Nothing Special   »   [go: up one dir, main page]

JP4979120B2 - Lead-free solder alloy - Google Patents

Lead-free solder alloy Download PDF

Info

Publication number
JP4979120B2
JP4979120B2 JP2006222399A JP2006222399A JP4979120B2 JP 4979120 B2 JP4979120 B2 JP 4979120B2 JP 2006222399 A JP2006222399 A JP 2006222399A JP 2006222399 A JP2006222399 A JP 2006222399A JP 4979120 B2 JP4979120 B2 JP 4979120B2
Authority
JP
Japan
Prior art keywords
solder alloy
lead
free solder
weight
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006222399A
Other languages
Japanese (ja)
Other versions
JP2008043978A (en
Inventor
貞 澤村
岳夫 五十嵐
由紀雄 前田
Original Assignee
日本アルミット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アルミット株式会社 filed Critical 日本アルミット株式会社
Priority to JP2006222399A priority Critical patent/JP4979120B2/en
Publication of JP2008043978A publication Critical patent/JP2008043978A/en
Application granted granted Critical
Publication of JP4979120B2 publication Critical patent/JP4979120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、クリープ変形を速くして、クリープ特性を改善する鉛フリー半田合金に関する。   The present invention relates to a lead-free solder alloy that accelerates creep deformation and improves creep characteristics.

一般に、半田合金に一定の荷重を加えた際、半田合金が時間と共に変形する現象をクリープ変形という。
半田合金は融点が450℃より低いために一般的にクリープ変形し易い。
しかし、クリープ変形し易いと言うことは、半田付部に部品と基板の熱膨張による応力が発生した際、半田合金自体が自ら変形することによって応力を吸収し、部品や基板に熱膨張による応力の伝達を防止する効果を持つ。
これは、半田付部の信頼性を考えたときに、非常に重要な効果であり、接合材として半田合金が用いられている要因の一つである。
従来、鉛を殆ど含まない鉛フリー半田合金として、例えば、特許3027441号公報(特許文献1)で提案されているSn-Cu半田合金やSn−Ag−Cu半田合金が広く用いられている。
特許3027441号公報
In general, a phenomenon in which a solder alloy deforms with time when a certain load is applied to the solder alloy is called creep deformation.
Since the solder alloy has a melting point lower than 450 ° C., it generally tends to creep.
However, creep deformation is easy because when the stress due to the thermal expansion of the component and the substrate occurs in the soldered part, the stress is absorbed by the solder alloy itself deforming itself, and the stress due to the thermal expansion is applied to the component and the substrate. Has the effect of preventing the transmission of
This is a very important effect when considering the reliability of the soldered portion, and is one of the factors in which a solder alloy is used as a bonding material.
Conventionally, as a lead-free solder alloy containing almost no lead, for example, a Sn—Cu solder alloy or a Sn—Ag—Cu solder alloy proposed in Japanese Patent No. 3027441 (Patent Document 1) has been widely used.
Japanese Patent No. 3027441

鉛フリー半田合金は、鉛入り半田合金と比較して、クリープ変形が非常に遅く、高温環境下において半田付部のクリープ変形による破断までの時間は非常に長い。
このような鉛フリー半田合金は、部品と基板の熱膨張による応力が発生した際、半田合金自体が自ら変形できずに、部品や基板に熱膨張による応力を伝える。
部品や基板は強固な材料から構成されるものではなく、鉛フリー半田合金を用いた半田付部では、熱膨張による応力で部品や基板の亀裂、破壊等が発生し易いという問題点が有った。
そこで、本発明は、鉛入り半田合金のようにクリープ変形が速く、半田付部では部品や基板に熱膨張による応力の伝達を防止し、亀裂、破壊の発生を防止する鉛フリー半田合金を提供することを目的とする。
The lead-free solder alloy has a very slow creep deformation as compared with the lead-containing solder alloy, and the time to break due to the creep deformation of the soldered portion in a high temperature environment is very long.
Such a lead-free solder alloy, when stress due to thermal expansion of the component and the substrate occurs, does not allow the solder alloy itself to deform itself, but transmits the stress due to thermal expansion to the component or the substrate.
Parts and boards are not composed of strong materials, and soldered parts using lead-free solder alloys have the problem that cracks and breakage of parts and boards are likely to occur due to stress due to thermal expansion. It was.
Accordingly, the present invention provides a lead-free solder alloy that has a rapid creep deformation like a lead-containing solder alloy, prevents stress from being transmitted due to thermal expansion in the soldered part, and prevents cracks and breakage. The purpose is to do.

本発明の鉛フリー半田合金は、Cuが0.1〜3.0重量%、Sbが0.1〜0.5重量%、残部がSnおよび不可避不純物より成ることを特徴とする。
さらに、本発明の鉛フリー半田合金は、前記鉛フリー半田合金に、Niが0.01〜0.5重量%、Feが0.01〜0.1重量%、Coが0.01〜0.1重量%の少なくとも一種以上が添加される。
さらに、本発明の鉛フリー半田合金は、前記鉛フリー半田合金に、Pが0.001〜0.1重量%、Gaが0.001〜0.1重量%、Geが0.001〜0.1重量%の少なくとも一種以上が添加される。
The lead-free solder alloy of the present invention is characterized in that Cu is 0.1 to 3.0% by weight, Sb is 0.1 to 0.5% by weight, and the balance is Sn and inevitable impurities.
Furthermore, in the lead-free solder alloy of the present invention, Ni is 0.01 to 0.5% by weight, Fe is 0.01 to 0.1% by weight, and Co is 0.01 to 0.1%. At least one kind of 1% by weight is added.
Furthermore, in the lead-free solder alloy of the present invention, P is 0.001 to 0.1 wt%, Ga is 0.001 to 0.1 wt%, and Ge is 0.001 to 0.00. At least one kind of 1% by weight is added.

本発明の鉛フリー半田合金によれば、鉛フリー半田合金であるSn−Cu半田合金に0.1〜0.5重量%のSbを添加することにより、クリープ変形を速める。
このため、鉛フリー半田合金でありながら、クリープ変形が速く、半田付部では部品や基板に熱膨張による応力の伝達を防止し、亀裂、破壊の発生を防止する。
Sbの添加量が0.1重量%未満であると、クリープ変形を速める効果は小さい。
また、Sbの添加量が0.5重量%超であると、鉛フリー半田合金中にSnとSbの金属間化合物が形成され、クリープ変形を速める効果は小さくなる。
According to the lead-free solder alloy of the present invention, creep deformation is accelerated by adding 0.1 to 0.5% by weight of Sb to the Sn-Cu solder alloy, which is a lead-free solder alloy.
For this reason, although it is a lead-free solder alloy, creep deformation is fast, and in the soldered portion, stress transmission due to thermal expansion is prevented to the component and the substrate, and cracks and breakage are prevented from occurring.
When the amount of Sb added is less than 0.1% by weight, the effect of accelerating creep deformation is small.
If the amount of Sb added is more than 0.5% by weight, an intermetallic compound of Sn and Sb is formed in the lead-free solder alloy, and the effect of accelerating creep deformation is reduced.

さらに、本発明の鉛フリー半田合金によれば、半田付を行う基板や部品によっては接合強度が十分ではないが、Niが0.01〜0.5重量%、Feが0.01〜0.1重量%、Coが0.01〜0.1重量%の少なくとも一種以上が添加されると、機械的特性が改善され、クリープ変形が速く、半田付部では部品や基板に熱膨張による応力の伝達を防止し、亀裂、破壊の発生を防止する。
Niが0.01重量%未満、Feが0.01重量%未満、Coが0.01重量%未満であると半田付部の接合強度の改善にはほとんど効果は無い。
また、Niが0.5重量%超、Feが0.1重量%超、Coが0.1重量%超であると、半田合金の液相線温度の上昇および半田合金の流動性の低下が見られ、半田付性が低下する。
さらに、Pが0.001〜0.1重量%、Gaが0.001〜0.1重量%、Geが0.001〜0.1重量%の少なくとも一種以上が添加されると、クリープ変形が速く、かつ半田合金の酸化が改善され、特に、フローソルダリング時に発生するドロスと呼ばれるSnの酸化物の発生を大幅に抑制することが可能となる。
Pが0.001重量%未満、Gaが0.001重量%未満、Geが0.001重量%未満であると半田合金の酸化抑制効果はほとんど見られない。
Pが0.1重量%超、Gaが0.1重量%超、Geが0.1重量%超であると、半田合金が脆くなり、接合強度の低下の原因となる。
Furthermore, according to the lead-free solder alloy of the present invention, the bonding strength is not sufficient depending on the board or component to be soldered, but Ni is 0.01 to 0.5% by weight, Fe is 0.01 to 0. 0. When at least one of 1% by weight and Co of 0.01 to 0.1% by weight is added, the mechanical properties are improved, the creep deformation is fast, and the stress due to thermal expansion is applied to the parts and the substrate in the soldered portion. Prevents transmission and prevents cracks and breakage.
When Ni is less than 0.01% by weight, Fe is less than 0.01% by weight, and Co is less than 0.01% by weight, there is almost no effect in improving the bonding strength of the soldered portion.
Further, when Ni is more than 0.5% by weight, Fe is more than 0.1% by weight, and Co is more than 0.1% by weight, the liquidus temperature of the solder alloy is increased and the fluidity of the solder alloy is decreased. As seen, solderability is reduced.
Further, when at least one of P of 0.001 to 0.1% by weight, Ga of 0.001 to 0.1% by weight and Ge of 0.001 to 0.1% by weight is added, creep deformation occurs. It is fast and the oxidation of the solder alloy is improved, and in particular, it is possible to greatly suppress the generation of Sn oxide called dross generated during flow soldering.
When P is less than 0.001% by weight, Ga is less than 0.001% by weight, and Ge is less than 0.001% by weight, the oxidation inhibition effect of the solder alloy is hardly seen.
If P is more than 0.1% by weight, Ga is more than 0.1% by weight, and Ge is more than 0.1% by weight, the solder alloy becomes brittle and causes a decrease in bonding strength.

以下、本発明を、その実施例に基づいて説明する。
Sn−Cu半田にSbを同時に添加した本発明の実施例の鉛フリー半田合金を用いて、クリープ破断時間測定を行った。
表1に示す各半田合金を作製した後、片面基板(材質:紙フェノール、厚さ:1.6mm、銅パターン、ランド外径:3.0mm)にφ1.0mmのCu線のピンを差し込み、液状フラックスを用い、こてによる半田付を行った。
作製した試験片は、130℃の雰囲気下で2Kgの荷重をかけ、半田付部がクリープ破断するまでの時間を測定した。このときの試験結果を表1に示す。
Hereinafter, the present invention will be described based on examples thereof.
Creep rupture time was measured using the lead-free solder alloy of the example of the present invention in which Sb was simultaneously added to Sn—Cu solder.
After producing each solder alloy shown in Table 1, a pin of Cu wire of φ1.0 mm was inserted into a single-sided board (material: paper phenol, thickness: 1.6 mm, copper pattern, land outer diameter: 3.0 mm), Soldering with a trowel was performed using a liquid flux.
The produced test piece was subjected to a load of 2 kg in an atmosphere at 130 ° C., and the time until the soldered portion creep ruptured was measured. The test results at this time are shown in Table 1.

Figure 0004979120
Figure 0004979120

Sn−Cu半田合金に所定の濃度のSbを添加した本発明の実施例1〜10の鉛フリー半田合金は、Sbを添加していないSn−Cu系半田合金である比較例1〜6と比較して、クリープ破断時間が約20〜50%低下し、鉛フリー半田合金でありながら、クリープ変形が速くなることが明らかとなった。
クリープ変形が速くなる鉛フリー半田合金は、従来の鉛フリー半田合金と比較して、部品と基板の熱膨張による応力が発生した際、半田合金自体が自ら変形し、部品や基板に熱膨張による応力を防止する。
また、SbはSnにα固溶体として固溶し、固溶体形成が半田合金のクリープ変形を早め、結果として、半田付部のクリープ破断時間を短縮する。
さらに、本発明の実施例1〜10の鉛フリー半田合金のクリープ破断時間は、一般的に用いられる鉛入り半田合金である63%Sn−37%Pb(共晶半田合金)である比較例6には及ばないものの、上記のように鉛フリー半田合金でありながら、半田付部のクリープ破断時間が短縮された。
The lead-free solder alloys of Examples 1 to 10 of the present invention in which Sb of a predetermined concentration is added to the Sn—Cu solder alloy are compared with Comparative Examples 1 to 6 which are Sn—Cu based solder alloys to which Sb is not added. As a result, the creep rupture time was reduced by about 20 to 50%, and it became clear that the creep deformation was accelerated while the lead-free solder alloy was used.
Compared with conventional lead-free solder alloys, lead-free solder alloys with faster creep deformation are deformed by themselves when the stress due to thermal expansion of the component and the substrate occurs, and the components and the substrate are thermally expanded. Prevent stress.
In addition, Sb is dissolved in Sn as an α solid solution, and the formation of the solid solution accelerates the creep deformation of the solder alloy. As a result, the creep rupture time of the soldered portion is shortened.
Further, the creep rupture time of the lead-free solder alloys of Examples 1 to 10 of the present invention is 63% Sn-37% Pb (eutectic solder alloy) which is a commonly used lead-containing solder alloy. However, the creep rupture time of the soldered portion was shortened while being a lead-free solder alloy as described above.

Sn−Cu半田にSbを同時に添加した本発明の実施例の鉛フリー半田合金に、機械的特性改善元素を添加した、半田合金の機械的特性を調査するために、半田付部の接合強度試験を実施した。
表2に示す各半田合金を作製した後、片面基板(材質:紙フェノール、厚さ:1.6mm、銅パターン、ランド外径:3.5mm)にφ1.6mmのCu線のピンを差し込み、液状フラックスを用いて、こてによる半田付を行い、熱応力を除去するために100℃恒温槽において1時間放置後、引張試験機を用いて最大接合強度を測定し、半田付部の機械的特性を評価した。
このときの試験結果を表2に示す。
In order to investigate the mechanical properties of the solder alloy in which the mechanical property improving element is added to the lead-free solder alloy of the embodiment of the present invention in which Sb is simultaneously added to the Sn—Cu solder, the joint strength test of the soldered portion is performed. Carried out.
After producing each solder alloy shown in Table 2, a pin of Cu wire of φ1.6 mm was inserted into a single-sided board (material: paper phenol, thickness: 1.6 mm, copper pattern, land outer diameter: 3.5 mm), Solder with a trowel using a liquid flux and leave for 1 hour in a 100 ° C constant temperature bath to remove thermal stress, then measure the maximum joint strength using a tensile tester and mechanically Characteristics were evaluated.
The test results at this time are shown in Table 2.

Figure 0004979120
Figure 0004979120

Sn−Cu半田合金にSbを同時に添加した鉛フリー半田合金に、機械的特性改善元素であるNi、FeまたはCoを添加した本発明の実施例5,6,7の鉛フリー半田合金は、機械的特性改善元素を添加していない鉛フリー半田合金と比較して、最大接合強度が約15%上昇した。
以上の結果、Sn−Cu鉛フリー半田合金にSbを同時に添加し、クリープ変形を早めることが可能な鉛フリー半田合金に、Niが0.01〜0.5重量%、Feが0.01〜0.1重量%、Coが0.01〜0.1重量%の少なくとも一種以上を添加することにより、半田付部に十分な機械的特性を与えることが明らかとなった。
The lead-free solder alloys of Examples 5, 6 and 7 of the present invention in which Ni, Fe, or Co, which is an element for improving mechanical properties, is added to a lead-free solder alloy in which Sb is simultaneously added to an Sn—Cu solder alloy. The maximum joint strength was increased by about 15% compared to the lead-free solder alloy to which the element for improving the mechanical properties was not added.
As a result, the lead-free solder alloy that can simultaneously add Sb to the Sn—Cu lead-free solder alloy and accelerate the creep deformation has a Ni content of 0.01 to 0.5 wt% and an Fe content of 0.01 to It has been clarified that by adding at least one of 0.1 wt% and Co of 0.01 to 0.1 wt%, sufficient mechanical properties are given to the soldered portion.

Sn−Cu半田合金にSbを同時に添加した鉛フリー半田合金に、酸化防止元素であるPが0.001〜0.1重量%、Gaが0.001〜0.1重量%、Geが0.001〜0.1重量%の少なくとも一種以上を添加した本発明の実施例8,9,10の鉛フリー半田合金の酸化防止効果を確認するために、ドロス(酸化物)発生試験を実施した。
表3に示す各半田合金を作製した後、噴流半田槽において半田合金10Kgを8時間噴流させ、発生したドロスを取り出し、秤量を行った。
試験温度は350℃、半田合金1Kgあたりのドロス発生量を測定することで評価を行った。ドロス発生試験の結果を表3に示す。
A lead-free solder alloy in which Sb is simultaneously added to a Sn—Cu solder alloy, P as an antioxidant element is 0.001 to 0.1 wt%, Ga is 0.001 to 0.1 wt%, and Ge is 0.00. In order to confirm the antioxidant effect of the lead-free solder alloys of Examples 8, 9, and 10 to which at least one of 001 to 0.1% by weight was added, a dross (oxide) generation test was performed.
After producing each solder alloy shown in Table 3, 10 kg of solder alloy was jetted for 8 hours in a jet solder bath, and the generated dross was taken out and weighed.
The test temperature was 350 ° C., and the evaluation was performed by measuring the amount of dross generated per 1 kg of solder alloy. Table 3 shows the results of the dross generation test.

Figure 0004979120
Figure 0004979120

Sn−Cu半田にSbを同時に添加した半田合金に酸化防止元素である、P、Ga、Geの少なくとも一種を添加した本発明の実施例8,9,10の鉛フリー半田合金は、酸化防止元素を添加していない鉛フリー半田合金と比較して、1時間あたりのドロス発生量が約50%減少した。
以上の結果、Sn−Cu半田にSbを同時に添加し、クリープ変形を早めることが可能な鉛フリー半田合金に、Pが0.001〜0.1重量%、Gaが0.001〜0.1重量%、Geが0.001〜0.1重量%の少なくとも一種以上が添加することにより、鉛フリー半田合金の酸化を大きく抑制できることが明らかとなった。
The lead-free solder alloys of Examples 8, 9, and 10 of the present invention in which at least one of P, Ga, and Ge, which is an antioxidant element, is added to the solder alloy in which Sb is simultaneously added to the Sn—Cu solder are antioxidant elements. The amount of dross generated per hour was reduced by about 50% as compared with the lead-free solder alloy not added.
As a result, Pb is 0.001 to 0.1 wt% and Ga is 0.001 to 0.1 wt% in a lead-free solder alloy that can simultaneously add Sb to Sn—Cu solder and accelerate creep deformation. It has been clarified that the oxidation of the lead-free solder alloy can be largely suppressed by adding at least one of wt% and Ge of 0.001 to 0.1 wt%.

本発明は、クリープ特性を改善した鉛フリー半田合金であり、やに入り半田、ソルダーペースト、棒半田、および線状半田として使用される。


The present invention is a lead-free solder alloy with improved creep characteristics, and is used as a core solder, solder paste, bar solder, and linear solder.


Claims (3)

Cuが0.1〜3.0重量%、Sbが0.1〜0.5重量%、および、Feが0.01〜0.1重量%、残部がSnおよび不可避不純物より成ることを特徴とする鉛フリーはんだ合金。 Cu is 0.1 to 3.0% by weight, Sb is 0.1 to 0.5% by weight , Fe is 0.01 to 0.1% by weight, and the balance is composed of Sn and inevitable impurities. lead-free solder alloy. Cuが0.1〜3.0重量%、Sbが0.1〜0.5重量%、および、Coが0.01〜0.04重量%、残部がSnおよび不可避不純物より成ることを特徴とする鉛フリーはんだ合金。 Cu is 0.1 to 3.0% by weight, Sb is 0.1 to 0.5% by weight , Co is 0.01 to 0.04% by weight, and the balance is composed of Sn and inevitable impurities. lead-free solder alloy. Gaが0.001〜0.1重量%、Ge0.001〜0.1重量%の少なくとも一種以上が添加される請求項1または2記載の鉛フリーはんだ合金。 Ga is 0.001 to 0.1 wt%, Ge0.001~0.1 wt% of claim 1 or 2, wherein the lead-free solder alloy of at least one or more is added.
JP2006222399A 2006-08-17 2006-08-17 Lead-free solder alloy Active JP4979120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222399A JP4979120B2 (en) 2006-08-17 2006-08-17 Lead-free solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222399A JP4979120B2 (en) 2006-08-17 2006-08-17 Lead-free solder alloy

Publications (2)

Publication Number Publication Date
JP2008043978A JP2008043978A (en) 2008-02-28
JP4979120B2 true JP4979120B2 (en) 2012-07-18

Family

ID=39178211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222399A Active JP4979120B2 (en) 2006-08-17 2006-08-17 Lead-free solder alloy

Country Status (1)

Country Link
JP (1) JP4979120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051181A1 (en) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Lead-free solder alloy
JP5773444B2 (en) * 2012-09-28 2015-09-02 日本アルミット株式会社 Solder alloy for aluminum joining

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191196A (en) * 1999-10-29 2001-07-17 Topy Ind Ltd Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE
JP2001225188A (en) * 2000-02-15 2001-08-21 Ichiro Kawakatsu Solder alloy
JP2003001482A (en) * 2001-06-19 2003-01-08 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
US20030021718A1 (en) * 2001-06-28 2003-01-30 Osamu Munekata Lead-free solder alloy
JP2004141910A (en) * 2002-10-23 2004-05-20 Senju Metal Ind Co Ltd Lead-free solder alloy
JP2006140039A (en) * 2004-11-12 2006-06-01 Hitachi Cable Ltd Lead wire and solar cell using the same

Also Published As

Publication number Publication date
JP2008043978A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP5280520B2 (en) Solder material and electronic component assembly
JP3199674B2 (en) Solder alloy
WO2018174162A1 (en) Solder joint
EP3031566B1 (en) Lead-free solder alloy
KR102194027B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
JPWO2009051240A1 (en) Lead-free solder
KR20200036948A (en) Solder alloys, solder pastes, solder balls, resin embedded solders and solder joints
JP2011251310A (en) Lead-free solder alloy
US11607752B2 (en) Solder alloy, solder joint material, and electronic circuit board
JP6135885B2 (en) Solder alloy and mounting structure using the same
JP5140644B2 (en) Soldering composition and electronic component
JP7287606B2 (en) Lead-free solder alloy
US11577343B2 (en) Low-silver alternative to standard SAC alloys for high reliability applications
JP4979120B2 (en) Lead-free solder alloy
JP6688417B2 (en) Solder joining method
KR100678803B1 (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME
JP3966554B2 (en) Solder alloy
JP6887183B1 (en) Solder alloys and molded solders
WO2016185674A1 (en) Solder alloy and package structure using same
JP2007111715A (en) Solder alloy
JP6504401B2 (en) Solder alloy and mounting structure using the same
JP2008093701A (en) Solder alloy
JP2007038228A (en) Solder alloy
JP2783981B2 (en) Solder alloy
JP4673860B2 (en) Pb / Sb-free solder alloys, printed wiring boards, and electronic equipment products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250