JP4813165B2 - Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents
Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Download PDFInfo
- Publication number
- JP4813165B2 JP4813165B2 JP2005353966A JP2005353966A JP4813165B2 JP 4813165 B2 JP4813165 B2 JP 4813165B2 JP 2005353966 A JP2005353966 A JP 2005353966A JP 2005353966 A JP2005353966 A JP 2005353966A JP 4813165 B2 JP4813165 B2 JP 4813165B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- zirconium
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、高電圧下でも使用でき、高容量で、かつ充放電サイクル特性に優れたリチウム二次電池等の非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を含むリチウム二次電池用正極およびリチウム二次電池に関する。 The present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium secondary battery that can be used under a high voltage, has a high capacity, and is excellent in charge / discharge cycle characteristics, a method for producing the same, and the positive electrode active material. The present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery.
近年、パソコン、携帯電話等の情報関連機器や通信機器の急速な発達が進むにつれて、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池等の非水電解液二次電池に対する要求が高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4などのリチウムと遷移金属の複合酸化物が知られている。 In recent years, with the rapid development of information-related equipment and communication equipment such as personal computers and mobile phones, there has been an increasing demand for non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight and have high energy density. Yes. As such positive electrode active materials for non-aqueous electrolyte secondary batteries, composite oxides of lithium and transition metals such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 and LiMn 2 O 4 are known. ing.
なかでも、LiCoO2を正極活物質として用い、リチウム合金、グラファイト、カーボンファイバー等のカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として広く使用されている。しかしLiCoO2単独では、放電容量、安全性、保存特性および充放電サイクル特性に対して高まる要求に対応することが難しいという問題が生じた。これらの問題を解決するために、特許文献1〜3ではZr、Hf、Ti、Mg、V、Cu、Zn、Fe、Ta、Nbなどの元素を添加した正極活物質が提案されている。 Among them, a lithium secondary battery using LiCoO 2 as a positive electrode active material and carbon such as a lithium alloy, graphite, or carbon fiber as a negative electrode can obtain a high voltage of 4V, so that it has a high energy density. Widely used. However, LiCoO 2 alone has a problem that it is difficult to meet the increasing demands for discharge capacity, safety, storage characteristics, and charge / discharge cycle characteristics. In order to solve these problems, Patent Documents 1 to 3 propose positive electrode active materials to which elements such as Zr, Hf, Ti, Mg, V, Cu, Zn, Fe, Ta, and Nb are added.
例えば特許文献1にはZrは粒子表面に付着するように、Mgは粒子中に均一に拡散するようにZr、Mgを添加したLiCoO2正極活物質が記載されている。当該正極活物質において、負極にカーボンを用いた4.4V高電圧の使用下における充放電サイクル特性が多少は向上しているが、まだ不十分であり充放電サイクル特性のさらなる向上が必要である。この方法は正極活物質中に含まれるジルコニウムがLiCoO2には全く固溶していないために充放電サイクル特性向上の効果が不十分であると考えられる。 For example, Patent Document 1 describes a LiCoO 2 positive electrode active material to which Zr and Mg are added so that Zr adheres to the particle surface and Mg diffuses uniformly in the particle. In the positive electrode active material, the charge / discharge cycle characteristics are slightly improved under the use of 4.4V high voltage using carbon for the negative electrode, but it is still insufficient and further improvement of the charge / discharge cycle characteristics is necessary. . In this method, zirconium contained in the positive electrode active material is not dissolved at all in LiCoO 2 , so that it is considered that the effect of improving the charge / discharge cycle characteristics is insufficient.
特許文献2には、LiCoO2正極活物質粉末に酸化ジルコニウムを混合した後、加熱処理することで、ジルコニウムを含有するLiCoO2正極活物質を合成している。当該正極活物質において、充放電サイクル特性の向上が若干見られているが、未だ不十分であり、さらなる向上が必要である。この方法では原料にジルコニウムを添加するのではなく正極活物質にジルコニウムを添加しており、またジルコニウム添加後の加熱温度が300℃であるため、ジルコニウムがLiCoO2に全く固溶していないものと推定され、そのために充放電サイクル特性向上の効果が不十分であると考えられる。 Patent Document 2, after mixing the zirconium oxide LiCoO 2 positive active material powder, by heating treatment, and to synthesize LiCoO 2 positive active material containing zirconium. In the positive electrode active material, the charge / discharge cycle characteristics are slightly improved, but it is still insufficient and further improvement is required. In this method, zirconium is not added to the raw material but zirconium is added to the positive electrode active material, and since the heating temperature after addition of zirconium is 300 ° C., zirconium is not dissolved in LiCoO 2 at all. Therefore, it is considered that the effect of improving the charge / discharge cycle characteristics is insufficient.
特許文献3には、Zr、Nb、Ta、TiおよびHfからなる群から選ばれる1種類の元素が添加され、かつ添加した元素が結晶格子中に完全に固溶したLiCoO2正極活物質が記載されている。当該正極活物質において、充放電サイクル特性の向上が若干見られているが、未だ不十分であり、さらなる向上が必要である。この正極活物質は添加したジルコニウムが完全にLiCoO2の結晶格子中に固溶してリチウム複合酸化物になっており、添加したジルコニウムが完全に固溶しているために充放電サイクル特性向上の効果が不十分であると考えられる。 Patent Document 3 describes a LiCoO 2 positive electrode active material in which one element selected from the group consisting of Zr, Nb, Ta, Ti and Hf is added, and the added element is completely dissolved in the crystal lattice. Has been. In the positive electrode active material, the charge / discharge cycle characteristics are slightly improved, but it is still insufficient and further improvement is required. In this positive electrode active material, the added zirconium is completely dissolved in the LiCoO 2 crystal lattice to form a lithium composite oxide, and since the added zirconium is completely dissolved, the charge / discharge cycle characteristics are improved. The effect is considered insufficient.
このように、放電容量、安全性および充放電サイクル特性といった電池特性の更なる向上とともに、高電圧での使用下におけるこれら電池特性の向上するといった、これら特性の全てを同時に十分に満足するものは得られていない。
上記の特許文献1〜3のいずれにおいても、ジルコニウム添加による充放電サイクル特性の向上効果が不十分であり、添加量に見合うだけの効果が十分に奏してはいないと考えられる。 In any of the above Patent Documents 1 to 3, it is considered that the effect of improving the charge / discharge cycle characteristics due to the addition of zirconium is insufficient, and the effect corresponding to the addition amount is not sufficiently achieved.
また、一般的に負極活物質にリチウムを使用したときの充電電圧は4.3Vであり、この場合、充放電においては正極活物質の50〜60%しか利用されていない。この充電電圧を高くできれば、充放電の際に利用できる正極活物質の量が増える。例えば、充電電圧を4.5Vにできれば、正極活物質の約70%を利用することができ、放電容量を飛躍的に向上させることができる。しかし、充電電圧を高くすると、同時に充放電サイクル特性の劣化が著しくなるので、高電圧下の使用において、充放電サイクル特性を向上させることが本願における大きな課題となる。 In general, the charging voltage when lithium is used for the negative electrode active material is 4.3 V. In this case, only 50 to 60% of the positive electrode active material is used for charging and discharging. If this charging voltage can be increased, the amount of the positive electrode active material that can be used for charging and discharging increases. For example, if the charging voltage can be 4.5 V, about 70% of the positive electrode active material can be used, and the discharge capacity can be dramatically improved. However, when the charging voltage is increased, the charge / discharge cycle characteristics are significantly deteriorated at the same time. Therefore, improving the charge / discharge cycle characteristics in use under a high voltage is a major problem in the present application.
特に、特許文献2および特許文献3では充電電圧4.3Vのときの充放電サイクル特性が悪く、充電電圧4.5Vの高電圧下では充放電サイクル特性はさらに顕著に悪化するため、高容量化は到底期待できない。 In particular, Patent Document 2 and Patent Document 3 have poor charge / discharge cycle characteristics at a charge voltage of 4.3V, and charge / discharge cycle characteristics are further significantly deteriorated at a high voltage of charge voltage 4.5V. I can not expect at all.
そこで本発明では、ジルコニウムの添加量に見合うだけの充放電サイクル特性の向上効果を十分に引き出すことで、高電圧下においても、高容量で、かつ充放電サイクル特性に優れたリチウム二次電池等の非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を含むリチウム二次電池用正極およびリチウム二次電池を提供することを目的とする。 Therefore, in the present invention, by fully extracting the effect of improving the charge / discharge cycle characteristics commensurate with the amount of zirconium added, a lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics even under high voltage, etc. It aims at providing the positive electrode active material for nonaqueous electrolyte secondary batteries, its manufacturing method, the positive electrode for lithium secondary batteries containing the said positive electrode active material, and a lithium secondary battery.
本発明者は、上記目的を達成するべく鋭意研究を行い、上記特性を有する次のようなリチウム二次電池用正極活物質を見出した。すなわち、少なくとも原料となるリチウム化合物、コバルト化合物およびジルコニウム化合物を含む原料混合粉末を焼成することで得られるLiCoO2正極活物質であって、当該正極活物質に含まれるジルコニウムの30〜95mol%が酸化ジルコニウムであり、5〜70mol%がリチウム複合酸化物であることを特徴とするLiCoO2正極活物質を用いる。 The present inventor conducted intensive studies to achieve the above object, and found the following positive electrode active material for a lithium secondary battery having the above characteristics. That is, a LiCoO 2 positive electrode active material obtained by firing a raw material mixed powder containing at least a lithium compound, a cobalt compound and a zirconium compound as raw materials, and 30 to 95 mol% of zirconium contained in the positive electrode active material is oxidized. A LiCoO 2 positive electrode active material characterized in that it is zirconium and 5-70 mol% is a lithium composite oxide is used.
かくして、本発明は、上記の新規な知見に基づくもので以下の構成を要旨とする。
(1)リチウム原子、コバルト原子およびジルコニウム原子を含む非水電解質二次電池用正極活物質であって、前記正極活物質に含まれるジルコニウム原子の30〜95mol%が酸化ジルコニウムとして、5〜70mol%がリチウム複合酸化物として存在する非水電解質二次電池用正極活物質。
(2)前記正極活物質にはジルコニウム原子が、コバルト原子に対して0.01〜1.5mol%含まれる(1)に記載の非水電解質二次電池用非水電解質二次電池用正極活物質。
(3)前記正極活物質に、さらにマグネシウム原子がコバルト原子に対して0.05〜3.0mol%含まれる(1)または(2)に記載の非水電解質二次電池用正極活物質。
(4)前記正極活物質に、さらにアルミニウム原子がコバルト原子に対して0.05〜3.0mol%含まれる(1)〜(3)のいずれかに記載の非水電解質二次電池用正極活物質。
(5)リチウム化合物、コバルト化合物およびジルコニウム化合物を混合した後、焼成することにより、リチウム原子、コバルト原子およびジルコニウム原子を含む正極活物質を製造する方法であって、焼成後に得られる粉末を225℃で18%の塩酸水溶液に接触させたとき、塩酸水溶液に溶解しない成分が存在し、該成分には前記粉末中に含まれるジルコニウムの30〜95mol%が含まれることを特徴とする非水電解質二次電池用正極活物質の製造方法。
(6)前記塩酸水溶液に溶解しない成分が酸化ジルコニウムである(5)に記載の非水電解質二次電池用正極活物質の製造方法。
(7)正極活物質と導電材とバインダーとを含むリチウム二次電池用正極であって、前記正極活物質が(1)〜(6)のいずれかに記載の非水電解質二次電池用正極活物質を含む非水電解質二次電池用正極活物質を含むことを特徴とするリチウム二次電池用正極。
(8)正極と負極と非水電解液を含むリチウム二次電池であって、前記正極は(7)に記載の正極からなることを特徴とするリチウム二次電池。
Thus, the present invention is based on the above novel findings and has the following configuration.
(1) A positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium atom, a cobalt atom and a zirconium atom, wherein 30 to 95 mol% of zirconium atoms contained in the positive electrode active material is zirconium oxide, and is 5 to 70 mol%. Is a positive electrode active material for a non-aqueous electrolyte secondary battery in which is present as a lithium composite oxide.
(2) The positive electrode active material for a nonaqueous electrolyte secondary battery according to (1), wherein the positive electrode active material contains 0.01 to 1.5 mol% of zirconium atoms with respect to cobalt atoms. material.
(3) The positive electrode active material for a non-aqueous electrolyte secondary battery according to (1) or (2), wherein the positive electrode active material further contains 0.05 to 3.0 mol% of magnesium atoms with respect to cobalt atoms.
(4) The positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of (1) to (3), wherein the positive electrode active material further contains 0.05 to 3.0 mol% of aluminum atoms with respect to cobalt atoms. material.
(5) A method for producing a positive electrode active material containing lithium atoms, cobalt atoms and zirconium atoms by mixing a lithium compound, a cobalt compound and a zirconium compound, followed by firing. The non-aqueous electrolyte 2 is characterized in that there is a component that does not dissolve in the hydrochloric acid aqueous solution when it is brought into contact with an aqueous 18% hydrochloric acid solution, and the component contains 30 to 95 mol% of zirconium contained in the powder. A method for producing a positive electrode active material for a secondary battery.
(6) The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to (5), wherein the component not dissolved in the aqueous hydrochloric acid solution is zirconium oxide.
(7) A positive electrode for a lithium secondary battery including a positive electrode active material, a conductive material, and a binder, wherein the positive electrode active material is a positive electrode for a nonaqueous electrolyte secondary battery according to any one of (1) to (6) A positive electrode for a lithium secondary battery, comprising a positive electrode active material for a non-aqueous electrolyte secondary battery containing an active material.
(8) A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode comprises the positive electrode according to (7).
本発明によれば、ジルコニウム添加による充放電サイクル特性の向上効果を最大限に引き出すことができる。また、高電圧下においても充放電サイクル特性が良好であり、これにより高容量リチウム二次電池を実現することができる。 According to the present invention, the effect of improving the charge / discharge cycle characteristics by adding zirconium can be maximized. In addition, the charge / discharge cycle characteristics are good even under a high voltage, whereby a high-capacity lithium secondary battery can be realized.
本発明の正極活物質は少なくともリチウム、コバルトおよびジルコニウムを含む非水電解質二次電池用正極活物質であって、正極活物質中に含まれるジルコニウムの30〜95mol%が酸化ジルコニウムで、5〜70mol%がリチウム複合酸化物であることを特徴とする正極活物質である。 The positive electrode active material of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing at least lithium, cobalt, and zirconium, and 30 to 95 mol% of zirconium contained in the positive electrode active material is zirconium oxide, and 5 to 70 mol % Is a lithium composite oxide.
本発明において、前述したような優れた特性を有する正極活物質が得られるメカニズムについては必ずしも明らかではないが次のように推定できる。すなわち、添加したジルコニウムの30〜95mol%が酸化ジルコニウムであり、その酸化ジルコニウムの一部が正極活物質表面に存在していると考えられる。その結果、電解液と正極活物質との直接接触している面積が少なくなることによって、充放電時に起こる電解液の分解反応が抑制されてドライアウト(電解液の枯渇)を防止でき、同時に正極活物質から電解液へのリチウム、コバルト等の金属元素の溶出量が減少するため、充放電サイクル特性が向上すると思われる。また5〜70mol%がリチウム複合酸化物として存在する結果、正極材料の表面層が改質され電解液への金属元素の溶解がさらに減少すると同時に、充放電を繰り返すことにより起こる正極活物質の結晶構造の崩壊が抑制されるため、充放電サイクル特性が向上すると思われる。これらの相乗効果により、本発明の正極活物質は極めて優れた充放電サイクル特性を奏すると考えられる。正極から多くのリチウムが引き抜かれ、結晶構造が不安定になる4.5V高電圧下の充放電を行うときには、特に顕著にこの相乗効果を奏する。 In the present invention, the mechanism by which the positive electrode active material having excellent characteristics as described above is obtained is not necessarily clear, but can be estimated as follows. That is, it is considered that 30 to 95 mol% of the added zirconium is zirconium oxide, and a part of the zirconium oxide is present on the surface of the positive electrode active material. As a result, the area where the electrolyte solution and the positive electrode active material are in direct contact is reduced, so that the decomposition reaction of the electrolyte solution that occurs during charging and discharging is suppressed, and dryout (electrolyte depletion) can be prevented. Since the amount of elution of metal elements such as lithium and cobalt from the active material into the electrolytic solution is reduced, it is considered that the charge / discharge cycle characteristics are improved. Further, as a result of the presence of 5 to 70 mol% as a lithium composite oxide, the surface layer of the positive electrode material is modified to further reduce the dissolution of the metal element in the electrolytic solution, and at the same time, the positive electrode active material crystals that are caused by repeated charge and discharge Since the collapse of the structure is suppressed, it seems that the charge / discharge cycle characteristics are improved. Due to these synergistic effects, it is considered that the positive electrode active material of the present invention exhibits extremely excellent charge / discharge cycle characteristics. This synergistic effect is particularly noticeable when charging and discharging are performed under a high voltage of 4.5 V where a large amount of lithium is extracted from the positive electrode and the crystal structure becomes unstable.
酸化ジルコニウムの量の好ましい範囲は、正極活物質に含まれるジルコニウムに対して、30〜90mol%が好ましく、45〜85mol%がより好ましく、60〜80mol%が特に好ましい。また同様に、リチウム複合酸化物の量の好ましい範囲は、正極活物質に含まれるジルコニウムに対して、10〜70mol%が好ましく、15〜55mol%がより好ましく、20〜40mol%が特に好ましい。酸化ジルコニウムまたはリチウム複合酸化物の量が上記範囲にある場合、なかでも、さらに良好な充放電サイクル特性の向上効果が期待でき、その上、保存特性の向上効果が得られ、ジルコニウム添加の効果を効率良く引き出すことができるために好ましい。 A preferable range of the amount of zirconium oxide is preferably 30 to 90 mol%, more preferably 45 to 85 mol%, and particularly preferably 60 to 80 mol% with respect to zirconium contained in the positive electrode active material. Similarly, the preferable range of the amount of the lithium composite oxide is preferably 10 to 70 mol%, more preferably 15 to 55 mol%, and particularly preferably 20 to 40 mol% with respect to zirconium contained in the positive electrode active material. In the case where the amount of zirconium oxide or lithium composite oxide is in the above range, in particular, it is possible to expect an even better effect of improving charge / discharge cycle characteristics, and in addition, an effect of improving storage characteristics can be obtained. It is preferable because it can be pulled out efficiently.
本願でいう酸化ジルコニウムとは、少なくともジルコニウムの酸化物であり、かつ18%塩酸水溶液中で、マイクロウェーブにより225℃、20分間、密封した状態で加温しても溶解せずに残渣として溶け残る性質を有するものであり、一例としてZrO2が挙げられる。一方、本願でいうリチウム複合酸化物とは、ジルコニウムがコバルト酸リチウムに固溶することにより生じると考えられ、具体的にはリチウムコバルト複合酸化物にジルコニウムが固溶したものまたはリチウムとジルコニウムの複合酸化物であると推定される。また少なくとも18%塩酸水溶液中で、マイクロウェーブにより225℃、20分間、密封した状態で加温すると溶解する性質を有するものであり、一例としてLi2ZrO3、ジルコニウムの固溶したLiCoO2等が挙げられる。 Zirconium oxide as used in the present application is an oxide of at least zirconium, and remains dissolved as a residue without being dissolved even when heated in a sealed state at 225 ° C. for 20 minutes in a 18% hydrochloric acid aqueous solution. One example is ZrO 2 . On the other hand, the lithium composite oxide referred to in the present application is considered to be caused by the solid solution of zirconium in lithium cobalt oxide. Specifically, the lithium composite oxide is a solid solution of zirconium in a lithium cobalt composite oxide or a composite of lithium and zirconium. Presumed to be an oxide. In addition, it has a property of being dissolved when heated in a sealed state at 225 ° C. for 20 minutes by microwave in at least 18% hydrochloric acid aqueous solution. For example, Li 2 ZrO 3 , LiCoO 2 in which zirconium is dissolved, etc. Can be mentioned.
本発明に係る18%塩酸水溶液とは、市販の約36%の濃塩酸に純水を1:1の体積比で混合して調製した水溶液であり、厳密に濃度18%の塩酸水溶液ではなく、約18%であれば十分である。なお、塩酸の%は、重量基準である。 The 18% hydrochloric acid aqueous solution according to the present invention is an aqueous solution prepared by mixing commercially available about 36% concentrated hydrochloric acid with pure water at a volume ratio of 1: 1, not strictly an 18% concentration hydrochloric acid aqueous solution, About 18% is sufficient. The percentage of hydrochloric acid is based on weight.
また本願でいう保存特性は、作成した電池に高電圧を印加した状態で20〜100℃、1〜20日間、放置したときに、発生する二酸化炭素などの気体の量を見ることで測定することができる。この充電した状態で放置した結果、発生した気体の量が少ないほど、優れた保存特性を有する正極活物質である。保存特性の優れた正極活物質ほど、電池として使用したときに電池の容器が膨れないことが期待されるため好ましい。 The storage characteristics referred to in the present application are measured by observing the amount of gas such as carbon dioxide generated when left at 20 to 100 ° C. for 1 to 20 days with a high voltage applied to the prepared battery. Can do. As a result of being left in this charged state, the smaller the amount of gas generated, the more the positive electrode active material has better storage characteristics. A positive electrode active material having excellent storage characteristics is preferred because it is expected that the battery container will not swell when used as a battery.
なお、本発明に係る正極活物質に含まれているジルコニウムに対する酸化ジルコニウムまたはリチウム複合酸化物の割合は次のようにして測定する。ただし下記の酸化ジルコニウムまたはリチウム複合酸化物の割合の測定方法は好適なものの一例であり、測定方法が特にこれに限られるわけではない。 The ratio of zirconium oxide or lithium composite oxide to zirconium contained in the positive electrode active material according to the present invention is measured as follows. However, the measurement method of the ratio of the following zirconium oxide or lithium composite oxide is an example of a suitable one, and the measurement method is not particularly limited thereto.
まず、正極活物質の粉末を約1.0000g秤量し、プラスチック製で内部はPTFE樹脂製の容器からなる加圧密閉可能な容器に移す。次に18%塩酸水溶液を約10ml入れ、容器を密閉し、Milestone社製 MICROWAVE LABORATORY SYSTEMS LAB Terminal 800を用いて、マイクロウェーブにより225℃、20分間、加温することで、正極活物質のほとんどが溶解した塩酸水溶液が得られる。このとき、塩酸水溶液に溶解しない成分が存在し、残渣として溶け残る。この水溶液と残渣を100mlのメスフラスコに移し、メスアップした後、残渣を沈降させる。上澄み液を分取して、ICP測定により溶解成分の組成を調べることで、リチウム複合酸化物の量(mol)を求めることができる。 First, about 1.0000 g of the positive electrode active material powder is weighed and transferred to a pressure-sealing container made of plastic and made of PTFE resin. Next, about 10 ml of 18% hydrochloric acid aqueous solution was added, the container was sealed, and most of the positive electrode active material was heated by microwave at 225 ° C. for 20 minutes using MICROWAVE LABORATORY SYSTEM LAB Terminal 800 manufactured by Milestone. A dissolved aqueous hydrochloric acid solution is obtained. At this time, there are components that do not dissolve in the aqueous hydrochloric acid solution, and they remain undissolved as a residue. The aqueous solution and the residue are transferred to a 100 ml volumetric flask and made up, and then the residue is allowed to settle. The amount of the lithium composite oxide (mol) can be determined by separating the supernatant and examining the composition of the dissolved component by ICP measurement.
また、残った水溶液と残渣の混合物の遠心分離を行い得られる残渣を洗浄し、ついで乾燥する。なお乾燥後の残渣は白色の粉末であった。この残渣について、X線回折装置(理学電機社製、RINT2100型)を用いてX線回折スペクトルの測定を行う。具体的にはCuKα線を使用した高感度粉末X線回折により、加圧電圧50KV、加速電流250mA、走査速度1°/分、ステップ角度0.02°、発散スリット1°、散乱スリット1°、受光スリット0.3mm、モノクロ単色化あり、の条件でX線回折スペクトルを測定した。この測定により、当該残渣が酸化ジルコニウムであることがわかった。 Further, the residue obtained by centrifuging the mixture of the remaining aqueous solution and the residue is washed and then dried. The residue after drying was a white powder. With respect to this residue, an X-ray diffraction spectrum is measured using an X-ray diffractometer (RINT2100 type, manufactured by Rigaku Corporation). Specifically, by high-sensitivity powder X-ray diffraction using CuKα rays, an applied voltage of 50 KV, an acceleration current of 250 mA, a scanning speed of 1 ° / min, a step angle of 0.02 °, a divergence slit of 1 °, a scattering slit of 1 °, An X-ray diffraction spectrum was measured under the conditions of a light receiving slit of 0.3 mm and monochrome monochromation. From this measurement, it was found that the residue was zirconium oxide.
次に、新たに正極活物質の粉末を0.5000g秤量し、内部がPTFE樹脂製である加圧密閉容器に移す。濃硫酸と純水を体積比で1:1で混合した硫酸水溶液を約5ml入れ、過酸化水素水を5滴滴下し、容器を密閉し230℃のオーブンに入れ、12時間加熱する。密閉容器を開けると赤色の沈殿物が残っていたため、ついで18%塩酸水溶液を約10ml加え、加熱して完全に溶解させる。こうして得られる溶液を、ICPで分析を行い、正極活物質に含まれるジルコニウムの総量(mol)を測定する。 Next, 0.5000 g of the positive electrode active material powder is newly weighed and transferred to a pressure sealed container whose inside is made of PTFE resin. About 5 ml of sulfuric acid aqueous solution in which concentrated sulfuric acid and pure water are mixed at a volume ratio of 1: 1 is added, 5 drops of hydrogen peroxide is dropped, the container is sealed, placed in an oven at 230 ° C., and heated for 12 hours. When the sealed container was opened, a red precipitate remained. Then, about 10 ml of 18% hydrochloric acid aqueous solution was added and heated to dissolve completely. The solution thus obtained is analyzed by ICP, and the total amount (mol) of zirconium contained in the positive electrode active material is measured.
上記のようにして求めたリチウム複合酸化物の量(mol)をジルコニウムの総量(mol)で割った値に100を掛けることで、正極活物質に含まれるジルコニウム総量に対するリチウム複合酸化物の割合(mol%)を求めることができる。 By multiplying the value obtained by dividing the amount (mol) of the lithium composite oxide obtained as described above by the total amount (mol) of zirconium by 100, the ratio of the lithium composite oxide to the total amount of zirconium contained in the positive electrode active material ( mol%) can be obtained.
またジルコニウムの総量(mol)からリチウム複合酸化物の量(mol)を引くと塩酸水溶液に溶解しない成分の量(mol)が求められ、さらに、これをジルコニウムの総量(mol)で割った値に100を掛けることで、正極活物質に含まれるジルコニウムに対する塩酸水溶液に溶解しない成分の量の割合(mol%)を求めることができる。 Also, subtracting the amount (mol) of the lithium composite oxide from the total amount (mol) of zirconium gives the amount (mol) of the component that does not dissolve in the hydrochloric acid aqueous solution, and further dividing this by the total amount (mol) of zirconium. By multiplying by 100, the ratio (mol%) of the amount of the component not dissolved in the hydrochloric acid aqueous solution with respect to zirconium contained in the positive electrode active material can be obtained.
従来、正極活物質の充放電サイクル特性を調べるためには、実際にリチウム二次電池を製造して充放電を繰り返して試験する方法が採られていた。また同様に保存特性を調べるために、実際にリチウム二次電池を製造して長期間保存して試験する方法が採られていた。これらの方法には長い時間、多大な手間、多大な費用が必要であった。しかし、上記の分析方法を用いることによって、従来よりも飛躍的に短期間で、簡易に、かつ安価に充放電サイクル特性および保存特性の良し悪しを判断できるようになる(以下、本分析方法をジルコニウム簡易分析法という)。 Conventionally, in order to examine the charge / discharge cycle characteristics of the positive electrode active material, a method of actually manufacturing a lithium secondary battery and repeatedly testing it by charging / discharging has been adopted. Similarly, in order to investigate the storage characteristics, a method of actually manufacturing a lithium secondary battery and storing and testing it for a long period of time has been adopted. These methods required a long time, a lot of labor and a lot of cost. However, by using the above analysis method, it is possible to judge the quality of charge / discharge cycle characteristics and storage characteristics easily and inexpensively in a significantly shorter period of time (hereinafter referred to as this analysis method). Zirconium simplified analysis method).
本発明に係る正極活物質に含まれるジルコニウムの量は、コバルトに対して0.01〜1.5mol%の範囲にあることが好ましく、さらには0.02〜1.0mol%の範囲にあることが好ましく、特に0.05〜0.75mol%の範囲にあることが好ましい。ジルコニウムの量が上記範囲にある場合、充放電サイクル特性と放電容量のバランスが良好であり好ましい。すなわち十分な充放電サイクル特性と高い放電容量を有する正極活物質が得られる可能性が高くなる。 The amount of zirconium contained in the positive electrode active material according to the present invention is preferably in the range of 0.01 to 1.5 mol% with respect to cobalt, and more preferably in the range of 0.02 to 1.0 mol%. Is preferable, and is particularly preferably in the range of 0.05 to 0.75 mol%. When the amount of zirconium is in the above range, the balance between charge / discharge cycle characteristics and discharge capacity is good, which is preferable. That is, the possibility of obtaining a positive electrode active material having sufficient charge / discharge cycle characteristics and high discharge capacity is increased.
さらに本発明の正極活物質はアルミニウムおよび/またはマグネシウムを含むことが好ましい。これらの元素は、安全性をさらに向上させる効果を有する。
本発明の正極活物質に含まれるアルミニウムの量は、コバルトに対して、0.05〜3.0mol%が好ましく、0.1〜2.0mol%がさらに好ましい。またマグネシウムの量も同様に0.05〜3.0mol%が好ましく、0.1〜2.0mol%がさらに好ましい。
Furthermore, the positive electrode active material of the present invention preferably contains aluminum and / or magnesium. These elements have the effect of further improving safety.
0.05-3.0 mol% is preferable with respect to cobalt, and, as for the quantity of aluminum contained in the positive electrode active material of this invention, 0.1-2.0 mol% is more preferable. Similarly, the amount of magnesium is preferably 0.05 to 3.0 mol%, more preferably 0.1 to 2.0 mol%.
正極活物質に含まれるアルミニウムまたはマグネシウムの量が上記範囲内ある場合、充放電サイクル特性、放電容量および安全性のバランスが非常に良好であり、好ましい。すなわち、十分な充放電サイクル特性、高い放電容量および高い安全性を兼ね揃えた正極活物質となる可能性が高く好ましい。 When the amount of aluminum or magnesium contained in the positive electrode active material is within the above range, the balance between charge / discharge cycle characteristics, discharge capacity, and safety is very good, which is preferable. That is, it is preferable because it is likely to be a positive electrode active material having sufficient charge / discharge cycle characteristics, high discharge capacity, and high safety.
また、本発明に係る正極活物質が、特にコバルトに対して0.1〜3.0mol%のアルミニウムおよびマグネシウムを有するような正極活物質であるとき、当該正極活物質は、さらに顕著に優れた充放電サイクル特性、放電容量および安全性を示し、またそれらのバランスも非常に良好であり、同時に優れた保存特性を有しており、非常に好ましい。 In addition, when the positive electrode active material according to the present invention is a positive electrode active material having 0.1 to 3.0 mol% of aluminum and magnesium with respect to cobalt, the positive electrode active material is significantly more excellent. It exhibits charge / discharge cycle characteristics, discharge capacity and safety, and also has a very good balance, and at the same time has excellent storage characteristics, which is very preferable.
なお、正極活物質に含まれるジルコニウム、アルミニウム、マグネシウムおよびコバルトの量の測定には、上記の高周波プラズマ発光分析(ICP)、X線回折法(XRD)、エネルギー分散型X線分光法(EDX)、X線光電子分析(ESCA)、電子プローブマイクロ分析(EPMA)等を用いることができる。 In addition, in the measurement of the amount of zirconium, aluminum, magnesium and cobalt contained in the positive electrode active material, the above-mentioned high frequency plasma emission analysis (ICP), X-ray diffraction method (XRD), energy dispersive X-ray spectroscopy (EDX) X-ray photoelectron analysis (ESCA), electron probe microanalysis (EPMA), or the like can be used.
本発明に係る正極活物質に含まれるリチウム量(mol)を、正極活物質に含まれるリチウム以外のその他の金属(例えば、ジルコニウム、アルミニウム、マグネシウム、コバルト)の合量(mol)で割った値(以下、Li/Me比という)の好ましい範囲は0.97〜1.03であり、さらには0.98〜1.00が好ましい。 Value obtained by dividing the amount of lithium (mol) contained in the positive electrode active material according to the present invention by the total amount (mol) of other metals (eg, zirconium, aluminum, magnesium, cobalt) other than lithium contained in the positive electrode active material The preferable range (hereinafter referred to as Li / Me ratio) is 0.97 to 1.03, and more preferably 0.98 to 1.00.
本発明の正極活物質を製造するとき、Li/Me比が上記範囲にある場合、本発明の正極活物質を安定して製造でき不良品ロットができにくい傾向があるため、量産化するにあたり、Li/Me比は上記範囲にあると好ましい。 When producing the positive electrode active material of the present invention, when the Li / Me ratio is in the above range, the positive electrode active material of the present invention tends to be stably produced and it is difficult to produce a defective product lot. The Li / Me ratio is preferably in the above range.
本発明の正極活物質に含まれるジルコニウム、アルミニウムおよびマグネシウムの合量が、正極活物質中のコバルトに対して多すぎると、放電容量の減少、充放電サイクル特性の低下が起こることがあるため、コバルトに対するジルコニウム、アルミニウムおよびマグネシウムの合量は0.1〜3.5mol%が好ましい。 If the total amount of zirconium, aluminum and magnesium contained in the positive electrode active material of the present invention is too large relative to cobalt in the positive electrode active material, the discharge capacity may decrease, and the charge / discharge cycle characteristics may deteriorate. The total amount of zirconium, aluminum and magnesium with respect to cobalt is preferably 0.1 to 3.5 mol%.
本発明の正極活物質の製造方法は必ずしも制限されず、既知の方法により製造することができる。例えばコバルト原料としては特に限定されないが、水酸化コバルト、酸化コバルト、オキシ水酸化コバルト、硫酸コバルト、硝酸コバルトが使用でき、なかでも水酸化コバルト、オキシ水酸化コバルトが好ましい。 The manufacturing method of the positive electrode active material of this invention is not necessarily restrict | limited, It can manufacture by a known method. For example, the cobalt raw material is not particularly limited, but cobalt hydroxide, cobalt oxide, cobalt oxyhydroxide, cobalt sulfate, and cobalt nitrate can be used, and cobalt hydroxide and cobalt oxyhydroxide are particularly preferable.
リチウム原料としては特に限定されないが、炭酸リチウム、水酸化リチウムを使用することができ、なかでも炭酸リチウム、水酸化リチウムが好ましい。
ジルコニウム原料、アルミニウム原料またはマグネシウム原料としては特に限定されないが、酸化物、水酸化物、硝酸塩、硫酸塩、酢酸塩を含む有機酸塩が使用でき、なかでも酸化物、水酸化物が好ましい。
Although it does not specifically limit as a lithium raw material, Lithium carbonate and lithium hydroxide can be used, and lithium carbonate and lithium hydroxide are especially preferable.
Although it does not specifically limit as a zirconium raw material, an aluminum raw material, or a magnesium raw material, The organic acid salt containing an oxide, a hydroxide, nitrate, a sulfate, and acetate can be used, and an oxide and a hydroxide are especially preferable.
本発明に関わる原料混合粉は800〜1100℃の温度で、酸素含有雰囲気において5〜24時間、焼成することが好ましい。焼成温度が800℃より低い場合は反応が不完全で未反応原料が生成物である正極活物質中に残る虞があり、また1100℃を超える場合は生成物である正極活物質が一部分解する虞があり、充放電サイクル特性や放電容量が低下してしまうことがある。また焼成温度については900〜1050℃の範囲がさらに好ましい。得られた焼成物を冷却後、粉砕、分級することにより本発明の正極活物質の粉末が得られる。 The raw material mixed powder according to the present invention is preferably fired at a temperature of 800 to 1100 ° C. in an oxygen-containing atmosphere for 5 to 24 hours. If the calcination temperature is lower than 800 ° C., the reaction may be incomplete and unreacted raw materials may remain in the product positive electrode active material, and if it exceeds 1100 ° C., the product positive electrode active material is partially decomposed. There is a possibility that charge / discharge cycle characteristics and discharge capacity may be deteriorated. Further, the firing temperature is more preferably in the range of 900 to 1050 ° C. The obtained fired product is cooled, pulverized and classified to obtain the positive electrode active material powder of the present invention.
このようにして得られた本発明の正極活物質粉末は、その平均粒径が好ましくは10〜25μm、さらに好ましくは12〜20μmであり、比表面積が好ましくは0.15〜0.60m2/g、特に好ましくは0.18〜0.50m2/gである。 The positive electrode active material powder of the present invention thus obtained has an average particle size of preferably 10 to 25 μm, more preferably 12 to 20 μm, and a specific surface area of preferably 0.15 to 0.60 m 2 / g, particularly preferably 0.18 to 0.50 m 2 / g.
本発明における平均粒径とは、レーザー散乱粒度分布測定装置(例えば、Leeds&Northrup社製マイクロトラックHRAX−100などを用いる)により得られた体積粒度分布の累積50%の値を意味する。また比表面積はBET法により求めた。 The average particle size in the present invention means a cumulative 50% value of the volume particle size distribution obtained by a laser scattering particle size distribution measuring apparatus (for example, using Microtrack HRAX-100 manufactured by Lees & Northrup). The specific surface area was determined by the BET method.
CuKαを線源とするX線回折(理学電機社製、RINT2100型を用いた)によって測定される2θ=66.5±1°の(110)面回折ピーク積分幅が好ましくは0.09〜0.13°である。 The (110) plane diffraction peak integral width of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using a CuKα radiation source (manufactured by Rigaku Corporation, using RINT2100 type) is preferably 0.09-0. .13 °.
正極活物質粉末の平均粒径、比表面積または(110)面回折ピーク積分幅が上記の範囲内にない場合、正極の大電流放電特性、自己放電特性や安全性が低下する他に、集電体に均一に塗工することが困難になることがあり、好ましくない。 If the average particle diameter, specific surface area or (110) plane diffraction peak integral width of the positive electrode active material powder is not within the above range, the current collector characteristics of the positive electrode, self-discharge characteristics and safety are reduced. It may be difficult to uniformly apply to the body, which is not preferable.
本発明に関する正極活物質を用いて、リチウム二次電池用の正極を得る方法は、常法に従って実施できる。例えば、本発明の正極活物質の粉末に、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材と、結合材とを混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。
上記の正極合剤を、N−メチルピロリドンなどの分散媒に分散させたスラリーをアルミニウム箔等の正極集電体に塗工・乾燥およびプレス圧延せしめて正極活物質層を正極集電体上に形成する。
A method for obtaining a positive electrode for a lithium secondary battery using the positive electrode active material according to the present invention can be carried out according to a conventional method. For example, the positive electrode mixture is formed by mixing the positive electrode active material powder of the present invention with a carbon-based conductive material such as acetylene black, graphite, or ketjen black and a binder. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used.
A slurry in which the above positive electrode mixture is dispersed in a dispersion medium such as N-methylpyrrolidone is applied to a positive electrode current collector such as an aluminum foil, dried and press-rolled to form a positive electrode active material layer on the positive electrode current collector Form.
本発明の正極活物質を正極に使用するリチウム二次電池において、電解質溶液の溶質としては、ClO4 −、CF3SO3 −、BF4 −、PF6 −、AsF6 −、SbF6 −、CF3CO2 −、(CF3SO2)2N−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を前記溶媒または溶媒含有ポリマーに0.2〜2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5〜1.5mol/Lが選定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。 In the lithium secondary battery using the positive electrode active material of the present invention for the positive electrode, the solute of the electrolyte solution is ClO 4 − , CF 3 SO 3 − , BF 4 − , PF 6 − , AsF 6 − , SbF 6 − , It is preferable to use at least one of lithium salts having CF 3 CO 2 − , (CF 3 SO 2 ) 2 N − or the like as an anion. In the above electrolyte solution or polymer electrolyte, an electrolyte composed of a lithium salt is preferably added to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / L is selected. For the separator, porous polyethylene or porous polypropylene film is used.
また、電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。 Further, as the solvent of the electrolyte solution, a carbonate ester is preferable. The carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
上記炭酸エステルは単独でも2種以上を混合して使用してもよい。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、充放電サイクル特性、充放電効率が改良できる場合がある。 The carbonate ester may be used alone or in combination of two or more. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, charge / discharge cycle characteristics, and charge / discharge efficiency may be improved.
また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社製カイナー)、フッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を添加し、下記の溶質を加えることによりゲルポリマー電解質としても良い。 Further, by adding a vinylidene fluoride-hexafluoropropylene copolymer (for example, Kyner manufactured by Atchem Co.) or a vinylidene fluoride-perfluoropropyl vinyl ether copolymer to these organic solvents, and adding the following solute, the gel polymer electrolyte is added. It is also good.
本発明の正極活物質を正極に使用するリチウム電池の負極活物質は、リチウムイオンを吸蔵、放出可能な材料である。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物、周期表14、15族の金属を主体とした酸化物等が挙げられる。 The negative electrode active material of a lithium battery using the positive electrode active material of the present invention for the positive electrode is a material that can occlude and release lithium ions. The material for forming the negative electrode active material is not particularly limited. For example, lithium metal, lithium alloy, carbon material, carbon compound, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, periodic table 14, and group 15 metal are used. The main oxides are listed.
炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。 As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil or the like is used.
本発明における正極活物質を使用するリチウム二次電池の形状には、特に制約はない。シート状(いわゆるフイルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。 There is no restriction | limiting in particular in the shape of the lithium secondary battery which uses the positive electrode active material in this invention. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
以下に実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
(実施例1)
リチウム含量18.7重量%の炭酸リチウム、ジルコニウム含量74.0重量%の酸化ジルコニウム、マグネシウム含量41.6重量%の水酸化マグネシウム、アルミニウム含量34.6重量%の水酸化アルミニウムおよびコバルト含量59.8重量%であり平均粒径D50が12.3μmのオキシ水酸化コバルト粉末をLi:Zr:Mg:Al:Coのモル比が1:0.002:0.005:0.005:0.988となるように混合して原料混合粉末を調製した。ついで、この原料混合粉末を大気中、1000℃にて15時間焼成した。焼成した後、粉砕し正極活物質粉末を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(Example 1)
Lithium carbonate with a lithium content of 18.7% by weight, zirconium oxide with a zirconium content of 74.0% by weight, magnesium hydroxide with a magnesium content of 41.6% by weight, aluminum hydroxide with an aluminum content of 34.6% by weight and cobalt content 59. Cobalt oxyhydroxide powder having an average particle diameter D50 of 12.3 μm and a weight ratio of Li: Zr: Mg: Al: Co is 1: 0.002: 0.005: 0.005: 0.988. The raw material mixed powder was prepared by mixing so that Subsequently, this raw material mixed powder was fired at 1000 ° C. for 15 hours in the air. After firing, the mixture was pulverized to obtain a positive electrode active material powder.
この正極活物質粉末に含まれる酸化ジルコニウムの量を測定するために、上述のジルコニウム簡易分析法を用いて分析した結果、添加したジルコニウムの31mol%が酸化ジルコニウムであり、69mol%がリチウム複合酸化物であった。 In order to measure the amount of zirconium oxide contained in the positive electrode active material powder, analysis was performed using the above-described simple zirconium analysis method. As a result, 31 mol% of the added zirconium was zirconium oxide, and 69 mol% was a lithium composite oxide. Met.
この正極活物質粉末に関して、BET法により求めた比表面積は0.32m2/gであり、レーザー散乱式粒度分布計で求めた平均粒径D50は12.3μmであった。 With respect to this positive electrode active material powder, the specific surface area determined by the BET method was 0.32 m 2 / g, and the average particle diameter D50 determined by a laser scattering particle size distribution meter was 12.3 μm.
またX線回折装置(理学電機社製、RINT2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面回折ピーク積分幅は0.121°であった。 Further, an X-ray diffraction spectrum was obtained using an X-ray diffractometer (RINT2100, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the (110) plane diffraction peak integration width at 2θ = 66.5 ± 1 ° was 0.121 °.
ついで、前記正極活物質粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の重量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。ついで乾燥し、ロールプレス圧延を行うことによりリチウム電池用の正極体シートを作製した。 Next, the positive electrode active material powder, acetylene black, and polyvinylidene fluoride powder were mixed at a weight ratio of 90/5/5, N-methylpyrrolidone was added to prepare a slurry, and an aluminum foil having a thickness of 20 μm One side coating was performed using a doctor blade. Subsequently, it dried and roll-press-rolled to produce the positive electrode sheet for lithium batteries.
そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF6/EC+DEC(1:1)溶液(LiPF6を溶質とするECとDECとの体積比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で組み立てた。 The positive electrode sheet is punched out as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil of 20 μm is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. Further, the electrolytic solution used is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in volume ratio (1: 1) containing LiPF 6 as a solute. Solvents described later). The stainless steel simple sealed cell type lithium battery was assembled in an argon glove box.
上記の組み立てた電池については、4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗浄後、直径3mmに打ち抜き、ECとともにアルミニウム製カプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は161℃であった。 The assembled battery is charged at 4.3 V for 10 hours, disassembled in an argon glove box, the positive electrode sheet after charging is taken out, the positive electrode sheet is washed, punched to a diameter of 3 mm, and aluminum together with EC. It sealed in the capsule made from a product, and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 161 ° C.
また同様の電池をさらに作製し、高電圧使用時の評価を下記のように行った。25℃にて正極活物質1gにつき75mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電した。このときの初期放電容量は189mAh/gであった。電極層の密度と重量当たりの容量から体積容量密度を求めた。さらに充放電サイクル試験を50回行った。その結果、25℃、50回充放電サイクル後の容量維持率は94.8%であった。 Moreover, the same battery was further produced, and the evaluation at the time of high voltage use was performed as follows. At 25 ° C., the battery was charged to 4.5 V with a load current of 75 mA per 1 g of the positive electrode active material, and discharged to 2.5 V with a load current of 75 mA per 1 g of the positive electrode active material. The initial discharge capacity at this time was 189 mAh / g. The volume capacity density was determined from the density of the electrode layer and the capacity per weight. Further, the charge / discharge cycle test was performed 50 times. As a result, the capacity retention rate after 50 charge / discharge cycles at 25 ° C. was 94.8%.
(実施例2〜4、比較例1〜2)
原料となる炭酸リチウム、酸化ジルコニウム、水酸化マグネシウム、水酸化アルミニウムおよびオキシ水酸化コバルト粉末の量を適宜変えて、下記表1に示すような組成の正極活物質を合成したこと以外は、上記実施例1と同様にして、正極活物質粉末を得た。なお、表1中のLi、Zr、Mg、Al、Coは正極活物質に含まれる各元素のモル比である。また正極活物質中のジルコニウムに占める酸化ジルコニウムまたはリチウム複合酸化物の割合(mol%)も一緒に記載した。
(Examples 2-4, Comparative Examples 1-2)
Except that the amount of lithium carbonate, zirconium oxide, magnesium hydroxide, aluminum hydroxide, and cobalt oxyhydroxide powders as raw materials was appropriately changed, and a positive electrode active material having a composition as shown in Table 1 below was synthesized, the above implementation was carried out. In the same manner as in Example 1, a positive electrode active material powder was obtained. In Table 1, Li, Zr, Mg, Al, and Co are molar ratios of each element contained in the positive electrode active material. Further, the ratio (mol%) of zirconium oxide or lithium composite oxide in zirconium in the positive electrode active material is also described.
(比較例3)
原料となる炭酸リチウム、酸化ジルコニウム、水酸化マグネシウム、水酸化アルミニウムおよびコバルト含量が60.2重量%であり、かつ平均粒径D50が12.4μmのオキシ水酸化コバルト粉末の量を調節して、Li:Zr:Mg:Al:Coのモル比が1:0.002:0.005:0.005:0.988となるように正極活物質を合成したこと以外は、上記実施例1と同様にして、正極活物質粉末を得た。また正極活物質中のジルコニウムに占める酸化ジルコニウムまたはリチウム複合酸化物の割合(mol%)も表1に記載した。
(Comparative Example 3)
Adjusting the amount of the raw material lithium carbonate, zirconium oxide, magnesium hydroxide, aluminum hydroxide and cobalt content of 60.2% by weight and the average particle size D50 of 12.4 μm cobalt oxyhydroxide powder; The same as Example 1 except that the positive electrode active material was synthesized so that the molar ratio of Li: Zr: Mg: Al: Co was 1: 0.002: 0.005: 0.005: 0.988. Thus, a positive electrode active material powder was obtained. Table 1 also shows the ratio (mol%) of zirconium oxide or lithium composite oxide in zirconium in the positive electrode active material.
次に、実施例2〜4または比較例1〜3で得られた正極活物質粉末を実施例1と同様にして、正極活物質の粉体特性、電池特性を測定した。その結果を実施例1と一緒に下記表2に示した。 Next, the positive electrode active material powders obtained in Examples 2 to 4 or Comparative Examples 1 to 3 were measured in the same manner as in Example 1 to measure the powder characteristics and battery characteristics of the positive electrode active material. The results are shown in Table 2 below together with Example 1.
また、表3には実施例1〜4および比較例1〜3で得られた正極活物質に含まれるジルコニウム、マグネシウムまたはアルミニウムのコバルトに対する量(mol%)をまとめて記載した。 Table 3 collectively shows the amount (mol%) of zirconium, magnesium or aluminum contained in the positive electrode active materials obtained in Examples 1 to 4 and Comparative Examples 1 to 3 with respect to cobalt.
以上のように、本発明によれば、リチウム二次電池にとって有用である優れた充放電サイクル特性を有し、高容量で、かつ高電圧用途にも使用できるリチウム二次電池用正極活物質が提供される。 As described above, according to the present invention, there is provided a positive electrode active material for a lithium secondary battery that has excellent charge / discharge cycle characteristics that are useful for a lithium secondary battery, has a high capacity, and can be used for high voltage applications. Provided.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005353966A JP4813165B2 (en) | 2005-12-07 | 2005-12-07 | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005353966A JP4813165B2 (en) | 2005-12-07 | 2005-12-07 | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007157596A JP2007157596A (en) | 2007-06-21 |
JP4813165B2 true JP4813165B2 (en) | 2011-11-09 |
Family
ID=38241683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005353966A Expired - Fee Related JP4813165B2 (en) | 2005-12-07 | 2005-12-07 | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4813165B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5954153B2 (en) * | 2012-12-13 | 2016-07-20 | 日亜化学工業株式会社 | Cathode active material for non-aqueous electrolyte secondary battery |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2855877B2 (en) * | 1991-04-17 | 1999-02-10 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery |
JPH11130401A (en) * | 1997-10-29 | 1999-05-18 | Toyota Central Res & Dev Lab Inc | High activation treatment of hydrogen storage alloy |
JP5150025B2 (en) * | 2001-06-01 | 2013-02-20 | 日本化学工業株式会社 | Method for producing lithium cobalt composite oxide |
KR101021991B1 (en) * | 2002-09-25 | 2011-03-16 | 에이지씨 세이미 케미칼 가부시키가이샤 | Positive electrode material for lithium secondary battery and process for producing the same |
JP4156358B2 (en) * | 2002-12-19 | 2008-09-24 | 日本化学工業株式会社 | Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery |
JP2005190900A (en) * | 2003-12-26 | 2005-07-14 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery |
JP2004311408A (en) * | 2003-03-25 | 2004-11-04 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP4424949B2 (en) * | 2003-09-09 | 2010-03-03 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP2006228651A (en) * | 2005-02-21 | 2006-08-31 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery and its charging method |
-
2005
- 2005-12-07 JP JP2005353966A patent/JP4813165B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007157596A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380608B2 (en) | Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery | |
JP6107832B2 (en) | Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR101587293B1 (en) | Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE | |
JP5879761B2 (en) | Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR102296131B1 (en) | Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same | |
JP6112118B2 (en) | Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery | |
JP5192818B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP5987401B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery | |
US11196048B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery containing the positive electrode active material | |
JP2017084628A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery | |
JP5205923B2 (en) | Non-aqueous electrolyte secondary battery electrode material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery using the same | |
JPWO2007142275A1 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JPWO2004082046A1 (en) | Positive electrode active material powder for lithium secondary battery | |
JP2016115658A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery | |
JP7021366B2 (en) | Lithium transition metal composite oxide as positive electrode active material for rechargeable lithium secondary batteries | |
US20050214645A1 (en) | Process for producing positive electrode active material for lithium secondary battery | |
WO2013080515A1 (en) | Negative electrode active material, electrical storage device, and method for producing negative electrode active material | |
JP2015041600A (en) | Method of producing lithium-containing composite oxide for lithium ion secondary battery | |
JP6966959B2 (en) | Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery | |
WO2021006124A1 (en) | Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell | |
JP2017050204A (en) | Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery | |
WO2022044720A1 (en) | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery | |
JP4813165B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP2004119221A (en) | Method for manufacturing positive active material for lithium secondary battery | |
JP4873915B2 (en) | Method for producing lithium cobalt composite oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110824 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |