JP4974454B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP4974454B2 JP4974454B2 JP2004330123A JP2004330123A JP4974454B2 JP 4974454 B2 JP4974454 B2 JP 4974454B2 JP 2004330123 A JP2004330123 A JP 2004330123A JP 2004330123 A JP2004330123 A JP 2004330123A JP 4974454 B2 JP4974454 B2 JP 4974454B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- layer
- semiconductor
- uncovered
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 440
- 239000013078 crystal Substances 0.000 claims description 97
- 230000007547 defect Effects 0.000 claims description 92
- 230000005684 electric field Effects 0.000 claims description 41
- 230000001105 regulatory effect Effects 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 22
- 230000033228 biological regulation Effects 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 251
- 239000000758 substrate Substances 0.000 description 30
- 229910002601 GaN Inorganic materials 0.000 description 26
- 238000000034 method Methods 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 230000004048 modification Effects 0.000 description 23
- 238000012986 modification Methods 0.000 description 23
- 230000015556 catabolic process Effects 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 13
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000000969 carrier Substances 0.000 description 10
- 238000003892 spreading Methods 0.000 description 8
- 230000007480 spreading Effects 0.000 description 8
- 238000009413 insulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- -1 compound compound Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H01L29/7802—
-
- H01L29/0649—
-
- H01L29/0653—
-
- H01L29/7788—
-
- H01L29/8122—
-
- H01L29/0692—
-
- H01L29/0696—
-
- H01L29/0843—
-
- H01L29/0847—
-
- H01L29/0891—
-
- H01L29/2003—
-
- H01L29/41—
-
- H01L29/778—
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Description
GaN(窒化ガリウム)等のIII−V族化合物は、シリコンに比して絶縁破壊電界および飽和電子移動度等が大きいことから、III−V族化合物の半導体層を利用して半導体装置を製造すると、高耐圧で大電流を制御できる半導体装置を実現できるものと期待されている。なかでも、一対の主電極間の絶縁が確保しやすく、一対の主電極に接続する配線レイアウトを単純化して短距離化しやすい(低抵抗化に寄与することができる)縦型電極構造の半導体装置の研究開発が進められている。
前記したように、現状のIII−V族化合物の半導体層には相当数の結晶欠陥が存在していることから、その結晶欠陥が半導体装置の高耐圧化を損ねたり、またリーク電流を発生させたりする問題が生じている。
半導体装置の技術分野では、結晶欠陥が存在するという条件下で、いかにして特性に優れた半導体装置を安定して製造するかが重要な課題となっている。結晶欠陥の影響を低減する必要は、III−V族化合物の半導体層を利用する場合に特に重要となるが、III−V族化合物の半導体層を利用する場合に限られたものでない。
特許文献1の技術によると、選択横方向成長によって作製された結晶欠陥の低密度領域に、ソース・チャネル・ドリフトが積層された縦型機能性半導体構造が作製される。結晶欠陥の低密度領域に機能性半導体構造が作製されることから、半導体装置の耐圧特性が向上する。
しかしながら、選択横方向成長によって作製された結晶欠陥の低密度領域といえども、結晶欠陥は存在している。その結晶欠陥の多くは層厚方向に伸びている。即ち、ソース・チャネル・ドリフトの積層方向と、多くの結晶欠陥が伸びる方向が平行となっている。縦型機能性半導体構造にかかる電界の方向と、結晶欠陥の伸びる方向が平行となっており、結晶欠陥が縦型機能性半導体構造の特性に影響しやすい構造となっている。
結晶成長した半導体層の面内に、例えばソース・チャネル・ドリフトが分布している機能性半導体構造を製造すると(以下では横型機能性半導体構造という)、横型機能性半導体構造にかかる電界方向と、結晶欠陥が伸びる方向が直交する関係となり、結晶欠陥が横型機能性半導体構造の特性に影響しづらい構造が得られる。しかしながら、横型機能性半導体構造によると、一対の主電極の双方が半導体装置の片面に存在する半導体装置(本明細書ではこの態様を横型電極構造という)となってしまい、縦型電極構造とすることができない。
横型機能性半導体構造を採用すれば、横型機能性半導体構造にかかる電界の方向と結晶欠陥が伸びる方向が直交する関係にすることができる。このために、結晶欠陥の存在が横型機能性半導体構造の特性、例えば、耐圧特性やリーク電流特性に影響しづらい構造が得られる。しかしながら、横型機能性半導体構造を実現すると、横型電極構造の半導体装置となり、縦型電極構造を実現することができない。
本発明は、結晶欠陥の存在が機能性半導体構造の特性に影響しづらい横型機能性半導体構造を採用しながら、主電極間の絶縁が確保しやすくて主電極に接続する配線レイアウトを単純化しやすい縦型電極構造の半導体装置を実現することを目的とする。
第1導電層と第2導電層のそれぞれは、複数の層から構成されていてもよく、全体として電極として作動するものであればよい。導電性領域は、高不純物濃度で低抵抗な半導体領域であってもよく、あるいは半導体層とは異なる金属等の伝導部材であってもよい。半導体層は、単層に限られず、複数層が積層されたものであってもよい。
電流規制層の表面を被覆している半導体層には、結晶欠陥が存在することが避けられない。その結晶欠陥の多くは層厚方向に伸びている。半導体層の片面には、電流規制層が面しており、半導体層の層厚方向には電流が流れない。基本的には半導体層に沿って電流が流れる。層に沿って電流が流れる半導体層に機能性半導体構造が形成されている。機能性半導体構造にかかる電界方向と結晶欠陥の多くが伸びている方向が直交する関係が得られる。横型の機能性半導体構造が形成されている。
本発明の半導体装置では、半導体層の非被覆領域に近い側が、導電性領域と非被覆領域と第1導電層を介して電源の一方の極性に接続される。半導体層の非被覆領域から遠い側は、第2導電層を介して電源の他方の極性に接続される。半導体層には、非被覆領域に近い側を電源の一方の極性に接続し、非被覆領域から遠い側を電源の他方の極性に接続することによって作動する機能性半導体構造が形成されており、機能性半導体構造が意図した作動をすることができる。半導体層に形成されている機能性半導体構造がオフすると、電流規制層の表面に平行な方向に沿って電位差が形成される。即ち、半導体層内には、電流規制層の表面に平行な方向に電界が作用する。多くの結晶欠陥は電流規制層の表面に対して略垂直方向に伸びていることから、半導体層内の電界方向と、半導体層内を結晶欠陥の多くが伸びている方向とがほぼ直交する関係になる。
本発明の半導体装置は、電流規制層とその表面を被覆している半導体層を利用することによって横型の機能性半導体構造を実現することに成功し、電流規制層に形成されている非被覆領域を利用して第1導電層と半導体層を導通させる導電性領域を利用することによって縦型の電極構造を実現することに成功している。結晶欠陥の存在が機能性半導体構造の特性に影響しづらい横型機能性半導体構造を採用しながら、主電極間の絶縁が確保しやすくて主電極に接続する配線レイアウトを単純化しやすい縦型電極構造の半導体装置を実現することに成功している。
上記の半導体装置では、半導体装置がオフしたときの電界方向と、結晶欠陥の多くが伸びる方向がほぼ垂直な関係となるドリフト層を得ることができ、結晶欠陥によって影響されないで高い耐圧特性を実現するドリフト層を得ることができる。
上記の中間領域は、キャリアの移動を制御して半導体装置のオン/オフを切換えるチャネル領域として機能する。このチャネル領域でも、電流が流れる方向と結晶欠陥が伸びる方向がほぼ直交な関係になっているので、結晶欠陥によってリーク電流が流れることが抑制される。
上記の半導体装置では、機能性半導体構造のオフ時には、中間領域と非被覆領域に近い側の半導体領域との間のpn接合界面から空乏層を形成する。空乏層は非被覆領域に近い側の半導体領域の広い範囲に亘って形成される。結晶欠陥の多くが伸びる方向と、空乏層にかかる電界方向ほぼ直交する空乏層を得ることができ、結晶欠陥によって影響されないで高い耐圧特性を実現する空乏層を得ることができる。
上記の中間領域は、キャリアの移動を制御して半導体装置のオン/オフを切換えるチャネル領域として機能する。このチャネル領域でも、電流が流れる方向と結晶欠陥が伸びる方向がほぼ直交な関係になっているので、結晶欠陥によってリーク電流が流れることが抑制される。
一方、制御電極にオフ電圧を印加すると、制御電極の下方に位置するポテンシャル井戸内にキャリアが存在できない状態となり、キャリアの移動が停止する。
上記の半導体装置では、機能性半導体構造がオフしたときに機能性半導体構造に作用する電界方向と、結晶欠陥の多くが伸びる方向がほぼ直交な関係になっている。従って、結晶欠陥の影響を受けににくくなっており、半導体層にリーク電流等が流れることが抑制されている。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となっている。
第1態様と第2態様の機能性半導体構造の場合、制御電極にオン電圧を印加すると、制御電極に対向する中間領域にキャリアが豊富に存在する層(反転層あるいは蓄積層等といわれる)が形成され、この層を経由してキャリアを移動させることができる。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となる。
第3態様の機能性半導体構造の場合、制御電極に電圧を印加すると、制御電極の下方に位置する上部半導体層と下部半導体層の界面に形成されるポテンシャル井戸の準位を変動させることができる。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となる。
第1態様と第2態様の機能性半導体構造の場合、制御電極に印加する電圧によって、中間領域と制御電極の物理的な接触に起因して中間領域内に広がっている空乏層の幅を調整することができる。空乏層の幅を調整することによって、中間領域を通過して移動するキャリアを制御できる。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となる。
第3態様の機能性半導体構造の場合、制御電極に電圧を印加すると、制御電極の下方に位置する上部半導体層と下部半導体層の界面に形成されるポテンシャル井戸の準位を変動させることができる。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となる。
制御電極に印加する電圧によって、分散して形成されている反対導電型領域に挟まれた間隔に形成される空乏層の幅を調整することができる。これにより、その間隔を通過して移動するキャリアを制御できる。半導体装置のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となる。
この第5の機能性半導体構造は、いわゆるダイオード動作をする。第1導電型半導体領域と第2導電型半導体領域が順方向となるように電源の一方の極性と他方の極性に電圧を印加すると、半導体装置はオンとなる。また、第1導電型半導体領域と第2導電型半導体領域が逆方向となるように電源の一方の極性と他方の極性に電圧を印加すると、半導体装置はオフとなる。このオフのとき、第2導電型半導体領域は、第1導電型半導体領域との間のpn接合界面から空乏層を形成する。空乏層は第1導電型半導体領域の広い範囲に亘って形成され、この空乏層によって電源の一方の極性と他方の極性間の電位差に基づく電界の多くを保持することができる。この半導体装置の第1導電型半導体領域は、面的に広がっている電流規制層の表面に形成されているので、第2導電型半導体領域との境界から非被覆領域に臨む方向に沿って電位差が形成される。第1導電型半導体領域に形成される電界方向は、電流規制層の表面に対してほぼ平行となり、第1導電型半導体領域内を結晶欠陥が伸びている方向とほぼ直交する。電界方向と結晶欠陥方向がほぼ垂直な関係になっているので、結晶欠陥の影響を受けにくく、第1導電型半導体領域において高い電界を保持することができる。結晶欠陥に基づく半導体装置の低耐圧化を抑制することができる。
電源の一方の極性と他方の極性間の電位差に基づいて形成される電界方向が、電流規制層の表面に対して平行な関係を得ることができる。
酸化シリコンは絶縁破壊電界が大きく、高耐圧は半導体装置を得ることができる。
本発明の半導体装置は、既存の製造技術では結晶欠陥の存在を避けることができないIII−V族化合物の半導体層に対して特に有効である。
この場合、第1導電層を結晶成長用の基板として利用することができ、電流規制層の非被覆領域において露出する半導体領域から、選択横方向成長法を利用することによって電流規制層の表面に半導体層を被覆することができる。選択横方向成長法を用いることによって、結晶欠陥の密度が小さい半導体層を得ることができる。したがって、半導体層においてさらに高い電界を保持することができ、半導体装置の高耐圧化を実現できるようになる。あるいは、半導体層においてリーク電流の発生をさらに抑制することができるようになる。
低抵抗伝導材料で形成されている領域は、半導体装置がオフしたときに、空乏層がほとんど形成されない領域である。この領域は電界を保持する機能はほとんど有していない。したがって、この領域を低抵抗伝導材料で形成したとしても、耐圧をほとんど低下させることはない。その一方で、低抵抗伝導材料で形成することによって、半導体装置がオンしたときにはキャリアの移動を容易にする。オン抵抗が低減された半導体装置を得ることができる。
(第1形態) 一対の主電極間を移動するキャリアは、ドリフト層内の結晶欠陥の伸びる方向にほぼ垂直方向に移動する。
(第2形態) 半導体装置がオフのときに形成される等電位線は、ドリフト層内の結晶欠陥の伸びる方向にほぼ平行である。
(第3形態) ドリフト層は、絶縁層の非被覆領域を含んで絶縁層の表面を周辺に向けて伸びている。
(第4形態) ドリフト層は面的に広がった扁平状である。
(第5形態) ドリフト層の周囲をチャネル層が一巡している。
(第6形態) チャネル層の周囲をソース層が一巡している。
(第7形態) ソース電極は、絶縁層の表面に形成されている半導体層の表面であって、非被覆領域から離れた位置に形成されている。
(第1実施例)
図1(a)に、半導体装置10の要部断面図を示し、図1(b)にその要部平面図を示す。なお、図1(b)の要部平面図は、半導体装置10の表面に形成されているソース電極62やゲート電極64を除いた状態で図示している。
この半導体装置10は、n−GaNからなる半導体基板32を備えている。半導体基板32の裏面には、例えばアルミニウムからなるドレイン電極22が蒸着法によって形成されている。半導体基板32の不純物濃度は高く、抵抗は低い。ドレイン電極22と半導体基板32は、直流電源の正側電圧に接続する正側導電層ということができる。
半導体基板32の表面は、非被覆領域55を残して、面的に広がる酸化シリコン(SiOx)からなる絶縁層42(電流規制層の一例)で被覆されている。絶縁層42の表面は、半導体層50で被覆されている。半導体層50は、ドリフト領域56とチャネル領域54(中間領域の一例)とソース領域52に区分されている。より詳細には、絶縁層42の非被覆領域55に近い側の表面は、n−GaN(窒化ガリウム)からなるドリフト領域56で被覆されている。このドリフト領域56は、非被覆領域55を含む領域にも形成されており、非被覆領域55を充填して半導体基板32に接するとともに、絶縁層42の表面を外側に向けて面的に広がっている。その平面形状は矩形である。絶縁層42の非被覆領域55から遠い側の表面は、n−GaNからなるソース領域52で被覆されている。ドリフト領域56とソース領域52の中間領域、即ち、ドリフト領域56の外側でソース領域52の内側の中間領域には、チャネル領域54が形成されている。チャネル領域54は、n−GaNからなるドリフト領域56やn−GaNからなるソース領域52より不純物濃度が薄いn−−GaNで形成されている。チャネル領域54はドリフト領域56を一巡しており、ドリフト領域56とソース領域52に接している。ソース領域52はチャネル領域54を一巡している。チャネル領域54は、ドリフト領域56とソース領域52を完全に分離している。チャネル領域54の表面に、ポリシリコンからなるゲート電極64がショットキー接合している。ゲート電極64はチャネル領域54に沿って一巡して形成されている。ソース領域52の表面にアルミニウムからなるソース電極62(第2導電層の一例)がオーミック接触して形成されている。ソース電極52はソース領域52に沿って一巡して形成されている。
ドリフト領域56とチャネル領域54とソース領域52は、選択横成長法で形成されており、結晶欠陥は少ない。ただし、結晶欠陥はゼロではない。存在する結晶欠陥の大部分は、絶縁層42の表面に対して垂直方向に伸びている。即ちX方向に伸びている。
半導体基板32は非被覆領域55に臨んでいることから、ドレイン電極22は非被覆領域55を介してドリフト領域56に電気的に接触している。
図2に示すように、半導体装置10は上記で説明した構成要素を単位構造として、それらが繰返し並べられて一つの装置を構成している。図2では、単位構造が4つの場合を例示しているが、より多くの単位構造が紙面上下左右に繰返し並べられていてもよい。
この半導体装置10は、ソース領域52とチャネル領域54とドリフト領域56が同一導電型で構成されているので、ノーマリオン型として動作する。ゲート電極64に電圧を印加しなくても電流は流れるが、よりオン抵抗を下げるために、ゲート電極64に電圧を印加するのが好ましい。例えば、ドレイン電極22に例えば1Vのドレイン電圧を印加し、ソース電極62を接地し、ゲート電極64に1Vのゲート電圧を印加すると、ゲート電極64に対向するチャネル領域54の表面近傍に電子の蓄積層が形成され、この半導体装置10は十分なオン状態となる。電子は、ソース領域52からチャネル領域54の蓄積層を経由してドリフト領域56に移動する。面的に広がっているドリフト領域56内を横方向に移動した電子は、絶縁層42の非被覆領域55を経由して裏面側の半導体基板32を亘り、ドレイン電極22へと移動する。
この半導体装置10は、半導体基板32の裏面の全面にドレイン電極22が形成されていることから、半導体基板32の裏面の面積に対して、比較的大きな電流を扱うことができる(面積効率に優れているといえる)。
半導体装置10のオン状態において、ゲート電極64に印加しているゲート電圧を−10Vに変更すると、ショットキー接合に起因する空乏層がチャネル領域54内に形成され、この半導体装置10はオフ状態へと移行する。さらに、この半導体装置10では、ショットキー接合に起因する空乏層が非被覆領域55に臨む方向に沿ってドリフト領域56内を横方向に伸びて形成される。ドリフト領域56の不純物濃度等を調整しておくと、ドリフト領域56内の広い範囲に亘って空乏層を形成することができる。本実施例の場合、形成される空乏層は、ゲート電極64に接合する領域から絶縁層42の非被覆領域55の縁まで伸びている(図示56aで示される範囲)。
さらに、この半導体装置10はチャネル領域54においてリーク電流が低減されるという特徴を備えている。これは、チャネル領域54においても、結晶欠陥の伸びている方向(X方向)と電界方向(Y方向)が垂直な関係となっているので、リーク電流が流れることが抑制されるのである。半導体装置10のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となっている。
また、本実施例の構造は絶縁層42に対して高い電圧が加わりやすい。したがって、絶縁層42に絶縁破壊電界の大きい酸化シリコンを用いるのが好適である。
(1)ドリフト領域56のうち、空乏層が形成される領域56aの範囲外の領域(この例では非被覆領域55の縁より内側の領域である)に、p型の半導体領域を形成すると、この半導体装置をバイポーラ動作させることも可能である。正孔がp型の半導体領域からドリフト領域56に供給されて伝導度変調を起こし、よりオン抵抗が低減された半導体装置を得ることができ得る。
(2)絶縁層42の材料に窒化アルミニウムを利用してもよい。窒化アルミニウムは熱伝導がよく、電流規制層の表面側で発生した熱を裏面側に効率よく放熱することができる。動作を安定して続ける半導体装置を得ることができる。
(3)チャネル領域54やドリフト領域56において、電流規制層42側にp型の半導体領域を形成すると、このp型半導体領域とのpn接合によってチャネル領域54やドリフト領域56内に空乏層が形成され、半導体装置の耐圧を向上し得る。
(4)チャネル領域54やソース領域52等が四角形状に一巡する例に代えて、他の多角形状、同心円状、あるいはストライプ状に形成してもよい。ストライプ状に形成した一変形例の要部平面図を図3に示す。なお、この変形例の縦断面は、図1(a)と一致する。ストライプ状に形成することによって、半導体層50の表面に形成される各電極等の位置合わせが簡単化され得る。
(5)図4に示す半導体装置110は、ゲート構造がMOS型となっている変形例である。図4に示すように、ゲート電極164がゲート絶縁膜166を介して、チャネル領域154に対向するように構成してもよい。また、図4の一変形例に示すように、必要に応じて、チャネル領域154の導電型をp型に変更してもよい。この場合、ノーマリオフ動作を実現することができ得る。
(6)チャネル領域154の導電型をp型に変更した場合、図5に示すように、微小な間隔159を置いて向かい合っている複数のチャネル領域154を分散して形成することで、JFET構造を形成することもできる。この例では、ゲート電極がチャネル領域154と電気的に接触して形成されている。ゲート電極に印加するゲート電圧によって、間隔159の両側のpn接合界面から伸びる空乏層の幅を調整して、ソース電極とドレイン電極の間を流れる電流のオン/オフ制御あるいは電流量を制御することができる。
(7)図6に示すように、非被覆領域255を含む領域であり、且つドリフト領域256の表面から半導体基板232に接するまでの領域に、アルミニウムからなる金属層272(低抵抗伝導材料の一例)が形成されていてもよい。金属層272は微小な領域に形成されているので、ドリフト領域256が面的に広がる部分を邪魔していない。半導体装置がオフしたときに形成される空乏層は、図示256aに示すドリフト領域256の範囲内を伸びており、金属層272が形成されている領域まで到達しない。あるいは、空乏層が到達しないように、チャネル領域254とドリフト領域256の不純物濃度等を適宜調整すればよい。したがって、金属層272を形成したとしても、半導体装置の耐圧は低下することがない。その一方で、半導体装置がオンしたときには、金属層272を介して電子の移動を容易にすることができる。この変形例の半導体装置は、オン抵抗が低減されるのである。
なお、上記の各変形例の技術思想は単独あるいは適宜組み合わせて具現化することが可能である。
まず、図7に示すように、n−GaN(窒化ガリウム)からなる半導体基板232を用意する。この半導体基板232の全領域には、その厚み方向(紙面上下方向)に結晶欠陥が貫通転移している。なお、窒化ガリウムに代えて、例えば、シリコン(Si)、シリコンカーバイト(SiC)等の材料からなる基板を利用することもできる。
次に、図8に示すように、この半導体基板232上に、スパッタ法あるいはCVD法を用いて、非被覆領域255を残して窒化アルミニウムからなる絶縁層242をパターニングする。
次に、図9に示すように、絶縁層242の非被覆領域255において露出する半導体基板232の表面から有機金属気相エピタキシャル法を用いて、n−GaNからなる半導体層256を形成する。このとき、ガリウム原料としてトリメチルガリウム(TMGa)、窒素原料としてアンモニアガス(NH3)、ドーパント材料としてモノシラン(SiH4)を好適に利用することができる。
この半導体層256を形成する段階は、いわゆる選択横成長法の技術を好適に利用することができる。有機金属気相エピタキシャル法を利用する選択横成長法では、水素雰囲気中において、III族の有機金属とV族の水素化物が化学反応して結晶が成長する。選択横成長法により半導体層256を成長させると、絶縁層242の非被覆領域255から厚み方向(紙面上下方向)に結晶成長したGaN結晶は、半導体基板232と格子定数等が一致しないので、結晶欠陥が多く、その結晶欠陥が厚み方向に貫通転移した領域を形成する(図示256Aの範囲である)。一方、絶縁層242の上方の領域では、絶縁層242からGaN結晶は成長することができないので、GaN結晶が横方向に成長する。なお、成長条件等によっては、絶縁層242の表面を横方向に成長した後に、縦方向に成長させることもできる。この絶縁層242の上方の領域は、厚み方向に貫通する結晶欠陥が比較的少ない領域となる(図示256Bの範囲である)。
次に、フォト技術とエッチング技術を利用して、ソース領域252の表面にソース電極262を形成する。ソース領域252とソース電極262の間の電気的な接触性を良くするために、ソース領域252内にn型の不純物が高濃度なコンタクト領域を形成してもよい。
次に、フォト技術とエッチング技術を利用して、チャネル領域254の表面に酸化シリコンからなるゲート絶縁膜266とポリシリコンからなるゲート電極264を形成する。
次に、図11に示すように、フォト技術とエッチング技術を利用して、ドリフト領域256の表面から絶縁層242の非被覆領域255に向けてトレンチ274を形成する。次にそのトレンチ274内に、例えばCVD法を用いてアルミニウムを埋め込み成長させる。次いで半導体基板232の裏面にアルミニウムを蒸着させると、図6に示される金属層272を備えた半導体装置を得ることができる。
また、上記の半導体装置の製造方法の金属層272を形成する工程に関して、次のような特徴がある。金属層272を埋め込むために形成されるトレンチ274は、例えばRIE(Reactive Ion Etching)法のドライエッチングによって作製するのが容易なことから、RIE法は選択される手法の一つであろう。しかしながら、一般的に、GaNを成分とする半導体層に対してRIE法のドライエッチングを実施すると、GaNが強いn型に変化することが知られている。このため、一般的な半導体装置では、このn型化によって、例えばリーク電流の増大、耐圧の低下、抵抗の増大等の特性が悪化してしまう懸念がある。ところが、上記の半導体装置では、トレンチ274が作製される領域が、一対の主電極間の電位を確保する領域とは異なり、また電流の制御する領域とも異なることから、上記の懸念は起こりえない。半導体装置の特性を悪化させることなく、金属層272を備えた半導体装置を得ることができる。
図12に、半導体装置310の要部断面図を示す。この半導体装置310はダイオード動作する。なお、第1実施例の略同一の構造に関しては、その説明を省略する場合がある。
この半導体装置310は、n−GaNからなる半導体基板332を備えている。半導体基板332の裏面には、例えばアルミニウムからなるカソード電極322が蒸着法によって形成されている。半導体基板332の不純物濃度は高く、抵抗は低い。カソード電極322と半導体基板332は、オンのときは直流電源の負側電圧に、オフのときは正側電圧に接続する導電層ということができる。
半導体基板332の表面は、非被覆領域355を残して、面的に広がる窒化アルミニウム(AlN)からなる絶縁層342(電流規制層の一例)で被覆されている。絶縁層342の表面は、半導体層350で被覆されている。半導体層350は、カソード領域356(第1半導体層の一例)とアノード領域352(第2半導体層の一例)に区分されている。絶縁層342の非被覆領域355から近い側の表面は、n−GaN(窒化ガリウム)からなるカソード領域356で被覆されている。このカソード領域356は、非被覆領域355を含む領域に形成されており、非被覆領域355を閉塞するとともに、絶縁層342の表面を外側に向けて面的に広がって形成されている。その平面形状は矩形である。絶縁層342の非被覆領域355から遠い側の表面は、カソード領域356に隣接してp−GaNからなるアノード領域352で被覆されている。アノード領域352はカソード領域356を一巡して形成されている。なお、カソード領域356とアノード領域352を平面視したときの形状は、矩形状のカソード領域356の周囲を取り囲んでアノード領域352が形成されている。アノード領域352の表面に、アルミニウムからなるアノード電極362がオーミック接触して形成されている。アノード電極352はアノード領域352に沿って一巡して形成されている。
カソード領域356とアノード領域352は、選択横成長法で形成されており、結晶欠陥は少ない。ただし、結晶欠陥はゼロではない。存在する結晶欠陥の大部分は、絶縁層342の表面に対して垂直方向に伸びている。
なお、アノード電極362にカソード電極322より正の電圧が印加されると、アノード領域352とカソード領域356のpn接合が順バイアスされるので、半導体装置はオン状態となる。
(1)カソード層356が矩形状で、アノード領域352が一巡するリングの場合に変えて、他の多角形状、同心円状、あるいはストライプ状に形成してもよい。
(2)カソード領域356において、電流規制層342側にp型の半導体領域を形成すると、このp型半導体領域とのpn接合によってカソード領域356内に空乏層が形成され、半導体装置の耐圧を向上し得る。
なお、上記の各変形例の技術思想は単独あるいは適宜組み合わせて具現化することが可能である。
図13に、半導体装置410の要部断面図を示す。この半導体装置410はHEMT(High Electron mobility transistor)の一例である。
この半導体装置410は、n−GaNからなる半導体基板432を備えている。半導体基板432の裏面には、例えばアルミニウムからなるドレイン電極422が蒸着法によって形成されている。半導体基板432の不純物濃度は高く、抵抗は低い。ドレイン電極422と半導体基板432は、直流電源の正側電圧に接続する正側導電層ということができる。
半導体基板432の表面は、非被覆領域455を残して、面的に広がる窒化アルミニウム(AlN)からなる絶縁層442(電流規制層の一例)で被覆されている。絶縁層442の表面は、半導体層450で被覆されている。半導体層450は、下部第1半導体領域456と下部第2半導体領域454と下部第3半導体領域452に区分され、さらにその下部半導体領域456、454、452の表面に上部半導体層458を備えている。より詳細には、絶縁層442の非被覆領域455から近い側の表面は、n−GaN(窒化ガリウム)からなる下部第1半導体領域456で被覆されている。この下部第1半導体領域456は、非被覆領域455を含む領域に形成されており、非被覆領域455を閉塞するとともに、絶縁層442の表面を外側に向けて面的に広がって形成されている。その平面形状は矩形である。絶縁層442の非被覆領域455から遠い側の表面は、n−GaNからなる下部第3半導体領域452で形成されている。下部第1半導体領域456と下部第3半導体領域452の中間領域、即ち、部第1半導体領域456の外側で下部第3半導体領域452の内側の中間領域には、下部第2半導体領域452が形成されている。下部第2半導体領域452は下部第1半導体領域456を一巡して形成されている。下部第3半導体領域452は下部第2半導体領域452を一巡して形成されている。下部第2半導体領域452は、下部第1半導体領域456と下部第3半導体領域452を完全に隔てている。なお、この下部第1半導体領域456と下部第2半導体領域454と下部第3半導体領域452は、3つの領域に分割して説明しているが、この例では、材料と不純物濃度が等しい一枚の層として形成されている。この下部半導体領域352、354、356の表面にAlGaNからなる上部半導体層458が形成されている。この上部半導体層458はアルミニウムを含有しているので、上部半導体層458のバンドギャップは下部半導体領域452、454、456のバンドギャップより大きい。
下部第2半導体領域454の上方の上部半導体層458の表面に、ゲート絶縁膜466を介してポリシリコンからなるゲート電極464が形成されている。ゲート電極464は下部第2半導体領域454に沿って一巡して形成されている。下部第3半導体領域452の上方の上部半導体層458の表面にアルミニウムからなるソース電極462がオーミック接触して形成されている。ソース電極462はソース層452に沿って一巡して形成されている。
下部半導体領域452、454、456には、層厚方向(紙面上下方向)に貫通転移している結晶欠陥が存在している。結晶欠陥は絶縁層442の表面に対して垂直方向に伸びている。下部半導体領域452、454、456は、非被覆領域455から選択横成長法の技術を利用して形成されているので、非被覆領域455の上方の結晶欠陥密度は多く、他の下部半導体領域452、454、456の結晶欠陥密度は少ない。
一方、ゲート電極に負電圧を印加すると、ゲート電極の下方の上部半導体層458と下部第2半導体領域454の界面のポテンシャル井戸のエネルギー準位がフェルミ順位より上側に移動するので、2次元電子ガスが存在できない状態に移行する。これにより、電子の横方向の移動が禁止されるので、半導体装置410はオフとなる。このオフのとき、下層456、454、452に形成される電界方向が絶縁層442の表面に対して平行となる。この電界方向は結晶欠陥方向と直交な関係となっている。なかでもゲート電極の下方の上部半導体層458と下部第2半導体領域454の界面において、電界方向と結晶欠陥方向と直交な関係となっているので、この領域でリーク電流が流れることが抑制されている。半導体装置410のオン/オフ制御あるいは電流量の制御を正確に行うことが可能となっている。
(1)ゲート電極464は、ゲート絶縁膜466を介さずに、上部半導体層458に電気的に接触してもよい。
(2)上部半導体層458の厚みを十分に薄く形成することによって、ゲート電極464に電圧を印加しない状態において、下部半導体領域との界面に形成されるポテンシャル井戸がフェルミ準位より上側とすることができる。即ち、ノーマリオフ動作が実現される。あるいは、下部第2半導体領域454の導電型をp型に変更することによっても、ノーマリオフ動作を実現することができ得る。
なお、上記の各変形例の技術思想は単独あるいは適宜組み合わせて具現化することが可能である。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
32:半導体基板
42:絶縁層
52:ソース領域
54:チャネル領域
55:非被覆領域
56:ドリフト領域
62:ソース電極
64:ゲート電極
66:ゲート絶縁膜
272:金属層
322:カソード電極
352:アノード領域
356:カソード領域
362:アノード電極
452:下部第3半導体領域
454:下部第2半導体領域
456:下部第1半導体領域
458:上部半導体層
Claims (16)
- 電源の一方の極性に接続する第1導電層と、
非被覆領域を残して前記第1導電層の表面を被覆している電流規制層と、
その電流規制層の表面を被覆している半導体層と、
前記非被覆領域を利用して前記第1導電層と前記半導体層を導通させる導電性領域と、
前記半導体層の非被覆領域から遠い側の表面に形成されており、前記電源の他方の極性に接続する第2導電層を備えており、
前記半導体層には、非被覆領域に近い側を前記一方の極性に接続し、非被覆領域から遠い側を前記他方の極性に接続することによって作動する機能性半導体構造が形成されており、
前記半導体層の前記機能性半導体構造は、ドリフト領域と中間領域とソース領域を有しており、
前記ドリフト領域は、非被覆領域に近い側に位置しており、前記導電性領域を介して前記第1導電層に導通しており、
前記ソース領域は、非被覆領域から遠い側に位置しており、前記第2導電層に導通しており、
前記中間領域は、前記ドリフト領域と前記ソース領域の間に形成されており、前記ドリフト領域及び前記ソース領域と同一導電型で不純物濃度が低く形成されており、
前記中間領域に隣接して制御電極が形成されており、
前記機能性半導体構造がオフしたときに前記半導体層に生じる電界方向は、前記半導体層の結晶欠陥の伸びている方向と直交する関係であり、
前記機能性半導体構造がオフしたときに前記半導体層に生じる空乏層が前記非被覆領域に達しないように、前記制御電極が隣接する部分から前記非被覆領域の縁までに対応する前記半導体層の幅が構成されている半導体装置。 - 電源の一方の極性に接続する第1導電層と、
非被覆領域を残して前記第1導電層の表面を被覆している電流規制層と、
その電流規制層の表面を被覆している半導体層と、
前記非被覆領域を利用して前記第1導電層と前記半導体層を導通させる導電性領域と、
前記半導体層の非被覆領域から遠い側の表面に形成されており、前記電源の他方の極性に接続する第2導電層を備えており、
前記半導体層には、非被覆領域に近い側を前記一方の極性に接続し、非被覆領域から遠い側を前記他方の極性に接続することによって作動する機能性半導体構造が形成されており、
前記半導体層の前記機能性半導体構造は、ドリフト領域と中間領域とソース領域を有しており、
前記ドリフト領域は、非被覆領域に近い側に位置しており、前記導電性領域を介して前記第1導電層に導通しており、
前記ソース領域は、非被覆領域から遠い側に位置しており、前記第2導電層に導通しており、
前記中間領域は、前記ドリフト領域と前記ソース領域の間に形成されており、前記ドリフト領域及び前記ソース領域と反対導電型であり、
前記中間領域に隣接して制御電極が形成されており、
前記機能性半導体構造がオフしたときに前記半導体層に生じる電界方向は、前記半導体層の結晶欠陥の伸びている方向と直交する関係であり、
前記機能性半導体構造がオフしたときに前記半導体層に生じる空乏層が前記非被覆領域に達しないように、前記制御電極が隣接する部分から前記非被覆領域の縁までに対応する前記半導体層の幅が構成されている半導体装置。 - 電源の一方の極性に接続する第1導電層と、
非被覆領域を残して前記第1導電層の表面を被覆している電流規制層と、
その電流規制層の表面を被覆している半導体層と、
前記非被覆領域を利用して前記第1導電層と前記半導体層を導通させる導電性領域と、
前記半導体層の非被覆領域から遠い側の表面に形成されており、前記電源の他方の極性に接続する第2導電層を備えており、
前記半導体層には、非被覆領域に近い側を前記一方の極性に接続し、非被覆領域から遠い側を前記他方の極性に接続することによって作動する機能性半導体構造が形成されており、
前記半導体層の前記機能性半導体構造は、電流規制層の表面を被覆する下部半導体層と、その下部半導体層のバンドギャップより大きなバンドギャップを有するとともに下部半導体層の表面を被覆している上部半導体層を有しており、
非被覆領域に近い側と遠い側の中間領域に隣接して制御電極が形成されており、
前記機能性半導体構造がオフしたときに前記半導体層に生じる電界方向は、前記半導体層の結晶欠陥の伸びている方向と直交する関係であり、
前記機能性半導体構造がオフしたときに前記半導体層に生じる空乏層が前記非被覆領域に達しないように、前記制御電極が隣接する部分から前記非被覆領域の縁までに対応する前記半導体層の幅が構成されている半導体装置。 - 前記制御電極が、絶縁膜を介して中間領域に対向していることを特徴とする請求項1〜3のいずれかの半導体装置。
- 前記制御電極が、中間領域に物理的に接触していることを特徴とする請求項1〜3のいずれかの半導体装置。
- 電源の一方の極性に接続する第1導電層と、
非被覆領域を残して前記第1導電層の表面を被覆している電流規制層と、
その電流規制層の表面を被覆している半導体層と、
前記非被覆領域を利用して前記第1導電層と前記半導体層を導通させる導電性領域と、
前記半導体層の非被覆領域から遠い側の表面に形成されており、前記電源の他方の極性に接続する第2導電層を備えており、
前記半導体層には、非被覆領域に近い側を前記一方の極性に接続し、非被覆領域から遠い側を前記他方の極性に接続することによって作動する機能性半導体構造が形成されており、
前記半導体層の前記機能性半導体構造は、ドリフト領域と中間領域とソース領域を有しており、
前記ドリフト領域は、非被覆領域に近い側に位置しており、前記導電性領域を介して前記第1導電層に導通しており、
前記ソース領域は、非被覆領域から遠い側に位置しており、前記第2導電層に導通しており、
前記中間領域は、前記ドリフト領域と前記ソース領域の間に分散して形成されており、前記ドリフト領域及び前記ソース領域と反対導電型であり、
前記中間領域に導通する制御電極が形成されており、
前記機能性半導体構造がオフしたときに前記半導体層に生じる電界方向は、前記半導体層の結晶欠陥の伸びている方向と直交する関係であり、
前記機能性半導体構造がオフしたときに前記半導体層に生じる空乏層が前記非被覆領域に達しないように、前記制御電極が隣接する部分から前記非被覆領域の縁までに対応する前記半導体層の幅が構成されている半導体装置。 - 電源の一方の極性に接続する第1導電層と、
非被覆領域を残して前記第1導電層の表面を被覆している電流規制層と、
その電流規制層の表面を被覆している半導体層と、
前記非被覆領域を利用して前記第1導電層と前記半導体層を導通させる導電性領域と、
前記半導体層の非被覆領域から遠い側の表面に形成されており、前記電源の他方の極性に接続する第2導電層を備えており、
前記半導体層には、非被覆領域に近い側を前記一方の極性に接続し、非被覆領域から遠い側を前記他方の極性に接続することによって作動する機能性半導体構造が形成されており、
前記半導体層の前記機能性半導体構造は、非被覆領域に近い側に第1導電型半導体領域が形成され、非被覆領域から遠い側に第2導電型半導体領域を有しており、
前記機能性半導体構造がオフしたときに前記半導体層に生じる電界方向は、前記半導体層の結晶欠陥の伸びている方向と直交する関係であり、
前記機能性半導体構造がオフしたときに前記半導体層に生じる空乏層が前記非被覆領域に達しないように、前記第1導電型半導体領域と前記第2半導体型領域の接合面から前記非被覆領域の縁までに対応する前記半導体層の幅が構成されている半導体装置。 - 電流規制層は、絶縁体であることを特徴とする請求項1〜7のいずれかの半導体装置。
- 電流規制層の主成分が、酸化シリコンであることを特徴とする請求項8の半導体装置。
- 電流規制層は、不純物を含有していない半導体であることを特徴とする請求項1〜7のいずれかの半導体装置。
- 電流規制層は、下部半導体層と反対導電型の半導体であることを特徴とする請求項1又は3の半導体装置。
- 半導体層が、III−V族化合物であることを特徴とする請求項1〜11のいずれかの半導体装置。
- 第1導電層には、非被覆領域に臨むIII-V族化合物の半導体領域が形成されていることを特徴とする請求項12の半導体装置。
- 前記導電性領域が主として低抵抗伝導材料で形成されていることを特徴とする請求項1〜13のいずれかの半導体装置。
- 前記ドリフト領域では、前記中間領域との界面から前記非被覆領域の縁までの距離が厚みの3倍以上で形成されていることを特徴とする請求項1、2、6のいずれかの半導体装置。
- 前記電界方向と前記結晶欠陥の伸びている方向が直交する関係は、前記中間領域と前記ドリフト領域で生じることを特徴とする請求項15の半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004330123A JP4974454B2 (ja) | 2004-11-15 | 2004-11-15 | 半導体装置 |
EP05828962.0A EP1815523B1 (en) | 2004-11-15 | 2005-11-14 | Semiconductor devices and method of manufacturing them |
US11/667,735 US8008749B2 (en) | 2004-11-15 | 2005-11-14 | Semiconductor device having vertical electrodes structure |
PCT/JP2005/021195 WO2006052025A2 (en) | 2004-11-15 | 2005-11-14 | Semiconductor devices and method of manufacturing them |
CNB2005800390425A CN100550415C (zh) | 2004-11-15 | 2005-11-14 | 半导体器件及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004330123A JP4974454B2 (ja) | 2004-11-15 | 2004-11-15 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006140368A JP2006140368A (ja) | 2006-06-01 |
JP4974454B2 true JP4974454B2 (ja) | 2012-07-11 |
Family
ID=36336894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004330123A Expired - Fee Related JP4974454B2 (ja) | 2004-11-15 | 2004-11-15 | 半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8008749B2 (ja) |
EP (1) | EP1815523B1 (ja) |
JP (1) | JP4974454B2 (ja) |
CN (1) | CN100550415C (ja) |
WO (1) | WO2006052025A2 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8314016B2 (en) * | 2005-10-20 | 2012-11-20 | The United States Of America As Represented By The Secretary Of The Army | Low-defect density gallium nitride semiconductor structures and fabrication methods |
DE112008000410T5 (de) * | 2007-02-16 | 2009-12-24 | Sumitomo Chemical Company, Limited | Epitaxialer Galliumnitridkristall, Verfahren zu dessen Herstellung und Feldeffekttransistor |
EP2117040B1 (en) | 2007-02-27 | 2018-05-16 | Fujitsu Limited | Compound semiconductor device and process for producing the same |
JP4938531B2 (ja) * | 2007-04-09 | 2012-05-23 | 株式会社豊田中央研究所 | 半導体装置 |
JP2008311355A (ja) * | 2007-06-13 | 2008-12-25 | Rohm Co Ltd | 窒化物半導体素子 |
WO2009007943A1 (en) * | 2007-07-09 | 2009-01-15 | Freescale Semiconductor, Inc. | Hetero-structure field effect transistor, integrated circuit including a hetero-structure field effect transistor and method for manufacturing a hetero-structure field effect transistor |
JP5208463B2 (ja) * | 2007-08-09 | 2013-06-12 | ローム株式会社 | 窒化物半導体素子および窒化物半導体素子の製造方法 |
JP5510325B2 (ja) * | 2008-08-06 | 2014-06-04 | 日本電気株式会社 | 電界効果トランジスタ |
JP5510324B2 (ja) * | 2008-08-06 | 2014-06-04 | 日本電気株式会社 | 電界効果トランジスタの製造方法 |
JP5693831B2 (ja) * | 2008-08-15 | 2015-04-01 | トヨタ自動車株式会社 | トランジスタ |
KR101167651B1 (ko) | 2008-10-29 | 2012-07-20 | 후지쯔 가부시끼가이샤 | 화합물 반도체 장치 및 그 제조 방법 |
JP5564791B2 (ja) | 2008-12-26 | 2014-08-06 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
JP5577638B2 (ja) * | 2009-07-14 | 2014-08-27 | 富士通株式会社 | 半導体装置及びその製造方法 |
JP5609055B2 (ja) * | 2009-10-02 | 2014-10-22 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
US9312343B2 (en) | 2009-10-13 | 2016-04-12 | Cree, Inc. | Transistors with semiconductor interconnection layers and semiconductor channel layers of different semiconductor materials |
US9825162B2 (en) * | 2009-11-19 | 2017-11-21 | Nxp Usa, Inc. | Vertical power transistor device, semiconductor die and method of manufacturing a vertical power transistor device |
CN102668092B (zh) * | 2009-12-21 | 2015-03-25 | 富士通株式会社 | 化合物半导体装置及其制造方法 |
CA2777675A1 (en) * | 2010-01-19 | 2011-07-28 | Sumitomo Electric Industries, Ltd. | Silicon carbide semiconductor device and method of manufacturing thereof |
KR101255808B1 (ko) * | 2010-09-27 | 2013-04-17 | 경북대학교 산학협력단 | 반도체 소자 및 그 제작 방법 |
CN103201841B (zh) * | 2010-11-05 | 2016-06-22 | 富士通株式会社 | 半导体器件及半导体器件的制造方法 |
JP2012104568A (ja) * | 2010-11-08 | 2012-05-31 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
US8981432B2 (en) * | 2012-08-10 | 2015-03-17 | Avogy, Inc. | Method and system for gallium nitride electronic devices using engineered substrates |
US9472684B2 (en) * | 2012-11-13 | 2016-10-18 | Avogy, Inc. | Lateral GaN JFET with vertical drift region |
JP2015056486A (ja) | 2013-09-11 | 2015-03-23 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP6680161B2 (ja) * | 2016-09-16 | 2020-04-15 | トヨタ自動車株式会社 | スイッチング素子の製造方法 |
FR3059467B1 (fr) | 2016-11-29 | 2019-05-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Transistor a heterojonction a structure verticale |
US10608102B2 (en) * | 2017-09-29 | 2020-03-31 | Electronics And Telecommunications Research Institute | Semiconductor device having a drain electrode contacting an epi material inside a through-hole and method of manufacturing the same |
CN109904216B (zh) * | 2019-01-28 | 2021-09-28 | 西安电子科技大学 | 具有AlGaN/GaN异质结的垂直型场效应晶体管及其制作方法 |
WO2022181100A1 (ja) * | 2021-02-24 | 2022-09-01 | パナソニックホールディングス株式会社 | 窒化物半導体装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075259A (en) * | 1994-11-14 | 2000-06-13 | North Carolina State University | Power semiconductor devices that utilize buried insulating regions to achieve higher than parallel-plane breakdown voltages |
DE19726678A1 (de) | 1997-06-24 | 1999-01-07 | Siemens Ag | Passiver Halbleiterstrombegrenzer |
TW407371B (en) | 1997-04-25 | 2000-10-01 | Siemens Ag | Equipment to limited alternative current, especially in short-circuit case |
US5877047A (en) * | 1997-08-15 | 1999-03-02 | Motorola, Inc. | Lateral gate, vertical drift region transistor |
JP3706267B2 (ja) * | 1999-03-03 | 2005-10-12 | 関西電力株式会社 | 電圧制御型半導体装置とその製法及びそれを用いた電力変換装置 |
JP4667556B2 (ja) | 2000-02-18 | 2011-04-13 | 古河電気工業株式会社 | 縦型GaN系電界効果トランジスタ、バイポーラトランジスタと縦型GaN系電界効果トランジスタの製造方法 |
US6573558B2 (en) * | 2001-09-07 | 2003-06-03 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
JP4088063B2 (ja) | 2001-11-14 | 2008-05-21 | 株式会社東芝 | パワーmosfet装置 |
JP3661664B2 (ja) * | 2002-04-24 | 2005-06-15 | 日産自動車株式会社 | 炭化珪素半導体装置及びその製造方法 |
-
2004
- 2004-11-15 JP JP2004330123A patent/JP4974454B2/ja not_active Expired - Fee Related
-
2005
- 2005-11-14 CN CNB2005800390425A patent/CN100550415C/zh not_active Expired - Fee Related
- 2005-11-14 US US11/667,735 patent/US8008749B2/en not_active Expired - Fee Related
- 2005-11-14 EP EP05828962.0A patent/EP1815523B1/en not_active Not-in-force
- 2005-11-14 WO PCT/JP2005/021195 patent/WO2006052025A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP1815523B1 (en) | 2016-09-14 |
US8008749B2 (en) | 2011-08-30 |
EP1815523A2 (en) | 2007-08-08 |
WO2006052025A3 (en) | 2006-10-19 |
WO2006052025A2 (en) | 2006-05-18 |
CN101057336A (zh) | 2007-10-17 |
CN100550415C (zh) | 2009-10-14 |
US20080128862A1 (en) | 2008-06-05 |
JP2006140368A (ja) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4974454B2 (ja) | 半導体装置 | |
US11121216B2 (en) | III-nitride devices including a graded depleting layer | |
US10312361B2 (en) | Trenched vertical power field-effect transistors with improved on-resistance and breakdown voltage | |
US7126169B2 (en) | Semiconductor element | |
US11342420B2 (en) | Heterojunction devices and methods for fabricating the same | |
JP6474881B2 (ja) | ショットキーダイオード及びその製造方法 | |
WO2013118437A1 (ja) | 半導体装置及びその製造方法 | |
US20150060943A1 (en) | Nitride-based transistors and methods of fabricating the same | |
CN103681866A (zh) | 场效应半导体器件及其制造方法 | |
JP6593294B2 (ja) | 半導体装置 | |
KR102071019B1 (ko) | 노멀리 오프 타입 트랜지스터 및 그 제조방법 | |
WO2015175915A1 (en) | Trenched vertical power field-effect transistors with improved on-resistance and breakdown voltage | |
KR20160030254A (ko) | 수직 구조물을 갖는 갈륨 질화물 전력 반도체 디바이스 | |
CN104347696A (zh) | 半导体装置以及其制造方法 | |
WO2015200885A9 (en) | Structures for nitride vertical transistors | |
JP2019102552A (ja) | ダイオード素子およびダイオード素子の製造方法 | |
JP5415668B2 (ja) | 半導体素子 | |
CN116344595A (zh) | 氮化镓半导体器件及氮化镓半导体器件的制备方法 | |
WO2020216250A1 (zh) | 一种增强型器件及其制备方法 | |
JP2023513840A (ja) | 縦型電界効果トランジスタ、それを製造するための方法、および縦型電界効果トランジスタを有するデバイス | |
WO2024000431A1 (zh) | 一种半导体器件及其制造方法 | |
JP2023133798A (ja) | 窒化物半導体デバイス | |
WO2023191776A1 (en) | N-polar iii-nitride device structures with a p-type layer | |
CN118315414A (zh) | 提升纵向功率电子器件关态电学特性的结构、方法及应用 | |
JP2020047822A (ja) | 窒化物半導体装置とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4974454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |