JP4858367B2 - Manufacturing method of solid-state imaging device - Google Patents
Manufacturing method of solid-state imaging device Download PDFInfo
- Publication number
- JP4858367B2 JP4858367B2 JP2007234532A JP2007234532A JP4858367B2 JP 4858367 B2 JP4858367 B2 JP 4858367B2 JP 2007234532 A JP2007234532 A JP 2007234532A JP 2007234532 A JP2007234532 A JP 2007234532A JP 4858367 B2 JP4858367 B2 JP 4858367B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon layer
- solid
- imaging device
- layer
- state imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Description
本発明は、固体撮像素子の製造方法に係わり、いわゆる裏面照射型の固体撮像素子の製造方法に係わる。 The present invention relates to a method for manufacturing a solid-state image sensor, and more particularly to a method for manufacturing a so-called back-illuminated solid-state image sensor.
半導体デバイスの高集積化に伴い、トランジスタ及び他の半導体素子をより縮小して実装密度をさらに高める傾向にある。
このため、CMOSセンサ(CMOS型固体撮像素子)においても、画素を微細化して素子を高集積化することが求められる。
As semiconductor devices become highly integrated, transistors and other semiconductor elements tend to be further reduced to further increase the packaging density.
For this reason, even in a CMOS sensor (CMOS type solid-state imaging device), it is required to miniaturize a pixel and highly integrate the device.
しかしながら、従来のCMOSセンサでは、配線部上に形成されたレンズから、配線層の間を通して受光センサ部に光を照射して検出する構成となっていたため、デバイスの高集積化が進むことにより画素が微細化することに伴い、配線層等の障害物により入射光のケラレを生じることから、受光センサ部の開口率が小さくなり、充分な光を受光センサ部に照射することができなくなっていた。このため、感度が低下したり、シェーディングが大きくなったりする問題も生じる。 However, in the conventional CMOS sensor, the light receiving sensor unit is irradiated with light from the lens formed on the wiring unit and detected through the wiring layer. As the device becomes finer, vignetting of incident light occurs due to obstacles such as a wiring layer, so the aperture ratio of the light receiving sensor portion is reduced, and sufficient light cannot be irradiated to the light receiving sensor portion. . For this reason, the problem that a sensitivity falls or a shading becomes large also arises.
そこで、裏面側(配線部とは反対側)より受光センサ部に光を照射することにより、配線層等の障害物の影響を受けず、実効開口率100%を達成することが可能になり、大幅に感度を上げることができる。
このことから、裏面側(配線部とは反対側)より受光センサ部に光を照射する構成のCMOSセンサ、いわゆる裏面照射型CMOSセンサの開発が行われている。
Therefore, by irradiating the light receiving sensor part with light from the back side (the side opposite to the wiring part), it becomes possible to achieve an effective aperture ratio of 100% without being affected by obstacles such as a wiring layer, The sensitivity can be greatly increased.
For this reason, development of a so-called back-illuminated CMOS sensor, which is configured to irradiate light to the light-receiving sensor unit from the back side (the side opposite to the wiring unit), has been performed.
そして、裏面照射型のイメージセンサにおいて、受光センサ部のシリコン層を薄くして、高い感度を得ることが考えられている(例えば、特許文献1又は特許文献2参照)。
In a back-illuminated image sensor, it is considered to obtain a high sensitivity by thinning the silicon layer of the light receiving sensor portion (for example, see
この構成を適用した裏面照射型CMOSセンサの概略断面図を図13に示す。
このCMOSセンサ100では、受光センサ部102のシリコン基板101が薄く形成されているため、入射光Lの感度を高くすることができる。
また、配線層104を受光センサ部102上に形成しても入射光Lが遮られないため、配線層104のレイアウトの自由度が高くなる。これにより、配線層104を多層に形成して画素の面積を縮小することにより、素子の高集積化を図ることができる。
A schematic cross-sectional view of a back-illuminated CMOS sensor to which this configuration is applied is shown in FIG.
In the
Further, even if the
このようなシリコン層を薄くした裏面照射型のイメージセンサの製造方法としては、例えば、シリコン基板に受光センサ部のフォトダイオードを形成した後に、裏面からシリコン基板を研摩して薄くする方法が考えられている。 As a method for manufacturing such a back-illuminated image sensor with a thin silicon layer, for example, a method of forming a photodiode of a light receiving sensor portion on a silicon substrate and then polishing and thinning the silicon substrate from the back surface can be considered. ing.
しかしながら、上述の製造方法では、裏面を研摩した後のシリコン基板の界面が電気的に不安定になる。また、機械的なダメージがシリコン基板に入ってしまう。
これらのことから、暗電流の発生原因となっている。
However, in the above manufacturing method, the interface of the silicon substrate after the back surface is polished becomes electrically unstable. In addition, mechanical damage enters the silicon substrate.
For these reasons, dark current is caused.
このため、上述した構成の裏面照射型構造のイメージセンサは、冷却して使用する等、用途が限られてしまっている。
さらに、光吸収はシリコン層の厚さに依存するが、研摩により薄くしていることから受光センサ部のシリコン層(シリコン基板)の厚さの制御性が悪く、そのためにセンサとしての分光特性がばらつくことになる。
このような問題により、製造歩留まりが悪くなり、コストが高くなってしまう。
For this reason, the application of the image sensor having the above-described configuration of the back-illuminated structure has been limited, for example, by cooling.
Furthermore, the light absorption depends on the thickness of the silicon layer, but since it is thinned by polishing, the controllability of the thickness of the silicon layer (silicon substrate) of the light-receiving sensor part is poor, and therefore the spectral characteristics as a sensor are poor. It will vary.
Due to such a problem, the production yield deteriorates and the cost increases.
従って、裏面照射型構造は、受光センサ部の感度を高くすることができるにもかかわらず、非常に限られた用途でしか使われていない。 Therefore, the back-illuminated structure is used only for very limited applications, although the sensitivity of the light receiving sensor portion can be increased.
また、従来の裏面照射型構造のイメージセンサは、光電変換がなされる受光センサ部が形成されているシリコン層の厚さが数十μmもあり、画素の微細化を図ろうとすると、隣接画素間で信号電荷が拡散して、混色が生じることになる。
このため、微細な画素を実現することが難しい。
In addition, in the conventional back-illuminated structure image sensor, the thickness of the silicon layer on which the light receiving sensor portion for photoelectric conversion is formed is several tens of μm. As a result, the signal charge diffuses and color mixing occurs.
For this reason, it is difficult to realize a fine pixel.
上述した問題の解決のために、本発明においては、感度が高くシェーディングをほとんど生じない構成であり、かつ画素の微細化を図ることを可能にする構成の固体撮像素子を良好な歩留まりで製造することができる固体撮像素子の製造方法を提供するものである。 In order to solve the above-described problems, in the present invention, a solid-state imaging device having a configuration that has high sensitivity and hardly generates shading and that can achieve pixel miniaturization is manufactured with a good yield. The present invention provides a method for manufacturing a solid-state imaging device.
本発明の固体撮像素子の製造方法は、シリコン基板と中間層とシリコン層とが積層された積層基板を使用して、この積層基板のシリコン層に受光センサ部の半導体領域を形成する工程と、シリコン層の上方に絶縁層中に配線層を有する配線部を形成する工程と、その後に配線部上に支持基板を張り合わせる工程と、シリコン基板及び中間層を除去してシリコン層を露出させる工程とを少なくとも有するものである。 The method for manufacturing a solid-state imaging device of the present invention uses a laminated substrate in which a silicon substrate, an intermediate layer, and a silicon layer are laminated, and a step of forming a semiconductor region of the light receiving sensor portion on the silicon layer of the laminated substrate; A step of forming a wiring portion having a wiring layer in an insulating layer above the silicon layer, a step of pasting a supporting substrate on the wiring portion, and a step of removing the silicon substrate and the intermediate layer to expose the silicon layer And at least.
上述の本発明の固体撮像素子の製造方法によれば、シリコン層の上方に配線部を形成し、(積層基板の)シリコン基板及び中間層を除去してシリコン層を露出させるため、配線部が形成された表面側とは反対の裏面側のシリコン層を露出させて、裏面側から光を照射する裏面照射型構造とすることができる。
また、シリコン基板と中間層とシリコン層とが積層された積層基板を使用して、この積層基板のシリコン層に受光センサ部の半導体領域を形成するため、受光センサ部の半導体領域を形成するシリコン層の界面が比較的安定しており、シリコン層の厚さを制御して、固体撮像素子の分光特性を安定化することが容易になる。
しかも、半導体領域を形成するシリコン層に対しては、表面側に配線部を形成し、裏面側のシリコン基板及び中間層を除去することから、シリコン層を研摩する必要がなく、シリコン層に機械的ダメージが入らないようにすることが可能になる。
そして、シリコン層が薄い積層基板を使用すれば、上述した本発明の固体撮像素子の構成、即ち受光センサ部の半導体領域が形成されたシリコン層が10μm以下(或いは5μm以下)と薄い構成の固体撮像素子を製造することが可能になる。
According to the method for manufacturing a solid-state imaging device of the present invention described above, the wiring portion is formed above the silicon layer, the silicon substrate (of the laminated substrate) and the intermediate layer are removed, and the silicon layer is exposed. A back-side illuminated structure in which the silicon layer on the back surface opposite to the formed front surface side is exposed and light is irradiated from the back surface side can be obtained.
In addition, in order to form the semiconductor region of the light receiving sensor unit in the silicon layer of the laminated substrate using the laminated substrate in which the silicon substrate, the intermediate layer, and the silicon layer are stacked, silicon forming the semiconductor region of the light receiving sensor unit The interface of the layers is relatively stable, and it becomes easy to control the thickness of the silicon layer and stabilize the spectral characteristics of the solid-state imaging device.
Moreover, for the silicon layer forming the semiconductor region, the wiring portion is formed on the front surface side, and the silicon substrate and the intermediate layer on the back surface side are removed. It is possible to prevent damage from entering.
If a laminated substrate having a thin silicon layer is used, the solid-state imaging device of the present invention described above, that is, the silicon layer in which the semiconductor region of the light receiving sensor portion is formed is 10 μm or less (or 5 μm or less) and the solid structure is thin. An image sensor can be manufactured.
本発明の固体撮像素子の製造方法によれば、シリコン層の上方に配線部を形成し、その後に配線部上に支持基板を張り合わせ、シリコン基板及び中間層を除去してシリコン層を露出させることにより、シリコン層の界面が安定しており、またシリコン層の厚さを制御して固体撮像素子の分光特性を安定化させることができるため、分光特性が良好な固体撮像素子を歩留まりよく製造することができる。
また、シリコン層が薄い積層基板を使用すれば、受光センサ部の半導体領域が形成されたシリコン層が薄い構成の固体撮像素子を容易に製造することができる。
特に、比較的低温の熱処理により製造を行うことが可能であるため、トランジスタ等への熱処理の影響を少なくすることが可能であり、これによりピッチの狭いトランジスタを形成して、画素の微細化を図ることが容易になる。また工程数の増加も少ない。
According to the method for manufacturing a solid-state imaging device of the present invention, the wiring portion is formed above the silicon layer, and then the support substrate is bonded to the wiring portion, and the silicon substrate and the intermediate layer are removed to expose the silicon layer. Therefore, the interface of the silicon layer is stable, and the thickness of the silicon layer can be controlled to stabilize the spectral characteristics of the solid-state imaging device, so that a solid-state imaging device with good spectral characteristics is manufactured with high yield. be able to.
If a laminated substrate having a thin silicon layer is used, a solid-state imaging device having a thin silicon layer in which the semiconductor region of the light receiving sensor portion is formed can be easily manufactured.
In particular, since it can be manufactured by heat treatment at a relatively low temperature, it is possible to reduce the influence of heat treatment on the transistor and the like, thereby forming a transistor with a narrow pitch and reducing the pixel size. It becomes easy to plan. In addition, there is little increase in the number of processes.
図1は、本発明の一実施の形態として、固体撮像素子の概略構成図(断面図)を示す。
本実施の形態は、本発明をCMOSセンサ(CMOS型固体撮像素子)に適用したものである。
この固体撮像素子1は、表面側から、支持基板2、配線部3、シリコン基板4、カラーフィルタ5、オンチップレンズ6が形成されて構成されている。
配線部3は、層間絶縁層11を介して複数層の配線層12が形成されて成る。配線部3とシリコン基板4との間には、ゲート絶縁膜となる薄い絶縁膜13が形成され、この絶縁膜13の表面側に電荷を読み出すためのゲート電極14が形成されている。
シリコン基板4内には、受光センサ部のフォトダイオードを構成するN型領域17が厚さ方向に厚く形成されており、N型領域17の表面側に正電荷蓄積領域(P+領域)16が形成されている。また、ゲート電極14の下の読み出し領域を介して、N型のフローティングディフュージョン(FD)15が形成されている。
支持基板2と配線部3とは、図示しないが、接着層等により接着されている。支持基板2としては、例えばシリコン基板を用いることができる。平坦性が良好で、シリコンとの熱膨張率の差が少ない材料であれば他の材料の基板を用いてもよい。
そして、光Lをレンズ6側、即ち配線部3とは反対の裏面側から入射させる構成となっており、いわゆる裏面照射型のCMOSセンサが構成されている。
FIG. 1 shows a schematic configuration diagram (cross-sectional view) of a solid-state imaging device as an embodiment of the present invention.
In this embodiment, the present invention is applied to a CMOS sensor (CMOS type solid-state imaging device).
The solid-
The
In the silicon substrate 4, an N-
Although not shown, the
The light L is incident from the
ゲート電極14と、N型領域17の先端部と、フローティングディフュージョン15とにより、読み出しトランジスタが構成されている。
また、図示しない断面において、シリコン基板4の表面側の部分に、画素内の他のトランジスタや周辺部の回路素子が形成されている。
A read transistor is configured by the
In the cross section (not shown), other transistors in the pixel and circuit elements in the peripheral portion are formed on the surface side of the silicon substrate 4.
特に、本実施の形態においては、受光センサ部が形成されたシリコン層(シリコン基板)4の厚さDを、10μm以下とする。より好ましくは、シリコン層4の厚さDを5μm以下とする。
これにより、シリコン層4の厚さDが薄く形成されているため、隣接する画素への光の入射による混色の発生を抑えることができ、また高い感度を実現することができる。
さらに、CMOSセンサで通常用いられている駆動電圧(2.5V〜3.3V)の範囲で設計して、約200mV/μm以上のドリフト電界を形成することができるため、この電界により表面側への電荷の読み出しを確実に行うことが可能になる。
また、光照射によるノイズも、表面照射型構造のCMOS型固体撮像素子と同等以下である。
In particular, in the present embodiment, the thickness D of the silicon layer (silicon substrate) 4 on which the light receiving sensor part is formed is 10 μm or less. More preferably, the thickness D of the silicon layer 4 is 5 μm or less.
Thereby, since the thickness D of the silicon layer 4 is formed thin, it is possible to suppress the occurrence of color mixing due to the incidence of light on adjacent pixels, and to realize high sensitivity.
Furthermore, a drift electric field of about 200 mV / μm or more can be formed by designing in a driving voltage range (2.5 V to 3.3 V) normally used in a CMOS sensor. It is possible to reliably read out the charges.
Further, noise due to light irradiation is equal to or less than that of the CMOS type solid-state imaging device having the surface irradiation type structure.
シリコン層4の厚さDを10μm以下としたときには、赤外領域も含めた広い波長範囲で高い感度が得られる。 When the thickness D of the silicon layer 4 is 10 μm or less, high sensitivity can be obtained in a wide wavelength range including the infrared region.
シリコン層4の厚さDを5μm以下としたときには、可視光領域で高い感度を得ることができる。
また、上述の駆動電圧の範囲で設計したときに約400mV/μm以上のドリフト電界を形成することができるため、表面側への電荷の読み出しを容易に行うことができる。
When the thickness D of the silicon layer 4 is 5 μm or less, high sensitivity can be obtained in the visible light region.
In addition, since a drift electric field of about 400 mV / μm or more can be formed when designed in the above-described driving voltage range, it is possible to easily read out charges to the surface side.
このようにシリコン層4の厚さDを5μm以下としたときには、製造が容易になる利点も有する。
シリコン層4の厚さDが5μmを超えると、図1に示す構成のN型領域17を形成するためには、超高エネルギーのイオン注入を行うことやイオン注入の前に酸化膜等のハードマスクを形成する必要がある。
これに対して、シリコン層4の厚さDを5μm以下としたときには、レジストマスクを用いてN型領域17を形成するイオン注入を行うことが可能になるため、容易に製造ができる。
As described above, when the thickness D of the silicon layer 4 is set to 5 μm or less, there is an advantage that the manufacturing is facilitated.
When the thickness D of the silicon layer 4 exceeds 5 μm, in order to form the N-
On the other hand, when the thickness D of the silicon layer 4 is set to 5 μm or less, ion implantation for forming the N-
また、本実施の形態の固体撮像素子1においては、隣接する画素の受光センサ部のN型領域17の間に、画素分離領域として、P+領域(高濃度のP型領域)18が深さ方向の全体にわたって形成されている。
これにより、各画素のN型領域17を電気的に分離して、隣接する画素間における電気的混色を防止することができる。
Further, in the solid-
Thereby, the N-
さらに、本実施の形態の固体撮像素子1においては、N型領域17の裏面側、即ちカラーフィルタ5側にも、P+領域19が形成されている。
これにより、シリコン層4の裏面側の界面準位に起因する暗電流も低減することができる。
Further, in the solid-
Thereby, the dark current resulting from the interface state on the back surface side of the silicon layer 4 can also be reduced.
この固体撮像素子1においては、図2に受光センサ部付近の断面図を示すように、受光センサ部のN型領域の比較的深い位置(裏面側の部分)において、入射光が光電変換され、図2中矢印で示すように、表面側に電荷e−が移動していく。上述したドリフト電界が大きいほど、この移動がスムーズに行われる。
そして、ゲート電極14をオン状態にすることにより、電荷e−がフローティングディフュージョン15に読み出される。
In the solid-
Then, the charge e − is read out to the floating
ここで、図1に示す構成の固体撮像素子1において、シリコン層の厚さDと、受光センサ部における量子効率の入射光Lの波長依存性との関係を調べた。
シリコン層の厚さD(μm)と、受光センサ部における量子効率の入射光Lの波長(nm)依存性との関係を図3及び図4に示す。図3は、シリコン層の厚さDと、その厚さのシリコン層全体での量子効率を示している。図4は、光Lの入射側から1μm毎の厚さ区間での量子効率(各部分での吸収割合)を示しており、例えば厚さ2μm〜3μmの区間は2.5μmの所にプロットしている。
Here, in the solid-
FIG. 3 and FIG. 4 show the relationship between the thickness D (μm) of the silicon layer and the dependency of the quantum efficiency on the wavelength (nm) of the incident light L in the light receiving sensor unit. FIG. 3 shows the thickness D of the silicon layer and the quantum efficiency of the entire silicon layer of that thickness. FIG. 4 shows the quantum efficiency (absorption ratio in each part) in the thickness section every 1 μm from the incident side of the light L. For example, the section of
図3より、青(波長400nm付近)は2μm以下、緑(波長550nm付近)は5μm程度で、それぞれ100%吸収される。赤(波長750nm付近)は、10μmでも100%は吸収されない。
図4より、シリコン層の厚さを5μmとした場合、深さ4.75〜5.25μm(トランジスタの拡散層を想定)で赤(750nm)が吸収される割合は最大で2%である。緑及び青は無視できるくらい小さい。
From FIG. 3, blue (wavelength near 400 nm) is 2 μm or less, and green (wavelength near 550 nm) is about 5 μm, and each is 100% absorbed. Red (wavelength around 750 nm) does not absorb 100% even at 10 μm.
From FIG. 4, when the thickness of the silicon layer is 5 μm, the ratio of red (750 nm) absorbed at a depth of 4.75 to 5.25 μm (assuming the diffusion layer of the transistor) is 2% at the maximum. Green and blue are negligibly small.
また、人間の眼で見る画像アプリケーション用の固体撮像素子では、赤外線カットフィルターを設けて、赤外線が入射しないようにしている。
この赤外線カットフィルターの分光特性を図5に示す。図5では、蒸着型の赤外線カットフィルターと吸収型の赤外線カットフィルターを共に示している。通常は蒸着型が使用され、図5に示すように、波長650nm以下の光はほとんど透過するが、波長650nmより長波長の光はカットされる特性を有している。
従って、人間の眼で見る画像アプリケーション用の固体撮像素子では、650nmよりも長波長側に感度を有する必要がない。なお、監視用の場合には赤外線にも感度を有していた方がよい。
シリコン層4の厚さDが5μm以下であっても波長650nm以下の光に対しての感度が充分得られることから、人間の眼で見る画像アプリケーション用の固体撮像素子では、本実施の形態の構成とすることにより、充分に高い感度が得られる。
In addition, in a solid-state imaging device for image application viewed with the human eye, an infrared cut filter is provided so that infrared rays do not enter.
The spectral characteristics of this infrared cut filter are shown in FIG. FIG. 5 shows both an evaporation type infrared cut filter and an absorption type infrared cut filter. Normally, a vapor deposition type is used, and as shown in FIG. 5, light having a wavelength of 650 nm or less is almost transmitted, but light having a wavelength longer than 650 nm is cut off.
Therefore, a solid-state imaging device for image application viewed by the human eye does not need to have sensitivity on the longer wavelength side than 650 nm. In the case of monitoring, it is better to have sensitivity to infrared rays.
Even when the thickness D of the silicon layer 4 is 5 μm or less, sufficient sensitivity to light having a wavelength of 650 nm or less can be obtained. Therefore, in the solid-state imaging device for image application viewed with the human eye, By adopting the configuration, sufficiently high sensitivity can be obtained.
また、2次元波動解析により、表面照射型構造のCMOSセンサにおける回折光による混色の発生を調べたところ、数%程度存在することがわかった。
これに対して、裏面照射型構造のCMOSセンサにおいては、回折光による混色はほとんど発生せず、波動解析の検出限界以下(0.1%以下)となる。
ただし、裏面照射型構造のCMOSセンサでは、裏面から入射した光が表面側の素子(例えばトランジスタ)へ影響を及ぼしてノイズ源となる可能性がある。
そこで、シリコン層の厚さを例えば5μmとすることにより、裏面から入射した光による表面側の素子(例えばトランジスタ)への影響を抑制することができ、トータルのノイズの量を表面照射型構造のCMOSセンサよりも低減することができる。
Further, the occurrence of color mixing due to diffracted light in a surface-illuminated structure CMOS sensor was examined by two-dimensional wave analysis.
On the other hand, in a CMOS sensor having a backside illumination structure, color mixing due to diffracted light hardly occurs, and is below the detection limit of wave analysis (0.1% or less).
However, in a CMOS sensor having a backside illumination structure, light incident from the backside may affect a device (for example, a transistor) on the front side and become a noise source.
Therefore, by setting the thickness of the silicon layer to, for example, 5 μm, it is possible to suppress the influence of light incident from the back surface on the surface side element (for example, transistor), and to reduce the total noise amount of the surface irradiation type structure. This can be reduced as compared with a CMOS sensor.
上述の本実施の形態の固体撮像素子1の構成によれば、受光センサ部が形成されたシリコン層4の配線部3の側(表面側)とは反対側(裏面側)にオンチップレンズ6等を配置して、この裏面側から光Lを入射させる裏面照射型構造となっており、オンチップレンズ6と受光センサ部との間に配線層12がなく、配線層12による入射光のケラレを生じない。これにより、受光センサ部の面積が同じでも入射光量を増すことができると共に、受光センサ部の面積を増やしたりN型領域17のパターン形状を光が入射し易いように設定したりすることも可能になり、感度の向上を図ることができる。また、周辺画素におけるシェーディングの発生を抑制することができる。
According to the configuration of the solid-
裏面照射型構造となっているため、この図1に示す固体撮像素子1では、配線部3に光を通す必要がないため、配線層12の配置レイアウトや設計の自由度が大きくなることから、例えば配線層13の膜厚や抵抗を最適化することができる。
これにより、各画素の固体撮像素子1をより微細化して、高集積化や小型化を図ることができる。表面照射型構造では100万画素以上のCMOSセンサを構成することが困難であるが、本実施の形態の構成では100万画素以上とすることが容易に実現可能になる。
Since the solid-
Thereby, the solid-
また、本実施の形態の固体撮像素子1の構成によれば、シリコン層4の厚さDが10μm以下、より好ましくは5μm以下とされるため、シリコン層が数十μm程度の厚さであった従来の裏面照射型構造の構成と比較しても、シリコン層4の厚さDが薄くなっており、レンズ6と受光センサ部のN型領域17との距離をさらに短くすることができるため、この点でも感度の向上を図ることができると共に、隣接画素への入射による混色の発生を抑制することができる。これにより、画素の微細化を図った場合でも、混色の発生を抑制することができる。
Further, according to the configuration of the solid-
そして、シリコン層4の厚さDが薄くなることにより、通常の電圧(2.5V〜3.3V)の範囲で設計した場合に、ドリフト電界を強く形成することができ、裏面側で光電変換された電荷を容易に表面側に読み出すことができる。
これにより、受光センサ部に蓄積される電荷量を増やしても電荷の読み出しを充分に行うことができることから、蓄積される電荷量を増やしてダイナミックレンジを向上することができる。
And, when the thickness D of the silicon layer 4 is reduced, a drift electric field can be strongly formed when designed in a range of normal voltage (2.5 V to 3.3 V), and photoelectric conversion is performed on the back side. The charged charges can be easily read out to the surface side.
Thereby, even if the amount of charge accumulated in the light receiving sensor unit is increased, the charge can be sufficiently read out, and thus the dynamic range can be improved by increasing the amount of accumulated charge.
さらに、本実施の形態の固体撮像素子1の構成によれば、各画素の受光センサ部のフォトダイオードを構成するN型領域17の間に、シリコン層4の厚さ全体にわたって、画素分離領域としてP+領域18が形成されていることにより、電気的にも画素を分離することができ、隣接する画素との電気的混色を防止することができる。
Furthermore, according to the configuration of the solid-
さらにまた、本実施の形態の固体撮像素子1の構成によれば、シリコン層4のN型領域17の裏面側にもP+領域19が設けられていることにより、表面側(正電荷蓄積領域16)と同様に、裏面側にもいわゆるHAD(Hole Accumulated Diode )構造が形成されている。これにより、裏面側のシリコン層4の界面付近における暗電流の発生を抑制することができる。
Furthermore, according to the configuration of the solid-
そして、本実施の形態の固体撮像素子1は、CMOSセンサ(CMOS型固体撮像素子)であることから、CCD固体撮像素子で問題になるスミアの発生も生じない。
And since the solid-
続いて、本発明の固体撮像素子の製造方法の一実施の形態として、図1の固体撮像素子1と同様の構成の裏面照射型構造を有する固体撮像素子を製造する方法を説明する。
本実施の形態では、図6に断面図を示すように、シリコン基板23に、中間層22としてシリコン酸化膜(SiO2膜)を介してシリコン層21を形成して成るSOI基板24を使用する。
SOI基板24は、全体の厚さを例えば725μm以下、シリコン層21の厚さを10μm以下(より好ましくは5μm以下)とする。
Next, a method for manufacturing a solid-state imaging device having a back-illuminated structure having the same configuration as that of the solid-
In the present embodiment, as shown in a cross-sectional view in FIG. 6, an
The total thickness of the
まず、図7Aに示すように、SOI基板24のシリコン層21に、フォトダイオードを構成するN型領域17の主要部(裏面側の部分)となるN型領域25と、裏面側のP+領域19とを、それぞれイオン注入により形成する。また、併せてカラーフィルタやオンチップレンズの位置合わせのための合わせマーク26も形成する。
First, as shown in FIG. 7A, in the
次に、図7Bに示すように、第1の支持基板31の一面に接着層32を形成し、この接着層32を介して、第1の支持基板31をSOI基板24のシリコン層21に接着する。そして、例えば1100℃の熱処理を施すことにより、接着を行う。この際に、シリコン層21のN型領域25やP+領域19の不純物が活性化される。
Next, as illustrated in FIG. 7B, an
次に、図7Cに示すように、ウエハの上下を反転する。
続いて、例えば、バックグラインド法や、CMP(化学的機械的研磨)法や、ウエットエッチング等により、シリコン層21の上にあるシリコン基板23及び中間層22を順次除去する。これにより、図8Dに示すように、シリコン層21が露出する。
Next, as shown in FIG. 7C, the wafer is turned upside down.
Subsequently, the
次に、シリコン層21上に薄い絶縁膜を介して読み出しトランジスタのゲート電極14を形成する。また、シリコン層21に対して表面側からN型不純物のイオン注入を行って、フォトダイオードを構成するN型領域17の残りの表面側の部分となるN型領域27と、N型領域から成るフローティングディフュージョン15を形成する。さらに、シリコン層21に対して表面側からP型不純物のイオン注入を行って、N型領域27の表面にP型(P+)の正電荷蓄積領域16を形成する(以上図8E参照)。
これにより、裏面側から形成したN型領域25と表面側から形成したN型領域27とにより、受光センサ部のN型領域17が形成される。
Next, the
Thereby, the N-
続いて、図8Fに示すように、シリコン層21の上に、層間絶縁層11を介して多層の配線層12が形成されて成る配線部3を形成する。
さらに、図示しないが、配線部3の上面に保護膜を形成する。この保護膜は、配線部3が吸湿して配線層12に悪影響を及ぼさないようにするためのものであり、例えばプラズマCVD法でシリコン窒化膜を形成する。
Subsequently, as illustrated in FIG. 8F, the
Further, although not shown, a protective film is formed on the upper surface of the
次に、図9Gに示すように、第2の支持基板33の一面に接着層34を形成し、この接着層34を介して、第2の支持基板33を配線部3の上に接着する。そして、400℃以下の熱処理を施すことにより、接着を行う。今回の熱処理は、配線層12を形成した後であるため、配線層12に影響しないようにするため、400℃以下の低温にしている。この場合の接着層34としては、SOG(スピン・オン・グラス)や、金属接合が可能な金属層を用いることができる。
Next, as shown in FIG. 9G, an
次に、図9Hに示すように、再びウエハを反転させる。
続いて、例えば、バックグラインド法や、CMP(化学的機械的研磨)法や、ウエットエッチング等により、シリコン層21の上にある第1の支持基板31及び接着層32を除去する。これにより、図10Iに示すように、シリコン層21が露出する。
Next, as shown in FIG. 9H, the wafer is inverted again.
Subsequently, the
次に、図10Jに示すように、シリコン層21の上に反射防止膜28を形成し、その上にカラーフィルタ5及びオンチップレンズ6を順次形成する。図示しないが、外部端子接続用等のパッド電極の形成も行う。
このようにして、裏面照射型構造の固体撮像素子を製造することができる。
Next, as shown in FIG. 10J, an
In this way, a solid-state imaging device having a backside illumination type structure can be manufactured.
なお、図1に示した固体撮像素子1のようなCMOSセンサでは、撮像部を構成する固体撮像素子1と共に、固体撮像素子1の駆動や制御等を行うための周辺回路部が同一の半導体チップに形成される。
従って、図示しないが、受光センサ部の半導体領域を形成する際に、周辺回路部のトランジスタ等の半導体領域も形成される。同様に、配線層12として、周辺回路部の配線も形成される。
In the CMOS sensor such as the solid-
Accordingly, although not shown, when the semiconductor region of the light receiving sensor portion is formed, a semiconductor region such as a transistor of the peripheral circuit portion is also formed. Similarly, the wiring of the peripheral circuit portion is also formed as the
上述の本実施の形態の製造方法によれば、図1に示した固体撮像素子1と同様の構成の固体撮像素子、即ち受光センサ部が形成されたシリコン層の厚さが10μm以下(より好ましくは5μm以下)の固体撮像素子を製造することができる。
従って、本実施の形態の製造方法によれば、可視光領域で充分高い感度が得られ、隣接する画素への光の入射による混色やシェーディング、隣接する画素との電気的混色を抑制することができ、ダイナミックレンジの向上を図ることができ、かつスミアの発生がない構成の固体撮像素子を製造することができる。
According to the manufacturing method of the present embodiment described above, the thickness of the solid-state imaging device having the same configuration as that of the solid-
Therefore, according to the manufacturing method of the present embodiment, sufficiently high sensitivity is obtained in the visible light region, and color mixing and shading due to light incident on adjacent pixels, and electrical color mixing with adjacent pixels can be suppressed. Thus, it is possible to manufacture a solid-state imaging device having a configuration that can improve the dynamic range and that does not generate smear.
本実施の形態では、シリコン層21が予めSOI基板24に形成されたものであるため、シリコン層21の界面が比較的安定しており、図13に示した構成よりも界面で発生する暗電流を低減することができる。
また、シリコン層21の厚さの制御性が良好であり、分光特性を安定させることができるため、製造歩留まりを良好とすることができる。
しかも、シリコン層21に対しては、表面側に配線部3を形成し、裏面側に第1の支持基板31を張り合わせ、後にこの第1の支持基板31を除去することにより、シリコン層21を研摩しないため、シリコン層21に機械的ダメージが入らない。
In this embodiment, since the
In addition, since the controllability of the thickness of the
Moreover, for the
また、本実施の形態では、SOI基板24を使用しているため、例えば既存の(市販されている)安価なSOI基板24を用いて、より安いコストで固体撮像素子を製造することも可能になる。
Further, in the present embodiment, since the
特に、本実施の形態の製造方法では、第1の支持基板31の貼り合わせの際の比較的高温の熱処理により、シリコン層21の活性層の界面の結晶性を向上することができ、ノイズが少ない固体撮像素子を製造することができる。また、裏面側のP+領域19を裏面側からシリコン層21にイオン注入して形成するため、P+領域19の位置をシリコン層21の裏面側の界面付近に制御することが容易である。
In particular, in the manufacturing method of the present embodiment, the crystallinity at the interface of the active layer of the
次に、本発明の固体撮像素子の製造方法の他の実施の形態として、図1の固体撮像素子1と同様の構成の裏面照射型構造を有する固体撮像素子を製造する他の方法を説明する。
Next, as another embodiment of the method for manufacturing a solid-state imaging device of the present invention, another method for manufacturing a solid-state imaging device having a back-illuminated structure having the same configuration as that of the solid-
本実施の形態においても、図6に断面図を示すSOI基板24を使用する。
ただし、SOI基板24は、全体の厚さを例えば725μm、中間層(SiO2膜)22の厚さを例えば10μm以下として、シリコン層21の厚さを10μm以下(より好ましくは5μm以下)とする。
Also in this embodiment, the
However, the total thickness of the
まず、図11Aに示すように、SOI基板24のシリコン層21に、フォトダイオードを構成するN型領域17と、裏面側のP+領域19と、表面側のP+領域16と、フローティングディフュージョン15となるN型領域を、それぞれイオン注入により形成する。また、併せてカラーフィルタやオンチップレンズの位置合わせのための合わせマーク26も形成する。なお、N型領域17は、上部と下部のパターンが異なるので、例えば下部を形成するイオン注入と上部を形成するイオン注入との2回に分けて形成する。
このとき、シリコン層21の厚さが5μm以下である場合には、図示しないフォトレジストをマスクとして用いてイオン注入を行うことができるが、シリコン層21の厚さが5μmを超える場合には、酸化膜等によるハードマスクを用いて比較的高いエネルギーでイオン注入を行う必要がある。
First, as shown in FIG. 11A, an N-
At this time, when the thickness of the
次に、シリコン層21上に薄い絶縁膜を介して読み出しトランジスタのゲート電極14を形成する。
続いて、図11Bに示すように、シリコン層21の上に、層間絶縁層11を介して多層の配線層12が形成されて成る配線部3を形成する。
さらに、図示しないが、配線部3の上面に保護膜を形成する。この保護膜は、配線部3が吸湿して配線層12に悪影響を及ぼさないようにするためのものであり、例えばプラズマCVD法でシリコン窒化膜を形成する。
Next, the
Subsequently, as shown in FIG. 11B, the
Further, although not shown, a protective film is formed on the upper surface of the
次に、図11Cに示すように、第1の支持基板31の一面に接着層32を形成し、この接着層32を介して、第1の支持基板31を配線部3の上に接着する。そして、400℃以下の熱処理を施すことにより、接着を行う。この熱処理は、配線層12を形成した後であるため、配線層12に影響しないようにするため、400℃以下の低温にしている。この場合の接着層32としては、先の実施の形態と同様に、SOG(スピン・オン・グラス)や、金属接合が可能な金属層を用いることができる。
Next, as illustrated in FIG. 11C, an
次に、図12Dに示すように、ウエハを反転させる。
続いて、例えば、バックグラインド法や、CMP法や、ウエットエッチング等により、裏面側をエッチングして、SOI基板24のシリコン基板23と中間層(SiO2膜)22を除去する。これにより、図12Eに示すように、シリコン層21が露出する。
Next, as shown in FIG. 12D, the wafer is inverted.
Subsequently, the back side is etched by, for example, a back grinding method, a CMP method, wet etching, or the like, and the
次に、図示しないがシリコン層21の上面を酸化して酸化膜を形成する。
その後、図12Fに示すように、シリコン層21の上に反射防止膜28を形成し、その上にカラーフィルタ5及びオンチップレンズ6を順次形成する。図示しないが、外部端子接続用等のパッド電極の形成も行う。
このようにして、裏面照射型構造の固体撮像素子を製造することができる。
Next, although not shown, the upper surface of the
Thereafter, as shown in FIG. 12F, an
In this way, a solid-state imaging device having a backside illumination type structure can be manufactured.
なお、この場合も、受光センサ部の半導体領域を形成する際に、周辺回路部のトランジスタ等の半導体領域も形成される。同様に、配線層12として、周辺回路部の配線も形成される。
Also in this case, when the semiconductor region of the light receiving sensor portion is formed, a semiconductor region such as a transistor of the peripheral circuit portion is also formed. Similarly, the wiring of the peripheral circuit portion is also formed as the
上述の本実施の形態の製造方法によれば、図1に示した固体撮像素子1と同様の構成の固体撮像素子、即ち受光センサ部が形成されたシリコン層の厚さが10μm以下(より好ましくは5μm以下)の固体撮像素子を製造することができる。
従って、本実施の形態の製造方法によれば、可視光領域で充分高い感度が得られ、隣接する画素への光の入射による混色やシェーディング、隣接する画素との電気的混色を抑制することができ、ダイナミックレンジの向上を図ることができ、かつスミアの発生がない構成の固体撮像素子を製造することができる。
According to the manufacturing method of the present embodiment described above, the thickness of the solid-state imaging device having the same configuration as that of the solid-
Therefore, according to the manufacturing method of the present embodiment, sufficiently high sensitivity is obtained in the visible light region, and color mixing and shading due to light incident on adjacent pixels, and electrical color mixing with adjacent pixels can be suppressed. Thus, it is possible to manufacture a solid-state imaging device having a configuration that can improve the dynamic range and that does not generate smear.
本実施の形態では、シリコン層21が予めSOI基板24に形成されたものであるため、シリコン層21の界面が比較的安定しており、図13に示した構成よりも界面で発生する暗電流を低減することができる。
また、シリコン層21の厚さの制御性が良好であり、分光特性を安定させることができるため、製造歩留まりを良好とすることができる。
しかも、シリコン層21に対しては、表面側に配線部3を形成し、裏面側のシリコン基板23及び中間層22を除去することから、シリコン層21を研摩しないため、シリコン層21に機械的ダメージが入らない。
In this embodiment, since the
In addition, since the controllability of the thickness of the
Moreover, since the
また、本実施の形態では、SOI基板24を使用しているため、例えば既存の(市販されている)安価なSOI基板24を用いて、より安いコストで固体撮像素子を製造することも可能になる。
Further, in the present embodiment, since the
特に、本実施の形態の製造方法では、熱処理が比較的低温の400℃以下であることから、シリコン層のフォトレジスタ以外の部分に形成される、トランジスタのソース/ドレイン等の不純物領域への熱処理の影響が少なくなる。これにより、最新のデザインルールを適用してトランジスタのチャネル長をより短くすることが可能になることから、容易に微細化を図ることができる。 In particular, in the manufacturing method of the present embodiment, the heat treatment is performed at a relatively low temperature of 400 ° C. or lower, so that heat treatment is performed on impurity regions such as the source / drain of the transistor that are formed in portions other than the photoresist of the silicon layer. Less influence. This makes it possible to reduce the channel length of the transistor by applying the latest design rule, so that miniaturization can be easily achieved.
なお、SOI基板24のシリコン層21の厚さに例えば10%程度のばらつきがある場合には、分光特性にはほとんど影響しないが、同じ条件でイオン注入してもN型領域17の深さや裏面側のP+領域19の位置にばらつきが生じることがある。
裏面側のP+領域19が裏面側のシリコン層21の界面よりも深い位置に形成されてしまうと、暗電流を抑制する効果が弱くなってノイズが発生するため好ましくない。一方、裏面側のP+領域19がシリコン層21の界面よりも浅い位置に形成されてしまうと、電気的バリアとなってしまい、読み出すことが可能な電荷量が少なくなり、感度が低下してしまう。
このシリコン層21の厚さにばらつきに対する有効な方策としては、SOI基板24のウエハのシリコン層21の厚さを測定することにより、例えばシリコン層21の厚さがほぼ同等(ばらつきが問題にならない程度である範囲内)のウエハを選定して使用することや、例えばシリコン層21の厚さに応じてイオン注入の条件(エネルギー等)を変更するように制御することが考えられる。
Note that when the thickness of the
If the P + region 19 on the back side is formed at a position deeper than the interface of the
As an effective measure for variation in the thickness of the
また、本実施の形態では、図11Aに示したように、N型領域17及び裏面側のP+領域19をシリコン層21の表面側からイオン注入して形成しているが、比較的低い温度で注入したイオンの活性化を行うことが可能になれば、シリコン基板23を除去した後(図12Eの工程の後)に裏面側からイオン注入してN型領域17の裏面側の部分やP+領域19を形成することも可能である。即ち、先の実施の形態の製造方法のように、表面側と裏面側とから2回に分けてイオン注入することが可能になる。
In the present embodiment, as shown in FIG. 11A, the N-
また、上述の各実施の形態では、受光センサ部の光電変換が行われる領域をN型領域17として、N型領域17の表面側と裏面側とにそれぞれP+領域16,19を形成した構成となっているが、本発明では、それぞれ逆導電型にした構成にも適用することが可能である。
In each of the above-described embodiments, the region where photoelectric conversion of the light receiving sensor unit is performed is the N-
なお、上述した製造方法の各実施の形態では、中間層22にSiO2膜を用いたSOI基板24を使用したが、本発明の製造方法ではシリコン基板と中間層とシリコン層とが積層された積層基板を使用するものであり、中間層としてその他の材料、例えばポーラスシリコン等の剥離の容易な材料を形成した積層基板を使用することも可能である。
In each embodiment of the manufacturing method described above, the
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。 The present invention is not limited to the above-described embodiment, and various other configurations can be taken without departing from the gist of the present invention.
1 固体撮像素子、2 支持基板、3 配線部、4,21 シリコン層、5 カラーフィルタ、6 オンチップレンズ、12 配線層、14 ゲート電極、15 フローティングディフュージョン、16,18,19 P+領域、17,25,27 N型領域、22 中間層、23 シリコン基板、24 SOI基板、26 合わせマーク、28 反射防止膜、31 第1の支持基板、32,34 接着層、33 第2の支持基板
DESCRIPTION OF
Claims (5)
前記積層基板の前記シリコン層に受光センサ部の半導体領域を形成する工程と、
前記シリコン層の上方に、絶縁層中に配線層を有する配線部を形成する工程と、
その後に、前記配線部上に支持基板を張り合わせる工程と、
前記シリコン基板及び前記中間層を除去して、前記シリコン層を露出させる工程とを、
少なくとも有する
固体撮像素子の製造方法。 Using a laminated substrate in which a silicon substrate, an intermediate layer, and a silicon layer are laminated,
Forming a semiconductor region of a light receiving sensor part in the silicon layer of the multilayer substrate;
Forming a wiring portion having a wiring layer in an insulating layer above the silicon layer;
Thereafter, a step of attaching a support substrate on the wiring portion;
Removing the silicon substrate and the intermediate layer to expose the silicon layer;
The manufacturing method of a solid-state image sensor which has at least.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234532A JP4858367B2 (en) | 2007-09-10 | 2007-09-10 | Manufacturing method of solid-state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234532A JP4858367B2 (en) | 2007-09-10 | 2007-09-10 | Manufacturing method of solid-state imaging device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003374627A Division JP4046067B2 (en) | 2003-11-04 | 2003-11-04 | Manufacturing method of solid-state imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007324632A JP2007324632A (en) | 2007-12-13 |
JP4858367B2 true JP4858367B2 (en) | 2012-01-18 |
Family
ID=38857086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007234532A Expired - Fee Related JP4858367B2 (en) | 2007-09-10 | 2007-09-10 | Manufacturing method of solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4858367B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10559464B2 (en) | 2016-05-09 | 2020-02-11 | Canon Kabushiki Kaisha | Method for manufacturing photoelectric conversion device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010040621A (en) * | 2008-08-01 | 2010-02-18 | Toshiba Corp | Solid-state imaging device, and method of manufacturing the same |
JP5566093B2 (en) | 2009-12-18 | 2014-08-06 | キヤノン株式会社 | Solid-state imaging device |
JP6230637B2 (en) * | 2016-02-10 | 2017-11-15 | キヤノン株式会社 | Solid-state imaging device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3759435B2 (en) * | 2001-07-11 | 2006-03-22 | ソニー株式会社 | XY address type solid-state imaging device |
JP2003078826A (en) * | 2001-09-06 | 2003-03-14 | Sony Corp | Solid-state imaging device |
JP3722367B2 (en) * | 2002-03-19 | 2005-11-30 | ソニー株式会社 | Manufacturing method of solid-state imaging device |
-
2007
- 2007-09-10 JP JP2007234532A patent/JP4858367B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10559464B2 (en) | 2016-05-09 | 2020-02-11 | Canon Kabushiki Kaisha | Method for manufacturing photoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP2007324632A (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4046067B2 (en) | Manufacturing method of solid-state imaging device | |
TWI683430B (en) | Image sensor with an absorption enhancement semiconductor layer | |
JP4501633B2 (en) | Solid-state imaging device and manufacturing method thereof | |
US20100163941A1 (en) | Image sensor and method for manufacturing the same | |
JP2010278472A (en) | Method of manufacturing solid-state imaging device | |
JP4691939B2 (en) | Manufacturing method of back-illuminated solid-state imaging device | |
US11942493B2 (en) | Imaging device and electronic device | |
US20100224917A1 (en) | Solid-state image pickup apparatus and method of manufacturing the same | |
JP4816603B2 (en) | Manufacturing method of solid-state imaging device | |
JP4479729B2 (en) | Solid-state imaging device, electronic module, and electronic device | |
JP4858367B2 (en) | Manufacturing method of solid-state imaging device | |
JP2008258201A (en) | Rear surface irradiation type solid-state imaging element | |
JP4816602B2 (en) | Manufacturing method of solid-state imaging device | |
JP5115567B2 (en) | Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof | |
WO2024195434A1 (en) | Photodetection device and manufacturing method thereof | |
JP5115566B2 (en) | Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071010 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |