層のDSC(示差走査熱量分析)を測定したときに200℃以下で発熱ピークがないことを特徴とする。   As means for achieving the above object, the invention of claim 1 includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a core and a surface layer capable of occluding and releasing lithium ions and having different compositions from each other. And a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, wherein the core of the negative electrode active material includes an oxide containing Si, and the surface layer includes B, N, P And a compound containing at least one element selected from S and Li element, and having no exothermic peak at 200 ° C. or lower when the DSC (differential scanning calorimetry) of the negative electrode active material layer is measured. Features.

請求項2の発明は、請求項1記載の非水電解質二次電池において、前記物質がCまたはFのなかから選択したすくなくとも1種類の元素を含むことを特徴とする。   According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first aspect, the substance contains at least one element selected from C and F.

本発明の非水電解質電池において、請求項1の発明においては、互いに組成の異なる中核と表面層とを備えた負極活物質を負極に備え、前記負極活物質の前記中核はSiを含む酸化物を備え、前記表面層はB、N、P、Sのなかから選択した1種類の元素とLiとを含む化合物をすくなくとも1種類備え、かつ負極活物質層のDSC(示差走査熱量分析)を測定したときに200℃以下で発熱ピークがないので、高容量であるとともに良好な安全性を有する。   In the nonaqueous electrolyte battery of the present invention, in the invention of claim 1, a negative electrode active material having a core and a surface layer having different compositions is provided in the negative electrode, and the core of the negative electrode active material is an oxide containing Si. The surface layer includes at least one compound selected from B, N, P, and S and a compound containing Li, and the DSC (differential scanning calorimetry) of the negative electrode active material layer is measured. In this case, since there is no exothermic peak at 200 ° C. or less, it has a high capacity and good safety.

請求項2の発明においては、前記の化合物がCまたはFのなかから選択したすくなくとも1種類の元素を含むことはとくに好ましく、高容量であるとともに良好な安全性を有する。   In the invention of claim 2, it is particularly preferred that the compound contains at least one element selected from C or F, which has a high capacity and good safety.

したがって、本発明のこのような構成の非水電解質電池は、安全性を保ったまま、高エネルギー密度化を達成する。   Therefore, the nonaqueous electrolyte battery having such a configuration according to the present invention achieves high energy density while maintaining safety.

本発明の非水電解質電池の負極は、互いに組成の異なる中核と表面層とを備えた負極活物質を備え、前記中核はSiを含む酸化物を備え、前記表面層はB、N、P、Sからなる群から選ばれた1種類の元素とLiとを含む化合物をすくなくとも1種類備え、前記負極活物質層のDSC(示差走査熱量分析)において200℃以下で発熱ピークがないことを特徴とする。また前記負極活物質は必ずしも中核と表面層の2層のみで形成される必要はなく、3層以上であってもよい。   The negative electrode of the nonaqueous electrolyte battery of the present invention includes a negative electrode active material including a core and a surface layer having different compositions, the core includes an oxide containing Si, and the surface layer includes B, N, P, It comprises at least one compound selected from the group consisting of S and a compound containing Li and has no exothermic peak at 200 ° C. or lower in DSC (differential scanning calorimetry) of the negative electrode active material layer. To do. Further, the negative electrode active material is not necessarily formed of only two layers of the core and the surface layer, and may be three or more layers.

ここで、前記表面層は、B、N、P、Sのなかから選択した1種類の元素とLiとを含み、種々の塩、有機または無機の化合物のようなLiの化合物として存在することが好ましい。具体的には、前記化合物を生成するためのB源としては、LiBF、LiBC、三フッ化ホウ素(BF)、HBOなどが挙げられ、N源として、LiN(SOCF、ホスファゼン(N)、テトラメチルアンモニウム−ヘキサフルオロリン酸((CHNPF)、アンモニアガス、窒素ガス、N−(メトキシ)−N−メチル−2−(トリフェニルホスホアニリデン)アセトアミドなどが挙げられ、P源としては、LiPF6、ホスファゼン(N)、テトラメチルアンモニウム−ヘキサフルオロリン酸((CHNPF)、三フッ化リン(PF)、五フッ化リン(PF)、リン酸(HPO)、N−(メトキシ)−N−メチル−2−(トリフェニルホスホアニリデン)アセトアミドなどが挙げられ、さらに、S源としては、LiCFSO、LiN(SOCF、硫化水素(HS)などが挙げられる。 Here, the surface layer includes one kind of element selected from B, N, P, and S and Li, and may exist as a compound of Li such as various salts, organic or inorganic compounds. preferable. Specifically, examples of the B source for producing the compound include LiBF 4 , LiBC 4 O 8 , boron trifluoride (BF 3 ), H 3 BO 3, etc., and the N source includes LiN (SO 2 CF 3) 2, phosphazene (N 3 P 3 F 6) , tetramethyl ammonium - hexafluorophosphate ((CH 3) 4 NPF 6 ), ammonia gas, nitrogen gas, N- (methoxymethyl) -N- methyl - 2- (such as triphenylphosphonium Ani isopropylidene) acetamide. Examples of the P source, LiPF6, phosphazenes (N 3 P 3 F 6), tetramethyl ammonium - hexafluorophosphate ((CH 3) 4 NPF 6), Phosphorus trifluoride (PF 3 ), phosphorus pentafluoride (PF 5 ), phosphoric acid (H 3 PO 4 ), N- (methoxy) -N-methyl-2- (triphes) Nylphosphoanilidene) acetamide and the like, and examples of the S source include LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , hydrogen sulfide (H 2 S), and the like.

また前記化合物がCまたは(および)Fのなかから選択したすくなくとも1種類の元素を含むことがより好ましい。   More preferably, the compound contains at least one element selected from C and / or F.

前記化合物を生成するためのC源としては、エタン(C)などの他電解質あるいは負極の利用率向上に用いる添加剤でCを含むもの、具体的には、LiCBO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩、およびこれらの混合物、テトラメチルアンモニウム−ヘキサフルオロリン酸((CHNPF)、N−(メトキシ)−N−メチル−2−(トリフェニルホスホアニリデン)アセトアミドなどが挙げられる。また非水電解液に用いるものでCを含むものでもよい。具体的にはエチレンカーボネート(EC)、プロピレンカーボネート、ジエチルカーボネート(DEC)、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、酢酸メチルなどの溶媒、およびこれらの混合溶媒が挙げられる。 As a C source for producing the compound, other electrolytes such as ethane (C 2 H 4 ) or an additive used for improving the utilization rate of the negative electrode containing C, specifically, LiC 4 BO 8 , LiSCN , LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2, etc. And a mixture thereof, tetramethylammonium-hexafluorophosphoric acid ((CH 3 ) 4 NPF 6 ), N- (methoxy) -N-methyl-2- (triphenylphosphoanilidene) acetamide and the like. Further, it may be used for a non-aqueous electrolyte and may contain C. Specifically, ethylene carbonate (EC), propylene carbonate, diethyl carbonate (DEC), diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, Examples thereof include solvents such as 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, methyl acetate, and mixed solvents thereof.

F源としては、三フッ化ホウ素(BF)、三フッ化リン(PF)、五フッ化リン(PF)などの他、電解質あるいは負極の利用率向上に用いる添加剤でFを含むもの、具体的には、LiPF、LiBF、、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF、フッ化水素(HF)、フッ素含有エステル系溶媒、テトラエチルアンモニウムフルオライドのフッ化水素錯体(TEAFHF)、またはこれらの誘導体、ホスファゼンなどの化合物、およびこれらの混合物が挙げられる。 Examples of the F source include boron trifluoride (BF 3 ), phosphorus trifluoride (PF 3 ), phosphorus pentafluoride (PF 5 ), etc., and F as an additive used for improving the utilization rate of the electrolyte or the negative electrode. In particular, LiPF 6 , LiBF 4 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 And LiN (COCF 2 CF 3 ) 2 , hydrogen fluoride (HF), fluorine-containing ester solvents, tetraethylammonium fluoride hydrogen fluoride complex (TEAFHF), or derivatives thereof, compounds such as phosphazenes, and mixtures thereof Is mentioned.

また、前記化合物は種々の方法で負極活物質の表面に備えることができる。具体的な方法には、電気化学的手法、CVD法、浸漬法、スパッタリング法などがあるが、それ以外のものでもよい。   In addition, the compound can be provided on the surface of the negative electrode active material by various methods. Specific methods include an electrochemical method, a CVD method, a dipping method, and a sputtering method, but other methods may be used.

これらの元素を酸化物の表面に含むことにより、短絡などの大電流を流しても酸化物と電解液との反応が抑制されると推測される。   By including these elements on the surface of the oxide, it is presumed that the reaction between the oxide and the electrolytic solution is suppressed even when a large current such as a short circuit is passed.

前記負極活物質層のDSC(示差走査熱量分析)を測定することにより、電池の安全性を知ることができる。測定条件を以下に述べる。   By measuring the DSC (differential scanning calorimetry) of the negative electrode active material layer, the safety of the battery can be known. The measurement conditions are described below.

充電状態の電池をドライルーム内で分解して、負極を取り出す。負極の活物質層を集電体から削り落として、この活物質層と電池に用いる電解液とを1:1の質量比で秤量して示差走査熱量計用容器に密封する。この容器をすみやかに示差走査熱量計(SII製、DSC220C)にセットして、10℃/minの昇温速度で、室温から200℃までの範囲でDSC測定をおこなう。その結果から、酸化物の発熱速度(単位:W/g・℃)を求める。ここで、DSC測定結果から計算した発熱速度が0.1W/g・℃以下であるものを発熱ピークがないものとした場合、前記活物質層をDSC測定したときに、200℃以下で発熱ピークがないことを特徴とする。   Disassemble the charged battery in a dry room and take out the negative electrode. The active material layer of the negative electrode is scraped off from the current collector, and the active material layer and the electrolyte used for the battery are weighed at a mass ratio of 1: 1 and sealed in a differential scanning calorimeter container. The container is immediately set on a differential scanning calorimeter (manufactured by SII, DSC220C), and DSC measurement is performed in the range from room temperature to 200 ° C at a temperature rising rate of 10 ° C / min. From the result, the heat generation rate (unit: W / g · ° C.) of the oxide is obtained. Here, when the exothermic rate calculated from the DSC measurement result is 0.1 W / g · ° C. or less without exothermic peak, when the active material layer is measured by DSC, the exothermic peak is below 200 ° C. It is characterized by not having.

このような負極活物質を負極に備えた電池は、誤使用によって高温になっても発熱を生じないので、安全性を向上させる。前記負極活物質層のDSCは、非水電解液であるリチウム塩を含む有機溶媒と混合して測定することができる(たとえば、GS News Technical Report,55,21(1996)参照)。また、DSCは、負極活物質に700mAh/g以上の電気量を通電した状態で測定することが好ましい。なぜならば、充電されることで負極は還元性が増加して、より危険な状態になる。より危険な状態で測定して安全性を確認できるからである。 A battery provided with such a negative electrode active material in the negative electrode does not generate heat even when it is heated to a high temperature due to misuse, thus improving safety. The DSC of the negative electrode active material layer can be measured by mixing with an organic solvent containing a lithium salt that is a non-aqueous electrolyte (see, for example, GS News Technical Report, 55 , 21 (1996)). Moreover, it is preferable to measure DSC in the state which electrically supplied 700 mAh / g or more of electricity with the negative electrode active material. This is because, when charged, the negative electrode increases its reducibility and becomes more dangerous. This is because safety can be confirmed by measuring in a more dangerous state.

Siを含む酸化物は、その組成式がSiOであるものが好ましい。とくにSiに対するOの原子比xが0<x<2であるものは、放電容量が大きく充放電サイクル性能が良好なので、より好ましい。 The oxide containing Si is preferably one whose composition formula is SiO x . In particular, those in which the atomic ratio x of O to Si is 0 <x <2 are more preferable because the discharge capacity is large and the charge / discharge cycle performance is good.

さらに、SiとSiO(1<x≦2)との両相を含む物質であることが好ましく,その物質のCuKα線を用いたX線回折測定において,Si(111)面とSi(220)面の回折ピークの半価幅のうちすくなくとも一方が3°未満であることが好ましい。 Further, it is preferably a substance containing both phases of Si and SiO x (1 <x ≦ 2). In the X-ray diffraction measurement using CuKα ray of the substance, the Si (111) plane and Si (220) It is preferable that at least one of the half widths of the diffraction peaks of the surface is less than 3 °.

また、前記の酸化物は、B、C、N、P、F、Br、Iなどの典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Geなどの典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cuなどの遷移金属元素を含んでもよい。   The oxides include typical nonmetallic elements such as B, C, N, P, F, Br, and I, and typical metallic elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge. , Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and other transition metal elements may be included.

また、電子伝導性を向上させるために、前記の酸化物と炭素材料などの電子伝導材料とを混合したり、複合化したり、その表面を電子伝導材料で被覆したものを用いることができる。   Moreover, in order to improve electronic conductivity, the said oxide and electronic conductive materials, such as a carbon material, can be mixed, or it can compound, and what coat | covered the surface with the electronic conductive material can be used.

また、前記酸化物は、単独で用いてもよいし、リチウムイオンを吸蔵・放出することが可能なもの、または金属リチウムのなかのすくなくとも一種と混合してもよい。   The oxide may be used alone, or may be mixed with at least one of those capable of occluding and releasing lithium ions or metallic lithium.

リチウムイオンを吸蔵・放出することが可能なものは、炭素材料、酸化物、Li3−PN(ただし、Mは遷移金属、0≦P≦0.8)などの窒化物およびリチウム合金が例示される。炭素材料には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などの易黒鉛化性炭素、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体などの難黒鉛化性炭素、天然黒鉛、人造黒鉛、黒鉛化MCMB、黒鉛化メソフェーズピッチ系炭素繊維、黒鉛ウイスカーなどの黒鉛質材料、さらに、これらの混合物を用いることができる。リチウム合金には、リチウムと、アルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、鉛、錫、ガリウム、ゲルマニウム、またはインジウムとの合金を用いることができる。酸化物には、前記リチウム合金の酸化物を用いることができる。 Those capable of occluding and releasing lithium ions, a carbon material, oxide, Li 3-P M P N ( provided that, M is a transition metal, 0 ≦ P ≦ 0.8) nitride and a lithium alloy, such as Is exemplified. Carbon materials include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers and other graphitizable carbon, phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic Carbon, non-graphitizable carbon such as a furfuryl alcohol resin fired body, natural graphite, artificial graphite, graphitized MCMB, graphitized mesophase pitch-based carbon fiber, graphite whisker and other graphite materials, and a mixture thereof be able to. As the lithium alloy, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, lead, tin, gallium, germanium, or indium can be used. As the oxide, the oxide of the lithium alloy can be used.

本発明の非水電解質電池に用いる負極は、負極活物質を含む合剤層と集電体とを備える。合剤層には、活物質の他に導電剤が含まれてもよい。負極は、負極活物質および結着剤を溶媒あるいは溶液中で混合したスラリーを、集電体に塗布した後に乾燥して製造することができる。   The negative electrode used for the nonaqueous electrolyte battery of the present invention includes a mixture layer containing a negative electrode active material and a current collector. The mixture layer may contain a conductive agent in addition to the active material. The negative electrode can be produced by applying a slurry obtained by mixing a negative electrode active material and a binder in a solvent or solution to a current collector and then drying the slurry.

負極の集電体には、鉄、銅、ステンレス、ニッケルなどを用いることができる。また、その形状は、シート、発泡体、焼結多孔体、エキスパンド格子が例示される。さらに、任意の形状で穴を開けた集電体を用いてもよい。   For the current collector of the negative electrode, iron, copper, stainless steel, nickel, or the like can be used. Examples of the shape include a sheet, a foam, a sintered porous body, and an expanded lattice. Furthermore, you may use the electrical power collector which opened the hole with arbitrary shapes.

負極に用いられる導電剤には、種々の炭素材料を用いることができる。炭素材料は、天然黒鉛や人造黒鉛などの黒鉛、アセチレンブラックなどのカーボンブラック、およびニードルコークスなどの無定形炭素が例示される。   Various carbon materials can be used for the conductive agent used in the negative electrode. Examples of the carbon material include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke.

負極の結着剤は、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(P(VdF/HFP))、ポリテトラフルオロエチレン(PTFE)、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ジエン三元共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体を単独でまたは混合して用いることができる。   Examples of the binder for the negative electrode include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (P (VdF / HFP)), polytetrafluoroethylene (PTFE), fluorinated polyvinylidene fluoride, and ethylene. -Propylene-diene terpolymer (EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof. These can be used alone or in combination.

負極活物質と結着剤とを混合する溶媒あるいは溶液は、結着剤を溶解または分散するものであり、非水溶媒または水溶液を用いることができる。非水溶媒には、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどがある。一方、水溶液には、水、またはこれに分散剤、増粘剤などを加えたものを用いることができる。水溶液にSBRなどのラテックスを加えると、スラリーを作ることができる。   The solvent or solution for mixing the negative electrode active material and the binder dissolves or disperses the binder, and a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like. On the other hand, as the aqueous solution, water or a solution obtained by adding a dispersant, a thickener or the like to this can be used. When a latex such as SBR is added to the aqueous solution, a slurry can be made.

また、本発明の非水電解質電池の正極は、正極活物質を含む合剤層と集電体とを備える。正極は、活物質、導電剤および結着剤を溶媒あるいは溶液中で混合したスラリーを、集電体に塗布した後に乾燥して製造することができる。   The positive electrode of the nonaqueous electrolyte battery of the present invention includes a mixture layer containing a positive electrode active material and a current collector. The positive electrode can be manufactured by applying a slurry obtained by mixing an active material, a conductive agent, and a binder in a solvent or a solution to a current collector and then drying the slurry.

本発明の非水電解質電池の正極活物質には、Ti、V、Cr、Mn、Fe、Co、Ni、Cuのなかから選ばれたすくなくとも一種類の元素を含む遷移金属酸化物、またはこの遷移金属酸化物とリチウムとの複合酸化物を用いることができる。これらの遷移金属酸化物または複合酸化物は、典型非金属元素や典型金属元素を含んでもよい。とくに、組成式がLiNiMn2−z(0≦y≦1.1、0.45≦z≦0.6)である金属酸化物は、好ましい活物質である。なぜなら、LiNiMn2−zを適用した正極の平均放電電位は約4.7V(vs.Li/Li)、従来の代表的な正極活物質であるLiCoOのそれは約3.9V(vs.Li/Li)であり、前者の方が貴であるからである。すなわち、前者の正極と本発明の負極活物質を備えた負極とを組み合わせた電池は、後者を用いたものより端子電圧が高くなるので、高エネルギー密度になるからである。 The positive electrode active material of the nonaqueous electrolyte battery of the present invention includes a transition metal oxide containing at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, or this transition A composite oxide of a metal oxide and lithium can be used. These transition metal oxides or composite oxides may contain typical nonmetallic elements and typical metal elements. In particular, the metal oxide composition formula is Li y Ni z Mn 2-z O 4 (0 ≦ y ≦ 1.1,0.45 ≦ z ≦ 0.6) is a preferred active material. This is because the average discharge potential of the positive electrode to which Li y Ni z Mn 2−z O 4 is applied is about 4.7 V (vs. Li / Li + ), and that of LiCoO 2 , which is a conventional representative positive electrode active material, is about 3 This is because the voltage is 0.9 V (vs. Li / Li + ), and the former is more noble. That is, a battery in which the former positive electrode and the negative electrode including the negative electrode active material of the present invention are combined has a higher energy density because the terminal voltage is higher than that using the latter.

正極の集電体には、鉄、銅、アルミニウム、ステンレス、ニッケルを用いることができる。また、その形状は、シート、発泡体、焼結多孔体、エキスパンド格子が例示される。さらに、任意の形状で穴を開けた集電体を用いてもよい。   Iron, copper, aluminum, stainless steel, or nickel can be used for the current collector of the positive electrode. Examples of the shape include a sheet, a foam, a sintered porous body, and an expanded lattice. Furthermore, you may use the electrical power collector which opened the hole with arbitrary shapes.

正極の導電剤には、種々の炭素材料を用いることができる。炭素材料は、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素が例示される。   Various carbon materials can be used for the conductive agent of the positive electrode. Examples of the carbon material include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke.

正極の結着剤は、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(P(VdF/HFP))、ポリテトラフルオロエチレン(PTFE)、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ジエン三元共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体を、単独または混合して用いることができる。   Examples of the positive electrode binder include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (P (VdF / HFP)), polytetrafluoroethylene (PTFE), fluorinated polyvinylidene fluoride, and ethylene. -Propylene-diene terpolymer (EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof. These can be used alone or in combination.

本発明の非水電解質電池は、これらの負極および正極と、非水電解質およびセパレータから構成される。その非水電解質には、非水電解液、高分子固体電解質、ゲル状電解質、無機固体電解質を用いることができる。電解質には孔があってもよい。   The nonaqueous electrolyte battery of the present invention is composed of these negative electrode and positive electrode, a nonaqueous electrolyte and a separator. As the non-aqueous electrolyte, a non-aqueous electrolyte, a polymer solid electrolyte, a gel electrolyte, or an inorganic solid electrolyte can be used. The electrolyte may have pores.

非水電解液は、非水溶媒および溶質から構成される。非水溶媒は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、酢酸メチルなどの溶媒、およびこれらの混合溶媒が例示される。また、溶質には、LiPF、LiBF、LiCBO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩、およびこれらの混合物が例示される。 The non-aqueous electrolyte is composed of a non-aqueous solvent and a solute. Non-aqueous solvents are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-di Examples thereof include solvents such as ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, methyl acetate, and mixed solvents thereof. The solutes include LiPF 6 , LiBF 4 , LiC 4 BO 8 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN. Examples include salts such as (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 and mixtures thereof.

また、負極の利用率向上を目的として、上記溶媒中に、エチレンサルファイド(ES)、フッ化水素(HF)、トリアゾール系環状化合物、フッ素含有エステル系溶媒、テトラエチルアンモニウムフルオライドのフッ化水素錯体(TEAFHF)、またはこれらの誘導体、ホスファゼン、アミド基含有化合物、イミノ基含有化合物、窒素含有化合物、または、CO、NO、CO、SOなどのガスを、添加剤として加えてもよい。 In addition, for the purpose of improving the utilization factor of the negative electrode, in the above solvent, ethylene sulfide (ES), hydrogen fluoride (HF), triazole-based cyclic compound, fluorine-containing ester solvent, hydrogen fluoride complex of tetraethylammonium fluoride ( TEAFHF), or derivatives thereof, phosphazenes, amide group-containing compounds, imino group-containing compounds, nitrogen-containing compounds, or gases such as CO 2 , NO 2 , CO, SO 2 may be added as additives.

高分子固体電解質には、ポリエチレンオキサイド、ポリプロビレンオキサイド、ポリエチレンイミドなどの高分子、またはこれらの混合物に上記の溶質を加えて得られる物質を用いることができる。   As the polymer solid electrolyte, a polymer obtained by adding the above solute to a polymer such as polyethylene oxide, polypropylene oxide, polyethylene imide, or a mixture thereof can be used.

ゲル状電解質には、上記の高分子に、上記の溶媒および溶質を加えたものを用いることができる。   As the gel electrolyte, a polymer obtained by adding the above solvent and solute to the above polymer can be used.

無機固体電解質には、結晶質または非晶質のものを用いることができる。前者には、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5−3x0.5+xTiO(R=La、Pr、Nd、Sm)、またはLi4−xGe1−xに代表されるLISICONを用いることができ、後者にはLiI−LiO−B系、LiO−SiO系などの酸化物ガラス、またはLiI−LiS−B系、LiI−LiS−SiS系、LiS−SiS−LiPO系などの硫化物ガラスを用いることができる。また、これらの混合物を用いることができる。 The inorganic solid electrolyte can be crystalline or amorphous. The former includes LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x R 0.5 + x TiO 3 (R = La, Pr, Nd, Sm), or LISICON represented by Li 4-x Ge 1-x P x S 4 can be used, and the latter includes LiI-Li 2 O—B 2 O 5 system, Li 2 Oxide glass such as O—SiO 2 system or sulfide such as LiI—Li 2 S—B 2 S 3 system, LiI—Li 2 S—SiS 2 system, Li 2 S—SiS 2 —Li 3 PO 4 system Glass can be used. Moreover, these mixtures can be used.

本発明の非水電解質電池のセパレータには、微多孔性高分子膜を用いることができ、その材質は、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリプロピレン、ポリエチレン、ポリブテンなどのポリオレフィンが例示される。これらの中では、ポリオレフィンの微多孔性膜がとくに好ましい。または、ポリエチレンとポリプロピレンとを積層した微多孔性膜を用いてもよい。   A microporous polymer membrane can be used for the separator of the nonaqueous electrolyte battery of the present invention, and the material thereof is nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, Examples include polyolefins such as polybutene. Of these, polyolefin microporous membranes are particularly preferred. Alternatively, a microporous film in which polyethylene and polypropylene are laminated may be used.

以下に、本発明の非水電解質電池を、実施例にもとづいて、さらに詳細に説明する。しかしながら、本発明は、以下の実施例に限定されるものではない。   Below, the nonaqueous electrolyte battery of the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.

[実施例1]
SiO粒子を、アルゴン雰囲気中、870℃で6時間熱処理してから0.5mol/dmのフッ化水素酸溶液中に1時間浸漬した後に、洗浄および乾燥した。このSiOのX線回折パターンはブロードであり、その結晶構造が無定形であることがわかった。このSiO粒子を活物質に用いて、負極を作製した。SiO粒子80質量%と、アセチレンブラック5質量%と、PVdF15質量%とを、N−メチル−2−ピロリドン(NMP)中で分散させてペーストを作製した。このペーストを厚さ15μmの銅箔上に塗布した後、150℃で乾燥してNMPを蒸発させた。この作業を銅箔の両面におこなった。これをロールプレスしてから、幅2.5cm、長さ40cmに切断して、集電体の両面に合剤層を備えた負極1を作製した。銅箔の両面に塗布した負極層の質量は、0.010g/cmであった。SiOの放電容量を1000mAh/gとすると、この負極の容量は約520mAhとなる。
[Example 1]
The SiO particles were heat-treated at 870 ° C. for 6 hours in an argon atmosphere, then immersed in a 0.5 mol / dm 3 hydrofluoric acid solution for 1 hour, and then washed and dried. This X-ray diffraction pattern of SiO was broad, and the crystal structure was found to be amorphous. A negative electrode was produced using the SiO particles as an active material. A paste was prepared by dispersing 80% by mass of SiO particles, 5% by mass of acetylene black, and 15% by mass of PVdF in N-methyl-2-pyrrolidone (NMP). This paste was applied on a copper foil having a thickness of 15 μm and then dried at 150 ° C. to evaporate NMP. This operation was performed on both sides of the copper foil. This was roll-pressed, then cut into a width of 2.5 cm and a length of 40 cm, and a negative electrode 1 having a mixture layer on both sides of the current collector was produced. The mass of the negative electrode layer applied on both sides of the copper foil was 0.010 g / cm 2 . When the discharge capacity of SiO is 1000 mAh / g, the capacity of this negative electrode is about 520 mAh.

つぎに、電気化学的手法を用いてSiO粒子表面にP、CおよびF元素とLi元素とを含む物質を形成させるために、前記負極1を作用極に、Li箔を対極に用いた試験用電池を作製した。非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に1mol/dmのLiPFを溶解したものを用いた。25℃で、電池電圧が0.05Vになるまで作用極から対極に40mAを通電し、続いてその値で5時間保持して充電した。つぎに、電池電圧が1.5Vになるまで対極から作用極に40mAを通電して放電してから、負極1を試験セルから取り出した。負極1に残存した電解液は、室温で真空乾燥をおこなって蒸発させた。このようにして、電解質の一部を分解させて、活物質の表面にC、PおよびF元素とLi元素とを含む物質を形成させた。これを負極2とした。 Next, in order to form a substance containing P, C, and F elements and Li element on the surface of SiO particles using an electrochemical method, the negative electrode 1 is used as a working electrode, and a Li foil is used as a counter electrode. A battery was produced. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 was used. At 25 ° C., 40 mA was applied from the working electrode to the counter electrode until the battery voltage reached 0.05 V, and then charged at that value for 5 hours. Next, 40 mA was applied from the counter electrode to the working electrode until the battery voltage was 1.5 V to discharge, and then the negative electrode 1 was taken out from the test cell. The electrolyte remaining in the negative electrode 1 was evaporated by vacuum drying at room temperature. Thus, a part of electrolyte was decomposed | disassembled and the substance containing C, P, F element, and Li element was formed in the surface of the active material. This was designated as negative electrode 2.

LiCoO90質量%と、アセチレンブラック5質量%と、PVdF5質量%とをNMP中で分散させて、ペーストを作製した。このペーストを厚さ20μmのアルミニウム箔上に塗布した後、150℃で乾燥してNMPを蒸発させた。この作業をアルミニウム箔の両面におこなった。これをロールプレスしてから、幅2.5cm、長さ40cmに切断して、正極1を作製した。アルミニウム箔の両面に塗布した正極層の質量は、0.045g/cmであった。LiCoOの放電容量を150mAh/gとすると、この正極の容量は約730mAhとなる。 A paste was prepared by dispersing 90% by mass of LiCoO 2 , 5% by mass of acetylene black, and 5% by mass of PVdF in NMP. This paste was applied onto an aluminum foil having a thickness of 20 μm and then dried at 150 ° C. to evaporate NMP. This operation was performed on both sides of the aluminum foil. After this was roll-pressed, it was cut into a width of 2.5 cm and a length of 40 cm to produce the positive electrode 1. The mass of the positive electrode layer applied on both sides of the aluminum foil was 0.045 g / cm 2 . When the discharge capacity of LiCoO 2 is 150 mAh / g, the capacity of this positive electrode is about 730 mAh.

このようにして準備した負極2および正極1を、厚さ20μm、多孔度40%の連通多孔体のポリエチレンセパレータを間に挟んで重ねて巻回した。これを、鉄を主体とする電池ケースに挿入した。最後に、この電池の内部に非水電解液を注入することによって、サイズが高さ48mm、幅30mm、厚さ4.2mmで、定格容量が500mAhの角形の本発明電池(A1)を得た。この非水電解液には、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解したものを用いた。 The negative electrode 2 and the positive electrode 1 prepared in this manner were wound while being overlapped with a polyethylene porous separator having a thickness of 20 μm and a porosity of 40% interposed therebetween. This was inserted into a battery case mainly composed of iron. Finally, by injecting a non-aqueous electrolyte into the battery, a rectangular battery of the present invention (A1) having a height of 48 mm, a width of 30 mm, a thickness of 4.2 mm and a rated capacity of 500 mAh was obtained. . As this nonaqueous electrolytic solution, a solution obtained by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of EC and DEC in a volume ratio of 1: 1 was used.

[実施例2]
電気化学的手法を用いて負極活物質の表面にB、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiBFを溶解した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A2)を作製した。
[Example 2]
When a material containing B, C and F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical technique, 1 mol / dm 3 in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A battery (A2) of the present invention was produced in the same manner as in Example 1 except that a non-aqueous electrolyte solution in which LiBF 4 was dissolved was used.

[実施例3]
電気化学的手法を用いて負極活物質の表面にS、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiCFSOを溶解した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A3)を作製した。
[Example 3]
When a material containing S, C, F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical technique, 1 mol / dm 3 in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A battery (A3) of the present invention was produced in the same manner as in Example 1 except that a nonaqueous electrolyte solution in which LiCF 3 SO 3 was dissolved was used.

[実施例4]
電気化学的手法を用いて負極活物質の表面にN、S、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiN(SOCFを溶解した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A4)を作製した。
[Example 4]
When a material containing N, S, C and F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical technique, 1 mol / l in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A battery (A4) of the present invention was produced in the same manner as in Example 1 except that a nonaqueous electrolytic solution in which LiN (SO 2 CF 3 ) 2 of dm 3 was dissolved was used.

[実施例5]
電気化学的手法を用いて負極活物質の表面にB、N、P、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiBFを溶解して、さらに10質量%のホスファゼン(N)を添加した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A5)を作製した。
[Example 5]
When a material containing B, N, P, C, and F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical method, a mixture solvent with a volume ratio of EC and DEC of 1: 1 is used. The present invention was carried out in the same manner as in Example 1 except that a nonaqueous electrolytic solution in which 1 mol / dm 3 of LiBF 4 was dissolved and 10% by mass of phosphazene (N 3 P 3 F 6 ) was added was used. A battery (A5) was produced.

[実施例6]
電気化学的手法を用いて負極活物質の表面にBおよびC元素とLi元素とを備えた物質を形成するときに、1,2−ジメトキシエタンに0.5mol/dmのLiBCを溶解した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A6)を作製した。
[Example 6]
When a material having B and C elements and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 0.5 mol / dm 3 of LiBC 4 O 8 is added to 1,2-dimethoxyethane. A battery of the present invention (A6) was produced in the same manner as in Example 1 except that the dissolved nonaqueous electrolytic solution was used.

[実施例7]
電気化学的手法を用いて負極活物質の表面にN、P、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解して、さらに10質量%のホスファゼン(N)を添加した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A7)を作製した。
[Example 7]
When a material containing N, P, C and F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 1 mol / l in a 1: 1 mixed solvent of EC and DEC is used. In the same manner as in Example 1 except that a non-aqueous electrolyte solution in which 10% by mass of phosphazene (N 3 P 3 F 6 ) was added was dissolved in LiPF 6 of dm 3 A7) was prepared.

[実施例8]
電気化学的手法を用いて負極活物質の表面にN、P、CおよびF元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解して、さらに10質量%のテトラメチルアンモニウム−ヘキサフルオロリン酸((CHNPF)を添加した非水電解液を用いたことのほかは実施例1と同様にして、本発明電池(A8)を作製した。
[Example 8]
When a material containing N, P, C and F elements and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 1 mol / l in a 1: 1 mixed solvent of EC and DEC is used. Example 1 except that a nonaqueous electrolyte solution in which 10% by mass of tetramethylammonium-hexafluorophosphoric acid ((CH 3 ) 4 NPF 6 ) was further dissolved and dm 3 of LiPF 6 was dissolved was used. Similarly, the battery (A8) of the present invention was produced.

[実施例9]
実施例1で作製した負極1とLi金属箔とを、直流プラズマCVD装置中のチャンバーに挿入した。400℃まで加熱してから、チャンバーの真空度を1×10−6Torrにした。つぎに、PFとOとCとの混合ガスをチャンバー内に供給した。チャンバーの内圧は、0.7Torrに保った。つぎに、400Wの直流電力を負極1に印加して、活物質の表面にP、CおよびF元素とLi元素とを含む物質を形成させた負極3を作製した。
[Example 9]
The negative electrode 1 produced in Example 1 and the Li metal foil were inserted into a chamber in a DC plasma CVD apparatus. After heating to 400 ° C., the degree of vacuum in the chamber was set to 1 × 10 −6 Torr. Next, a mixed gas of PF 3 , O 2, and C 2 H 4 was supplied into the chamber. The internal pressure of the chamber was kept at 0.7 Torr. Next, DC power of 400 W was applied to the negative electrode 1 to produce a negative electrode 3 in which a material containing P, C and F elements and a Li element was formed on the surface of the active material.

このようにCVD法を用いて準備した負極3を用いたほかは実施例1と同様にして、本発明電池(A9)を作製した。   A battery (A9) of the present invention was produced in the same manner as in Example 1 except that the negative electrode 3 prepared using the CVD method was used.

[実施例10]
CVD法を用いて負極活物質の表面にP、CおよびF元素とLi元素とを含む物質を形成するときに、PFとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A10)を作製した。
[Example 10]
When forming a material containing P, C, and F elements and Li element on the surface of the negative electrode active material using the CVD method, a mixed gas of PF 5 , O 2, and C 2 H 4 was supplied into the chamber. Except for this, a battery of the present invention (A10) was produced in the same manner as in Example 9.

[実施例11]
CVD法を用いて負極活物質の表面にB、CおよびF元素とLi元素とを含む物質を形成するときに、BFとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A11)を作製した。
[Example 11]
When forming a material containing B, C, and F elements and Li element on the surface of the negative electrode active material using the CVD method, a mixed gas of BF 3 , O 2, and C 2 H 4 was supplied into the chamber. Except for this, a battery of the present invention (A11) was produced in the same manner as in Example 9.

[実施例12]
CVD法を用いて負極活物質の表面にNおよびC元素とLi元素とを含む物質を形成するときに、NHとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A12)を作製した。
[Example 12]
When a material containing N and C elements and Li element is formed on the surface of the negative electrode active material by using the CVD method, a mixed gas of NH 3 , O 2 and C 2 H 4 is supplied into the chamber. Otherwise, the battery of the present invention (A12) was produced in the same manner as in Example 9.

[実施例13]
CVD法を用いて負極活物質の表面にS元素とLi元素とを含む物質を形成するときに、HSをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A13)を作製した。
[Example 13]
The battery of the present invention was the same as in Example 9 except that H 2 S was supplied into the chamber when a material containing S element and Li element was formed on the surface of the negative electrode active material using the CVD method. (A13) was produced.

[実施例14]
CVD法を用いて負極活物質の表面にN元素とLi元素とを含む物質を形成するときに、Nをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A14)を作製した。
[Example 14]
When forming a material containing N element and Li element on the surface of the negative electrode active material using the CVD method, the battery of the present invention (as in Example 9) except that N 2 was supplied into the chamber. A14) was prepared.

[実施例15]
CVD法を用いて負極活物質の表面にB、N、CおよびF元素とLi元素とを含む物質を形成するときに、BFとNHとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A15)を作製した。
[Example 15]
When forming a material containing B, N, C, and F elements and Li element on the surface of the negative electrode active material using the CVD method, a mixed gas of BF 3 , NH 3 , O 2, and C 2 H 4 is used. A battery (A15) of the present invention was produced in the same manner as in Example 9, except that it was supplied into the chamber.

[実施例16]
CVD法を用いて負極活物質の表面にB、P、CおよびF元素とLi元素とを含む物質を形成するときに、BFとPFとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A16)を作製した。
[Example 16]
When a material containing B, P, C, and F elements and Li element is formed on the surface of the negative electrode active material using a CVD method, a mixed gas of BF 3 , PF 3 , O 2, and C 2 H 4 is used. A battery of the present invention (A16) was produced in the same manner as in Example 9 except that the material was supplied into the chamber.

[実施例17]
CVD法を用いて負極活物質の表面にB、S、CおよびF元素とLi元素とを含む物質を形成するときに、BFとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A17)を作製した。
[Example 17]
A mixed gas of BF 3 , H 2 S, O 2, and C 2 H 4 when a material containing B, S, C, and F elements and a Li element is formed on the surface of the negative electrode active material using a CVD method. A battery of the present invention (A17) was produced in the same manner as in Example 9, except that was supplied into the chamber.

[実施例18]
CVD法を用いて負極活物質の表面にP、S、CおよびF元素とLi元素とを含む物質を形成するときに、PFとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A18)を作製した。
[Example 18]
A mixed gas of PF 3 , H 2 S, O 2, and C 2 H 4 when a material containing P, S, C, and F elements and Li element is formed on the surface of the negative electrode active material using the CVD method. A battery of the present invention (A18) was produced in the same manner as in Example 9, except that was supplied into the chamber.

[実施例19]
CVD法を用いて負極活物質の表面にB、P、S、CおよびF元素とLi元素とを含む物質を形成するときに、BFとPFとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A19)を作製した。
[Example 19]
When a material containing B, P, S, C, and F elements and Li element is formed on the surface of the negative electrode active material using the CVD method, BF 3 , PF 3 , H 2 S, O 2, and C 2 H A battery of the present invention (A19) was produced in the same manner as in Example 9 except that the mixed gas with No. 4 was supplied into the chamber.

[実施例20]
CVD法を用いて負極活物質の表面にB、N、S、CおよびF元素とLi元素とを含む物質を形成するときに、BFとNHとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A20)を作製した。
[Example 20]
When a material containing B, N, S, C, and F elements and Li element is formed on the surface of the negative electrode active material using the CVD method, BF 3 , NH 3 , H 2 S, O 2, and C 2 H A battery of the present invention (A20) was produced in the same manner as in Example 9 except that the gas mixture with No. 4 was supplied into the chamber.

[実施例21]
CVD法を用いて負極活物質の表面にN、P、S、CおよびF元素とLi元素とを含む物質を形成するときに、NHとPFとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A21)を作製した。
[Example 21]
When a material containing N, P, S, C, and F elements and Li element is formed on the surface of the negative electrode active material using the CVD method, NH 3 , PF 3 , H 2 S, O 2, and C 2 H A battery of the present invention (A21) was produced in the same manner as in Example 9 except that the gas mixture with No. 4 was supplied into the chamber.

[実施例22]
CVD法を用いて負極活物質の表面にB、N、P、S、CおよびF元素とLi元素とを含む物質を形成するときに、BFとNHとPFとHSとOとCとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、本発明電池(A22)を作製した。
[Example 22]
When a material containing B, N, P, S, C and F elements and a Li element is formed on the surface of the negative electrode active material using the CVD method, BF 3 , NH 3 , PF 3 , H 2 S and O A battery (A22) of the present invention was produced in the same manner as in Example 9, except that a mixed gas of 2 and C 2 H 4 was supplied into the chamber.

[実施例23]
浸漬法を用いて負極活物質の表面にP元素とLi元素とを含む物質を形成させるために、実施例1で作製した負極1を、LiOH、HPOおよびPVdFを溶解したNMP溶液に浸漬した後、80℃で乾燥してNMPを蒸発させた。これを、負極6とした。
[Example 23]
In order to form a substance containing P element and Li element on the surface of the negative electrode active material by using the dipping method, the negative electrode 1 produced in Example 1 was placed in an NMP solution in which LiOH, H 3 PO 4 and PVdF were dissolved. After soaking, it was dried at 80 ° C. to evaporate NMP. This was designated as negative electrode 6.

このようにして準備した負極6を用いたほかは、実施例1と同様にして本発明電池(A23)を作製した。この非水電解液には、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解したものを用いた。 A battery (A23) of the present invention was produced in the same manner as in Example 1, except that the negative electrode 6 thus prepared was used. As this nonaqueous electrolytic solution, a solution obtained by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of EC and DEC in a volume ratio of 1: 1 was used.

[実施例24]
浸漬法を用いて負極活物質の表面にB元素およびLi元素を備えた物質を形成させるために、LiOH、HBOおよびPVdFを溶解したNMP溶液に浸漬したほかは実施例23と同様にして、本発明電池(A24)を作製した。
[Example 24]
In order to form a substance comprising B element and Li element on the surface of the negative electrode active material by using the dipping method, the same procedure as in Example 23 was performed except that the substance was immersed in an NMP solution in which LiOH, H 3 BO 3 and PVdF were dissolved. Thus, a battery (A24) of the present invention was produced.

[実施例25]
浸漬法を用いて負極活物質の表面にN、P、C元素およびLi元素を備えた物質を形成させるために、LiOHとN−(メトキシ)−N−メチル−2−(トリフェニルホスホアニリデン)アセトアミドとPVdFとを溶解したNMP溶液に浸漬したほかは実施例23と同様にして、本発明電池(A25)を作製した。
[Example 25]
LiOH and N- (methoxy) -N-methyl-2- (triphenylphosphoanilidene) are used to form a material comprising N, P, C elements and Li elements on the surface of the negative electrode active material using an immersion method. ) A battery of the present invention (A25) was produced in the same manner as in Example 23 except that it was immersed in an NMP solution in which acetamide and PVdF were dissolved.

[比較例1]
電気化学的手法を用いて負極活物質の表面にClおよびC元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiClOを溶解した非水電解液を用いたことのほかは実施例1と同様にして、比較例電池(B1)を作製した。
[Comparative Example 1]
When a material containing Cl, C element, and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 1 mol / dm 3 of LiClO in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A comparative battery (B1) was produced in the same manner as in Example 1 except that the nonaqueous electrolytic solution in which 4 was dissolved was used.

[比較例2]
電気化学的手法を用いて負極活物質の表面にAsおよびC元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiAsFを溶解した非水電解液を用いたことのほかは実施例1と同様にして、比較例電池(B2)を作製した。
[Comparative Example 2]
When a material containing As and C elements and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 1 mol / dm 3 of LiAsF is mixed in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A comparative battery (B2) was produced in the same manner as in Example 1 except that the nonaqueous electrolytic solution in which 6 was dissolved was used.

[比較例3]
電気化学的手法を用いて負極活物質の表面にSbおよびC元素とLi元素とを含む物質を形成するときに、ECとDECとの体積比1:1の混合溶媒に1mol/dmのLiSbFを溶解した非水電解液を用いたことのほかは実施例1と同様にして、比較例電池(B3)を作製した。
[Comparative Example 3]
When a material containing Sb, C element and Li element is formed on the surface of the negative electrode active material using an electrochemical method, 1 mol / dm 3 of LiSbF is mixed in a mixed solvent of EC and DEC in a volume ratio of 1: 1. A comparative battery (B3) was produced in the same manner as in Example 1 except that the nonaqueous electrolytic solution in which 6 was dissolved was used.

[比較例4]
CVD法を用いて負極活物質の表面にCl元素およびLi元素とを含む物質を形成するときに、ClとOとの混合ガスをチャンバー内に供給したことのほかは実施例9と同様にして、比較例電池(B4)を作製した。
[Comparative Example 4]
The same as Example 9 except that when a material containing Cl element and Li element was formed on the surface of the negative electrode active material using the CVD method, a mixed gas of Cl 2 and O 2 was supplied into the chamber. Thus, a comparative battery (B4) was produced.

[比較例5]
浸漬法を用いて負極活物質の表面にCl元素およびLi元素とを含む物質を形成するときに、KClOとPVdFとを溶解したNMP溶液を用いたことのほかは実施例23と同様にして、比較例電池(B5)を作製した。
[Comparative Example 5]
When forming the substance containing Cl element and Li element on the surface of the negative electrode active material using the dipping method, the same procedure as in Example 23 was used except that an NMP solution in which KClO 4 and PVdF were dissolved was used. A comparative battery (B5) was produced.

[比較例6]
浸漬法を用いて負極活物質の表面にC元素およびLi元素とを含む物質を形成するときに、ポリアクリル酸とLiOHとを溶解したNMP溶液を用いたことのほかは実施例23と同様にして、比較例電池(B6)を作製した。
[Comparative Example 6]
When forming the substance containing C element and Li element on the surface of the negative electrode active material using the dipping method, the same procedure as in Example 23 was used except that an NMP solution in which polyacrylic acid and LiOH were dissolved was used. Thus, a comparative battery (B6) was produced.

これらの実施例および比較例の電池は、25℃で、つぎの条件で充放電をおこなった。充電は、0.1CmA(50mA)の電流で4.0Vまでおこない、続いてその値で5時間の定電圧充電とした。また放電は、同じ電流で3.0Vまでとした。平均放電電圧を3.4Vとするとその体積エネルギー密度は約290Wh/lになる。   The batteries of these examples and comparative examples were charged and discharged at 25 ° C. under the following conditions. Charging was performed at a current of 0.1 CmA (50 mA) up to 4.0 V, and then the voltage was constant voltage charging for 5 hours. The discharge was up to 3.0 V with the same current. When the average discharge voltage is 3.4 V, the volume energy density is about 290 Wh / l.

これらの電池を用いて、以下の試験をおこなった。   The following tests were performed using these batteries.

[1.安全性試験]
つぎに示す釘刺し試験をおこなって、電池の安全性を評価した。2サイクル目の充電後の電池を、25℃で、直径1mmの釘を3cm/secの速度で電池に突き刺した。安全性の判定は、電池の温度が130℃以上になったものあるいは安全弁が作動したものを不良とし、それ以外のものは良とした。
[1. Safety test]
The following nail penetration test was performed to evaluate the safety of the battery. The battery after the second cycle charge was pierced at 25 ° C. with a 1 mm diameter nail at a speed of 3 cm / sec. The safety was judged as bad if the battery temperature was 130 ° C. or higher or the safety valve was activated, and the others were good.

[2.XPS測定]
2サイクル目の充電後の電池をグローブボックス内で分解して、負極を取り出した。この負極を真空乾燥して有機溶媒を蒸発させた後、5mm×5mmの大きさに切断した。これを、グローブボックス内で支持台にセットした。トランスファーベッセルを用いて空気を遮断して、この支持台をXPS測定装置(島津/KRATOS製、高性能光電子分光分析装置AXIS−HS)にセットした後、高真空状態でXPS測定をおこなって、物質に含まれる化合物を推定した。Li、B、N、P、S、C、F、Cl、O、AsおよびSbのピークが示す結合エネルギーから、それぞれの化合物に一致することを確認した。たとえばLiPOであれば、Li、P、O、の元素でLiPOにあたる結合エネルギーを確認した。
[2. XPS measurement]
The battery after the second cycle charge was disassembled in the glove box, and the negative electrode was taken out. The negative electrode was vacuum dried to evaporate the organic solvent, and then cut into a size of 5 mm × 5 mm. This was set on a support in the glove box. Air is shut off using a transfer vessel, and this support is set on an XPS measuring device (manufactured by Shimadzu / KRATOS, high performance photoelectron spectrometer AXIS-HS), and then XPS measurement is performed in a high vacuum state. The compounds contained in were estimated. It confirmed that it corresponded to each compound from the binding energy which the peak of Li, B, N, P, S, C, F, Cl, O, As, and Sb shows. For example, in the case of Li 3 PO 4, it was confirmed Li, P, O, the binding energy corresponding to Li 3 PO 4 in the elements.

[3.DSC測定]
2サイクル目の充電後の電池をドライルーム内で分解して、負極を取り出した。負極の活物質層を銅箔から削り落として、この活物質層を3mg秤量した。これにECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解した電解液を3mg加えてすみやかに示差走査熱量計(SII製、DSC220C)にセットした。10℃/minの昇温速度で、室温から200℃までの範囲でDSC測定をおこなった。その結果から、負極活物質層の発熱速度(単位:W/g・℃)を求めた。一例として、図1に実施例電池A1および比較例電池B1の負極活物質層のDSC曲線を示す。
[3. DSC measurement]
The battery after the second cycle charge was disassembled in a dry room, and the negative electrode was taken out. The active material layer of the negative electrode was scraped off from the copper foil, and 3 mg of this active material layer was weighed. To this, 3 mg of an electrolytic solution in which 1 mol / dm 3 of LiPF 6 was dissolved in a mixed solvent of EC and DEC in a volume ratio of 1: 1 was added and immediately set in a differential scanning calorimeter (SII, DSC220C). DSC measurement was performed in the range from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min. From the result, the heat generation rate (unit: W / g · ° C.) of the negative electrode active material layer was determined. As an example, FIG. 1 shows DSC curves of negative electrode active material layers of Example Battery A1 and Comparative Example Battery B1.

表1〜表5に、各電池の安全性の判定結果、XPS測定による負極表面の化合物、およびDSC測定による各酸化物の発熱速度の最大値を示す。















Tables 1 to 5 show the determination results of the safety of each battery, the compounds on the negative electrode surface by XPS measurement, and the maximum value of the heat generation rate of each oxide by DSC measurement.















Figure 2006004822
Figure 2006004822











Figure 2006004822
Figure 2006004822

















Figure 2006004822
Figure 2006004822
















Figure 2006004822
Figure 2006004822


Figure 2006004822
Figure 2006004822


〈結果〉
実施例の電池A1〜A25は良好な安全性を示したが、比較例の電池B1〜B6は不良であった。この結果は、XPSによって解析した負極表面の物質に含まれる元素との相関を示している。すなわち、安全性が良好であった実施例電池A1〜A25は、負極活物質の表面に存在する物質が、B、N、P、Sのなかから選択したすくなくとも1種類の元素とLi元素とを含むものであることがわかった。一方、安全性が不良であった比較例電池B1〜B6は、前記の物質がこれらの元素を含まないことがわかった。
<result>
The batteries A1 to A25 of the example showed good safety, but the batteries B1 to B6 of the comparative example were defective. This result shows the correlation with the elements contained in the material on the negative electrode surface analyzed by XPS. In other words, in Examples Batteries A1 to A25 having good safety, the material present on the surface of the negative electrode active material contains at least one element selected from B, N, P, and S and Li element. It turned out to be included. On the other hand, it was found that Comparative Examples B1 to B6, which had poor safety, did not contain these elements.

また、各電池の負極活物質層のDSC測定では、本発明電池のA1〜A25のものは発熱ピークが認められず、その最大発熱速度は0.03〜0.1W/g・℃であった。一方、比較例電池B1〜B7の負極活物質層では、発熱ピークが認められ、その最大発熱速度は0.5W/g・℃以上であった。すなわち、DSCでの発熱ピークのない負極活物質層を備えた本実施例電池は、安全性が良好であった試験結果と一致する。   In addition, in DSC measurement of the negative electrode active material layer of each battery, no exothermic peak was observed in the A1 to A25 batteries of the present invention, and the maximum heat generation rate was 0.03 to 0.1 W / g · ° C. . On the other hand, in the negative electrode active material layers of Comparative Examples B1 to B7, an exothermic peak was observed, and the maximum exothermic rate was 0.5 W / g · ° C. or higher. That is, the battery of this example provided with the negative electrode active material layer having no exothermic peak in DSC is consistent with the test result that the safety was good.

以上の結果から、互いに組成の異なる中核と表面層とを備えた負極活物質を負極に備え、前記負極活物質の前記中核はSiを含む酸化物を備え、前記表面層はB、N、P、Sのなかから選択したすくなくとも1種類の元素とLiを含む化合物を備え、前記負極活物質層のDSC(示差走査熱量分析)を測定したときに200℃以下で発熱ピークがない場合に、良好な安全性を示すことがわかった。   From the above results, a negative electrode active material having a core and a surface layer having different compositions from each other is provided in the negative electrode, the core of the negative electrode active material is provided with an oxide containing Si, and the surface layer is formed of B, N, P , Comprising at least one element selected from S and a compound containing Li, and good when no exothermic peak is observed at 200 ° C. or lower when DSC (differential scanning calorimetry) of the negative electrode active material layer is measured It was found to show a safe.

これは、本発明電池に用いる負極活物質の表面に形成された化合物が、電解液との反応を抑制して、安全性が向上したためと考えられる。また、実施例A1とA23、実施例A2とA24、実施例A3とA13等の電池のデータを比較すると、CおよびFの元素を含むものの方が、最大発熱速度の値が小さかった。負極活物質の表面に形成された化合物がCおよびFの元素を含むものは、電池の安全性の向上により好ましいことがわかった。   This is presumably because the compound formed on the surface of the negative electrode active material used in the battery of the present invention suppressed the reaction with the electrolytic solution and improved safety. Further, when the data of the batteries of Examples A1 and A23, Examples A2 and A24, and Examples A3 and A13 were compared, those containing the elements C and F had a smaller maximum heat generation rate. It has been found that the compound formed on the surface of the negative electrode active material containing C and F elements is preferable for improving the safety of the battery.

なお、実施例の負極活物質には、Siに対するOの原子比xの値がx=1であるSiOを用いたが、これに限定されるものではない。0<x<2の範囲のものは好ましい活物質である。上記の手法によって酸化物の表面に備えた物質はSiに対するOの元素比xに関係ないことがわかった。   In addition, although SiO whose value of the atomic ratio x of O with respect to Si was x = 1 was used for the negative electrode active material of an Example, it is not limited to this. Those in the range of 0 <x <2 are preferable active materials. It was found that the substance provided on the surface of the oxide by the above method is not related to the element ratio x of O to Si.

また、Siを含む酸化物の表面に形成した物質は、表1に記載されたものに限らず、B、N、P、Sのなかから選択したすくなくとも1種類の元素とLiを含む化合物を備えていればよく、そのほかの元素を含んでいてもよい。前記物質の形成方法は、電気化学的手法、直流プラズマCVD法、および浸漬法を示したが、その他の方法も用いることができる。電気化学的手法では、その電解液の塩の種類、濃度、および溶媒の種類および比率はこれらに限らず有効である。また、実施例5、7および8のホスファゼンやテトラメチルアンモニウム−ヘキサフルオロリン酸のような添加剤を加えてもよい。これらは、元素としてNおよびPを含むものであるが、実施例の組成の化合物に限定されず、それらの誘導体も用いることができる。   Moreover, the substance formed on the surface of the oxide containing Si is not limited to those listed in Table 1, but includes a compound containing at least one element selected from B, N, P, and S and Li. It may be sufficient and other elements may be included. As the method for forming the substance, an electrochemical method, a direct-current plasma CVD method, and an immersion method are shown, but other methods can also be used. In the electrochemical method, the salt type, concentration, and solvent type and ratio of the electrolytic solution are not limited to these, and are effective. In addition, additives such as phosphazenes and tetramethylammonium hexafluorophosphoric acid in Examples 5, 7 and 8 may be added. These contain N and P as elements, but are not limited to the compounds of the compositions of the examples, and derivatives thereof can also be used.

また、必要に応じて、他の添加剤を加えてもよい。また、CVDでは、直流プラズマだけでなく、高周波プラズマ、光、レーザーおよび熱による方法も有効である。供給するガスの種類や組成も、適宜変更が可能である。   Moreover, you may add another additive as needed. In CVD, not only DC plasma but also high frequency plasma, light, laser and heat methods are effective. The type and composition of the gas to be supplied can be changed as appropriate.

浸漬法では、負極を浸漬する溶媒は実施例のNMPに限らず、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどでも有効であり、その乾燥温度は溶媒が蒸発することができる範囲で適当な値に変更できる。   In the dipping method, the solvent for dipping the negative electrode is not limited to NMP in the examples, but dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran The drying temperature can be changed to an appropriate value as long as the solvent can be evaporated.

実施例の非水電解質電池の電解液にはECとDECとの体積比1:1の混合溶媒に1mol/dmのLiPFを溶解したものを用いたが、塩の種類、濃度、溶媒の種類および混合比率はこれらに限らず適当なものを選択できる。また、必要に応じて、種々の添加剤を加えてもよい。 The electrolyte solution of the nonaqueous electrolyte battery of the example was prepared by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of EC and DEC in a volume ratio of 1: 1. The type and mixing ratio are not limited to these, and an appropriate one can be selected. Moreover, you may add various additives as needed.

充電状態の本発明電池A1および比較例電池B1から取り出した負極活物質層のDSC測定結果を示した図。The figure which showed the DSC measurement result of the negative electrode active material layer taken out from this invention battery A1 and comparative example battery B1 of charge state.

Claims (2)

互いに組成の異なる中核と表面層とを備えた負極活物質を負極に備えた非水電解質二次電池において、前記中核はSiを含む酸化物を備え、前記表面層はB、N、P、Sのなかから選択した1種類の元素とLiとを含む化合物をすくなくとも1種類備え、前記負極活物質層のDSC(示差走査熱量分析)において200℃以下で発熱ピークがないことを特徴とする非水電解質二次電池 In a non-aqueous electrolyte secondary battery in which a negative electrode active material having a core and a surface layer having different compositions is provided in a negative electrode, the core includes an oxide containing Si, and the surface layer includes B, N, P, S Non-water characterized by comprising at least one compound containing one element selected from the group consisting of Li and Li and having no exothermic peak at 200 ° C. or lower in DSC (differential scanning calorimetry) of the negative electrode active material layer Electrolyte secondary battery 前記表面層がCまたは(および)Fを含むことを特徴とする請求項1記載の非水電解質二次電池





















2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the surface layer contains C or (and) F.





















JP2004181257A 2004-06-18 2004-06-18 Non-aqueous electrolyte battery Expired - Fee Related JP4581503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181257A JP4581503B2 (en) 2004-06-18 2004-06-18 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004181257A JP4581503B2 (en) 2004-06-18 2004-06-18 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006004822A true JP2006004822A (en) 2006-01-05
JP4581503B2 JP4581503B2 (en) 2010-11-17

Family

ID=35773029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181257A Expired - Fee Related JP4581503B2 (en) 2004-06-18 2004-06-18 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4581503B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035698A1 (en) * 2010-09-17 2012-03-22 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium-ion secondary battery, as well as negative electrode of lithium-ion secondary battery, negative electrode of capacitor, lithium-ion secondary battery, and capacitor using same
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2017162633A (en) * 2016-03-09 2017-09-14 日立マクセル株式会社 Nonaqueous secondary battery
JP2018181764A (en) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery
CN110993890A (en) * 2019-12-16 2020-04-10 东莞维科电池有限公司 Negative pole piece, preparation method and application thereof
CN117727870A (en) * 2024-02-18 2024-03-19 深圳海辰储能科技有限公司 Negative electrode sheet, secondary battery, battery pack, and power consumption device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035698A1 (en) * 2010-09-17 2012-03-22 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium-ion secondary battery, as well as negative electrode of lithium-ion secondary battery, negative electrode of capacitor, lithium-ion secondary battery, and capacitor using same
JP5584302B2 (en) * 2010-09-17 2014-09-03 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JPWO2012144177A1 (en) * 2011-04-21 2014-07-28 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5611453B2 (en) * 2011-04-21 2014-10-22 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2017162633A (en) * 2016-03-09 2017-09-14 日立マクセル株式会社 Nonaqueous secondary battery
JP2018181764A (en) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery
CN110993890A (en) * 2019-12-16 2020-04-10 东莞维科电池有限公司 Negative pole piece, preparation method and application thereof
CN117727870A (en) * 2024-02-18 2024-03-19 深圳海辰储能科技有限公司 Negative electrode sheet, secondary battery, battery pack, and power consumption device
CN117727870B (en) * 2024-02-18 2024-05-24 深圳海辰储能科技有限公司 Negative electrode sheet, secondary battery, battery pack, and power consumption device

Also Published As

Publication number Publication date
JP4581503B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
KR101038637B1 (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
JP5471284B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
JP5614307B2 (en) Nonaqueous electrolyte secondary battery
JP4985524B2 (en) Lithium secondary battery
JP5050452B2 (en) Nonaqueous electrolyte secondary battery
CN105576279B (en) Lithium secondary battery
CN101355146A (en) Negative electrode, battery, and method for producing them
JP2005149957A (en) Nonaqueous electrolyte secondary battery
JP4332845B2 (en) Non-aqueous electrolyte battery
JP5066831B2 (en) Nonaqueous electrolyte secondary battery
JP5217281B2 (en) Nonaqueous electrolyte secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP2012084426A (en) Nonaqueous electrolyte secondary battery
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
JP4581503B2 (en) Non-aqueous electrolyte battery
CN113346140A (en) Electrolyte and application thereof
CN114026729B (en) Lithium battery and use of urea-based additive as electrolyte additive therein
JP5224158B2 (en) Nonaqueous electrolyte secondary battery
JP4635409B2 (en) Non-aqueous electrolyte battery
JP3714259B2 (en) Nonaqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4449269B2 (en) Lithium battery
JP2007294654A (en) Electrochemical capacitor
JP5028965B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees