Nothing Special   »   [go: up one dir, main page]

JP5042503B2 - Defect detection method - Google Patents

Defect detection method Download PDF

Info

Publication number
JP5042503B2
JP5042503B2 JP2006014519A JP2006014519A JP5042503B2 JP 5042503 B2 JP5042503 B2 JP 5042503B2 JP 2006014519 A JP2006014519 A JP 2006014519A JP 2006014519 A JP2006014519 A JP 2006014519A JP 5042503 B2 JP5042503 B2 JP 5042503B2
Authority
JP
Japan
Prior art keywords
light
plate
image
defect
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006014519A
Other languages
Japanese (ja)
Other versions
JP2007198761A (en
JP2007198761A5 (en
Inventor
孝行 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2006014519A priority Critical patent/JP5042503B2/en
Publication of JP2007198761A publication Critical patent/JP2007198761A/en
Publication of JP2007198761A5 publication Critical patent/JP2007198761A5/ja
Application granted granted Critical
Publication of JP5042503B2 publication Critical patent/JP5042503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、電子写真用クリーニングブレード等の透明または半透明の板状体に光を照射して、板状体の欠陥を検出する欠陥検出方に関するものである。 The present invention, by irradiating light to the transparent or translucent plate member such as an electrophotographic cleaning blade, it relates to a defect detection how to detect defects of the plate.

板状体の欠陥を判別する方法として、従来では人手で行う方法、あるいは検査装置を用いて行う方法があった。人手で行う方法は、製品の高精度化に伴い、より微小な欠陥を発見する必要があり、そのために長時間集中しなければならない根気のいる作業となり、精神的な負担も大きくなり疲労も倍増することになる。加えて、視覚による検査は、検査員の主観的な検査判定であって、検査員の判断に依存し、検査員が異なる場合や、同じ検査員であっても、検査時間の推移によって、基準が変化する可能性がある。   As a method for discriminating defects in a plate-like body, conventionally, there have been a manual method or a method using an inspection apparatus. The manual method requires finding finer defects as the accuracy of the product increases, and this is a persevering work that must be concentrated for a long time, increasing the mental burden and doubling fatigue. Will do. In addition, the visual inspection is a subjective inspection judgment of the inspector, and depends on the inspector's judgment, and even if the inspector is different or the same inspector, May change.

検査員に代わる方法として、特許文献1に開示されたように、CCDカメラを用いた電子撮像装置による外観検査手法等が知られている。これらは、透明体に光を照射させ、透明体に欠陥があった場合には、その欠陥部分で光の乱反射が起こることを利用するもので、透過光を撮像装置により撮影し、映像信号化し、その映像信号を処理する。そして、透過させる光の光量を逐次変化させることにより、その変化量に基づいて欠陥を検出する。
特開2003−75292号公報
As a method to replace the inspector, as disclosed in Patent Document 1, an appearance inspection method using an electronic imaging device using a CCD camera is known. These utilize the fact that when a transparent body is irradiated with light and there is a defect in the transparent body, diffuse reflection of light occurs at the defective portion. The transmitted light is imaged by an imaging device and converted into a video signal. The video signal is processed. Then, by sequentially changing the amount of light to be transmitted, a defect is detected based on the amount of change.
JP 2003-75292 A

光量を逐次変化させることにより欠陥部を検出するという方式は、1回の撮影においてカメラの撮影領域内に入るような微小な製品に対しては検査時間が掛からず有効な手段である。しかし、検査領域が1回のカメラの撮影領域内に入らないような板状体等の検査物に対しては、光量を逐次変化させて欠陥を検出させていく方式では、1スキャンごとにカメラ位置を移動させて検査するため、検査時間が長くなる。また、複数台のカメラを用いて検査すれば、複数台のカメラと、それに対応した複数の光源を必要とするため、装置コストが高くなってしまう。従って実用化が難しいという未解決の課題があった。   The method of detecting a defective portion by sequentially changing the amount of light is an effective means that does not take an inspection time for a minute product that falls within the photographing region of the camera in one photographing. However, for an inspection object such as a plate-like body in which the inspection area does not fall within the imaging area of a single camera, the method in which the amount of light is sequentially changed to detect a defect causes the camera to be scanned every scan. Since the inspection is performed by moving the position, the inspection time becomes longer. Further, if inspection is performed using a plurality of cameras, a plurality of cameras and a plurality of light sources corresponding to the cameras are required, which increases the cost of the apparatus. Accordingly, there is an unsolved problem that it is difficult to put into practical use.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、電子写真用クリーニングブレード等の板状体の表面や内部の欠陥を短時間でもれなく検出することのできる欠陥検出方を提供することを目的とするものである。 The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and is capable of detecting defects on the surface and inside of a plate-like body such as an electrophotographic cleaning blade in a short time. it is an object of the present invention to provide an mETHODS.

本発明の欠陥検出方法は、電子写真用クリーニングブレードである透明または半透明の
板状体の欠陥を検出する欠陥検出方法において、第1の投光装置の光によって得られた板状体の反射光による画像と、第2の投光装置の光が540ないし680nmの波長領域(前記電子写真用クリーニングブレードの吸収波長領域に相当)をカットした、前記電子写真用クリーニングブレードである前記板状体内で全吸収されることなく、しかも該板状体の内部にある欠陥にて光量差が生じるような光源であり、また第2の投光装置の光によって得られた前記板状体の透過光による画像とを1つの撮像装置によって撮像する工程と、前記透過光と前記反射光とによる板状体の画像をデジタル処理する工程と、前記デジタル処理された画像データに基づき欠陥を判定する工程と、を有し、前記デジタル処理は、撮像された電子写真用クリーニングブレードである板状体の画像データを構成する各々の画素の階調の、一定設定値以下の画素を1とみなし、かつ一定設定値以上の画素を0とみなす二値化処理を施し、1とみなされた画素同士の距離が設定距離以下の場合、その画素同士を結ぶ処理を全画素において行い、一つの塊とする処理であることを特徴とする。
The defect detection method of the present invention is a defect detection method for detecting defects in a transparent or translucent plate-like body that is an electrophotographic cleaning blade, and the reflection of the plate-like body obtained by the light of the first light projecting device. The plate-like body, which is the electrophotographic cleaning blade, in which the image by light and the light of the second light projecting device are cut in a wavelength region of 540 to 680 nm (corresponding to the absorption wavelength region of the electrophotographic cleaning blade) in without being totally absorbed, yet a light source such as light amount difference by defects in the interior of the plate-like body occurs and the transmitted light of the second of said plate-shaped body obtained by the light of the light projecting device And a digital image processing of the image of the plate-like body by the transmitted light and the reflected light, and based on the digitally processed image data A step of determining a depression, wherein the digital processing is performed for pixels that are equal to or lower than a predetermined set value of gradation of each pixel constituting image data of a plate-like body that is an imaged cleaning blade for electrophotography. A binarization process is performed in which pixels that are regarded as 1 and a pixel that is equal to or greater than a predetermined set value are regarded as 0. If the distance between pixels that are regarded as 1 is less than or equal to the set distance, a process that connects the pixels is performed on all pixels. It is a process to make one lump.

電子写真用クリーニングブレード等の板状体の裏面に投光し、板状体内を透過した透過光による画像と、板状体の表面に投光し、その表面からの反射光による画像を同時に撮像して画像処理することで、簡略かつ信頼性の高い効率的な製品検査を可能とする。   Simultaneously captures an image of transmitted light that has been projected on the back of a plate-like body such as an electrophotographic cleaning blade and transmitted through the plate-like body, and an image of reflected light from the surface that is projected on the surface of the plate-like body. By performing image processing, it is possible to perform simple and reliable efficient product inspection.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、検査ステージ1上の透明または半透明の板状体10を撮像する撮像装置21と、板状体10の表面(第1面)および裏面(第2面)にそれぞれ光を投光する第1および第2の投光装置22、23と、を有する。撮像装置21によって得られた画像は、画像処理手段である記憶・処理装置24において記憶され、画像処理される。   As shown in FIG. 1, an imaging device 21 that images a transparent or translucent plate-like body 10 on the inspection stage 1, and light on the front surface (first surface) and the back surface (second surface) of the plate-like body 10, respectively. And first and second light projecting devices 22 and 23 for projecting light. The image obtained by the imaging device 21 is stored and processed in the storage / processing device 24, which is an image processing means.

すなわち、1つの撮像装置21に対して、一方の投光装置23は、その光が、板状体10を透過して撮像装置21に入るよう配置し、他方の投光装置22は、その光を板状体10によって反射させ、その反射光を撮像装置21が撮像できるよう配置する。そして、反射光と透過光とによる板状体の画像をデジタル処理することで、電子写真用クリーニングブレード等の透明または半透明の板状体の内部および表面の欠陥を検出する。   That is, with respect to one imaging device 21, one light projecting device 23 is arranged so that the light passes through the plate 10 and enters the imaging device 21, and the other light projecting device 22 has its light. Is arranged so that the imaging device 21 can capture the reflected light. Then, the image of the plate-like body by the reflected light and the transmitted light is digitally processed to detect defects inside and on the surface of the transparent or translucent plate-like body such as an electrophotographic cleaning blade.

例えば、撮像装置21としてレンズ21aを備えたCCDカメラを使用し、CCDカメラの撮影範囲を板状体側面の検査対象範囲内に設置する。CCDカメラは、カメラの画素配置が2次元平面のものとなっている2次元撮影用のカメラを用いる。このカメラは約30万画素で1画像となるように構成されているもので、それぞれの画素はアナログ階調となっており255段階の光量を分割可能なものを選択した。なお、透明または半透明の板状体10の欠陥を検出可能な撮像装置であれば上記のカメラ仕様に限定するものではない。   For example, a CCD camera provided with a lens 21a is used as the imaging device 21, and the imaging range of the CCD camera is set within the inspection target range on the side surface of the plate-like body. The CCD camera uses a two-dimensional imaging camera in which the pixel arrangement of the camera is a two-dimensional plane. This camera is configured to form one image with about 300,000 pixels, and each pixel has an analog gradation, and one that can divide the light quantity in 255 levels is selected. Note that the imaging device is not limited to the above-described camera specification as long as the imaging device can detect a defect of the transparent or translucent plate-like body 10.

検査時には、板状体10を保持する保持台2を検査ステージ1上で移動させる駆動モータ3を駆動制御装置25により駆動し、撮像装置21によって板状体10の検査対象範囲を逐次撮影し、検査対象全域の画像を得る。記憶・処理装置24において取り込んだ画像を画像処理し、欠陥がある場合には、ステージより出されているトリガをもとに取り込み、画像の画像番号を算出し、同時に欠陥が発見された画像における画像内部での位置情報を算出する。これらを組み合わせることによって板状体10における不良箇所の位置情報を得る。同時に、欠陥の大きさ、1回の検査における欠陥の数等も記憶して表示装置26に表示する。   At the time of inspection, the drive motor 3 that moves the holding table 2 that holds the plate-like body 10 on the inspection stage 1 is driven by the drive control device 25, and the inspection target range of the plate-like body 10 is sequentially photographed by the imaging device 21, An image of the entire inspection object is obtained. The image captured by the storage / processing device 24 is subjected to image processing. If there is a defect, the image is captured based on a trigger issued from the stage, and the image number of the image is calculated. Position information inside the image is calculated. By combining these, position information of defective portions in the plate-like body 10 is obtained. At the same time, the size of the defect, the number of defects in one inspection, and the like are stored and displayed on the display device 26.

このように、2つの投光装置のうちの一方は、投光装置よりの光が、透明または半透明の板状体を透過し撮像装置に入るよう配置し、他方の投光装置は、投光装置よりの光を透明または半透明の板状体に反射させ、その反射光を撮像装置が撮像できるよう配置する。そして、撮像装置によって得られた画像から、電子写真用クリーニングブレード等の板状体内部および板状体表面を同時に検査可能にする。   In this way, one of the two projectors is arranged so that light from the projector is transmitted through the transparent or translucent plate-like body and enters the imaging device, and the other projector is It arrange | positions so that the light from an optical apparatus may be reflected in a transparent or semi-transparent plate-shaped body, and the imaging device can image the reflected light. Then, it is possible to simultaneously inspect the inside of the plate-like body such as the electrophotographic cleaning blade and the surface of the plate-like body from the image obtained by the imaging device.

対象となる透明または半透明の板状体の持つ製品としての公差の観点から、撮像した画像において製品平坦部の荒れを取り込まないような撮像装置および投光装置の配置を行う。また、板状体の特徴的な欠陥画像を取り込めるよう、レンズ倍率、レンズ光量絞り、投光装置の光量、投光装置からの光の波長、光源装置の照射範囲等を調整する。 From the viewpoint of tolerance as a product of the target transparent or translucent plate-like body, the imaging device and the light projecting device are arranged so as not to capture the roughness of the product flat portion in the captured image. Further, the lens magnification, the lens light amount diaphragm, the light amount of the light projecting device, the wavelength of light from the light projecting device, the irradiation range of the light source device, and the like are adjusted so as to capture a characteristic defect image of the plate-like body.

すなわち、単に、2つの投光装置からの透過光と反射光とが撮像装置に結像するように配置すればよいのではなく、各投光装置の設置位置を調整して、撮影する画像範囲において、板状体からの光が十分に撮像装置に入るようにする必要がある。   That is, it is not necessary to simply arrange so that transmitted light and reflected light from the two light projecting devices form an image on the image capturing device, but adjust the installation position of each light projecting device to capture an image range. In this case, it is necessary to allow the light from the plate-like body to sufficiently enter the imaging device.

なお、各投光装置と板状体との距離や、各投光装置と板状体との配置角度についての関係は実験的に最適値を得ることができる。   The relationship between the distance between each light projecting device and the plate-like body and the arrangement angle between each light projecting device and the plate-like body can be obtained experimentally.

板状体を透過させる第2の投光装置については、透過光を均一に撮像装置に入力させるために、板状体からの距離を80mm以上250mm以下に設定し、板状体との間の角度θ2 は、0度以上30度以下に設定することが好ましい。 About the 2nd light projection apparatus which permeate | transmits a plate-shaped object, in order to transmit the transmitted light uniformly to an imaging device, the distance from a plate-shaped object is set to 80 mm or more and 250 mm or less, The angle θ 2 is preferably set to 0 degree or more and 30 degrees or less.

板状体の反射光を得るための第1の投光装置については、反射光を均一に撮像装置に入力させるという観点から、板状体からの距離を80mm以上250mm以下に設定し、板状体との間の角度θ1 は、30度以上60度以下に設定することが好ましい。 For the first light projecting device for obtaining the reflected light of the plate-like body, the distance from the plate-like body is set to 80 mm or more and 250 mm or less from the viewpoint of uniformly inputting the reflected light to the imaging device. The angle θ 1 between the body and the body is preferably set to 30 degrees or more and 60 degrees or less.

板状体の透過光を得るための第2の投光装置の光源の波長については、板状体を透過した光が全吸収されることなく、しかも板状体内部にある欠陥にて十分に吸収され光量差が生じるような波長にする必要がある。投光装置の光源の波長についてはフィルターを用い余分な帯域の波長をカットする。例えば、電子写真用クリーニングブレード内部の欠陥の抽出が容易となるような波長にするためには、540〜680nmの波長領域(前記電子写真用クリーニングブレードの吸収波長領域に相当)をカットした光源を使用する。なお、板状体内部の欠陥の抽出が可能となるような波長であればよいのでこの数値に限定するものではない。 Regarding the wavelength of the light source of the second light projecting device for obtaining the transmitted light of the plate-like body, the light transmitted through the plate-like body is not completely absorbed, and the defect inside the plate-like body is sufficient. It is necessary to set the wavelength so that a difference in the amount of light is absorbed. With respect to the wavelength of the light source of the light projecting device, a filter is used to cut off the wavelength of the extra band. For example, in order to wavelength, such as extraction of the electrophotographic cleaning blade internal defects it is easy, the light source cut the wavelength region of 540~680Nm (corresponding to the absorption wavelength region of the electrophotographic cleaning blade) use. It should be noted that the wavelength is not limited to this numerical value as long as the wavelength enables extraction of defects inside the plate-like body.

撮像装置の位置は、被検査物(板状体)の平坦部が撮像可能範囲内に入るような位置に設定する必要があり、被検査物の公差などによって変化が生じる場合においても撮像可能範囲内に入ることを要する。   The position of the imaging device needs to be set so that the flat portion of the object to be inspected (plate-like body) falls within the imageable range, and the imageable range is also affected when there is a change due to the tolerance of the object to be inspected. It is necessary to enter inside.

撮像装置に、レンズ倍率の調節ができ、そのレンズ倍率が0.05〜1.0倍まで調節可能なレンズを用いることにより、板状体のエッジ部を公差に係わり無く取り込むことができる。レンズ倍率については例えば、0.2倍とするが、被検査物の撮影が可能であれば、この数値に限定するものではない。   By using a lens in which the lens magnification can be adjusted and the lens magnification can be adjusted to 0.05 to 1.0 times in the imaging device, the edge portion of the plate-like body can be taken in regardless of the tolerance. The lens magnification is, for example, 0.2 times, but is not limited to this value as long as the object can be imaged.

撮像装置の被写界深度については、撮影される板状体の平坦部が撮像装置の被写界深度内に入る位置に設定する必要があり、同時に、板状体の歪みなどによって高さ方向に変化が生じる場合においても被写界深度内に入ることを要する。   The depth of field of the imaging device must be set at a position where the flat part of the plate to be photographed falls within the depth of field of the imaging device. Even when there is a change in the depth of field, it is necessary to be within the depth of field.

そこで、アイリス絞りの調節ができ、被写界深度の調節が可能で、その被写界深度が0.3〜1.0mmまで調節可能なレンズを用いることにより、板状体の欠陥を画像データとして取り込むことが可能になった。被写界深度については例えば0.5mmとするが、板状体の撮影が可能であれば、この数値に限定するものではない。   Therefore, the iris diaphragm can be adjusted, the depth of field can be adjusted, and by using a lens whose depth of field can be adjusted to 0.3 to 1.0 mm, defects in the plate-like body can be imaged. It became possible to import as. The depth of field is, for example, 0.5 mm, but is not limited to this value as long as a plate-like body can be captured.

図1に示すように、本実施例の欠陥検出装置は、検査ステージ1、保持台2、駆動モータ3、撮像装置21、2つの投光装置22、23を有する。   As shown in FIG. 1, the defect detection apparatus of this embodiment includes an inspection stage 1, a holding base 2, a drive motor 3, an imaging device 21, and two light projecting devices 22 and 23.

2つの投光装置22、23よりの光が、検査ステージ1上の板状体10に投光され、板状体10の透過光および反射光がレンズ21aを通り撮像装置21に入射する。撮影された画像は、記憶・処理装置24に転送され、転送された画像番号は記憶・処理装置24に記憶される。   Light from the two light projecting devices 22 and 23 is projected onto the plate-like body 10 on the inspection stage 1, and transmitted light and reflected light of the plate-like body 10 enter the imaging device 21 through the lens 21a. The captured image is transferred to the storage / processing device 24, and the transferred image number is stored in the storage / processing device 24.

投光装置22は、板状体10の表面によって反射された光が撮像装置21に十分に光量が届くような位置に配置する必要があり、投光装置23は、板状体10の内部を透過した光が撮像装置21に十分に光量が届くような位置に配置する必要がある。   The light projecting device 22 needs to be arranged at a position where the light reflected by the surface of the plate-like body 10 reaches a sufficient amount of light to the imaging device 21, and the light projecting device 23 is located inside the plate-like body 10. It is necessary to arrange at a position where the transmitted light can reach the imaging device 21 sufficiently.

角度・位置の微調整については、撮像装置21、投光装置22、23を固定するそれぞれのブラケット部と、撮像装置21、投光装置22、23を検査ステージ1に固定させるそれぞれのブラケット部との間に市販の微動ステージを配設する。これによって、図2に示す投光装置22、23の光軸の角度θ1 、θ2 、撮像装置21の光軸の角度θ3 の調整や、3次元軸方向への微動を可能とする。 For fine adjustment of the angle and position, each bracket portion that fixes the imaging device 21 and the light projecting devices 22 and 23, and each bracket portion that fixes the imaging device 21 and the light projection devices 22 and 23 to the inspection stage 1, A commercially available fine movement stage is disposed between the two. Thus, adjustment of the optical axis angles θ 1 and θ 2 of the light projecting devices 22 and 23 shown in FIG. 2 and the optical axis angle θ 3 of the imaging device 21 and fine movement in the three-dimensional axis direction are possible.

投光装置22の角度θ1 については、投光装置22を固定しているブラケットと微動ステージを移動させることにより0〜90度に設定することができる。投光装置22は、板状体10の表面を反射し撮像装置21に十分に光量が届くような位置に配置する必要があるという観点から、角度θ1 は30度以上60度以下の範囲が望ましい。 The angle θ 1 of the light projecting device 22 can be set to 0 to 90 degrees by moving the bracket that fixes the light projecting device 22 and the fine movement stage. From the viewpoint that the light projecting device 22 needs to be disposed at a position where the surface of the plate-like body 10 is reflected and the amount of light reaches the imaging device 21 sufficiently, the angle θ 1 has a range of 30 degrees to 60 degrees. desirable.

投光装置23の角度θ2 については、投光装置23を固定しているブラケットと微動ステージを移動させることにより0〜90度に設定することができる。投光装置23は、板状体10を透過して撮像装置21に十分に光量が届くような位置に配置する必要があるという観点から、角度θ2 は0度以上30度以下の範囲が望ましい。 The angle θ 2 of the light projecting device 23 can be set to 0 to 90 degrees by moving the bracket that fixes the light projecting device 23 and the fine movement stage. From the viewpoint that the light projecting device 23 needs to be disposed at a position where the amount of light reaches the imaging device 21 through the plate-like body 10, the angle θ 2 is preferably in the range of 0 ° to 30 °. .

撮像装置21の角度θ3 については、撮像装置21を固定しているブラケットと微動ステージを移動させることにより0〜90度に設定することができる。撮像装置21は、2つの投光装置22、23よりの光が届くような位置に配置する必要があるという観点から、角度θ3 は30度以上60度以下の範囲が望ましい。 The angle θ 3 of the imaging device 21 can be set to 0 to 90 degrees by moving the bracket that fixes the imaging device 21 and the fine movement stage. From the viewpoint that the imaging device 21 needs to be disposed at a position where the light from the two light projecting devices 22 and 23 can reach, the angle θ 3 is preferably in the range of 30 degrees to 60 degrees.

また、撮像可能範囲の位置は撮像される画像において、板状体10の平坦部が映る範囲でよいが、本実施例では、撮像装置21のレンズ21aの被写界深度が板状体10の平坦部を十分にカバーできる幅に設定した。   Further, the position of the imageable range may be a range where the flat portion of the plate-like body 10 is reflected in the image to be picked up, but in this embodiment, the depth of field of the lens 21a of the imaging device 21 is the plate-like body 10. The width was set so as to sufficiently cover the flat part.

板状体10が電子写真用クリーニングブレードである場合には、内部の欠陥の抽出が容易となるような波長にすると言う観点から、透過光を撮像するための投光装置23からの光が540〜680nmの波長領域(前記電子写真用クリーニングブレードの吸収波長領域に相当)をカットした光となるようにフィルターを付加する。 When the plate-like body 10 is an electrophotographic cleaning blade, the light from the light projecting device 23 for imaging the transmitted light is 540 from the viewpoint of making the wavelength easy to extract internal defects. A filter is added so that light is cut in a wavelength region of ˜680 nm (corresponding to the absorption wavelength region of the electrophotographic cleaning blade) .

次に図3のフローチャートに基づいて、図1の装置の動作を説明する。   Next, the operation of the apparatus of FIG. 1 will be described based on the flowchart of FIG.

ステップS1で、電源供給を受けて投光装置22、23から均一化された光量の可視光を発光する。   In step S1, a uniform amount of visible light is emitted from the light projecting devices 22 and 23 in response to power supply.

スポットの大きさは、レンズ倍率と撮像装置視野の観点からφ20程度とした。ステップS2で駆動モータ3の駆動を開始し、ステップS3でスポット光を板状体10に照射し、画像取り込みを開始する。板状体10の表面および内部に欠陥がある場合、欠陥によって影となる。その欠陥によって形成された影を、レンズ21aを介して撮像装置21によって撮影する。各撮像領域ごとにステップS4で駆動モータ3を駆動し、ステップS5で画像取り込みを行い、ステップS6で記憶・処理装置24に画像データとして転送する。   The size of the spot was set to about φ20 from the viewpoint of the lens magnification and the field of view of the imaging device. In step S2, driving of the drive motor 3 is started. In step S3, spot light is irradiated onto the plate-like body 10, and image capturing is started. When there is a defect on the surface and inside of the plate-like body 10, it becomes a shadow due to the defect. The shadow formed by the defect is photographed by the imaging device 21 through the lens 21a. In step S4, the drive motor 3 is driven for each imaging region, an image is captured in step S5, and the image data is transferred to the storage / processing device 24 in step S6.

レンズ21aは、近接撮影時に最良な光学性能が得られるような近接撮影専用レンズを用い、フォーカス機能およびアイリス絞り機能を有し光量を調節可能なものを使用する。特に、撮像装置21において、像がハレーションを起こすことなく、精度よく結像できるようなものを選択した。   The lens 21a is a lens for exclusive use in close-up photography that can obtain the best optical performance during close-up photography, and uses a lens that has a focus function and an iris diaphragm function and can adjust the amount of light. In particular, the imaging device 21 was selected so that the image can be accurately formed without causing halation.

撮像された画像は撮像装置21から記憶・処理装置24に電気信号で転送され、記憶装置に画像データとして収納される。   The captured image is transferred as an electrical signal from the imaging device 21 to the storage / processing device 24 and stored as image data in the storage device.

その後画像データは、処理装置の画像処理用の集積回路へと転送される。   Thereafter, the image data is transferred to an integrated circuit for image processing of the processing device.

撮像装置21にて撮影した画像データは、2次元カメラを用いたため、2次元平面のものとなっており1画像に付き約30万画素で構成されているが、板状体10の欠陥を検出可能な撮像装置であればこのカメラ仕様に限定されるものではない。   The image data photographed by the imaging device 21 is a two-dimensional plane because it uses a two-dimensional camera, and is composed of about 300,000 pixels per image. However, a defect of the plate-like body 10 is detected. The camera specification is not limited to this as long as the imaging device is capable.

取り込んだ画像は、まず初めにノイズ等を取り除くため、画像フィルター処理を行っている。これは1つの画素が突発的に周囲の隣合う画素と大きく異なる光量のときなどはその画素を周囲の画素光量と等しくさせるというような処理であり、画素の突発的なノイズを除去する効果をもつ。   The captured image is first subjected to image filter processing to remove noise and the like. This is a process of making a pixel equal to the surrounding pixel light amount when one pixel suddenly has a light amount that is significantly different from neighboring pixels, and has the effect of removing the sudden noise of the pixel. Have.

記憶・処理装置24に転送された画像データは、ステップS7で各々の画素の255段階の一定設定値以下の画素を”1”とみなし、また同時に一定設定値以上の画素を”0”とみなす二値化処理を施し、画像内の画素をデジタル化させる。その後、”1”とみなされた画素同士の距離が設定距離以下の場合、その画素同士を結ぶ。これらの処理をそれぞれの画素で行っていき、1つの塊として纏めることにより、1つの島とする。その際、島と定義した内部において中空となっている際には、内部を“1”となるよう埋める処理を行う。この島を欠陥部と定義させる。   In the image data transferred to the storage / processing device 24, in step S7, each pixel is regarded as “1” for a pixel below a certain set value in 255 stages, and at the same time, a pixel greater than a certain set value is regarded as “0”. A binarization process is performed to digitize the pixels in the image. Thereafter, when the distance between the pixels regarded as “1” is equal to or smaller than the set distance, the pixels are connected. These processes are performed for each pixel, and are combined into one lump to form one island. At this time, when the interior defined as an island is hollow, a process of filling the interior to “1” is performed. This island is defined as a defective part.

また、別処理として二値化のように画素をデジタル化せずに255階調のままとし、この状態で、画像内の隣合う画素同士の光量の変化量の多い部分(設定可能)を“1”として認識させる。その後、”1”とみなされた画素同士の距離が設定距離以下の場合、その画素同士を結ぶ。これらの処理をそれぞれの画素で行っていき、1つの塊として纏めることにより、1つの島とする。その際、島と定義した内部において中空となっている際には、内部を“1”となるよう埋める処理を行う。この島を前記処理と同様に欠陥部と定義させる。以上の処理を行うことにより、欠陥部の認識を処理装置にさせている。   Further, as another process, the pixel is not digitized as in binarization and is left with 255 gradations, and in this state, a portion where the amount of change in the amount of light between adjacent pixels in the image is large (can be set) is set. 1 ”is recognized. Thereafter, when the distance between the pixels regarded as “1” is equal to or smaller than the set distance, the pixels are connected. These processes are performed for each pixel, and are combined into one lump to form one island. At this time, when the interior defined as an island is hollow, a process of filling the interior to “1” is performed. This island is defined as a defective portion in the same manner as the above processing. By performing the above processing, the processor recognizes the defective portion.

ステップS8で、認識させた欠陥部を特徴化させ確定させる処理を行う。認識させた欠陥部に対し、欠陥部を埋めて構成されている画素の画素数(面積)、欠陥部の一番遠い画素同士の距離、欠陥部を結んだ稜線の真円度、欠陥部を結んだ稜線の縦横比、欠陥部を結んだ稜線の長さを求め数値化する。これらの条件から、予め設定した条件式に当てはめていくことによって、前記欠陥部と定義させた部分から、検出させるべき欠陥部を認識させる。   In step S8, the recognized defect portion is characterized and determined. For the recognized defective part, the number of pixels (area) of the pixels that are configured by filling the defective part, the distance between the furthest pixels of the defective part, the roundness of the ridge line connecting the defective part, the defective part The aspect ratio of the connected ridgeline and the length of the ridgeline connecting the defective part are calculated and digitized. From these conditions, a defective part to be detected is recognized from the part defined as the defective part by applying a preset conditional expression.

これらの処理を行うことによって、本来欠陥部でない部分も欠陥として認識されていたものが除外され、検出させるべき欠陥部を認識させ検出することが可能となる。   By performing these processes, it is possible to recognize and detect the defective portion to be detected by excluding the portion that was originally recognized as a defect even if it was not a defective portion.

これらの画像処理加工を施し、板状体10の欠陥の位置情報も、認識させた欠陥部を構成する画素の位置情報をもって、欠陥部の重心位置も算出させておく。   By performing these image processing processes, the position of the defect of the plate-like body 10 and the position information of the pixels constituting the recognized defect are used to calculate the center of gravity of the defect.

これらの画像処理加工を行う際、レンズ21aの倍率、撮像装置21の設置角度θ3 、撮像可能範囲の位置などの設定はあらかじめ処理装置のほうへ登録しておく。前記情報を元に、欠陥の位置情報、大きさを記憶・処理装置24上で算出し、記録を行う。 When performing these image processings, settings such as the magnification of the lens 21a, the installation angle θ 3 of the imaging device 21 and the position of the imageable range are registered in advance in the processing device. Based on the information, position information and size of the defect are calculated on the storage / processing device 24 and recorded.

記憶・処理装置24は、駆動制御装置25と連動させ、設定した計測分解能に従い駆動モータ3を制御し、検査位置を順次変えていくことで、ステップS4ないしステップS8の動作を繰り返し行い、ステップS9で板状体10全体の検査を終了し、ステップS10で製品の良否を判定し、ステップS11で表示装置26に表示する。   The storage / processing device 24 is linked to the drive control device 25, controls the drive motor 3 in accordance with the set measurement resolution, and sequentially changes the inspection position, thereby repeatedly performing the operations from step S4 to step S8. Then, the inspection of the entire plate-like body 10 is finished, and the quality of the product is determined in step S10, and displayed on the display device 26 in step S11.

(比較例)
本実施例による欠陥検出装置と、1つの撮像装置および1つの投光装置を用いて、投光装置の角度を10度に設定した装置による製品検査を行った。このとき用いた板状体サンプルは、目視にて確認可能な、製品表面部にスジ状の欠陥があり、欠陥部の深さはレーザー測定機の測定により、約5〜30μm程度のもので、スジ状の幅については150〜200μm程度のものを12本選択した。
(Comparative example)
Using the defect detection apparatus according to this example, one imaging apparatus, and one light projecting apparatus, product inspection was performed using an apparatus in which the angle of the light projecting apparatus was set to 10 degrees. The plate-like sample used at this time has a streak-like defect on the product surface portion that can be visually confirmed, and the depth of the defect portion is about 5 to 30 μm as measured by a laser measuring instrument, As for the stripe-like width, twelve having a width of about 150 to 200 μm were selected.

比較例においては、12本中7本のサンプルの欠陥箇所の検出が可能であった。これに対して、本実施例においては、投光装置22の角度θ1 を38度、投光装置23の角度θ2 を10度に設定して、比較例と同じサンプル、同一の検出アルゴリズムを用い検査を行ったところ、12本中10本のサンプルの欠陥箇所の検出が可能であった。 In the comparative example, it was possible to detect a defective portion of 7 out of 12 samples. On the other hand, in this embodiment, the angle θ 1 of the light projecting device 22 is set to 38 degrees and the angle θ 2 of the light projecting device 23 is set to 10 degrees, and the same sample and the same detection algorithm as those in the comparative example are used. When the inspection was performed, it was possible to detect a defective portion of 10 samples out of 12 samples.

この結果より、本実施例における欠陥検出方法は、比較例に比べてより正確な検査が可能であることがわかった。   From this result, it was found that the defect detection method in the present example can perform more accurate inspection than the comparative example.

また、本実施例において、投光装置23にフィルターを付加し、540〜680nmの波長領域をカットした光を用いて、上記と同じサンプル、同一の検出アルゴリズムによる検査を行ったところ、12本中全てのサンプルの欠陥箇所の検出が可能であった。   Further, in this example, when a filter was added to the light projecting device 23 and light having a wavelength range of 540 to 680 nm was cut, the same sample and the same detection algorithm were used for inspection. It was possible to detect the defective part of all the samples.

このことより、透過光による画像を得るための光の波長領域を限定することで、より一層正確に検査が可能であるということがわかる。 From this, it can be seen that the inspection can be performed more accurately by limiting the wavelength region of the light for obtaining the image by the transmitted light.

一実施例による欠陥検出装置の構成を示す図である。It is a figure which shows the structure of the defect detection apparatus by one Example. 投光装置と撮像装置の配置を説明する図である。It is a figure explaining arrangement | positioning of a light projector and an imaging device. 板状体の欠陥を検出する工程を示すフローチャートである。It is a flowchart which shows the process of detecting the defect of a plate-shaped object.

符号の説明Explanation of symbols

1 検査ステージ
2 保持台
3 駆動モータ
21 撮像装置
22、23 投光装置
24 記憶・処理装置
25 駆動制御装置
26 表示装置
DESCRIPTION OF SYMBOLS 1 Inspection stage 2 Holding stand 3 Drive motor 21 Imaging device 22, 23 Light projection device 24 Memory | storage / processing device 25 Drive control apparatus 26 Display apparatus

Claims (1)

電子写真用クリーニングブレードである透明または半透明の板状体の欠陥を検出する欠陥検出方法において、第1の投光装置の光によって得られた板状体の反射光による画像と、第2の投光装置の光が540ないし680nmの波長領域(前記電子写真用クリーニングブレードの吸収波長領域に相当)をカットした、前記電子写真用クリーニングブレードである前記板状体内で全吸収されることなく、しかも該板状体の内部にある欠陥にて光量差が生じるような光源であり、また第2の投光装置の光によって得られた前記板状体の透過光による画像とを1つの撮像装置によって撮像する工程と、
前記透過光と前記反射光とによる板状体の画像をデジタル処理する工程と、
前記デジタル処理された画像データに基づき欠陥を判定する工程と、を有し、前記デジタル処理は、撮像された電子写真用クリーニングブレードである板状体の画像データを構成する各々の画素の階調の、一定設定値以下の画素を1とみなし、かつ一定設定値以上の画素を0とみなす二値化処理を施し、1とみなされた画素同士の距離が設定距離以下の場合、その画素同士を結ぶ処理を全画素において行い、一つの塊とする処理であることを特徴とする欠陥検出方法。
In a defect detection method for detecting a defect of a transparent or translucent plate-like body that is an electrophotographic cleaning blade, an image obtained by reflected light of a plate-like body obtained by light of a first light projecting device, and a second The light of the light projecting device cuts the wavelength region of 540 to 680 nm (corresponding to the absorption wavelength region of the electrophotographic cleaning blade), and is not completely absorbed in the plate-like body that is the electrophotographic cleaning blade, Moreover a light source such as light amount difference occurs at defects in the interior of the plate-like body, and the second one of the image pickup apparatus and an image by the light transmitted through the plate-shaped body obtained by the light of the light projecting device A step of imaging by:
Digitally processing an image of the plate-like body by the transmitted light and the reflected light;
Determining a defect based on the digitally processed image data, wherein the digital processing is a gradation of each pixel constituting the image data of the plate-like body that is the imaged cleaning blade for electrophotography If a pixel equal to or less than a predetermined set value is regarded as 1 and a pixel equal to or greater than a certain set value is regarded as 0, and the distance between pixels regarded as 1 is equal to or less than the set distance, A defect detection method characterized in that the process of connecting all the pixels is performed to form one block.
JP2006014519A 2006-01-24 2006-01-24 Defect detection method Expired - Fee Related JP5042503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014519A JP5042503B2 (en) 2006-01-24 2006-01-24 Defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014519A JP5042503B2 (en) 2006-01-24 2006-01-24 Defect detection method

Publications (3)

Publication Number Publication Date
JP2007198761A JP2007198761A (en) 2007-08-09
JP2007198761A5 JP2007198761A5 (en) 2009-03-12
JP5042503B2 true JP5042503B2 (en) 2012-10-03

Family

ID=38453518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014519A Expired - Fee Related JP5042503B2 (en) 2006-01-24 2006-01-24 Defect detection method

Country Status (1)

Country Link
JP (1) JP5042503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297717B2 (en) * 2008-08-11 2013-09-25 キヤノン化成株式会社 Defect detection apparatus and defect detection method
JP2011203132A (en) * 2010-03-25 2011-10-13 Seiko Epson Corp Visual inspection apparatus
CN104297264A (en) * 2014-11-03 2015-01-21 苏州精创光学仪器有限公司 Glass surface blemish on-line detecting system
JP2020085587A (en) * 2018-11-21 2020-06-04 日本電気硝子株式会社 Glass plate manufacturing method and glass plate manufacturing device
CN113083733B (en) * 2021-03-24 2021-12-10 江苏利宇剃须刀有限公司 Razor cutting edge detection device based on machine vision

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160349A (en) * 1989-11-20 1991-07-10 Tokimec Inc Device for detecting crack
JPH1194751A (en) * 1997-09-16 1999-04-09 Mitsubishi Chemical Corp Apparatus for measuring foreign matter in object to be measured
JP2004212202A (en) * 2002-12-27 2004-07-29 Dainippon Printing Co Ltd Appearance inspection method and apparatus for translucent element

Also Published As

Publication number Publication date
JP2007198761A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5014003B2 (en) Inspection apparatus and method
JP5120625B2 (en) Inner surface measuring device
JP2007327836A (en) Appearance inspection apparatus and method
JP4550610B2 (en) Lens inspection device
JP5042503B2 (en) Defect detection method
JP6387381B2 (en) Autofocus system, method and image inspection apparatus
JP5006005B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JPH1062354A (en) Device and method of inspecting transparent plate for defect
JP2008275496A (en) Defect detection method and device of foam roller
JP5281815B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
JP2010145253A (en) Method for imaging cylindrical surface and obtaining rectangular plane image
JP2004212353A (en) Optical inspection apparatus
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JP2007198762A (en) Flaw detection method and detector
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP4679995B2 (en) Defect detection method and apparatus
JP2019220594A (en) Wafer inspection device and wafer inspection method
JP2007033327A (en) Flaw detecting method and flaw detector
JP2006071512A (en) Three-dimensional measuring method and three-dimensional measuring apparatus
JP2006098101A (en) Defect detection method and defect detection device of plate body
JP2005257404A5 (en)
JP2008191017A (en) Method for detecting defect of plate
JP2008241662A (en) Image stabilizing device
JP2004045128A (en) Calibration standard device, image processing method for calibrating image inspection device using the same, and method for calibrating image inspection device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees