JP2001191196A - Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE - Google Patents
Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCEInfo
- Publication number
- JP2001191196A JP2001191196A JP2000328272A JP2000328272A JP2001191196A JP 2001191196 A JP2001191196 A JP 2001191196A JP 2000328272 A JP2000328272 A JP 2000328272A JP 2000328272 A JP2000328272 A JP 2000328272A JP 2001191196 A JP2001191196 A JP 2001191196A
- Authority
- JP
- Japan
- Prior art keywords
- free solder
- wettability
- oxidation resistance
- base
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】この発明は、Sn−Pb共晶
合金に近いぬれ性と優れた機械特性値を有し、しかも耐
酸化特性に優れたSn基Pbフリー半田に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Sn-based Pb-free solder having wettability close to that of a Sn-Pb eutectic alloy, excellent mechanical properties, and excellent oxidation resistance.
【0002】[0002]
【従来の技術】従来、半田合金としては、Sn−Pb共
晶組成付近の合金が、代表的なものとして知られてい
る。2. Description of the Related Art Conventionally, as a solder alloy, an alloy in the vicinity of a Sn-Pb eutectic composition is known as a typical one.
【0003】しかしながら、近年、鉛が酸性雨に溶解
し、溶解した鉛が地球環境を著しく悪化させることか
ら、鉛を全く含まないSn基Pbフリー半田が、Sn−
Pb共晶合金の代替材料として強く求められている。[0003] However, in recent years, lead has been dissolved in acid rain, and the dissolved lead has significantly deteriorated the global environment.
There is a strong demand for a substitute material for the Pb eutectic alloy.
【0004】現在まで開発されたSn基Pbフリー半田
の代表例としては、Sn−Ag系、Sn−Ag−Cu
系、Sn−Ag−Bi−Cu系、Sn−Zn系、Sn−
Cu系などが挙げられる。Typical examples of the Sn-based Pb-free solder developed to date include Sn-Ag based and Sn-Ag-Cu.
System, Sn-Ag-Bi-Cu system, Sn-Zn system, Sn-
Cu-based and the like can be mentioned.
【0005】これらの合金はSn−Pb共晶合金に比べ
て、機械特性値は優れているが、融点が高いうえに濡れ
性が劣るため、半田付け不良の発生率が高く、しかも、
酸化物の発生量が多い欠点があった。[0005] These alloys have excellent mechanical properties compared to Sn-Pb eutectic alloys, but have a high melting point and poor wettability, so that the incidence of poor soldering is high.
There was a drawback that a large amount of oxide was generated.
【0006】[0006]
【発明が解決しようとする課題】この発明は、Sn−P
b共晶合金に近いぬれ性と優れた機械特性値とを有し、
しかも耐酸化特性に優れたSn基Pbフリー半田を提供
することを目的とする。SUMMARY OF THE INVENTION The present invention relates to a Sn-P
b Has wettability close to eutectic alloys and excellent mechanical property values,
Moreover, an object of the present invention is to provide a Sn-based Pb-free solder having excellent oxidation resistance.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明者等は鋭意研究の結果、Sn−Cu基合金に、S
bと、Te又は/及びP、更に好ましくはGeを添加す
ることによって、Sn−Pb共晶合金に近いぬれ性と優
れた機械特性値とを有し、しかも耐酸化特性に優れたP
bフリー半田が得られることを見出し本発明に到達し
た。Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies and found that Sn-Cu based alloys have
b, and Te or / and P, more preferably Ge, are added to provide P having excellent wettability close to that of a Sn-Pb eutectic alloy and excellent mechanical property values, and having excellent oxidation resistance.
The inventors have found that b-free solder can be obtained, and have reached the present invention.
【0008】即ち本発明は、Sn−Cu基合金に、Sb
と、Te又は/及びPを添加したことを特徴とする。[0008] That is, the present invention relates to a method of adding Sb
And Te or / and P are added.
【0009】また請求項3記載の発明は、上記請求項1
に記載のPbフリー半田に、Geを添加したものである
が、Geを添加することによって、ぬれ性をSn−Pb
共晶合金に近いレベルに改善すると共に、伸びを低下さ
せること無く、強度を向上させることが出来る。[0009] The invention according to claim 3 provides the above-mentioned claim 1.
Ge is added to the Pb-free solder described in No. 4, but the wettability is improved by adding Ge.
The strength can be improved to a level close to the eutectic alloy without lowering the elongation.
【0010】更に、請求項4記載の発明は、上記請求項
1記載のPbフリー半田に、Ge及びNiを添加したも
のであるが、GeとNiとを併用添加することによっ
て、請求項3に記載の効果に加えて、更に強度を向上さ
せることが出来る。Further, the invention according to claim 4 is the one in which Ge and Ni are added to the Pb-free solder according to claim 1 described above. In addition to the effects described, the strength can be further improved.
【0011】[0011]
【発明の実施の形態】本発明における各成分の添加量
は、Cuを0.1〜1.5wt%添加したSnベース合
金に、Sb0.01〜1.0wt%、Te0.001〜
0.1wt%又は/及びP0.0001〜0.1wt%
を添加させるのが良い。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the addition amounts of the respective components are as follows: a Sn base alloy containing 0.1 to 1.5 wt% of Cu;
0.1 wt% or / and P0.0001-0.1 wt%
Should be added.
【0012】上記のような添加範囲とすることによっ
て、ぬれ性がSn−Pb共晶合金と同程度で、250℃
での酸化物発生量がSn−Pb共晶合金や他のSn基P
bフリー半田の1/2と耐酸化性に優れ、且つ、機械特
性値(強度、伸び、熱サイクル特性)に優れたSn基P
bフリー半田が得られる。By setting the addition range as described above, the wettability is almost the same as that of the Sn-Pb eutectic alloy,
Oxide generation in Sn-Pb eutectic alloys and other Sn-based P
b) Sn-based P with excellent oxidation resistance, 1/2 of free solder, and excellent mechanical properties (strength, elongation, heat cycle properties)
b-free solder is obtained.
【0013】Sn―Cu基合金に、上記範囲内の量のS
b、Te又は/及びPを添加することによって、半田付
けでのブリッジ発生率と関係するメニスコグラフでの抜
き力が低下するので、良好な半田付け性を示す。The Sn—Cu-based alloy has an amount of S within the above range.
By adding b, Te and / or P, the pull-out force in the meniscograph, which is related to the rate of occurrence of bridges in soldering, is reduced, so that good solderability is exhibited.
【0014】Sbの添加量が0.01wt%より少ない
と、上記効果が減少し、1.0wt%を越えると、融点
が上昇するため、250℃程度での半田付け性を阻害す
る。このため、Sbの添加範囲は0.01〜1.0wt
%とするのが良い。If the amount of Sb is less than 0.01% by weight, the above effect is reduced, and if it exceeds 1.0% by weight, the melting point is increased, so that the solderability at about 250 ° C. is hindered. For this reason, the addition range of Sb is 0.01 to 1.0 wt.
% Is good.
【0015】Te及びPは、主として酸化物の発生量を
減少させる役割をするものである。Teは0.001w
t%より少ないとその効果が無く、0.1wt%より多
くすると、半田の流動性が低下し、半田付け不良を発生
させる。そこで、Teの添加範囲は0.001〜0.1
wt%とするのが良い。Te and P mainly serve to reduce the amount of oxides generated. Te is 0.001w
If the amount is less than t%, the effect is not obtained. If the amount is more than 0.1% by weight, the fluidity of the solder is reduced, and poor soldering occurs. Therefore, the range of addition of Te is 0.001 to 0.1.
wt% is good.
【0016】Pは、0.0001wt%より少ないとそ
の効果が無く、0.1wt%より多くすると、半田の流
動性が低下し、半田付け不良を発生させる。そこで、P
の添加範囲を0.0001〜0.1wt%とするのが良
い。If the content of P is less than 0.0001 wt%, there is no effect. If the content of P is more than 0.1 wt%, the fluidity of the solder is reduced, and poor soldering occurs. Then, P
Is preferably 0.0001 to 0.1 wt%.
【0017】Geは、ぬれ性を改善すると共に、伸びを
低下させること無く、強度を向上させる作用をするもの
であり、少量でその効果を発揮するが、0.002wt
%より少ないと効果がなく、多すぎると伸びが低下する
とともにドロス状の生成物が発生し、見掛け上の酸化物
の発生量は増大する。そのため、Geの添加範囲を0.
002〜0.5wt%に限定した。Ge has the effect of improving the wettability and the strength without lowering the elongation, and exhibits its effect with a small amount.
%, There is no effect, and if it is too large, elongation decreases and dross-like products are generated, and the apparent amount of oxides generated increases. Therefore, the addition range of Ge is set to 0.1.
002 to 0.5 wt%.
【0018】GeにNiを併用すると、上記Ge添加の
効果を維持し且つ更に強度を向上させることができる。
Niは、少量でその効果を発揮するが、0.005wt
%より少ないとその効果がなく、多すぎると伸びが低下
するとともにドロス状の生成物が発生し、見掛け上の酸
化物の発生量は増大する。そのため、Niの添加範囲を
0.005〜0.1wt%に限定した。When Ni is used in combination with Ge, the effect of adding Ge can be maintained and the strength can be further improved.
Ni exerts its effect with a small amount, but 0.005 wt.
%, The effect is ineffective, and when it is too large, elongation is reduced and dross-like products are generated, and the apparent amount of oxides generated is increased. Therefore, the addition range of Ni is limited to 0.005 to 0.1 wt%.
【0019】Ge又は/Ge及びNiだけでの添加では
ぬれ性に対して効果は少ないが、Sb、Te又は/及び
Pと併用添加することによって、抜き力を低下させるこ
とが出来る。The addition of only Ge or / Ge and Ni has little effect on the wettability, but the co-addition with Sb, Te and / or P can reduce the pulling force.
【0020】熱サイクルの指標であるk値は、無添加の
Sn−Cu基合金でも、Sn−Pb共晶半田が0.15
程度であるのに対し、0.027程度と低く、熱サイク
ル特性がSn−Pb共晶半田よりは優れている。The k value, which is an index of the thermal cycle, is such that the Sn—Pb eutectic solder is 0.15
On the other hand, it is as low as about 0.027, and the thermal cycle characteristics are superior to those of the Sn-Pb eutectic solder.
【0021】本発明により、Sn−Cu基合金に上記範
囲内のSbとTe(又は/及びP)を添加することによ
って、k値は、0.012〜0.020程度に改善され
る。According to the present invention, the k value is improved to about 0.012 to 0.020 by adding Sb and Te (or / and P) in the above range to the Sn-Cu base alloy.
【0022】250℃で測定した酸化物発生量は、Te
単独では効果が少ないが、Sb或いはGeとの併用で著
しく改善される。具体的には、本発明によれば、酸化物
発生量を40〜60g/kg・hrと従来公知の鉛フリ
ー半田の半分程度とすることができる。しかしながら、
GeとTeの添加量が0.1wt%を越えると、ドロス
状の生成物が発生し、見掛け状の酸化物発生量は増大す
る。The amount of oxide generation measured at 250 ° C. is Te
The effect is small when used alone, but is significantly improved when used in combination with Sb or Ge. Specifically, according to the present invention, the amount of oxide generation can be reduced to 40 to 60 g / kg · hr, which is about half that of conventionally known lead-free solder. However,
If the added amount of Ge and Te exceeds 0.1 wt%, dross-like products are generated, and the apparent amount of oxides increases.
【0023】上記したように、本発明のSn―Cu基合
金に含有させる元素は、単独というよりは、複数の元素
の相乗効果によって、ぬれ性、機械的特性及び耐酸化性
が改善されるものである。As described above, the elements contained in the Sn—Cu-based alloy of the present invention have improved wettability, mechanical properties and oxidation resistance due to the synergistic effect of a plurality of elements, rather than a single element. It is.
【0024】次に、実施例を挙げて、本発明を更に説明
するが、本発明は、この実施例に限定されない。Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
【0025】[0025]
【実施例】後記表1の組成となるように配合した実施例
(No1〜No6)及び比較例(No8〜No13)の
各金属8kgを300℃で溶解し、充分に攪拌した後、
約50℃の鋳型に鋳込んだ。EXAMPLES 8 kg of each metal of Examples (No. 1 to No. 6) and Comparative Examples (No. 8 to No. 13), which were blended to have the composition shown in Table 1 below, were melted at 300 ° C., and stirred sufficiently.
It was poured into a mold at about 50 ° C.
【0026】得られた鋳物について、ぬれ性及び酸化物
発生量を測定した。また、同鋳物からJIS 4号試験
片を機械加工により作製し、引っ張り試験による機械的
性質(強度と伸び及びk値)を測定した。結果を後記表
2に示した。試験方法は下記のようにして行った。The obtained casting was measured for wettability and oxide generation. A JIS No. 4 test piece was prepared from the casting by machining, and the mechanical properties (strength, elongation and k value) were measured by a tensile test. The results are shown in Table 2 below. The test method was performed as follows.
【0027】(ぬれ性)メニスコグラフで評価した。メ
ニスコグラフは、所定温度の融解半田中に、試験片を一
定速度で一定の深さまで浸漬し、一定時間保持後に試験
片を引き抜き、試験中に試験片にかかる浮力と溶融半田
に試験片がぬれることによる吸引力を、ぬれ時間(ゼロ
クロスタイム)及び抜き力(試験片が溶融半田から離脱
するときに試験片にかかる力)として計測した。(Wettability) Evaluation was made using a meniscograph. For meniscograph, the test piece shall be immersed in the molten solder at the specified temperature at a certain speed to a certain depth, pulled out after holding for a certain time, the buoyancy applied to the test piece during the test and the test piece getting wet with the molten solder. Was measured as a wetting time (zero cross time) and a pulling force (a force applied to the test piece when the test piece was separated from the molten solder).
【0028】ぬれ時間は早いほど、抜き力は小さいほど
ぬれ性は優れる。The shorter the wetting time and the smaller the pulling force, the better the wettability.
【0029】(機械特性値)強度と伸びは、引っ張り試
験によって求めた。(Mechanical property values) The strength and elongation were determined by a tensile test.
【0030】熱サイクル特性はk値(ひずみ速度感受性
指数mのひずみ量依存性)を指標とした。k値は正で値
が小さいほどひずみが溜まった箇所でのクリープ変形が
少なく、熱サイクル特性が優れることを意味している。
このk値は次のようにして求めた。The thermal cycle characteristics were determined using the k value (strain rate sensitivity index m dependency on strain amount) as an index. The k value is positive, and the smaller the value, the less the creep deformation at the location where the strain is accumulated, which means that the thermal cycle characteristics are excellent.
This k value was determined as follows.
【0031】図1(a)に半田の荷重−伸び曲線(応力
−ひずみ曲線)の模式図を示す。引っ張り試験中にひず
み速度を1桁低下させ(PA→PA′)、元に戻す操作を
試験片破断まで数回繰り返し、下記の式(1)よりm値
を求め、m値とm値を求めたひずみの関係をプロット
し、図1(b)に示すように、m値とひずみ(stra
in)との直線関係を得た。この直線の傾きからk値を
求めた。結果を次表2に示す。FIG. 1A is a schematic view of a load-elongation curve (stress-strain curve) of solder. The operation of reducing the strain rate by one digit during the tensile test (P A → P A ′) and returning it to the original state is repeated several times until the test piece breaks. The m value is obtained from the following equation (1), and the m value and the m value are obtained. Is plotted, and as shown in FIG. 1B, the m value and the strain (stra) are plotted.
in). The k value was determined from the slope of this straight line. The results are shown in Table 2 below.
【0032】 m=Log(PA/PA′)/Log(v/v′) (1) (式中、PAはひずみ速度が速い場合の荷重、PA′は
ひずみ速度が遅い場合の荷重、vはひずみ速度が速い場
合のひずみ速度、v′はひずみ速度が遅い場合のひずみ
速度である。)[0032] m = Log in (P A / P A ') / Log (v / v') (1) ( formula, load cases P A is the strain rate is fast, P A 'if the strain rate is slow The load, v is the strain rate when the strain rate is high, and v 'is the strain rate when the strain rate is low.)
【0033】(耐酸化特性)耐酸化特性は、次の方法で
評価した。各半田合金2kgを、直径160mmの磁性
の蒸発皿に入れて250℃に加熱して融解させ、それか
ら回転径が120mmの3枚羽根の攪拌子で毎分60回
の早さで攪拌し、30分毎に3回酸化物を回収し秤量し
た。(Oxidation resistance) The oxidation resistance was evaluated by the following method. 2 kg of each solder alloy was placed in a magnetic evaporation dish with a diameter of 160 mm, heated to 250 ° C. and melted, and then stirred at a speed of 60 times per minute with a three-blade stirrer having a rotation diameter of 120 mm, and then stirred for 30 minutes. The oxide was collected and weighed three times every minute.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 表2の結果から明らかなように、本発明組成範囲の半田
合金は、ぬれ性、特に抜き力がSn−Pb共晶合金に近
く、強度と伸びは他のSn−Cu基合金と同程度であ
る。しかしながら、熱サイクル特性の指標(k値)はS
n−Pb共晶合金及び他のSn−Cu基Pbフリー半田
合金にくらべて著しく優れ、また酸化物発生量も、Sn
−Pb共晶合金に比べて40〜50%少なくなる。[Table 2] As is clear from the results in Table 2, the solder alloy of the composition range of the present invention has a wettability, in particular, a pulling force close to that of the Sn-Pb eutectic alloy, and has the same strength and elongation as other Sn-Cu-based alloys. is there. However, the index (k value) of the heat cycle characteristic is S
n-Pb eutectic alloy and other Sn-Cu-based Pb-free solder alloys are remarkably superior, and the amount of oxide generation is Sn
-40 to 50% less than Pb eutectic alloy.
【0036】[0036]
【発明の効果】以上述べたように、本発明によれば、ぬ
れ性がSn−Pb共晶半田と同程度で作業性に優れ、機
械特性値、特に熱サイクル特性に優れると共に、酸化物
発生量も従来公知のPbフリー半田の1/2程度と耐酸
化特性を改善した、環境上有害なPbを含まない半田を
提供することが出来るので、地球環境の改善に寄与する
ところ極めて大きい。As described above, according to the present invention, the wettability is almost equal to that of the Sn-Pb eutectic solder, and the workability is excellent. Since the amount of Pb-free solder, which is about half that of the conventionally known Pb-free solder and has improved oxidation resistance and does not contain Pb which is harmful to the environment, can be provided, it greatly contributes to the improvement of the global environment.
【図1】(a)は引っ張り試験における半田の荷重―伸
び曲線の模式図、(b)は、m値とk値の関係を示す線
図である。FIG. 1A is a schematic diagram of a load-elongation curve of a solder in a tensile test, and FIG. 1B is a diagram illustrating a relationship between an m value and a k value.
Claims (6)
し、残部がSn及び不可避の不純物よりなることを特徴
とするぬれ性、熱サイクル特性及び耐酸化性に優れたS
n基Pbフリー半田。1. An S-containing alloy containing Cu and Sb, Te or / and P, with the balance being Sn and unavoidable impurities, and having excellent wettability, heat cycle characteristics and oxidation resistance.
n-base Pb-free solder.
〜1.0wt%及びTe0.001〜0.1wt%又は
/及びP0.0001〜0.1wt%を含有する請求項
1記載のPbフリー半田。2. Cu 0.1-1.5 wt%, Sb 0.01
2. The Pb-free solder according to claim 1, containing 1.0 to 1.0 wt% and 0.001 to 0.1 wt% Te and / or 0.0001 to 0.1 wt% P. 3.
リー半田。3. The Pb-free solder according to claim 1, further comprising Ge.
のPbフリー半田。4. The Pb-free solder according to claim 1, further comprising Ge and Ni.
請求項2記載のPbフリー半田。5. The Pb-free solder according to claim 2, containing 0.002 to 0.5 wt% of Ge.
0.005〜0.1wt%を含有する請求項2記載のP
bフリー半田。6. 0.002 to 0.5 wt% of Ge and Ni
The P according to claim 2, which contains 0.005 to 0.1 wt%.
b Free solder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000328272A JP2001191196A (en) | 1999-10-29 | 2000-10-27 | Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30821399 | 1999-10-29 | ||
JP11-308213 | 1999-10-29 | ||
JP2000328272A JP2001191196A (en) | 1999-10-29 | 2000-10-27 | Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001191196A true JP2001191196A (en) | 2001-07-17 |
Family
ID=26565455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000328272A Pending JP2001191196A (en) | 1999-10-29 | 2000-10-27 | Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001191196A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100395438B1 (en) * | 2002-05-01 | 2003-08-21 | Ecojoin Co Ltd | Lead-free solder alloy composite |
WO2004026527A1 (en) * | 2002-09-19 | 2004-04-01 | Sumitomo Metal Mining Co., Ltd. | Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device |
JP2007260779A (en) * | 2001-06-28 | 2007-10-11 | Senju Metal Ind Co Ltd | Lead-free soldering alloy |
JP2008043978A (en) * | 2006-08-17 | 2008-02-28 | Nihon Almit Co Ltd | Lead-free solder alloy |
JP2014138065A (en) * | 2013-01-16 | 2014-07-28 | Senju Metal Ind Co Ltd | Method of soldering printed board |
WO2020262040A1 (en) * | 2019-06-28 | 2020-12-30 | 千住金属工業株式会社 | Solder alloy, cast article, formed article, and solder joint |
-
2000
- 2000-10-27 JP JP2000328272A patent/JP2001191196A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010029942A (en) * | 2001-06-28 | 2010-02-12 | Senju Metal Ind Co Ltd | Lead-free solder alloy |
JP2007260779A (en) * | 2001-06-28 | 2007-10-11 | Senju Metal Ind Co Ltd | Lead-free soldering alloy |
KR100395438B1 (en) * | 2002-05-01 | 2003-08-21 | Ecojoin Co Ltd | Lead-free solder alloy composite |
WO2004026527A1 (en) * | 2002-09-19 | 2004-04-01 | Sumitomo Metal Mining Co., Ltd. | Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device |
CN100404193C (en) * | 2002-09-19 | 2008-07-23 | 住友金属矿山株式会社 | Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device |
EP2099580A1 (en) * | 2002-09-19 | 2009-09-16 | Sumitomo Metal Mining Company Limited | Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device |
JP2008043978A (en) * | 2006-08-17 | 2008-02-28 | Nihon Almit Co Ltd | Lead-free solder alloy |
JP2014138065A (en) * | 2013-01-16 | 2014-07-28 | Senju Metal Ind Co Ltd | Method of soldering printed board |
WO2020262040A1 (en) * | 2019-06-28 | 2020-12-30 | 千住金属工業株式会社 | Solder alloy, cast article, formed article, and solder joint |
JP2021007951A (en) * | 2019-06-28 | 2021-01-28 | 千住金属工業株式会社 | Solder alloy, cast product, formed product, and solder joint |
TWI733502B (en) * | 2019-06-28 | 2021-07-11 | 日商千住金屬工業股份有限公司 | Solder alloys, castings, formations and solder joints |
KR20210132209A (en) * | 2019-06-28 | 2021-11-03 | 센주긴조쿠고교 가부시키가이샤 | Solder alloys, castings, formations and solder joints |
CN113727807A (en) * | 2019-06-28 | 2021-11-30 | 千住金属工业株式会社 | Solder alloy, casting, formation and soldered joint |
KR102345176B1 (en) | 2019-06-28 | 2021-12-30 | 센주긴조쿠고교 가부시키가이샤 | Solder alloys, castings, formations and solder joints |
US11607753B2 (en) | 2019-06-28 | 2023-03-21 | Senju Metal Industry Co., Ltd. | Solder alloy, cast article, formed article, and solder joint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2805595B2 (en) | Lead-free solder alloy | |
KR101339025B1 (en) | Solder alloy | |
US6156132A (en) | Solder alloys | |
JP2008290150A (en) | QUATERNARY Pb-FREE SOLDER COMPOSITION OF Sn-Ag-Cu-In | |
JP3353640B2 (en) | Solder alloy | |
JP2001129682A (en) | Sn BASED Pb-FREE SOLDER SUPERIOR IN HEAT CYCLE CHARACTERISTICS | |
JPH09155587A (en) | Tin-zinc based leadless solder | |
JP3262113B2 (en) | Solder alloy | |
JPH1158066A (en) | Solder alloy | |
JPH10314980A (en) | Solder material | |
JP2001191196A (en) | Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE | |
JP3386009B2 (en) | Solder alloy | |
JP3945915B2 (en) | Zn alloy for solder | |
JP2003003223A (en) | Lead-free alloy for external electrode of metallized plastic film capacitor | |
JP2001287082A (en) | Solder | |
JP2009082986A (en) | Lead-free solder alloy for manual soldering | |
JP4338854B2 (en) | Tin-bismuth lead-free solder | |
JP2008030064A (en) | Lead-free solder alloy | |
JP3353686B2 (en) | Solder alloy | |
JP2681742B2 (en) | Lead-free solder alloy | |
JP3761182B2 (en) | SnAgCu lead-free solder alloy | |
JPH10230384A (en) | Solder material | |
SE463566B (en) | COPPER ALWAYS FOR ELECTRONIC COMPONENTS, COMPONENTS AND PROCEDURES FOR THE PREPARATION OF THIS | |
JP5080946B2 (en) | Lead-free solder alloy for manual soldering | |
JP2001047276A (en) | Soldering material |