Nothing Special   »   [go: up one dir, main page]

JP4156358B2 - Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery - Google Patents

Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4156358B2
JP4156358B2 JP2002368076A JP2002368076A JP4156358B2 JP 4156358 B2 JP4156358 B2 JP 4156358B2 JP 2002368076 A JP2002368076 A JP 2002368076A JP 2002368076 A JP2002368076 A JP 2002368076A JP 4156358 B2 JP4156358 B2 JP 4156358B2
Authority
JP
Japan
Prior art keywords
lithium
oxide
compound
positive electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368076A
Other languages
Japanese (ja)
Other versions
JP2004196604A (en
Inventor
克幸 根岸
英和 粟野
義英 大石
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002368076A priority Critical patent/JP4156358B2/en
Priority to TW093108498A priority patent/TW200532960A/en
Publication of JP2004196604A publication Critical patent/JP2004196604A/en
Application granted granted Critical
Publication of JP4156358B2 publication Critical patent/JP4156358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コバルト酸リチウム複合酸化物及びその製造方法並びに非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源として非水電解質二次電池が実用化されている。
この非水電解質二次電池については、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
リチウム−遷移金属複合酸化物を活物質とする正極するを備えるリチウム二次電池において、前記正極の表面に、BeO、MgO、CaO、SrO、BaO、ZnO、Al23、CEO2、As23又はこれらの2種以上の混合物からなる被膜が形成されていることを特徴とするリチウム二次電池が提案されている。(例えば、特許文献1参照)。
【0004】
負極、正極、リチウム塩を含む非水電解質からなる可逆的に複数回の充放電が可能な電池の回りにTi、Al、Sn、Bi、Cu、Si、Ga、W、Zr、B、Moから選ばれた少なくとも1種を含む金属及びまたはこれらの複数個の組み合わせにより得られる金属間化合物、及びまたは酸化物を被覆したものを使用することを特徴とする正極およびそれを用いた電池が提案されている。(例えば、特許文献2参照)
【0005】
【特許文献1】
特開平8−236114号公報
【特許文献2】
特開平11−16566号公報
【0006】
【発明が解決しようとする課題】
しかしながら、現在では正極活物質の性能の向上が要求されており、上記方法を用いても充分な電池性能を満たすことができなくなっている。特に、安全性、電池容量、負荷特性の向上やアルミラミネート電池における膨れ抑制の改善が要求されている。
従って、本発明の目的は非水電解質二次電池の正極活物質として用いたときに、特に負荷特性と膨れ抑制に優れた非水電解質二次電池の正極活物質として有用なコバルト酸リチウム、その製造方法、これを含有する正極活物質を用いる非水電解質二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記実情において鋭意研究を重ねた結果、コバルト酸リチウムと金属酸化物とを混合することにより上記目的を達成することができることを見出し、本発明を完成するに至った。
本発明は、安息角が50度以下で、タップ密度が1.3〜1.8g/cm で、且つ、平均粒子径が8〜15μmであるオキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合することにより、該コバルト酸リチウムの表面を該金属酸化物で改質してなることを特徴とするコバルト酸リチウム複合化合物を提供するものである。
【0008】
また、タップ密度が2.40g/cm3以上である前記記載のコバルト酸リチウム複合化合物を提供するものである。
【0009】
また、本発明は、下記の工程を含むことを特徴とするコバルト酸リチウム複合化合物の製造方法を提供するものである。
第一工程:安息角が50度以下で、タップ密度が1.3〜1.8g/cm で、且つ、平均粒子径が8〜15μmであるオキシ水酸化コバルトとリチウム化合物とを混合した後、該混合物を焼成してコバルト酸リチウムを製造する工程、
第二工程:第一工程で得られたコバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合することにより、該コバルト酸リチウムの表面を該金属酸化物で改質する第二工
【0011】
また、本発明は、正極が、前記のコバルト酸リチウム複合化合物を正極活物質として含んでいることを特徴とする非水電解質二次電池を提供するものである。
【0012】
【発明の実施形態】
以下、本発明について詳細に説明する。
即ち、本発明のコバルト酸リチウム複合化合物は、オキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムに酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合してなることを特徴とするものである。
本発明で使用されるコバルト酸リチウム複合化合物は、オキシ水酸化コバルトとリチウム化合物とからから得られるものを使用することが好ましい。
【0013】
オキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムは、一般式(1)のLixCoO2(式中、xは、0.2≦x≦1.2の範囲内の数を表す)又は一般式(2) LixCo1-yy2-z (式中、Mは、Coを除く遷移金属元素または原子番号9以上の元素からなる群から選択される1種以上の元素を表し、xは、0.2≦x≦1.2の範囲内の数を表し、yは、0<y≦0.4の範囲内の数を表し、zは、0≦z≦1.0の範囲内の数を表す)で表されるものである。
【0014】
また、LixCo1-yy2-z のCoの一部を他の金属元素で置換したものであってもよい金属元素としては、例えばNa, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Si, Ga, Zr, Nb, W, Moから選ばれる1種以上である。
また、LixCoO2又はLixCo1-yy2-z のCoの一部を他の金属元素で置換したコバルト酸リチウムの表面に硫酸塩を被覆したものであってもよい。
【0015】
コバルト酸リチウムと混合されてなる金属酸化物は、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上であるが、これらは単独でも良いし、これらの混合物であってもよい。
また、本発明のコバルト酸リチウム複合化合物は、タップ密度が2.40g/cm3以上の特性を有するものが好ましい。
【0016】
本発明のコバルト酸リチウム複合化合物の製造方法は、下記の工程を含むことを特徴とするものである。
第一工程:オキシ水酸コバルトとリチウム化合物とを混合した後、該混合物を焼成してコバルト酸リチウムを製造する工程、
第二工程:第一工程で得られたコバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合してなる第二工程
係るオキシ水酸化コバルトは、安息角が50度以下で、且つタップ密度が1.3〜1.8g/cm3であることが好ましい
【0017】
更に前記オキシ水酸化コバルトは、0.1〜1μmの1次粒子が凝集した2次粒子を形成し、該2次粒子の平均粒子径が8〜15μmであるであることが好ましい。
第一工程で使用されるオキシ水酸化コバルトは、如何なる方法において得られてもよいが、例えば硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を、酸化剤で酸化させた後、アルカリで中和したものを用いることができる。
【0018】
上記酸化剤としては特に限定されず、例えば、空気、酸素、オゾン;過マンガン酸(HMnO4 )及びMMnO4 等で表されるその塩;クロム酸(CrO3 )及びM2 Cr27 、M2 CrO4 、MCrO3 Cl、CrO2 Cl2 等で表されるその関連化合物;F2 、Cl2 、Br2 、I2 等のハロゲン;H22 、Na22 、BaO2 等の過酸化物;ペルオクソ酸及びM228 、M2 SO5、H2 CO3 、CH3 CO3 H等で表されるその塩;酸素酸及びMClO、MBrO、MIO、MClO3 、MBrO3 、MIO3 、MClO4 、MIO4 、Na32 IO6 、KIO4 等で表されるその塩等を挙げることができる。式中、Mは、アルカリ金属元素を表す。
上記アルカリとしては特に限定されず、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の水溶液等を挙げることができる。
【0019】
上記オキシ水酸化コバルトは、具体的には硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を水に溶解させて水溶液とし、上記酸化剤及び上記アルカリを添加して、中和と酸化とを同時に行うことにより得ることができる。また、上記2価のコバルトを有する化合物を含む水溶液に上記アルカリを加えて、2価の水酸化コバルトを合成した後、酸化剤を添加して酸化することにより上記オキシ水酸化コバルトを得ることもできる。更に、上記2価のコバルトを有する化合物を含む水溶液に上記酸化剤を添加した後、上記アルカリを添加して中和することにより上記オキシ水酸化コバルトを得ることもできる。オキシ水酸化コバルトの主成分は、CoOOHであるが、その他にCo34、CoCO3等が含まれているものである。
【0020】
上記リチウム化合物は、特に限定されないが、例えば水酸化リチウム、炭酸リチウム、硝酸リチウム等の無機リチウム塩を好適に用いることができる。リチウム化合物としては、炭酸リチウムが工業的に入手し易く、安価であるため好ましい。
【0021】
本発明の第一工程は、例えば、上記オキシ水酸化リチウムとリチウム化合物、好ましくは炭酸リチウムを混合し、混合物を得る。混合は、乾式または湿式の何れの方法でよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するためのブレンダーを用いることが好ましい。混合工程の原料のリチウム化合物とコバルト化合物との配合割合は、Co原子とLi原子のモル比(Li/Co)で、0.99〜1.06、好ましくは0.99〜1.02とすることが好ましい。
次に、混合物を焼成する。焼成温度は700〜1100℃、850〜1050℃が好ましい。焼成時間は1〜24時間、好ましくは2〜10時間である。
【0022】
焼成は、大気中又は酸素雰囲気中のいずれかで行ってもよく、特に制限されるものではない。焼成後は、適宜冷却し、必要に応じ粉砕してコバルト酸リチウムを得る。なお、必要に応じて行われる粉砕は、焼成して得られるコバルト酸リチウムがもろく結合したブロック状のものである場合適宜行われる。
上記方法により得られるコバルト酸リチウムは、レーザー法測定で平均粒子径が10〜15μm、好ましくは10〜13μm、更には残存する炭酸リチウムの量が0.1重量1%以下である。
【0023】
また、本発明の第二工程は、前記方法により得られたコバルト酸リチウムと金属酸化物を混合するものであるが、金属酸化物は工業的に入手できるものであれば特に限定されるものではなく、平均粒子径は電子顕微鏡写真による測定で1μm以下、好ましくは0.005〜1μm、特に好ましくは0.01〜0.25μmである。
係る混合方法は、乾式や湿式等による如何なる方法により行われても良いが、乾式による混合が工業的に好ましい。乾式混合の場合は、原料が均一に混合するためのブレンダーを用いることが好ましい。
係る金属酸化物のコバルト酸リチウムに対する添加量は、0.05〜1重量%であることが好ましい。
オキシ水酸化コバルトとリチウム化合物とから得られたコバルト酸リチウムは、残存する炭酸リチウムの量が0.1重量1%以下であることから微細な金属酸化物と混合することにより表面の状態が改質され、タップ密度を上昇させることができる。
【0024】
本発明のコバルト酸リチウム複合化合物は、上記の特性を有するが故に、非水電解質ニ次電池の正極活物質として用いる場合、充填性が高く、安全性の高いものとなり、更に負荷特性と膨れ抑制に優れた非水電解質ニ次電池の正極活物質として有用である。
【0025】
本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解質(例えばリチウム塩含有電解質)等から構成され、正極は、正極板(正極集電体:例えばアルミニウム板)上に正極活物質、導電剤及び結着剤を含有してなる正極合剤を塗布してなるものである。本発明の非水電解質二次電池は、正極板を構成する正極活物質として上記正極活物質を使用するものである。なお、正極活物質を予め製造するのではなく、正極合剤を調製する際に、上記本発明の正極活物質の条件を満足する構成のリチウム複合酸化物粒子を配合して均一に混合しても良い。
【0026】
本発明の非水電解質二次電池の負極に用いられる負極材料としては、特に制限されるものではないが、例えば炭素質材料、金属複合酸化物、リチウム金属またはリチウム合金などが挙げられる。炭素質材料としては、難黒鉛化炭素材料、黒鉛系炭素材料などが挙げられ、金属複合酸化物としては、SnM1 1-x2 yz(式中、M1は、Mn、Fe、PbまたはGeから選ばれる1種以上を表し、M2は、Al、B、P、Si、周期律表第1族、第2族、第3族またはハロゲン元素から選ばれる2種以上の元素を表し、xは、0<x≦1の範囲内の数を表し、yは、1≦y≦3の範囲内の数を表し、zは、1≦z≦8の範囲内の数を表す)などの化合物が挙げられる。
【0027】
正極合剤は、正極活物質に加えて導電剤、結着剤及びフィラーなどを添加することができる。導電剤としては、例えば天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、炭素繊維、ニッケル粉のような金属粉等からなる群から選択された導電性材料の1種または2種以上を使用することができる。上述のなかで、黒鉛とアセチレンブラックを導電剤として併用することが好ましい。なお、正極合剤への導電剤の配合量は、1〜50重量%、好ましくは2〜30重量%の範囲内である。
【0028】
また、結着剤としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、エチレン−プロピレン−ジエンターボリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどの1種または2種以上を使用することができる。なお、正極合剤への結着剤の配合量は、2〜30重量%の範囲内が好ましい。
更に、フィラーは、非水電解質二次電池において、化学変化を起こさない繊維状材料であればいずれのものも使用可能であるが、通常ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス繊維、炭素繊維のような繊維が用いられる。正極合剤へのフィラー配合量は、特に限定されるものではないが、0〜30重量%の範囲内が好ましい。
なお、本発明の正極活物質の正極合剤への配合量は、特に限定されるものではないが、好ましくは60〜95重量%、特に好ましくは70〜94重量%の範囲内である。
【0029】
次に、非水電解質二次電池に用いられる非水電解液は、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、礒酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒と、その溶媒に溶解するリチウム塩例えばLiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウムなどの1種以上のリチウム塩から構成される。
また、非水電解液の他に、有機固体電解質を用いることもできる。例えばポリエチレン誘導体またはこれを含むポリマー、ポリプロピレンオキサイド誘導体またはこれを含むポリマー、燐酸エステルポリマーなどが挙げられる。
【0030】
上記化合物を所望の量混合して非水電解質二次電池を構成させることができる。電極の集電体は、構成された非水電解質二次電池において化学変化を起こさない電子伝導体であれば特に制限されるものではないが、例えばステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面をカーボン、ニッケル、銅、チタンまたは銀で表面処理したもの、負極にはステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面をカーボン、ニッケル、チタンまたは銀などで処理したもの、Al−Cd合金などが用いられる。
【0031】
非水電解質二次電池の形状は、コイン、ボタン、シート、シリンダー、角などのいずれにも適用できる。
本発明の非水電解質二次電池の用途は、特に制限されないが、例えばノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話機、ポータブルCD、ラジオなどの電子機器、自動車、電動車両、ゲーム機器などの民生用電子機器などが挙げられる。
【0032】
【実施例】
次に実施例をあげて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0033】
製造例1(コバルト酸リチウム:試料A)
平均粒子径10μm、安息角45度、タップ密度1.5g/cm3のオキシ水酸化コバルトとリチウム化合物をLi/Co比1.00の配合比で計量する。次に乳鉢を用いて均一になるまで混合する。混合原料をアルミナ製坩堝にいれ、大気下、800℃〜1100℃で10時間焼成する。焼成後は、粉砕、分級を行った。得られた粉体を以下の項目(1)〜(4)について分析を行った。
(1)粒子径(レーザー式粒度分布計 マイクロトラック)
(2)比表面積(BET法)
(3)タップ密度
(4)負荷特性試験(コイン電池)
【0034】
製造例2(コバルト酸リチウム:試料B)
平均粒子径12μ、安息角42度、タップ密度1.6g/cm3 のオキシ水酸化コバルトを用いた以外は製造例1と同様に行った。得られた粉体の評価項目は製造例1と同じである。
【0035】
製造例3(コバルト酸リチウム:試料C)
平均粒子径14μ、安息角40度、タップ密度1.7g/cm3のオキシ水酸化コバルトを用いた以外は製造例1と同様に行った。得られた粉体の評価項目は製造例1と同じである。
【0036】
比較製造例1(コバルト酸リチウム:試料D)
平均粒子径2μ、安息角63度、タップ密度1.1g/cm3の酸化コバルトを用いた以外は製造例1と同様に行った。得られた粉体の評価項目は製造例1と同じである。
【0037】
比較製造例2(コバルト酸リチウム:試料E)
平均粒子径3μ、安息角60度、タップ密度1.2g/cm3の酸化コバルトを用いた以外は実施例1と同様に行った。得られた粉体の評価項目は製造例1と同じである。
【0038】
実施例1
製造例1で得られたコバルト酸リチウム(試料A)に酸化チタンを0.2重量%乳鉢を用いて均一になるまで混合する。得られた粉体を以下の評価項目(5)〜(6)について分析をした。その結果を表1に示す。
(5)タップ密度
(6)負荷特性試験(コイン電池)
【0039】
実施例2
製造例1で得られたコバルト酸リチウム(試料A)に酸化チタンを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0040】
実施例3
製造例1で得られたコバルト酸リチウム(試料A)に酸化マグネシウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0041】
実施例4
製造例1で得られたコバルト酸リチウム(試料A)に酸化ジルコニウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0042】
実施例5
製造例1で得られたコバルト酸リチウム(試料A)に酸化亜鉛を0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0043】
実施例6
製造例2で得られたコバルト酸リチウム(試料B)に酸化チタンを0.2重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0044】
実施例7
製造例2で得られたコバルト酸リチウム(試料B)に酸化チタンを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0045】
実施例8
製造例2で得られたコバルト酸リチウム(試料B)に酸化マグネシウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0046】
実施例9
製造例2で得られたコバルト酸リチウム(試料B)に酸化ジルコニウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0047】
実施例10
製造例2で得られたコバルト酸リチウム(試料B)に酸化亜鉛を0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例4と同じである。その結果を表1に示す。
【0048】
実施例11
製造例3で得られたコバルト酸リチウム(試料C)に酸化チタンを0.2重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0049】
実施例12
製造例3で得られたコバルト酸リチウム(試料C)に酸化チタンを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0050】
実施例13
製造例3で得られたコバルト酸リチウム(試料C)に酸化マグネシウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0051】
実施例14
製造例3で得られたコバルト酸リチウム(試料C)に酸化ジルコニウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0052】
実施例15
製造例3で得られたコバルト酸リチウム(試料C)に酸化亜鉛を0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0053】
比較例1
比較製造例1で得られたコバルト酸リチウム(試料D)に酸化チタンを0.2重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0054】
比較例2
比較製造例1で得られたコバルト酸リチウム(試料D)に酸化チタンを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0055】
比較例3
比較製造例1で得られたコバルト酸リチウム(試料D)に酸化マグネシウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0056】
比較例4
比較製造例1で得られたコバルト酸リチウム(試料D)に酸化ジルコニウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0057】
比較例5
比較製造例1で得られたコバルト酸リチウム(試料D)に酸化亜鉛を0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0058】
比較例6
比較製造例2で得られたコバルト酸リチウム(試料E)に酸化チタンを0.2重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0059】
比較例7
比較製造例2で得られたコバルト酸リチウム(試料E)に酸化チタンを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0060】
比較例8
比較製造例2で得られたコバルト酸リチウム(試料E)に酸化マグネシウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0061】
比較例9
比較製造例2で得られたコバルト酸リチウム(試料E)に酸化ジルコニウムを0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0062】
比較例10
比較製造例2で得られたコバルト酸リチウム(試料E)に酸化亜鉛を0.4重量%乳鉢を用いて均一になるまで混合する。得られた粉体の評価項目は実施例1と同じである。その結果を表1に示す。
【0063】
比較例11〜16
製造例1〜3及び比較例製造例1〜2の各試料の粉体の評価項目を表2に示す。
【0064】
(測定条件)
(BET比表面積の測定)
BETの測定はフローソーブ2300型(島津製作所製)を用いて行った。
【0065】
(タップ密度の測定方法)
50ml のメスシリンダーにサンプル50g をいれ、ユアサアイオニクス(株)製、DUAL AUTOTAP 装置にセットし、500 回タップし容積を読みとり見かけ密度を算出し、タップ密度とした。
【0066】
(安息角の測定)
パウダーテスターPT −N 型装置(ホソカワミクロン製)を使用した。サンプルを目開き250 μm のふるいに通過させ、ロートを介して安息角測定用テーブルに落下させ、山の形が安定したらところで安息角を測定した。
【0067】
(平均粒子径の測定)
Microtrac粒度分布計9320 −X100 (Leed &Northrup 社製)を用いて以下の条件で行った。上記粒度分布計に内蔵されているサンプルセルに超純水を300ml 投入し、次いで10 %ヘキサメタりん酸ソーダ2mlを添加した。次いで、試料を粒度分布計に適した濃度になるまで添加した。尚、前記操作は環流量40ml /sec で行った。次いで、超音波を出力40W で60 秒かけて分散処理した後、平均粒子径を測定した。
【0068】
(加圧密度測定)
直径15mmの金型を用いて2ton/cm2のプレス(ハンドプレス東洋商工社製、形式;WPN−10)を1分行う。その後ペレットの重量および体積を測定して、ペレットの密度を算出する。
【0069】
<電池性能試験>
(I)コイン型非水電解質ニ次電池の作製;
上記のように製造した実施例1〜3及び比較例1〜2のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用して非水電解質ニ次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
【0070】
(II)負荷特性の評価
作製したコイン型非水電解質ニ次電池を室温で作動させ、負荷特性を評価した。まず正極に対して定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.3Vまで充電した後、放電レート0.2Cで2.7Vまで放電させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを3回繰り返し、1サイクル目〜3サイクル目のそれぞれの放電容量相加平均値をもとめ、この値を0.2Cにおける放電容量とした。
上記操作を2Cでも同様に行い、放電容量を求めた。この2つをもとに2C/0.2Cの放電容量比を計算した。(大きい方が負荷特性良好)
【0071】
【表1】

Figure 0004156358
【0072】
【表2】
Figure 0004156358
【0073】
【発明の効果】
以上説明したように、本発明による正極活物質を使用することにより、電池容量、電池負荷特性の優れた非水電解質ニ次電池を得ることができる。
【0074】
【発明の効果】
以上説明したように、本発明によるコバルト酸リチウムを正極活物質として使用することにより、電池の膨れも抑制し、かつ負荷特性の優れた非水電解質ニ次電池を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium cobaltate composite oxide, a method for producing the same, and a nonaqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries have been put into practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras as home appliances become increasingly portable and cordless.
For this non-aqueous electrolyte secondary battery, research and development on lithium cobalt oxide has been actively promoted, and many proposals have been made so far.
[0003]
In a lithium secondary battery including a positive electrode using a lithium-transition metal composite oxide as an active material, BeO, MgO, CaO, SrO, BaO, ZnO, Al 2 O 3 , CEO 2 , As 2 are formed on the surface of the positive electrode. There has been proposed a lithium secondary battery characterized in that a film comprising O 3 or a mixture of two or more thereof is formed. (For example, refer to Patent Document 1).
[0004]
From a negative electrode, a positive electrode, and a non-aqueous electrolyte containing a lithium salt, which can be reversibly charged and discharged multiple times, from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, and Mo. A positive electrode characterized by using a metal containing at least one selected metal and / or an intermetallic compound obtained by combining a plurality of these metals and / or an oxide is proposed, and a battery using the same is proposed. ing. (For example, see Patent Document 2)
[0005]
[Patent Document 1]
JP-A-8-236114 [Patent Document 2]
Japanese Patent Laid-Open No. 11-16666
[Problems to be solved by the invention]
However, at present, improvement of the performance of the positive electrode active material is demanded, and even if the above method is used, sufficient battery performance cannot be satisfied. In particular, improvements in safety, battery capacity, load characteristics, and improvement in swelling suppression in aluminum laminate batteries are required.
Accordingly, the object of the present invention is to use lithium cobalt oxide useful as a positive electrode active material for a nonaqueous electrolyte secondary battery, which is particularly excellent in load characteristics and swelling suppression when used as a positive electrode active material for a nonaqueous electrolyte secondary battery. A manufacturing method and a non-aqueous electrolyte secondary battery using a positive electrode active material containing the same.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in the above circumstances, the present inventors have found that the above object can be achieved by mixing lithium cobalt oxide and a metal oxide, and have completed the present invention.
The present invention relates to cobalt obtained from cobalt oxyhydroxide having a repose angle of 50 degrees or less, a tap density of 1.3 to 1.8 g / cm 3 , and an average particle diameter of 8 to 15 μm and a lithium compound. and lithium, magnesium oxide, by mixing one or more kinds of metal oxide selected from titanium oxide or zirconium oxide, and characterized by being obtained by modifying the surface of the lithium cobalt oxide in the metal oxide The present invention provides a lithium cobaltate composite compound.
[0008]
The present invention also provides the lithium cobalt oxide composite compound described above, wherein the tap density is 2.40 g / cm 3 or more.
[0009]
Moreover, this invention provides the manufacturing method of the lithium cobaltate composite compound characterized by including the following processes.
First step: After mixing cobalt oxyhydroxide having a repose angle of 50 degrees or less, a tap density of 1.3 to 1.8 g / cm 3 and an average particle diameter of 8 to 15 μm, and a lithium compound. , Firing the mixture to produce lithium cobalt oxide,
Second step: Lithium cobalt oxide obtained in the first step is mixed with one or more metal oxides selected from magnesium oxide, titanium oxide or zirconium oxide , whereby the surface of the lithium cobalt oxide is mixed with the metal. as the second factory to be modified with oxide [0011]
Moreover, this invention provides the nonaqueous electrolyte secondary battery characterized by the positive electrode containing the said lithium cobaltate complex compound as a positive electrode active material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
That is, the lithium cobaltate composite compound of the present invention is obtained by mixing lithium cobaltate obtained from cobalt oxyhydroxide and a lithium compound with one or more metal oxides selected from magnesium oxide, titanium oxide or zirconium oxide. It is characterized by.
The lithium cobaltate composite compound used in the present invention is preferably obtained from cobalt oxyhydroxide and a lithium compound.
[0013]
Lithium cobaltate obtained from cobalt oxyhydroxide and a lithium compound is Li x CoO 2 of the general formula (1) (wherein x represents a number in the range of 0.2 ≦ x ≦ 1.2) or general formula (2) Li x Co 1-y M y O 2-z ( wherein, M is one or more elements selected from the group consisting of transition metal elements or atomic number 9 or more elements excluding Co X represents a number in the range of 0.2 ≦ x ≦ 1.2, y represents a number in the range of 0 <y ≦ 0.4, and z represents 0 ≦ z ≦ 1. Represents a number in the range of 0).
[0014]
Moreover, Li x Co 1-y M y O The 2-z good metallic element also part be those substituted with other metal elements of Co, for example Na, Mg, Al, Ca, Ti, V , Cr, Mn, Fe, Ni, Zn, Si, Ga, Zr, Nb, W, and Mo.
Also, or may be coated with sulfate in Li x CoO 2 or Li x Co 1-y M y O 2-z in part replaced by other metal elements on the surface of lithium cobalt oxide Co.
[0015]
The metal oxide formed by mixing with lithium cobalt oxide is at least one selected from magnesium oxide, titanium oxide, or zirconium oxide, but these may be used alone or as a mixture thereof.
The lithium cobaltate composite compound of the present invention preferably has a tap density of 2.40 g / cm 3 or more.
[0016]
The method for producing a lithium cobaltate composite compound of the present invention includes the following steps.
1st process: After mixing cobalt oxyhydroxide and a lithium compound, the process of baking this mixture and manufacturing lithium cobaltate,
Second step: Cobalt oxyhydroxide according to the second step formed by mixing lithium cobaltate obtained in the first step and one or more metal oxides selected from magnesium oxide, titanium oxide or zirconium oxide, It is preferable that the angle of repose is 50 degrees or less and the tap density is 1.3 to 1.8 g / cm 3.
Further, the cobalt oxyhydroxide preferably forms secondary particles in which primary particles of 0.1 to 1 μm are aggregated, and the average particle diameter of the secondary particles is preferably 8 to 15 μm.
The cobalt oxyhydroxide used in the first step may be obtained by any method. For example, after oxidizing a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate with an oxidizing agent. Those neutralized with an alkali can be used.
[0018]
The oxidizing agent is not particularly limited. For example, air, oxygen, ozone; permanganic acid (HMnO 4 ) and its salt represented by MMnO 4, etc .; chromic acid (CrO 3 ) and M 2 Cr 2 O 7 , Related compounds represented by M 2 CrO 4 , MCrO 3 Cl, CrO 2 Cl 2 and the like; Halogens such as F 2 , Cl 2 , Br 2 and I 2 ; H 2 O 2 , Na 2 O 2 , BaO 2 and the like Peroxy acids and their salts represented by M 2 S 2 O 8 , M 2 SO 5 , H 2 CO 3 , CH 3 CO 3 H, etc .; oxygen acids and MClO, MBrO, MIO, MClO 3 , Examples thereof include salts thereof represented by MBrO 3 , MIO 3 , MClO 4 , MIO 4 , Na 3 H 2 IO 6 , KIO 4 and the like. In the formula, M represents an alkali metal element.
The alkali is not particularly limited, and examples thereof include aqueous solutions of lithium hydroxide, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like.
[0019]
Specifically, the cobalt oxyhydroxide is neutralized by dissolving a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate in water to form an aqueous solution, and adding the oxidizing agent and the alkali. And oxidation can be performed simultaneously. Moreover, after adding the said alkali to the aqueous solution containing the compound which has the said bivalent cobalt and synthesize | combining a bivalent cobalt hydroxide, the said cobalt oxyhydroxide can be obtained by adding an oxidizing agent and oxidizing. it can. Furthermore, after adding the said oxidizing agent to the aqueous solution containing the compound which has the said bivalent cobalt, the said cobalt oxyhydroxide can also be obtained by adding the said alkali and neutralizing. The main component of cobalt oxyhydroxide is CoOOH, but additionally contains Co 3 O 4 , CoCO 3 and the like.
[0020]
Although the said lithium compound is not specifically limited, For example, inorganic lithium salts, such as lithium hydroxide, lithium carbonate, lithium nitrate, can be used suitably. As the lithium compound, lithium carbonate is preferable because it is industrially easily available and inexpensive.
[0021]
In the first step of the present invention, for example, the above lithium oxyhydroxide and a lithium compound, preferably lithium carbonate, are mixed to obtain a mixture. Mixing may be either dry or wet, but dry is preferred because it is easy to produce. In the case of dry mixing, it is preferable to use a blender for uniformly mixing the raw materials. The mixing ratio of the lithium compound and cobalt compound as raw materials in the mixing step is 0.99 to 1.06, preferably 0.99 to 1.02, in terms of the molar ratio of Co atoms to Li atoms (Li / Co). It is preferable.
Next, the mixture is fired. The firing temperature is preferably 700 to 1100 ° C and 850 to 1050 ° C. The firing time is 1 to 24 hours, preferably 2 to 10 hours.
[0022]
Firing may be performed either in the air or in an oxygen atmosphere, and is not particularly limited. After firing, the mixture is appropriately cooled and pulverized as necessary to obtain lithium cobalt oxide. In addition, the grinding | pulverization performed as needed is suitably performed, when the lithium cobaltate obtained by baking is a brittle and the block-shaped thing.
The lithium cobalt oxide obtained by the above method has an average particle diameter of 10 to 15 μm, preferably 10 to 13 μm, and further the amount of remaining lithium carbonate is 0.1% by weight or less by laser method measurement.
[0023]
In the second step of the present invention, lithium cobaltate obtained by the above method and a metal oxide are mixed. However, the metal oxide is not particularly limited as long as it is industrially available. The average particle diameter is 1 μm or less, preferably 0.005 to 1 μm, particularly preferably 0.01 to 0.25 μm, as measured by an electron micrograph.
Such a mixing method may be carried out by any method such as dry or wet, but dry mixing is industrially preferable. In the case of dry mixing, it is preferable to use a blender for uniformly mixing the raw materials.
The amount of the metal oxide added to the lithium cobalt oxide is preferably 0.05 to 1% by weight.
Lithium cobaltate obtained from cobalt oxyhydroxide and a lithium compound has a residual lithium carbonate content of 0.1% by weight or less, so its surface condition is improved by mixing with fine metal oxides. And tap density can be increased.
[0024]
Since the lithium cobaltate composite compound of the present invention has the above characteristics, when used as a positive electrode active material of a non-aqueous electrolyte secondary battery, it has high filling properties and high safety, and further has load characteristics and swelling suppression. It is useful as a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent resistance.
[0025]
The non-aqueous electrolyte secondary battery of the present invention is composed of a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte (for example, a lithium salt-containing electrolyte), and the positive electrode is a positive electrode on a positive electrode plate (positive electrode current collector: for example, an aluminum plate). A positive electrode material mixture containing an active material, a conductive agent and a binder is applied. The nonaqueous electrolyte secondary battery of the present invention uses the positive electrode active material as a positive electrode active material constituting the positive electrode plate. In addition, when preparing the positive electrode mixture, instead of manufacturing the positive electrode active material in advance, the lithium composite oxide particles having a configuration satisfying the conditions of the positive electrode active material of the present invention are mixed and mixed uniformly. Also good.
[0026]
Although it does not restrict | limit especially as a negative electrode material used for the negative electrode of the nonaqueous electrolyte secondary battery of this invention, For example, a carbonaceous material, a metal complex oxide, lithium metal, or a lithium alloy etc. are mentioned. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include SnM 1 1-x M 2 y O z (wherein M 1 is Mn, Fe, Represents one or more selected from Pb or Ge, and M 2 represents two or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 or halogen elements of the periodic table. X represents a number in the range of 0 <x ≦ 1, y represents a number in the range of 1 ≦ y ≦ 3, and z represents a number in the range of 1 ≦ z ≦ 8) And the like.
[0027]
In the positive electrode mixture, a conductive agent, a binder, a filler, and the like can be added in addition to the positive electrode active material. As the conductive agent, for example, a conductive material selected from the group consisting of natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, carbon fiber, metal powder such as nickel powder, and the like. One type or two or more types of sexual materials can be used. Among the above, it is preferable to use graphite and acetylene black as a conductive agent. In addition, the compounding quantity of the electrically conductive agent to a positive mix is 1 to 50 weight%, Preferably it exists in the range of 2 to 30 weight%.
[0028]
Examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, ethylene-propylene-diene turbolimer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, One or more of polysaccharides such as polyethylene oxide, thermoplastic resins, and polymers having rubber elasticity can be used. The blending amount of the binder to the positive electrode mixture is preferably in the range of 2 to 30% by weight.
Furthermore, any filler can be used as long as it is a fibrous material that does not cause a chemical change in the nonaqueous electrolyte secondary battery. Usually, an olefin polymer such as polypropylene or polyethylene, glass fiber, or carbon fiber is used. Such fibers are used. The blending amount of the filler in the positive electrode mixture is not particularly limited, but is preferably in the range of 0 to 30% by weight.
In addition, the compounding quantity to the positive mix of the positive electrode active material of this invention is although it does not specifically limit, Preferably it is 60 to 95 weight%, Especially preferably, it exists in the range of 70 to 94 weight%.
[0029]
Next, non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries are, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl oxalate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl 2-Oxazodinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, at least one kind of aprotic organic solvent such as 1,3-propane sultone And solvent combined, lithium salts such as LiClO 4 is dissolved in the solvent, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, chloroborane lithium, It is composed of one or more lithium salts such as lower aliphatic lithium carboxylate and lithium tetraphenylborate.
In addition to the non-aqueous electrolyte, an organic solid electrolyte can also be used. Examples thereof include a polyethylene derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, and a phosphate ester polymer.
[0030]
A desired amount of the above compounds can be mixed to constitute a non-aqueous electrolyte secondary battery. The current collector of the electrode is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constructed nonaqueous electrolyte secondary battery.For example, stainless steel, nickel, aluminum, titanium, calcined carbon, The surface of aluminum or stainless steel is surface-treated with carbon, nickel, copper, titanium or silver, and the negative electrode is made of copper or stainless steel in addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. A material treated with carbon, nickel, titanium, silver, or the like, an Al—Cd alloy, or the like is used.
[0031]
The shape of the nonaqueous electrolyte secondary battery can be applied to any of coins, buttons, sheets, cylinders, corners, and the like.
The use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. For example, electronic devices such as notebook computers, laptop computers, pocket word processors, mobile phones, cordless phones, portable CDs, radios, automobiles, electric vehicles, games Examples include consumer electronic devices such as devices.
[0032]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
[0033]
Production Example 1 (lithium cobaltate: sample A)
Cobalt oxyhydroxide and a lithium compound having an average particle diameter of 10 μm, an angle of repose of 45 degrees, and a tap density of 1.5 g / cm 3 are weighed at a mixing ratio of Li / Co ratio of 1.00. Next, use a mortar to mix until uniform. The mixed raw material is put in an alumina crucible and fired at 800 ° C. to 1100 ° C. for 10 hours in the air. After firing, pulverization and classification were performed. The obtained powder was analyzed for the following items (1) to (4).
(1) Particle size (laser type particle size distribution analyzer Microtrac)
(2) Specific surface area (BET method)
(3) Tap density (4) Load characteristic test (coin battery)
[0034]
Production Example 2 (lithium cobaltate: sample B)
The same procedure as in Production Example 1 was performed except that cobalt oxyhydroxide having an average particle diameter of 12 μ, an angle of repose of 42 degrees, and a tap density of 1.6 g / cm 3 was used. The evaluation items of the obtained powder are the same as in Production Example 1.
[0035]
Production Example 3 (lithium cobaltate: Sample C)
The same procedure as in Production Example 1 was conducted except that cobalt oxyhydroxide having an average particle diameter of 14 μ, an angle of repose of 40 degrees, and a tap density of 1.7 g / cm 3 was used. The evaluation items of the obtained powder are the same as in Production Example 1.
[0036]
Comparative production example 1 (lithium cobaltate: sample D)
The same procedure as in Production Example 1 was performed except that cobalt oxide having an average particle diameter of 2 μ, an angle of repose of 63 degrees, and a tap density of 1.1 g / cm 3 was used. The evaluation items of the obtained powder are the same as in Production Example 1.
[0037]
Comparative production example 2 (lithium cobaltate: sample E)
The same procedure as in Example 1 was performed except that cobalt oxide having an average particle diameter of 3 μ, an angle of repose of 60 degrees, and a tap density of 1.2 g / cm 3 was used. The evaluation items of the obtained powder are the same as in Production Example 1.
[0038]
Example 1
Titanium oxide is mixed with lithium cobalt oxide (sample A) obtained in Production Example 1 using a 0.2 wt% mortar until uniform. The obtained powder was analyzed for the following evaluation items (5) to (6). The results are shown in Table 1.
(5) Tap density (6) Load characteristic test (coin battery)
[0039]
Example 2
Titanium oxide is mixed with lithium cobaltate (sample A) obtained in Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0040]
Example 3
Magnesium oxide is mixed with lithium cobalt oxide (sample A) obtained in Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0041]
Example 4
Zirconium oxide is mixed with lithium cobalt oxide (sample A) obtained in Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0042]
Example 5
Zinc oxide is mixed with lithium cobalt oxide (sample A) obtained in Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0043]
Example 6
Titanium oxide is mixed with lithium cobalt oxide (sample B) obtained in Production Example 2 using a 0.2 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0044]
Example 7
Titanium oxide is mixed with lithium cobalt oxide (sample B) obtained in Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0045]
Example 8
Magnesium oxide is mixed with lithium cobalt oxide (sample B) obtained in Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0046]
Example 9
Zirconium oxide is mixed with lithium cobaltate (sample B) obtained in Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0047]
Example 10
Zinc oxide is mixed with lithium cobaltate (sample B) obtained in Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 4. The results are shown in Table 1.
[0048]
Example 11
Titanium oxide is mixed with lithium cobalt oxide (sample C) obtained in Production Example 3 using a 0.2 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0049]
Example 12
Titanium oxide is mixed with lithium cobalt oxide (sample C) obtained in Production Example 3 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0050]
Example 13
Magnesium oxide is mixed with lithium cobalt oxide (sample C) obtained in Production Example 3 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0051]
Example 14
Zirconium oxide is mixed with lithium cobalt oxide (sample C) obtained in Production Example 3 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0052]
Example 15
Zinc oxide is mixed with lithium cobaltate (sample C) obtained in Production Example 3 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0053]
Comparative Example 1
Titanium oxide is mixed with lithium cobalt oxide (sample D) obtained in Comparative Production Example 1 using a 0.2 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0054]
Comparative Example 2
Titanium oxide is mixed with lithium cobaltate (sample D) obtained in Comparative Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0055]
Comparative Example 3
Magnesium oxide is mixed with lithium cobaltate (sample D) obtained in Comparative Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0056]
Comparative Example 4
Zirconium oxide is mixed with lithium cobaltate (sample D) obtained in Comparative Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0057]
Comparative Example 5
Zinc oxide is mixed with lithium cobaltate (sample D) obtained in Comparative Production Example 1 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0058]
Comparative Example 6
Titanium oxide is mixed with lithium cobalt oxide (sample E) obtained in Comparative Production Example 2 using a 0.2 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0059]
Comparative Example 7
Titanium oxide is mixed with lithium cobalt oxide (sample E) obtained in Comparative Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0060]
Comparative Example 8
Magnesium oxide is mixed with lithium cobaltate (sample E) obtained in Comparative Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0061]
Comparative Example 9
Zirconium oxide is mixed with lithium cobalt oxide (sample E) obtained in Comparative Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0062]
Comparative Example 10
Zinc oxide is mixed with lithium cobalt oxide (sample E) obtained in Comparative Production Example 2 using a 0.4 wt% mortar until uniform. The evaluation items of the obtained powder are the same as those in Example 1. The results are shown in Table 1.
[0063]
Comparative Examples 11-16
Table 2 shows the evaluation items of the powder of each sample of Production Examples 1 to 3 and Comparative Example Production Examples 1 and 2.
[0064]
(Measurement condition)
(Measurement of BET specific surface area)
The BET was measured using a Flowsorb 2300 type (manufactured by Shimadzu Corporation).
[0065]
(Tap density measurement method)
50 g of a sample was placed in a 50 ml graduated cylinder, set in a dual automatic tap device manufactured by Yuasa Ionics Co., Ltd., tapped 500 times, the volume was read, and the apparent density was calculated to obtain the tap density.
[0066]
(Measurement of repose angle)
A powder tester PT-N type device (manufactured by Hosokawa Micron) was used. The sample was passed through a sieve having an opening of 250 μm, dropped onto a repose angle measurement table through a funnel, and the repose angle was measured when the mountain shape was stabilized.
[0067]
(Measurement of average particle size)
The measurement was performed under the following conditions using a Microtrac particle size distribution analyzer 9320-X100 (Leed & Northrup). 300 ml of ultrapure water was put into a sample cell built in the particle size distribution analyzer, and then 2 ml of 10% sodium hexametaphosphate was added. The sample was then added to a concentration suitable for the particle size distribution analyzer. The above operation was performed at a ring flow rate of 40 ml / sec. Subsequently, the ultrasonic wave was dispersed at an output of 40 W for 60 seconds, and then the average particle size was measured.
[0068]
(Pressure density measurement)
A 2 ton / cm 2 press (manufactured by Toyo Shoko Co., Ltd., model: WPN-10) is performed for 1 minute using a mold having a diameter of 15 mm. Thereafter, the weight and volume of the pellet are measured, and the density of the pellet is calculated.
[0069]
<Battery performance test>
(I) Production of coin-type non-aqueous electrolyte secondary battery;
91% by weight of lithium cobaltate of Examples 1 to 3 and Comparative Examples 1 to 2 manufactured as described above, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to obtain a positive electrode agent, and this was treated with N-methyl. A kneaded paste was prepared by dispersing in -2-pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a nonaqueous electrolyte secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.
[0070]
(II) Evaluation of load characteristics The produced coin-type nonaqueous electrolyte secondary battery was operated at room temperature to evaluate the load characteristics. First, after charging the positive electrode to 4.3 V by constant current voltage (CCCV) charging at 0.5 C over 5 hours, charging and discharging to discharge to 2.7 V at a discharge rate of 0.2 C are performed, and these operations are performed. The discharge capacity was measured every cycle. This cycle was repeated 3 times, and the respective discharge capacity arithmetic average values of the first to third cycles were obtained, and this value was defined as the discharge capacity at 0.2C.
The above operation was performed in the same manner at 2C to determine the discharge capacity. Based on these two, a discharge capacity ratio of 2C / 0.2C was calculated. (The larger the better the load characteristics)
[0071]
[Table 1]
Figure 0004156358
[0072]
[Table 2]
Figure 0004156358
[0073]
【The invention's effect】
As described above, by using the positive electrode active material according to the present invention, a nonaqueous electrolyte secondary battery having excellent battery capacity and battery load characteristics can be obtained.
[0074]
【The invention's effect】
As described above, by using the lithium cobalt oxide according to the present invention as the positive electrode active material, it is possible to obtain a non-aqueous electrolyte secondary battery that suppresses battery swelling and has excellent load characteristics.

Claims (4)

安息角が50度以下で、タップ密度が1.3〜1.8g/cm で、且つ、平均粒子径が8〜15μmであるオキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合することにより、該コバルト酸リチウムの表面を該金属酸化物で改質してなることを特徴とするコバルト酸リチウム複合化合物。Lithium cobaltate obtained from cobalt oxyhydroxide having a repose angle of 50 degrees or less, a tap density of 1.3 to 1.8 g / cm 3 , and an average particle diameter of 8 to 15 μm and a lithium compound; magnesium oxide, by mixing one or more kinds of metal oxide selected from titanium oxide or zirconium oxide, lithium cobalt oxide, characterized by formed by modifying the surface of the lithium cobalt oxide in the metal oxide Compound compound. タップ密度が2.40g/cm以上である請求項1記載のコバルト酸リチウム複合化合物。The lithium cobalt oxide composite compound according to claim 1, wherein the tap density is 2.40 g / cm 3 or more. 下記の工程を含むことを特徴とするコバルト酸リチウム複合化合物の製造方法。
第一工程:安息角が50度以下で、タップ密度が1.3〜1.8g/cm で、且つ、平均粒子径が8〜15μmであるオキシ水酸化コバルトとリチウム化合物とを混合した後、該混合物を焼成してコバルト酸リチウムを製造する工程、
第二工程:第一工程で得られたコバルト酸リチウムと、酸化マグネシウム、酸化チタン又は酸化ジルコニウムから選ばれる1種以上の金属酸化物とを混合することにより、該コバルト酸リチウムの表面を該金属酸化物で改質する第二工程
The manufacturing method of the lithium cobaltate complex compound characterized by including the following processes.
First step: After mixing cobalt oxyhydroxide having a repose angle of 50 degrees or less, a tap density of 1.3 to 1.8 g / cm 3 and an average particle diameter of 8 to 15 μm, and a lithium compound. , Firing the mixture to produce lithium cobalt oxide,
Second step: Lithium cobalt oxide obtained in the first step is mixed with one or more metal oxides selected from magnesium oxide, titanium oxide or zirconium oxide , whereby the surface of the lithium cobalt oxide is mixed with the metal. Second step to modify with oxide
正極が請求項1又は2記載のコバルト酸リチウム複合化合物を正極活物質として含んでいることを特徴とする非水電解質二次電池。  A non-aqueous electrolyte secondary battery, wherein the positive electrode contains the lithium cobaltate composite compound according to claim 1 or 2 as a positive electrode active material.
JP2002368076A 2002-12-19 2002-12-19 Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4156358B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002368076A JP4156358B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
TW093108498A TW200532960A (en) 2002-12-19 2004-03-29 Lithium cobaltate complex compound, its preparation method and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368076A JP4156358B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004196604A JP2004196604A (en) 2004-07-15
JP4156358B2 true JP4156358B2 (en) 2008-09-24

Family

ID=32764761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368076A Expired - Fee Related JP4156358B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP4156358B2 (en)
TW (1) TW200532960A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669214B2 (en) * 2003-09-30 2011-04-13 株式会社田中化学研究所 Cobalt oxyhydroxide particles and method for producing the same
JP4813165B2 (en) * 2005-12-07 2011-11-09 Agcセイミケミカル株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2011042573A (en) * 2010-10-26 2011-03-03 Tanaka Chemical Corp Cobalt oxyhydroxide particle
JP6019269B2 (en) * 2014-09-30 2016-11-02 日本碍子株式会社 Method for producing lithium cobaltate oriented sintered plate
KR20230098913A (en) 2016-07-05 2023-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US12308421B2 (en) 2016-09-12 2025-05-20 Semiconductor Energy Laboratory Co., Ltd. Electrode and power storage device comprising graphene compound
CN116454360A (en) 2016-10-12 2023-07-18 株式会社半导体能源研究所 Positive electrode active material particle and method for producing positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
KR102656986B1 (en) 2017-05-19 2024-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Cathode active material, method for producing cathode active material, and secondary battery
CN111933906A (en) 2017-06-26 2020-11-13 株式会社半导体能源研究所 Method for producing positive electrode active material
CN115483394B (en) * 2022-08-29 2024-05-28 西北工业大学宁波研究院 Negative electrode material of sodium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP2004196604A (en) 2004-07-15
TWI335683B (en) 2011-01-01
TW200532960A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
US7838148B2 (en) Lithium nickel manganese cobalt composite oxide used as cathode active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5894388B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
CN102668187A (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2003221234A (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
CN102576872A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005044743A (en) Positive electrode activator of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN103947019B (en) The manufacture method of negative electrode active material, Electrical storage devices and negative electrode active material
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP2005044722A (en) Cathode active substance for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP2006318926A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP2020087822A (en) Lithium nickel-containing composite oxide and manufacturing method thereof, and positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof
JP2004284845A (en) Lithium nickel copper oxide, method for producing the same, and nonaqueous electrolyte secondary battery
CN109983601A (en) Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees