Nothing Special   »   [go: up one dir, main page]

JP4736471B2 - 高分子化合物およびそれを用いた高分子発光素子 - Google Patents

高分子化合物およびそれを用いた高分子発光素子 Download PDF

Info

Publication number
JP4736471B2
JP4736471B2 JP2005050665A JP2005050665A JP4736471B2 JP 4736471 B2 JP4736471 B2 JP 4736471B2 JP 2005050665 A JP2005050665 A JP 2005050665A JP 2005050665 A JP2005050665 A JP 2005050665A JP 4736471 B2 JP4736471 B2 JP 4736471B2
Authority
JP
Japan
Prior art keywords
group
polymer compound
polymer
compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005050665A
Other languages
English (en)
Other versions
JP2005272834A (ja
Inventor
克実 阿縣
真 北野
義昭 津幡
誠 安立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005050665A priority Critical patent/JP4736471B2/ja
Publication of JP2005272834A publication Critical patent/JP2005272834A/ja
Application granted granted Critical
Publication of JP4736471B2 publication Critical patent/JP4736471B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、高分子化合物および該高分子化合物を用いた高分子発光素子(以下、高分子LEDということがある。)に関する。
高分子量の発光材料は低分子量のそれとは異なり溶媒に可溶で塗布法により発光素子における発光層を形成できることから種々検討されており、その例として、繰り返し単位として、下式で示されるような

Figure 0004736471

Figure 0004736471
芳香族3級アミンに由来し、側鎖末端の芳香環がアルキル基で置換された繰り返し単位とフルオレン−ジイル基からなる繰り返し単位とを含む共重合体である高分子化合物が開示されている(特許文献1、特許文献2参照)。
国際公開第99/54385号パンフレット 特表2002−539292号
しかしながら上記公知の高分子化合物を発光素子の発光材料として用いたときその発光素子の寿命が未だ十分でないという問題があった。
本発明の目的は、発光素子の発光材料として用いたとき寿命の一層長い発光素子を与える高分子化合物を提供することにある。
本発明者等は、上記課題を解決すべく鋭意検討した結果、芳香族3級アミンに由来し、側鎖末端の芳香環が、特定の数の置換基で置換された繰り返し単位と下式(2−1)および(2−2)から選ばれる繰り返し単位とを有する共重合体である高分子化合物を発光素子の発光材料として用いることにより該発光素子の寿命が向上することを見出し、本発明を完成した。
すなわち本発明は、 下記式(1)で示される繰り返し単位少なくとも1種類と、下記式(2-1)および式(2-2)から選ばれる少なくとも1種類の繰り返し単位を含み、ポリスチレン換算の数平均分子量が103〜108である高分子化合物を提供するものである。
Figure 0004736471

〔式中、Ar1およびAr2は、それぞれ独立にアリーレン基または2価の複素環基を表す。aおよびbはそれぞれ独立に0または1を表し、0≦a+b≦1である。
1、E2およびE3は、下記アリール基(A)または複素環基(B)を表す。
アリール基(A):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子から選ばれる置換基を3個以上有するアリール基。
複素環基(B):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子から選ばれる置換基を1以上有し、かつ該置換基の数と複素環のヘテロ原子の数の和が3以上である1価の複素環基。〕
Figure 0004736471

〔式中、A環、B環、C環およびD環はそれぞれ独立に芳香環を表し、Xは、−O−、−S−、−S(=O)−、−SO2−、−C(R1)(R2)−、−B(R3)−、−Si(R4)(R5)−、−P(R6)−、−PR7(=O)−、または−N(R8)−を表し、Yは、−CR9=CR10−または−C≡C−を表し、R1、R2、R3、R4、R5、R6、R7およびR8は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表し、R9およびR10は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を表す。〕
本発明の高分子化合物を高分子LEDに用いたときに、その高分子LEDは長寿命である。したがって、該高分子LEDは、液晶ディスプレイのバックライトまたは照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の装置に好ましく使用できる。
上記式(1)において、Ar1、Ar2、Ar3およびAr4は、それぞれ独立にアリーレン基または2価の複素環基を表す。
ここに、アリーレン基とは、芳香族炭化水素から、水素原子2個を除いた原子団であり、ベンゼン環または縮合環をもつもの、および独立したベンゼン環または縮合環2個以上が直接またはビニレン等の基を介して結合したものも含まれる。アリーレン基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基等が挙げられ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましい。
アリーレン基における置換基を除いた部分の炭素数は通常6〜60程度であり、好ましくは6〜20である。また、アリーレン基の置換基を含めた全炭素数は、通常6〜100程度である。
アリーレン基としては、フェニレン基(例えば、下図の式1〜3)、ナフタレン−ジイル基(下図の式4〜13)、アントラセン−ジイル基(下図の式14〜19)、ビフェニル−ジイル基(下図の式20〜25)、 ターフェニル−ジイル基(下図の式26〜28)、 縮合環化合物基(下図の式29〜35)、フルオレン−ジイル基(下図の式36〜38)、インデノフルオレン−ジイル基(下図38A〜38B)、スチルベン−ジイル基(下図の式A〜D), ジスチルベン−ジイル基(下図の式E,F)などが例示される。中でもフェニレン基、ビフェニル−ジイル基、フルオレン−ジイル基、スチルベン−ジイル基が好ましい。

Figure 0004736471

Figure 0004736471

Figure 0004736471
Figure 0004736471
Figure 0004736471

Figure 0004736471

Figure 0004736471
本発明において、2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原子団をいい、該基は置換基を有していてもよい。
ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素などのヘテロ原子を環内に含むものをいう。2価の複素環基のなかでは、2価の芳香族複素環基が好ましい。
置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、ハロゲン原子、アシル基、アシルオキシ基、イミノ基、アミド基、イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基等が挙げられ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましい。
2価の複素環基における置換基を除いた部分の炭素数は通常3〜60程度である。
また、2価の複素環基の置換基を含めた全炭素数は、通常3〜100程度である。
2価の複素環基としては、例えば以下のものが挙げられる。
ヘテロ原子として、窒素を含む2価の複素環基;ピリジン−ジイル基(下式39〜44)、ジアザフェニレン基(下式45〜48)、キノリンジイル基(下式49〜63)、キノキサリンジイル基(下式64〜68)、アクリジンジイル基(下式69〜72)、ビピリジルジイル基(下式73〜75)、フェナントロリンジイル基(下式76〜78)、など。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレン、ホウ素などを含みフルオレン構造を有する基(下式79〜93、G〜I)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含みインデノフルオレン構造を有する基(下式J〜O)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基:(下式94〜98)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環縮合複素環基:(下式99〜110)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基:(下式111〜112)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基:(下式113〜119)。
ヘテロ原子として酸素、窒素、酸素、硫黄などを含む5員環縮合複素環基にフェニル基やフリル基、チエニル基が置換した基:(下式120〜125)。

Figure 0004736471
Figure 0004736471

Figure 0004736471
Figure 0004736471
Figure 0004736471
Figure 0004736471



Figure 0004736471

Figure 0004736471

Figure 0004736471
Figure 0004736471


Figure 0004736471

Figure 0004736471
上記の式1〜125、38Aおよび38B、A〜Oにおいて、Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、ハロゲン原子、アシル基、アシルオキシ基、イミノ基、アミド基、イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、またはシアノ基を示す。
ここに、アルキル基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、その具体例としては、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、 i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基などが挙げられ、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、3,7−ジメチルオクチル基が好ましい。
アルコキシ基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、その具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、 i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基などが挙げられ、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が好ましい。
アルキルチオ基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、その具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、 i−プロピルチオ基、ブチルチオ基、 i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基などが挙げられ、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基が好ましい。
アリール基は、炭素数が通常6〜60程度であり、その具体例としては、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、ペンタフルオロフェニル基などが例示され、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。ここに、アリール基とは、芳香族炭化水素から、水素原子1個を除いた原子団である。芳香族炭化水素としては、ベンゼン環または縮合環をもつもの、独立したベンゼン環または縮合環2個以上が直接またはビニレンなどの基を介して結合したものも含まれる。
1〜C12アルコキシとして具体的には、メトキシ、エトキシ、プロピルオキシ、i−プロピルオキシ、ブトキシ、i−ブトキシ、t−ブトキシ、ペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2−エチルヘキシルオキシ、ノニルオキシ、デシルオキシ、3,7−ジメチルオクチルオキシ、ラウリルオキシなどが例示される。
1〜C12アルキルとして具体的には、メチル、エチル、プロピル、i−プロピル、ブチル、i−ブチル、t−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2−エチルヘキシル、ノニル、デシル、3,7−ジメチルオクチル、ラウリルなどが例示される。
アリールオキシ基は、炭素数が通常6〜60程度であり、その具体例としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基などが例示され、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。
アリールチオ基は、炭素数が通常6〜60程度であり、その具体例としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基などが例示され、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基が好ましい。
アリールアルキル基は、炭素数が通常7〜60程度であり、その具体例としては、フェニルメチル基、フェニルエチル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基などのフェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基が好ましい。
アリールアルコキシ基は、炭素数が通常7〜60程度であり、その具体例としては、フェニルメトキシ基、フェニルエトキシ基、フェニルブトキシ基、フェニルペンチロキシ基、フェニルヘキシロキシ基、フェニルヘプチロキシ基、フェニルオクチロキシ基などのフェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基が好ましい。
アリールアルキルチオ基は、炭素数が通常7〜60程度であり、その具体例としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基が好ましい。
アリールアルケニル基は、炭素数が通常8〜60程度であり、その具体例としては、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。
アリールアルキニル基は、炭素数は通常8〜60程度であり、その具体例としては、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。
置換アミノ基としては、アルキル基、アリール基、アリールアルキル基または1価の複素環基から選ばれる1個または2個の基で置換されたアミノ基があげられ、炭素数が通常1〜60程度である。置換アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、i−プロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、i−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基、カルバゾイル基などが例示される。
置換シリル基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1、2または3個の基で置換されたシリル基があげられ、炭素数が通常1〜60程度である。
置換シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピルシリル基、ジエチル−i−プロピルシリル基、t−ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基、フェニル−C1〜C12アルキルシリル基、C1〜C12アルコキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基、1−ナフチル−C1〜C12アルキルシリル基、2−ナフチル−C1〜C12アルキルシリル基、フェニル−C1〜C12アルキルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリプロピルオキシシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピルシリル基、メチルジメトキシシリル基、エチルジメトキシシリル基、などが例示される。
置換シリルオキシ基としては、アルキル基、アリール基、アリールアルキル基および1価の複素環基から選ばれる1、2または3個の基で置換されたシリルオキシ基があげられ、炭素数が通常1〜60程度である。
置換シリルオキシ基の具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリ−i−プロピルシリルオキシ基、ジメチル−i−プロピルシリルオキシ基、ジエチル−i−プロピルシリルオキシ基、t−ブチルジメチルシリルオキシ基、ペンチルジメチルシリルオキシ基、ヘキシルジメチルシリルオキシ基、ヘプチルジメチルシリルオキシ基、オクチルジメチルシリルオキシ基、2−エチルヘキシル−ジメチルシリルオキシ基、ノニルジメチルシリルオキシ基、デシルジメチルシリルオキシ基、3,7−ジメチルオクチル−ジメチルシリルオキシ基、ラウリルジメチルシリルオキシ基、フェニル−C1〜C12アルキルシリルオキシ基、C1〜C12アルコキシフェニル−C1〜C12アルキルシリルオキシ基、C1〜C12アルキルフェニル−C1〜C12アルキルシリルオキシ基、1−ナフチル−C1〜C12アルキルシリルオキシ基、2−ナフチル−C1〜C12アルキルシリルオキシ基、フェニル−C1〜C12アルキルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基、トリメトキシシリルオキシ基、トリエトキシシリルオキシ基、トリプロピルオキシシリルオキシ基、トリ−i−プロピルシリルオキシ基、ジメチル−i−プロピルシリルオキシ基、メチルジメトキシシリルオキシ基、エチルジメトキシシリルオキシ基、などが例示される。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。
アシル基は、炭素数が通常2〜20程度であり、その具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基などが例示される。
アシルオキシ基は、炭素数が通常2〜20程度であり、その具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基などが例示される。
イミン残基としては、イミン化合物(分子内に、−N=C-を持つ有機化合物のことをいう。その例として、アルジミン、ケチミン及びこれらのN上の水素原子が、アルキル基等で置換された化合物があげられる)から水素原子1個を除いた残基があげられ、炭素数2〜20程度であり、具体的には、以下の基などが例示される。
Figure 0004736471
アミド基は、炭素数が通常1〜20程度であり、その具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基などが例示される。
酸イミド基としては、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基があげられ、炭素数が4〜20程度であり、その具体例としては、以下の基などが例示される。
Figure 0004736471
上記例示において、Meはメチル基を示す。
1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいい、該基は、置換基を有していてもよい。
無置換の1価の複素環基の炭素数は通常4〜60程度であり、好ましくは4〜20である。
1価の複素環基としては、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基などが例示され、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基が好ましい。
置換カルボキシル基は、アルキル基、アリール基、アリールアルキル基または1価の複素環基で置換されたカルボキシル基をいい、通常炭素数が2〜60程度であり、その具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、i−プロポキシカルボニル基、ブトキシカルボニル基、i−ブトキシカルボニル基、t−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基、などが挙げられる。
上記の例において、1つの構造式中に複数のRを有しているが、それらは同一であってもよいし、異なっていてもよい。溶媒への溶解性を高めるためには、1つの構造式中の複数のRのうち少なくとも一つが水素原子以外であることが好ましく、また置換基を含めた繰り返し単位の形状の対称性が少ないことが好ましい。また、1つの構造式中のRの1つ以上が環状または分岐のあるアルキル基を含む基であることが好ましい。複数のRが連結して環を形成していてもよい。
また、上記式においてRがアルキル基を含む置換基においては、該アルキル基は直鎖、分岐または環状のいずれかまたはそれらの組み合わせであってもよく、直鎖でない場合、例えば、イソアミル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、シクロヘキシル基、4−C1〜C12アルキルシクロヘキシル基などが例示される。
さらに、アルキル基を含む基のアルキル基のメチル基やメチレン基がヘテロ原子や一つ以上のフッ素で置換されたメチル基やメチレン基で置き換えられていてもよい。それらのヘテロ原子としては、酸素原子、硫黄原子、窒素原子などが例示される。
上記式(1)において、Ar1、Ar2、Ar3およびAr4としては、アリーレン基であることが好ましく、下記に示すような、置換または無置換のフェニレン基、置換または無置換のビフェニルジイル基、置換または無置換のフルオレン−ジイル基、置換または無置換のスチルベン−ジイル基であることがより好ましく、無置換のフェニレン基であることがさらに好ましい。


Figure 0004736471

Figure 0004736471


上記式(1)において、E1、E2およびE3は、下記アリール基(A)または複素環基(B)を表す。
アリール基(A):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子から選ばれる置換基を3個以上有するアリール基。
複素環基(B):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子から選ばれる置換基を1個以上有し、かつ該置換基の数と複素環のヘテロ原子の数の和が3以上である1価の複素環基。
ここで上記アリール基(A)における置換基として、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基は前記と同じ意味を表す。
中でも、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましく、より好ましくはアルキル基、アルコキシ基、アリールチオ基、置換シリル基、置換シリルオキシ基である。さらに好ましくはアルキル基、アルコキシ基、アリールチオ基である。
上記のアリール基(A)の具体例としては、
Figure 0004736471


Figure 0004736471

Figure 0004736471

Figure 0004736471


Figure 0004736471


Figure 0004736471

などが挙げられる。式中R’は、それぞれ独立に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を示す。
また上記複素環基(B)における置換基として、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基は前記と同じ意味を表す。
中でも、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましく、より好ましくはアルキル基、アルコキシ基、アリールチオ基、置換シリル基、置換シリルオキシ基である。さらに好ましくはアルキル基、アルコキシ基、アリールチオ基である。
上記の1価の複素環基(B)の具体例としては、
Figure 0004736471


Figure 0004736471


などが挙げられる。式中R’は、前記と同じ基を示す。
上記式(1)において、E1、E2およびE3は、好ましくは、上記アリール基(A)である。該アリール基は、その芳香環上に3個以上の置換基を有するが、該置換基が結合する芳香環の炭素は以下の計算方法により順位つけられるものである。この方法を(C)とする。
(C):アリール基(A)の基本構造化合物として、該アリール基の芳香環を構成する炭素原子のうち、結合手となる炭素原子にアミノ基が結合し、その他の炭素原子には水素以外の原子または基が結合していない(無置換の)アリールアミン化合物を用いる。
該アリールアミン化合物の最高占有分子軌道を、半経験的分子軌道法であるAM1法により求め、該最高占有分子軌道の任意の一つを選び、該アリールアミン化合物に於ける水素原子が結合した炭素原子のそれぞれに対応する原子軌道係数の2乗の和の値を計算する。
前記3個以上の置換基は、上記原子軌道係数の2乗の和の値が大きい炭素原子の順序に従い、順次、当該炭素原子に結合する。
該炭素原子の最高占有分子軌道(HOMO)の原子軌道係数の2乗の和の値(ρm HOMO)は、半経験的分子軌道法であるAM1法(Dewar,M.J.S.et al,J.Am.Chem.Soc.,107,3902(1985))により下式に従って求めたものをいう。
ρm HOMO=Σu(Cmu HOMO2
ここで、mは該炭素原子を表す記号、uは該炭素原子に対してAM1法で考慮される原子軌道を表す記号である。また、Cmu HOMOは該炭素原子のHOMOのuで表現される原子軌道係数を表す。
また、原子軌道係数の2乗の和の値の比較は、有効数字2桁で行う。原子軌道係数の2乗の和の値が有効数字2桁で同じものが複数ある場合には、置換基を有する炭素原子としてどちらを選んでもよい。
ここで炭素原子に置換基を有するアリール基として、フェニル基、1−ナフチル基、2−ナフチル基および2−ピレニル基の場合について具体的に説明する。すなわち該アリール基の置換基をすべて水素原子に置換し、結合手にアミノ基を結合させたアミン化合物について、分子軌道計算プログラム、WinMOPAC 3.0 Professional (MOPAC2000 V1.3)を用い、AM1法により構造最適化を行いながら計算した(キーワード:AM1 PRECISE EF VECTORS)。各アミン化合物の炭素原子位置番号を以下に示す。計算結果について表1に示す。

Figure 0004736471
Figure 0004736471
表1の各炭素原子についての(原子軌道係数)2の和 ρm HOMOの値を比較して、該ρm HOMOの値が大きいものから順に置換基を有する炭素原子とする。
例えばフェニル基の場合、該ρm HOMOの値が大きいものから順に炭素原子位置番号を並べると、4>2,6>3,5となる。(C)により選ばれた炭素原子に置換基を有するフェニル基は、置換基3個の場合には、炭素原子位置番号4、2および6に置換基を有するフェニル基である(前記例示A1)。置換基4個の場合には、炭素原子位置番号3と5の該ρm HOMOの値が同じなので、炭素原子位置番号4、2、6および3もしくは5に置換基を有するフェニル基(前記例示A3)である。置換基5個の場合には、炭素原子位置番号4、2、6、3および5に置換基を有するフェニル基(前記例示A5)である。
さらに1−ナフチル基の場合、該ρm HOMOの値が大きいものから順に炭素原子位置番号を並べると、4>2>5>8>7>3>6となる。(C)により選ばれた炭素原子に置換基を有する1−ナフチル基は、置換基3個の場合には、炭素原子位置番号4、2および5に置換基を有する1−ナフチル基である(前記例示A14)。置換基4個以上の場合も、同様に該ρm HOMOの値が大きいものから順に炭素原子位置番号を選び、該炭素原子位置番号に置換基を有する1−ナフチル基である。
また例えば2−ナフチル基の場合、該ρm HOMOの値が大きいものから順に炭素原子位置番号を並べると、1>6>8>4>5>3>7となる。(C)により選ばれた炭素原子に置換基を有する2−ナフチル基は、置換基3個の場合には、炭素原子位置番号1、6および8に置換基を有する2−ナフチル基である(前記例示A6)。置換基4個の場合には、1、6、8および4に置換基を有する2−ナフチル基である(前記例示A10)。置換基5個以上の場合も、同様に該ρm HOMOの値が大きいものから順に炭素原子位置番号を選び、該炭素原子位置番号に置換基を有する2−ナフチル基である。
最後に2−ピレニル基の場合、該ρm HOMOの値が大きいものから順に炭素原子位置番号を並べると、1,3>7>5、9>4,10>6,8となる。(C)により選ばれた炭素原子に置換基を有する2−ピレニル基は、置換基3個の場合には、炭素原子位置番号1、3および7に置換基を有する2−ピレニル基である(前記例示A52)。置換基4個の場合には、炭素原子位置番号5と9の該ρm HOMOの値が同じなので、炭素原子位置番号1、3、7および5もしくは9に置換基を有する2−ピレニル基(前記例示A53)である。置換基5個の場合には、炭素原子位置番号1、3、7、5および9に置換基を有する2−ピレニル基(前記例示A54)である。置換基6個以上の場合も、同様に該ρm HOMOの値が大きいものから順に炭素原子位置番号を選び、該炭素原子位置番号に置換基を有する2−ピレニル基である。
上記式(1)において、E1、E2およびE3としては、好ましくは、置換基を3個以上有するフェニル基、置換基を3個以上有するナフチル基、置換基を3個以上有するアントラセニル基であり、前記(C)により選ばれた炭素原子に置換基を有するフェニル基、ナフチル基、アントラセニル基がさらに好ましい。
上記式(1)において、E1、E2およびE3として特に好ましくは、下記式(3)である。

Figure 0004736471

式中、Re、RfおよびRgは、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表す。
上記式(1)において、E1、E2およびE3が上記式(3)の場合に、式(3)として好ましくは、ReおよびRfがそれぞれ独立に、炭素数3以下のアルキル基、炭素数3以下のアルコキシ基、炭素数3以下のアルキルチオ基であり、かつRgが炭素数3〜20のアルキル基、炭素数3〜20のアルコキシ基、炭素数3〜20のアルキルチオ基であるものである。
また上記式(1)において、aおよびbはそれぞれ独立に0または1を表し、0≦a+b≦1である。中でも、青色発光材料として本発明高分子化合物を用いる場合、色純度の観点からa=b=0で有る場合が好ましい。

前記式(1)で示される繰り返し単位の具体例として、Ar1およびAr3がそれぞれ独立に無置換のフェニレン基で、a=b=0のものとしては、以下のものが挙げられる。
Figure 0004736471
前記式(1)で示される繰り返し単位の具体例として、Ar1、Ar2、Ar3およびAr4がそれぞれ独立に無置換のフェニレン基であり、a=1、b=0のものとしては、以下のものが挙げられる。

Figure 0004736471
Figure 0004736471
前記式(1)で示される繰り返し単位の具体例として、Ar1、Ar2、Ar3およびAr4がそれぞれ独立に無置換のフェニレン基であり、a=0、b=1のものとしては、以下のものが挙げられる。
Figure 0004736471

Figure 0004736471
上記式中、それぞれMeはメチル基を、Prは直鎖あるいは分岐していてもよいプロピル基を、Buは直鎖あるいは分岐していてもよいブチル基を、MeOはメトキシ基を、BuOは直鎖あるいは分岐していてもよいブチルオキシ基を示す。
本発明の高分子化合物は上記(1)で示される繰り返し単位に加え、上記(2−1)および(2−2)から選ばれる1種以上の繰り返し単位を有する。
上記式(2−1)、(2−2)においてA環、B環、C環およびD環はそれぞれ独立に芳香環を示す。芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、フェナントレン環等の芳香族炭化水素環;ピリジン環、ビピリジン環、フェナントロリン環、キノリン環、イソキノリン環、チオフェン環、フラン環、ピロール環などの複素芳香環が挙げられる。ここでA環、B環、C環およびD環の芳香環の種類は、同一でも異なっていてもよい。
また、A環、B環、C環およびD環が芳香族炭化水素環であるものが好ましい。
A環、B環、C環およびD環はそれぞれ独立に置換基を有していてもよく、その置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミノ基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基およびシアノ基が挙げられる。
上記式(2−1)においてXは、−O−、−S−、−S(=O)−、−SO2−、−C(R1)(R2)−、−B(R3)−、−Si(R4)(R5)−、−P(R6)−、−PR7(=O)−または−N(R8)−を表す。
ここでR1、R2、R3、R4、R5、R6、R7およびR8は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表す。
1、R2、R3、R4、R5、R6、R7およびR8におけるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子の場合の具体例としては、上記Rで示したものと同じものが例示される。
上記式(2−2)においてYは、−CR9=CR10−または−C≡C−を表す。
ここでR9およびR10は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。
9およびR10におけるアルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基の場合の具体例としては、上記Rで示したものと同じものが例示される。
上記式(2−2)において、Yが−CH=CH−である場合が好ましい。
本発明の高分子化合物は上記式(2−1)、(2−2)で示される繰り返し単位から選ばれる少なくとも1種類の繰り返し単位を含むが、好ましくは、上記式(2−1)から選ばれる1種以上の繰り返し単位を含む場合である。
式(2−1)の場合、Xが−O−、−S−、−C(R1)(R2)−である場合がより好ましい。
前記式(2−1)におけるXが−C(R1)(R2)−である場合、A環およびB環が
それぞれ独立に単環の芳香環である場合が好ましく、単環の芳香族炭化水素環であることがより好ましい。中でも、A環およびB環がそれぞれ独立にベンゼン環である場合、原料の製造の簡便さの観点から好ましい。
上記式(2−1)で示される繰り返し単位の具体例として、A環およびB環が芳香族炭化水素環、Xが−O−、−S−から選ばれる2価の基であるものとしては、以下のものが挙げられる。

Figure 0004736471
Figure 0004736471

Figure 0004736471

Figure 0004736471
中でも、発光効率の観点から上記式(2-2-1)、(2-2-3)、(2-2-5)、(2-2-7)である場合がさらに好ましい。
(2−1)におけるXが−C(R1)(R2)−である場合の具体例として、以下のものが挙げられる。
Figure 0004736471
上記式(2−2)で示される繰り返し単位の具体例として、C環およびD環が芳香族炭化水素環、Yが−CH=CH−であるものとしては、以下のものが挙げられる。

Figure 0004736471
本発明の高分子化合物が有する全繰り返し単位のモル数の合計(M)に対する上記式(1)で示される繰り返し単位のモル数(M1)の比(M1/M)をx、全繰り返し単位のモル数の合計に対する上記式(2-1)、(2-2)および(2-3)で示される繰り返し単位のモル数の合計(M2)の比(M2/M)をyとした場合に、0.01≦x+y≦1であることが好ましくより好ましくは0.1≦x+y≦1で表される範囲である。
また、式(1)で示される繰り返し単位のモル数と、式(2-1) 、(2-2)および(2-3)で示される繰り返し単位から選ばれる繰り返し単位のモル数の合計量に対する、式(1)で示される繰り返し単位のモル数の比x/(x+y)は、0.01≦x/(x+y)≦0.99が好ましく、発光効率という観点からより好ましくは0.05≦x/(x+y)≦0.60であり、耐熱性という観点からは、より好ましくは0.30≦x/(x+y)≦0.95であり、特に好ましくは0.40≦x/(x+y)≦0.90である。
本発明の高分子化合物は、式(1)および式(2-1) 、(2-2)で示される繰り返し単位以外の繰り返し単位を含んでいてもよい。
本発明の高分子化合物が含むことができる、式(1)および式(2-1) 、(2-2)で示される繰り返し単位以外の繰り返し単位としては、下記式(4)、式(5)、式(6)または式(7)で示される繰り返し単位が好ましい。

−Ar5− (4)

―Ar5−X1―(Ar6−X2c―Ar7− (5)

−Ar5−X2− (6)

−X2− (7)
上記式において、Ar5、Ar6およびAr7はそれぞれ独立にアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を示す。X1は、−C≡C−、−N(R11)−、または−(SiR1213d−を示す。X2は−CR21=CR31−、−C≡C−、−N(R11)−、または−(SiR1213d−を示す。R21およびR31は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。R11、R12およびR13は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはアリールアルキル基を表す。cは0〜2の整数を表す。dは1〜12の整数を表す。Ar6、X2、R11、12、13、R21およびR31がそれぞれ複数存在する場合、それらは同一であっても異なっていてもよい。
ここでアリーレン基、2価の複素環基は、前記と同じ意味を表す。
金属錯体構造を有する2価の基とは、金属錯体の有機配位子から水素原子を2個除いた残りの2価の基をいう。
金属錯体中の有機配位子の炭素数は、通常4〜60程度である。有機配位子としては、例えば、8−キノリノールおよびその誘導体、ベンゾキノリノールおよびその誘導体、2−フェニル−ピリジンおよびその誘導体、2−フェニル−ベンゾチアゾールおよびその誘導体、2−フェニル−ベンゾキサゾールおよびその誘導体、ポルフィリンおよびその誘導体などが挙げられる。
有機配位子を有する金属錯体の中心金属としては、例えば、アルミニウム、亜鉛、ベリリウム、イリジウム、白金、金、ユーロピウム、テルビウムなどが挙げられる。
有機配位子を有する金属錯体としては、低分子の蛍光材料、燐光材料として公知のもの、いわゆる三重項発光錯体などが挙げられる。
金属錯体構造を有する2価の基としては、例えば、以下の(126〜132)が例示される。
Figure 0004736471

Figure 0004736471

Figure 0004736471

Figure 0004736471

Figure 0004736471

Figure 0004736471

Figure 0004736471
式中、Rは前記式1〜125のそれと同じ意味を表す
本発明の高分子化合物が含むことができる、式(1)および式(2-1)、 (2-2)で示される繰り返し単位以外繰り返し単位の中では、上記式(4)、式(5)で示される繰り返し単位が好ましい。
上記式(5)で示される繰り返し単位の具体例としては、下図(式133〜140)が挙げられる。

Figure 0004736471
Figure 0004736471



Figure 0004736471


上記式においてRは、前記式1〜132のそれと同じ意味を表す。
なお、本発明の高分子化合物は、発光特性や電荷輸送特性を損なわない範囲で、式(1)、式(2-1)、式(2-2)、式(4)、式(5)、式(6)または式(7)で示される繰り返し単位以外の繰り返し単位を含んでいてもよい。また、繰り返し単位が、非共役の単位で連結されていてもよいし、繰り返し単位にそれらの非共役部分が含まれていてもよい。非共役の単位としては、以下に示すもの、および以下に示すもののうち2つ以上を組み合わせたものなどが例示される。ここで、Rは前記のものと同じ置換基から選ばれる基であり、Arは炭素数6〜60個の炭化水素基を示す。

Figure 0004736471
本発明の高分子化合物は、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光またはりん光の量子収率の高い発光材料(高分子量の発光材料)を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。 本発明の高分子化合物には、主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。
また、本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていてよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、例えば、炭素―炭素結合を介してアリール基または複素環基と結合している構造が例示される。具体的には、特開平9−45478号公報の化10に記載の置換基等が例示される。
本発明の高分子化合物のポリスチレン換算の数平均分子量は通常103〜108程度であり、好ましくは104〜106である。
本発明の高分子化合物に対する良溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n−ブチルベンゼンなどが例示される。高分子化合物の構造や分子量にもよるが、通常は本発明の高分子化合物をこれらの溶媒に0.1重量%以上溶解させることができる。
本発明の高分子化合物は、例えば、下記式(8)で示される化合物並びに式(9-1)および(9-2)から選ばれる1種以上の化合物を原料として縮合重合させることにより製造することができる。

Figure 0004736471


Figure 0004736471


〔式中、Ar1、Ar2、Ar3、Ar4、E1、E2、E3、A環、B環、C環、D環、XおよびYは前記と同じ意味を表す。Y1、Y2、Y5、Y6、Y7およびY8はそれぞれ独立に縮合重合反応に関与する置換基を表す。〕
縮合重合反応に関与する置換基としては、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ハロスルホニル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸基(−B(OH)2)、ホルミル基、シアノ基、ビニル基等があげられる。
ここでアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基などが例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基などが例示され、アリールアルキルスルホネート基としては、ベンジルスルホネート基などが例示される。
ホウ酸エステル基としては、下記式で示される基が例示される。
Figure 0004736471
式中、Meはメチル基を、Etはエチル基を示す。
スルホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Me2-、−CH2+Ph2-
(Xはハロゲン原子を示し、Phはフェニル基を示す。)
ハロスルホニル基としては、下記式で示される基が例示される。
−SO2
(Xはハロゲン原子を示す。)
ホスホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Ph3- (Xはハロゲン原子を示す。)
ホスホネートメチル基としては、下記式で示される基が例示される。
−CH2PO(OR’)2 (Xはハロゲン原子を示し、R’はアルキル基、アリール基、アリールアルキル基を示す。)
モノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
縮合重合反応に関与する置換基として好ましい置換基は重合反応の種類によって異なるが、例えばYamamotoカップリング反応などゼロ価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基が挙げられる。またSuzukiカップリング反応などニッケル触媒またはパラジウム触媒を用いる場合には、ハロゲン原子、ホウ酸エステル基、ホウ酸基などが挙げられる。
本発明の高分子化合物が、式(1)および式(2-1)、 (2-2) 、で示される繰り返し単位以外の繰り返し単位を有する場合には、式(1)および式(2-1)、 (2-2) 、で示される繰り返し単位以外の繰り返し単位となる、2個の縮合重合反応に関与する置換基を有する化合物を共存させて縮合重合させればよい。
式(1)および式(2-1)、 (2-2) 、 (2-3)で示される繰り返し単位以外の繰り返し単位となる、縮合重合反応に関与する置換基を有する化合物としては、下記式(10)〜(13)の化合物が例示される。
上記式(8)および/または式(9-1)、(9-2)で示される化合物に加えて、下記式(10)〜(13)のいずれかで示される化合物を縮合重合させることにより前記式(1)および式(2-1)、 (2-2)で示される繰り返し単位に加えて、式(4)、式(5)、式(6)または式(7)の繰り返し単位を一つ以上有する高分子化合物を製造することができる。
9−Ar5−Y10 (10)

9―Ar5−X1―(Ar6−X2c―Ar7−Y10 (11)

9−Ar5−X2−Y10 (12)

9−X2−Y10 (13)

式中、Ar5、Ar6、Ar7、c、X1およびX2は前記と同じ意味を表す。Y9およびY10はそれぞれ独立に縮合重合反応に関与する置換基を示す。
本発明の高分子化合物の製造方法において、縮合重合させる反応としては、上記式(10)〜(13)で示される化合物の縮合重合反応に関与する置換基に応じて、既知の縮合反応を用いることができる。
本発明の高分子化合物の製造方法としては、例えば該当するモノマーからSuzukiカップリング反応などニッケル触媒またはパラジウム触媒により重合する方法、Grignard反応により重合する方法、Yamamotoカップリング反応などゼロ価ニッケル錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは適当な脱離基を有する中間体高分子の分解による方法などが例示される。
本発明の高分子化合物が主鎖にビニレン基を有する場合には、例えば特開平5−202355号公報に記載の方法が挙げられる。すなわち、ホルミル基を有する化合物とホスホニウムメチル基を有する化合物とのWittig反応による重合、ホルミル基とホスホニウムメチル基とを有する化合物同士のWittig反応による重合、ホルミル基を有する化合物とホスホネートメチル基を有する化合物とのHoner反応による重合、ホルミル基とホスホネートメチル基とを有する化合物同士のHoner反応による重合、ビニル基を有する化合物とハロゲン原子を有する化合物とのHeck反応による重合、モノハロゲン化メチル基を2つあるいは2つ以上有する化合物の脱ハロゲン化水素法による重縮合、スルホニウムメチル基を2つあるいは2つ以上有する化合物のスルホニウム塩分解法による重縮合、ホルミル基を有する化合物とシアノ基を有する化合物とのKnoevenagel反応による重合などの方法、ホルミル基を2つあるいは2つ以上有する化合物のMcMurry反応による重合などの方法が例示される。
本発明の高分子化合物が主鎖に三重結合を有する場合には、例えば、Heck反応、Sonogashira反応が利用できる。
これらのうち、Suzukiカップリング反応などニッケル触媒またはパラジウム触媒により重合する方法、Grignard反応により重合する方法、Yamamotoカップリング反応などゼロ価ニッケル錯体により重合する方法、Wittig反応による重合、Heck反応による重合、Sonogashira反応による重合およびKnoevenagel反応による重合する方法が、構造制御がしやすいので好ましい。
より具体的に、反応条件について述べる。
Wittig反応、Horner反応、Knoevengel反応などの場合は、化合物の官能基に対して当量以上、好ましくは1〜3当量のアルカリを用いて反応させる。アルカリとしては、特に限定されないが、例えば、カリウム−t−ブトキシド、ナトリウム−t−ブトキシド、ナトリウムエチラート、リチウムメチラートなどの金属アルコラートや、水素化ナトリウムなどのハイドライド試薬、ナトリウムアミド等のアミド類等を用いることができる。溶媒としては、 N、N−ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン等が用いられる。反応の温度は、通常は室温から150℃程度で反応を進行させることができる。反応時間は、例えば、5分間〜40時間であるが、十分に重合が進行する時間であればよく、また反応が終了した後に長時間放置する必要はないので、好ましくは10分間〜24時間である。反応の際の濃度は、希薄すぎると反応の効率が悪く、濃すぎると反応の制御が難しくなるので、約0.01wt%〜溶解する最大濃度の範囲で適宜選択すればよく、通常は、0.1wt%〜30wt%の範囲である。Wittig反応については、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年等に記載されている。また、Knoevenagel,Wittig,脱ハロゲン化水素反応については、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Makromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載されている。
Heck反応の場合は、パラジウム触媒を用い、トリエチルアミンなどの塩基の存在下で、モノマーを反応させる。N、N−ジメチルホルムアミドやN−メチルピロリドンなどの比較的沸点の高い溶媒を用い、反応温度は、80〜160℃程度、反応時間は、1時間から100時間程度である。Heck反応については、例えば、ポリマー(Polymer),第39巻,5241−5244頁(1998年)に記載されている。
Sonogashira反応の場合は、一般的には、パラジウム触媒およびヨウ化第一銅を用い、トリエチルアミンなどの塩基の存在下で、N、N−ジメチルホルムアミド、アミン系溶媒またはエーテル系溶媒などを用いて、モノマーを反応させる。反応条件やモノマーの重合可能な置換基の反応性によるが、通常反応温度は−50〜120℃程度、反応時間は1時間から100時間程度である。Sonogashira反応については、例えば、Tetrahedron Letters,第40巻,3347−3350頁(1999年)、Tetrahedron Letters,第16巻,4467−4470頁(1975年)に記載されている。
Suzuki反応の場合は、触媒として、例えばパラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類などを用い、炭酸カリウム、炭酸ナトリウム、水酸化バリウム等の無機塩基、トリエチルアミン等の有機塩基、フッ化セシウムなどの無機塩をモノマーに対して当量以上、好ましくは1〜10当量加えて反応させる。無機塩を水溶液として、2相系で反応させてもよい。溶媒としては、 N、N−ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランなどが例示される。溶媒にもよるが50〜160℃程度の温度が好適に用いられる。溶媒の沸点近くまで昇温し、環流させてもよい。反応時間は1時間から200時間程度である。
Suzuki反応については、例えば、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)に記載されている。
ゼロ価ニッケル錯体を用いる場合について説明する。ゼロ価ニッケル錯体として、ゼロ価ニッケル錯体を使う方法と、ニッケル塩を還元剤の存在下で反応させ、系内でゼロ価ニッケルを生成させる方法がある。
ゼロ価ニッケル錯体としては、ビス(1,5−シクロオクタジエン)ニッケル(0)、(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケルなどが例示され、中でも、ビス(1,5−シクロオクタジエン)ニッケル(0)が、汎用性で安価という観点で好ましい。
また、中性配位子を添加することが、収率向上の観点から好ましい。
ここに、中性配位子とは、アニオンやカチオンを有していない配位子であり、2,2’−ビピリジル、1,10−フェナントロリン、メチレンビスオキサゾリン、N,N‘−テトラメチルエチレンジアミン等の含窒素配位子;トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン等の第三ホスフィン配位子などが例示され、汎用性、安価の点で含窒素配位子が好ましく、2,2’−ビピリジルが高反応性、高収率の点で特に好ましい。 特に、重合体の収率向上の点から、ビス(1,5−シクロオクタジエン)ニッケル(0)を含む系に中性配位子として2,2’−ビピリジルを加えた系が好ましい。系内でゼロ価ニッケルを生成させる方法においては、ニッケル塩として塩化ニッケル、酢酸ニッケル等が挙げられる。還元剤としては、亜鉛,水素化ナトリウム,ヒドラジンおよびその誘導体、リチウムアルミニウムハイドライドなどが上げられ、必要に応じて添加物として、よう化アンモニウム、よう化リチウム、よう化カリウム等が用いられる。
本発明の製造方法の中で、Y1、Y2、Y5、6、Y7、8、Y9およびY10がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基であり、ゼロ価ニッケル錯体存在下で縮合重合する製造方法が好ましい。
この場合、原料化合物としては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物あるいはハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物、アリールスルホネート−アリールアルキルスルホネート化合物が挙げられる。
また、本発明の製造方法の中で、Y1、Y2、Y5、6、Y7、8、Y9およびY1がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸基、またはホウ酸エステル基であり、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基およびアリールアルキルスルホネート基のモル数の合計(J)と、ホウ酸基およびホウ酸エステル基のモル数の合計(K)の比が実質的に1(通常K/Jは0.7から1.2の範囲)であり、ニッケル触媒またはパラジウム触媒を用いて縮合重合する製造方法が好ましい。
この場合、原料化合物の具体的な組み合わせとしては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物とジホウ酸化合物、ジホウ酸エステル化合物が挙げられる。あるいはハロゲン−ホウ酸化合物、ハロゲン−ホウ酸エステル化合物、アルキルスルホネート−ホウ酸化合物、アルキルスルホネート−ホウ酸エステル化合物、アリールスルホネート−ホウ酸化合物、アリールスルホネート−ホウ酸エステル化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸エステル化合物が挙げられる。
本発明の高分子化合物の製造に使用する有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために、用いる溶媒は十分に脱酸素処理を施し、不活性雰囲気化で反応を進行させることが好ましい。また、同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。
また、重合反応を進行させるために適宜アルカリや適当な触媒を添加する。これらは用いる反応に応じて選択すればよい。該アルカリまたは触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリまたは触媒を混合する方法としては、反応液をアルゴンや窒素などの不活性雰囲気下で攪拌しながらゆっくりとアルカリまたは触媒の溶液を添加するか、逆にアルカリまたは触媒の溶液に反応液をゆっくりと添加する方法が例示される。
重合時間は、重合の種類にもよるが、通常5分間〜200時間程度であるが、製造コストの点から、10時間以内が好ましい。
重合温度は、重合の種類にもよるが、通常−50〜160℃程度であるが、高収率、低加熱費の点から、20〜100℃が好ましい。
本発明の高分子化合物かを高分子LEDに用いる場合、その純度が発光特性等の素子の性能に影響を与えるため、重合前のモノマーを蒸留、昇華精製、再結晶等、カラムクロマトグラフィーの方法で精製したのちに重合することが好ましい。また重合後、酸洗浄、アルカリ洗浄、中和、水洗浄、有機溶媒洗浄、再沈殿、遠心分離、抽出、カラムクロマトグラフィー、透析などの慣用の分離操作、精製操作、乾燥その他の操作による純化処理をすることが好ましい。
次に本発明の高分子化合物の用途について説明する。
本発明の高分子化合物は、通常、固体状態で蛍光または燐光を有し、高分子発光体(高分子量の発光材料)として用いることができる。該高分子発光体を用いた高分子LEDは低電圧、高効率で駆動できる高性能の高分子LEDである。従って、該高分子LEDは液晶ディスプレイのバックライト、または照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の装置に好ましく使用できる。
また、本発明の高分子化合物はレーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、導電性薄膜、有機半導体薄膜などの伝導性薄膜用材料としても用いることができる。
さらに、蛍光や燐光を発する発光性薄膜材料としても用いることができる。
次に、本発明の高分子LEDについて説明する。
本発明の高分子LEDは、陽極および陰極からなる電極間に、本発明の高分子化合物を含む層を有することを特徴とする。
本発明の高分子化合物を含む層は、発光層、正孔輸送層、電子輸送層等のいずれであってもよいが、発光層であることが好ましい。
ここに、発光層とは、発光する機能を有する層をいい、正孔輸送層とは、正孔を輸送する機能を有する層をいい、電子輸送層とは、電子を輸送する機能を有する層をいう。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。
本発明の高分子化合物を含む層が発光層である場合、該有機層はさらに正孔輸送材料、電子輸送材料または発光材料を含んでいてもよい。ここで、発光材料とは、蛍光および/または燐光を示す材料のことをさす。
本発明の高分子化合物と正孔輸送性材料と混合する場合には、その混合物全体に対して、正孔輸送性材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。本発明の高分子化合物と電子輸送性材料を混合する場合には、その混合物全体に対して電子輸送性材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。さらに、本発明の高分子化合物と発光材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。本発明の高分子化合物と発光材料、正孔輸送性材料および/または電子輸送性材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1wt%〜50wt%であり、好ましくは5wt%〜40wt%であり、正孔輸送性材料と電子輸送性材料はそれらの合計で1wt%〜50wt%であり、好ましくは5wt%〜40wt%であり、本発明の高分子化合物の含有量は99wt%〜20wt%である。
混合する正孔輸送性材料、電子輸送性材料、発光材料は公知の低分子化合物や高分子化合物が使用できるが、高分子化合物を用いることが好ましい。 高分子化合物の正孔輸送性材料、電子輸送性材料および発光材料としては、WO99/13692、WO99/48160、GB2340304A、WO00/53656、WO01/19834、WO00/55927、GB2348316、WO00/46321、WO00/06665、WO99/54943、WO99/54385、US5777070、WO98/06773、WO97/05184、WO00/35987、WO00/53655、WO01/34722、WO99/24526、WO00/22027、WO00/22026、WO98/27136、US573636、WO98/21262、US5741921、WO97/09394、WO96/29356、WO96/10617、EP0707020、WO95/07955、特開平2001−181618、特開平2001−123156、特開平2001−3045、特開平2000−351967、特開平2000−303066、特開平2000−299189、特開平2000−252065、特開平2000−136379、特開平2000−104057、特開平2000−80167、特開平10−324870、特開平10−114891、特開平9−111233、特開平9−45478等に開示されているポリフルオレン、その誘導体および共重合体、ポリアリーレン、その誘導体および共重合体、ポリアリーレンビニレン、その誘導体および共重合体、芳香族アミンおよびその誘導体の(共)重合体や、前記式(2-1)、(2-2)および(2-3)から選ばれる繰り返し単位を有する高分子化合物が例示される。
低分子化合物の蛍光性材料としでは、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。
具体的には、例えば特開昭57−51781号、同59−194393号公報に記載されているもの等、公知のものが使用可能である。
低分子化合物の燐光材料としでは、例えば、イリジウムを中心金属とするIr(ppy)3、Btp2Ir(acac)、白金を中心金属とするPtOEP、ユーロピウムを中心金属とするEu(TTA)3phen等の三重項発光錯体が挙げられる。
Figure 0004736471

Figure 0004736471
Figure 0004736471
Figure 0004736471

三重項発光錯体として具体的には、例えばNature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105(Organic Light-Emitting Materials and DevicesIV), 119、J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999), 99(2), 1361、Adv. Mater., (1999), 11(10), 852 、Jpn.J.Appl.Phys.,34, 1883 (1995)などに記載されている。
本発明の高分子化合物は、正孔輸送材料、電子輸送材料および発光材料から選ばれる少なくとも1種類の材料と混合して、発光材料や電荷輸送材料として用いることができる。該組成物は、本発明の高分子化合物を2種以上含有していてもよい。
その正孔輸送材料、電子輸送材料、発光材料から選ばれる少なくとも1種類の材料と本発明の高分子化合物の含有比率は、用途に応じて決めればよいが、発光材料の用途の場合は、上記の発光層におけると同じ含有比率が好ましい。
本発明の高分子LEDが有する発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
発光層の形成方法としては、例えば、溶液からの成膜による方法が例示される。溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。パターン形成や多色の塗分けが容易であるという点で、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の印刷法が好ましい。
印刷法等で用いる溶液(インク組成物)としては、少なくとも1種類の本発明の高分子化合物が含有されていればよく、また本発明の高分子化合物以外に正孔輸送材料、電子輸送材料、発光材料、溶媒、安定剤などの添加剤を含んでいてもよい。
該インク組成物中における本発明の高分子化合物の割合は、溶媒を除いた組成物の全重量に対して通常は20wt%〜100wt%であり、好ましくは40wt%〜100wt%である。
またインク組成物中に溶媒が含まれる場合の溶媒の割合は、組成物の全重量に対して1wt%〜99.9wt%であり、好ましくは60wt%〜99.5wt%であり、さらに好ましく80wt%〜99.0wt%である。
インク組成物の粘度は印刷法によって異なるが、インクジェットプリント法などインク組成物中が吐出装置を経由するもの場合には、吐出時の目づまりや飛行曲がりを防止するために粘度が25℃において1〜20mPa・sの範囲であることが好ましく、5〜20mPa・sの範囲であることがより好ましく、7〜20mPa・sの範囲であることがさらに好ましい。
本発明の溶液は、本発明の高分子化合物の他に、粘度および/または表面張力を調節するための添加剤を含有していても良い。該添加剤としては、粘度を高めるための高分子量の高分子化合物(増粘剤)や貧溶媒、粘度を下げるための低分子量の化合物、表面張力を下げるための界面活性剤などを適宜組み合わせて使用すれば良い。
前記の高分子量の高分子化合物としては、本発明の高分子化合物と同じ溶媒に可溶性で、発光や電荷輸送を阻害しないものであれば良い。例えば、高分子量のポリスチレン、ポリメチルメタクリレート、あるいは本発明の高分子化合物のうち分子量が大きいものなどを用いることができる。重量平均分子量が50万以上が好ましく、100万以上がより好ましい。
貧溶媒を増粘剤として用いることもできる。すなわち、溶液中の固形分に対する貧溶媒を少量添加することで、粘度を高めることができる。この目的で貧溶媒を添加する場合、溶液中の固形分が析出しない範囲で、溶媒の種類と添加量を選択すれば良い。保存時の安定性も考慮すると、貧溶媒の量は、溶液全体に対して50wt%以下であることが好ましく、30wt%以下であることが更に好ましい。
また、本発明の溶液は、保存安定性を改善するために、本発明の高分子化合物の他に、酸化防止剤を含有していても良い。酸化防止剤としては、本発明の高分子化合物と同じ溶媒に可溶性で、発光や電荷輸送を阻害しないものであれば良く、フェノール系酸化防止剤、リン系酸化防止剤などが例示される。
溶液からの成膜に用いる溶媒としては、高分子化合物を溶解または均一に分散できるものが好ましい。該溶媒としてクロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコールおよびその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が例示される。また、これらの有機溶媒は、単独で、または複数組み合わせて用いることができる。上記溶媒のうち、ベンゼン環を少なくとも1個以上含む構造を有し、かつ融点が0℃以下、沸点が100℃以上である有機溶媒を1種類以上含むことが好ましい。
溶媒の種類としては、有機溶媒への溶解性、成膜時の均一性、粘度特性等の観点から、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒、ケトン系溶媒が好ましく、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、n−プロピルベンゼン、i−プロピルベンゼン、n−ブチルベンゼン、i−ブチルベンゼン、s−ブチルベンゼン、アニソール、エトキシベンゼン、1−メチルナフタレン、シクロヘキサン、シクロヘキサノン、シクロヘキシルベンゼン、ビシクロヘキシル、シクロヘキセニルシクロヘキサノン、n−ヘプチルシクロヘキサン、n−ヘキシルシクロヘキサン、2−プロピルシクロヘキサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−オクタノン、2−ノナノン、2−デカノン、ジシクロヘキシルケトンが好ましく、キシレン、アニソール、シクロヘキシルベンゼン、ビシクロヘキシルのうち少なくとも1種類を含むことがより好ましい。
溶液中の溶媒の種類は、成膜性の観点や素子特性等の観点から、2種類以上であることが好ましく、2〜3種類であることがより好ましく、2種類であることがさらに好ましい。
溶液中に2種類の溶媒が含まれる場合、そのうちの1種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、1種類の溶媒は沸点が180℃以上の溶媒であり、他の1種類の溶媒は沸点が180℃以下の溶媒であることが好ましく、1種類の溶媒は沸点が200℃以上の溶媒であり、他の1種類の溶媒は沸点が180℃以下の溶媒であることがより好ましい。また、粘度の観点から、2種類の溶媒ともに、60℃において1wt%以上の高分子化合物が溶解することが好ましく、2種類の溶媒のうちの1種類の溶媒には、25℃において1wt%以上の高分子化合物が溶解することが好ましい。
溶液中に3種類の溶媒が含まれる場合、そのうちの1〜2種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が180℃以上の溶媒であり、少なくとも1種類の溶媒は沸点が180℃以下の溶媒であることが好ましく、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が200℃以上300℃以下の溶媒であり、少なくとも1種類の溶媒は沸点が180℃以下の溶媒であることがより好ましい。また、粘度の観点から、3種類の溶媒のうちの2種類の溶媒には、60℃において1wt%以上の高分子化合物が溶解することが好ましく、3種類の溶媒のうちの1種類の溶媒には、25℃において1wt%以上の高分子化合物が溶解することが好ましい。
溶液中に2種類以上の溶媒が含まれる場合、粘度および成膜性の観点から、最も沸点が高い溶媒が、溶液中の全溶媒の重量の40〜90wt%であることが好ましく、50〜90wt%であることがより好ましく、65〜85wt%であることがさらに好ましい。
本発明の溶液としては、粘度および成膜性の観点から、アニソールおよびビシクロヘキシルからなる溶液、アニソールおよびシクロヘキシルベンゼンからなる溶液、キシレンおよびビシクロヘキシルからなる溶液、キシレンおよびシクロヘキシルベンゼンからなる溶液が好ましい。
高分子化合物の溶媒への溶解性の観点から、溶媒の溶解度パラメータと、高分子化合物の溶解度パラメータとの差が10以下であることをが好ましく、7以下であることがより好ましい。
溶媒の溶解度パラメーターと高分子化合物の溶解度パラメーターは、「溶剤ハンドブック(講談社刊、1976年)」に記載の方法で求めることができる。
溶液中に含まれる本発明の高分子化合物は、1種類でも2種類以上でもよく、素子特性等を損なわない範囲で本発明の高分子化合物以外の高分子化合物を含んでいてもよい。
本発明の溶液には、水、金属およびその塩を1〜1000ppmの範囲で含んでいてもよい。金属としては、具体的にはリチウム、ナトリウム、カルシウム、カリウム、鉄、銅、ニッケル、アルミニウム、亜鉛、クロム、マンガン、コバルト、白金、イリジウム等があげられる。また、珪素、リン、フッ素、塩素、臭素を1〜1000ppmの範囲で含んでいてもよい。
本発明の溶液を用いて薄膜を作製する場合、溶液に含まれる高分子化合物のガラス転移温度が高いため、100℃以上の温度でベークすることが可能であり、130℃の温度でベークしても素子特性の低下が非常に小さい。また、高分子化合物の種類によっては、160℃以上の温度でベークすることも可能である。
本発明の溶液を用いて作製できる薄膜としては、発光性薄膜、導電性薄膜、有機半導体薄膜が例示される。
本発明の発光性薄膜は、素子の輝度や発光電圧等の観点から、発光の量子収率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
本発明の導電性薄膜は、表面抵抗が1KΩ/□以下であることが好ましい。薄膜に、ルイス酸、イオン性化合物などをドープすることにより、電気伝導度を高めることができる。表面抵抗が100Ω/□以下であることがより好ましく、10Ω/□であることがさらに好ましい。
本発明の有機半導体薄膜は、電子移動度または正孔移動度のいずれか大きいほうが、10-5cm2/V/秒以上であることが好ましい。より好ましくは、10-3cm2/V/秒以上であり、さらに好ましくは、10-1cm2/V/秒以上である。
SiO2などの絶縁膜とゲート電極とを形成したSi基板上に該有機半導体薄膜を形成し、Auなどでソース電極とドレイン電極を形成することにより、有機トランジスタとすることができる。
本発明の高分子発光素子は、素子の輝度等の観点から陽極と陰極との間に3.5V以上の電圧を印加したときの最大外部量子収率が1%以上であることが好ましく、1.5%以上がより好ましい。
また、本発明の高分子発光素子(以下、高分子LED)としては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。
例えば、具体的には、以下のa)〜d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
本発明の高分子LEDとしては、本発明の高分子化合物が正孔輸送層および/または電子輸送層に含まれているものも含む。
本発明の高分子化合物が正孔輸送層に用いられる場合には、本発明の高分子化合物が正孔輸送性基を含む高分子化合物であることが好ましく、その具体例としては、芳香族アミンとの共重合体、スチルベンとの共重合体などが例示される。
また、本発明の高分子化合物が電子輸送層に用いられる場合には、本発明の高分子化合物が電子輸送性基を含む高分子化合物であることが好ましく、その具体例としては、オキサジアゾールとの共重合体、トリアゾールとの共重合体、キノリンとの共重合体、キノキサリンとの共重合体、ベンゾチアジアゾールとの共重合体などが例示される。
本発明の高分子LEDが正孔輸送層を有する場合、使用される正孔輸送性材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体などが例示される。
具体的には、該正孔輸送性材料として、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
これらの中で、正孔輸送層に用いる正孔輸送性材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送性材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。
また、低分子化合物の正孔輸送性材料としてはピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体が例示される。低分子の正孔輸送性材料の場合には、高分子バインダーに分散させて用いることが好ましい。
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリ(N−ビニルカルバゾール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、ポリ(2,5−チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。
ポリビニルカルバゾールもしくはその誘導体は、例えばビニルモノマーからカチオン重合またはラジカル重合によって得られる。
ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。
ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送性材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖または主鎖に有するものが例示される。
正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送性材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送性材料では、溶液からの成膜による方法が例示される。
溶液からの成膜に用いる溶媒としては、正孔輸送性材料を溶解または均一に分散できるものが好ましい。該溶媒としてクロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコールおよびその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が例示される。また、これらの有機溶媒は、単独で、または複数組み合わせて用いることができる。
溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送性材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。
具体的には、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜法としては特に制限はないが、低分子電子輸送性材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、上記の高分子バインダーを併用してもよい。
溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解または均一に分散できるものが好ましい。該溶媒としてクロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコールおよびその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が例示される。また、これらの有機溶媒は、単独で、または複数組み合わせて用いることができる。
溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。
さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。
例えば、具体的には、以下のe)〜p)の構造が挙げられる。
e)陽極/正孔注入層/発光層/陰極
f)陽極/発光層/電子注入層/陰極
g)陽極/正孔注入層/発光層/電子注入層/陰極
h)陽極/正孔注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
k)陽極/正孔注入層/発光層/電子輸送層/陰極
l)陽極/発光層/電子輸送層/電子注入層/陰極
m)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
n)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
p)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
本発明の高分子LEDとしては、前述のとおり、本発明の高分子化合物が正孔輸送層および/または電子輸送層に含まれているものも含む。
また、本発明の高分子LEDとしては、本発明の高分子化合物が正孔注入層および/または電子注入層に含まれているものも含む。本発明の高分子化合物が正孔注入層に用いられる場合には、電子受容性化合物と同時に用いられることが好ましい。また、本発明の高分子化合物が電子輸送層に用いられる場合には、電子供与性化合物と同時に用いられることが好ましい。ここで、同時に用いるためには、混合、共重合、側鎖としての導入などの方法がある。
電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送性材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送性材料との中間の値の電子親和力を有する材料を含む層などが例示される。
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102以下がより好ましく、10-5S/cm以上101以下がさらに好ましい。
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102S/cm以下がより好ましく、10-5S/cm以上101S/cm以下がさらに好ましい。
通常は該導電性高分子の電気伝導度を10-5S/cm以上103以下とするために、該導電性高分子に適量のイオンをドープする。
ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが例示される。
電荷注入層の膜厚としては、例えば1nm〜100nmであり、2nm〜50nmが好ましい。
電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。
膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LED、陽極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。
具体的には、例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
s)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
v)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
ab)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
本発明の高分子LEDは、上記a)〜ab)に例示した素子構造において、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層のうちのいずれかに、本発明の高分子
化合物を含むものがあげられる。
本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。
通常本発明の高分子LEDが有する陽極および陰極の少なくとも一方が透明または半透明である。陽極側が透明または半透明であることが好ましい。
該陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。
本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、およびそれらのうち2つ以上の合金、あるいはそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。陰極を2層以上の積層構造としてもよい。
陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよく、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。
該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にダメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
本発明の高分子LEDは面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライトとして用いることができる。
本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子蛍光体を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。
さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
本発明の有機トランジスタとしては、高分子電界効果トランジスタが挙げられる。
該高分子電界効果トランジスタの構造としては、通常は、ソース電極およびドレイン電極が高分子からなる活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられていればよい。
高分子電界効果トランジスタは、通常は支持基板上に形成される。支持基板の材質としては電界効果トランジスタとしての特性を阻害しなければ特に制限されないが、ガラス基板やフレキシブルなフィルム基板やプラスチック基板も用いることができる。
電界効果トランジスタは、公知の方法、例えば特開平5−110069号公報記載の方法により製造することができる。
活性層を形成する際に、有機溶媒可溶性の高分子を用いることが製造上非常に有利であり好ましい。高分子を有機溶剤に溶解した溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の塗布法を用いることができる。
高分子電界効果トランジスタを作成後、封止してなる封止高分子電界効果トランジスタが好ましい。これにより、高分子電界効果トランジスタが、大気から遮断され、高分子電界トランジスタの特性の低下を抑えることができる。
封止する方法としては、UV硬化樹脂、熱硬化樹脂や無機のSiONx膜などでカバーする方法、ガラス板やフィルムをUV硬化樹脂、熱硬化樹脂などで張り合わせる方法などがあげられる。大気との遮断を効果的に行うため高分子電界効果トランジスタを作成後封止するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中など)行うことが好ましい。
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
(数平均分子量および重量平均分子量)
ここで、数平均分子量および重量平均分子量については、SEC(島津製作所製:LC−10Avp)によりポリスチレン換算の数平均分子量および重量平均分子量を求めた。測定する重合体は、約0.5wt%の濃度で、50μL注入した。移動相はクロロホルムまたはテトラヒドロフラン(THF)を用い、0.6mL/minの流速で流した。カラムは、TSKgel SuperHM−H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製:RID−10A)を用いた。
合成例1(化合物Aの合成)
Figure 0004736471

化合物A
不活性雰囲気下三つ口フラスコ囲気下三つ口フラスコに2,5−ジメトキシフェニルホウ酸(20.1g)、1−ブロモ−2,5−ジメトキシベンゼン(20.0g)、炭酸カリウム(31.8g)、トルエン(114ml)、水(114ml)を仕込みアルゴンガスで30分間脱気した。パラジウムテトラキス(トリフェニルホスフィン)(0.53g)をアルゴン気流下で仕込み、オイルバスで100℃に昇温し12時間反応させた。反応終了後室温に戻し、トルエン層を水洗後、トルエン溶液をシリカゲルのショートカラムに通してPd触媒を除いた後、溶媒を留去して目的物を得た(収量19.3g、収率76%)。
1H−NMR(300MHz/CDCl3):
δ3.73(s、6H)、3.78(s、6H)、6.8〜6.9(m、6H)

合成例2(化合物Bの合成)
Figure 0004736471

化合物B
不活性雰囲気下の三つ口フラスコに化合物A(19.3g)を入れ、脱水N,N−ジメチルホルムアミド(270ml)に溶解した。フラスコを氷浴で冷却しながら、滴下ロートからN−クロロスクシンイミド(25.0g)の脱水N,N−ジメチルホルムアミド(80ml)を15分かけて滴下した。滴下終了後ゆっくりと攪拌しながらゆっくりと室温へ戻し、1日攪拌した。
反応液に水(2000ml)を加えて、析出した沈殿をろ別回収した。得られた沈殿をトルエン/ヘキサンで再結晶し、白色結晶15.6gを得た。
得られた白色結晶を不活性雰囲気下の三つ口フラスコに入れ、脱水塩化メチレン(300ml)に溶解した。フラスコを氷浴で冷却しながら、滴下ロートを用いて三臭化ホウ素の塩化メチレン溶液(1mol/L、150ml)を1時間かけて仕込んだ。滴下終了後攪拌しながらゆっくり室温に戻し、一夜攪拌した。
反応液から酢酸エチルで抽出し、有機層を水洗した後、溶媒を留去して目的物を得た。(収量15.8g)
1H−NMR(300MHz/CDCl3):
δ6.74(s、2H)、6.97(s、2H)、8.97(s、2H)、9.45(s、2H)。
合成例3(化合物Cの合成)
Figure 0004736471

化合物C
不活性雰囲気下のフラスコに化合物B(100g)、ゼオライト(26.6g;Zeolite HSZ-371NHA(Tosoh)、Y型ゼオライト、ポアサイズ8.5Å、カチオン種NH4 +)、およびモレキュラーシーブスで乾燥したo−ジクロロベンゼン(2850ml)を加えた。オイルバスで加熱しながら攪拌した(バス温180℃×16時間)。生成物は目的物が主生成物であった。LC面百より目的物の生成量は約70%であり、異性体の生成量は最大のものでも5%以下であった。80付近まで冷却し、酢酸エチルを加えてゼオライトをろ別した。ろ別したさらにゼオライトから加熱した酢酸エチルで抽出しゼオライトをろ別した。ろ液を合わせて溶媒を留去した後、トルエン/酢酸エチルで再結晶し目的物を得た(収量56.1g)。
MSスペクトル:[M-H]- 356.9

合成例4(化合物Dの合成)

Figure 0004736471

化合物D
不活性雰囲気下の三つ口フラスコに化合物C(2.1g)、炭酸カリウム(2.0g)入れ、1−ブロモオクタン(2.4g)、ジメチルホルムアミド(190ml)に仕込みオイルバスで160℃に昇温し6時間反応させた。反応終了後室温に戻し、水を加えた後酢酸エチルで抽出し、水洗後、溶媒を留去した。シリカゲルクロマトグラフィーで精製し目的物を得た(収量1.6g)。
1H−NMR(300MHz/CDCl3):δ0.90(t、6H)、1.26〜1.95(m、24H)、4.11(t、4H)、7.34(s、2H)、7.74(s、2H)
合成例5
<高分子化合物1の合成>
2,7−ジブロモ−9,9−ジオクチルフルオレン(26g、0.047mol)、2,7−ジブロモ−9,9−ジイソペンチルフルオレン(5.6g、0.012mol)および2,2’−ビピリジル(22g、0.141mol)を脱水したテトラヒドロフラン1600mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(40g、0.15mol)加え、60℃まで昇温し、8時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水200mL/メタノール1200mL/イオン交換水1200mL混合溶液中に滴下して30分間攪拌した後、析出した沈殿をろ過して風乾した。その後、トルエン1100mLに溶解させてからろ過を行い、ろ液をメタノール3300mLに滴下して30分間攪拌した。析出した沈殿をろ過し、メタノール1000mLで洗浄した後、5時間減圧乾燥した。得られた共重合体の収量は20gであった(以後、高分子化合物1と呼ぶ)。高分子化合物1のポリスチレン換算の平均分子量および重量平均分子量は、それぞれMn=9.9×104、Mw=2.0×105であった(移動相:テトラヒドロフラン)。
合成例6
<高分子化合物2の合成>
2,7−ジブロモ−9,9−ジオクチルフルオレン(5.8g、0.0105mol)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン(3.1g、0.0045mmol)および2,2’−ビピリジル(6.6g)を脱水したテトラヒドロフラン500mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(12.0g)加え、60℃まで昇温し、攪拌しながら3時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水50mL/メタノール約200mL/イオン交換水約300mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥し、トルエン約500mLに溶解させた。その後、1N塩酸約300mLを加えて1時間攪拌し、水層を除去し、有機層に4%アンモニア水約300mLを加え、1時間攪拌した後に水層を除去した。有機層にイオン交換水約300mLを加え攪拌した後、水層を除去した。有機層はメタノール約700mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン約350mLに溶解させた。その後、アルミナカラムを通して精製を行い、回収したトルエン溶液をメタノール約700mlに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られた共重合体(以後、高分子化合物2と呼ぶ)の収量は3.5gであった。ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=3.7×104、Mw=2.8×105であった(移動相:クロロホルム)。
実施例1
<4−t−ブチル−2,6−ジメチルブロモベンゼンの合成>

Figure 0004736471

不活性雰囲気下で、500mlの3つ口フラスコに酢酸225gを入れ、5−t−ブチル−m−キシレン24.3gを加えた。続いて臭素31.2gを加えた後、15〜20℃で3時間反応させた。
反応液を水500mlに加え析出した沈殿をろ過した。水250mlで2回洗浄し、白色の固体34.2gを得た。
1H−NMR(300MHz/CDCl3):
δ(ppm) = 1.3〔s,9H〕、2.4〔s,6H〕、7.1〔s,2H〕
MS(FD+)M+ 241
<N,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 0004736471

不活性雰囲気下で、100mlの3つ口フラスコに脱気した脱水トルエン36mlを入れ、トリ(t−ブチル)ホスフィン0.63gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム0.41g、上記の4−t−ブチル−2,6−ジメチルブロモベンゼン9.6g、t−ブトキシナトリウム5.2g、N,N’−ジフェニル−1,4−フェニレンジアミン4.7gを加えた後、100℃で3時間反応させた。
反応液を飽和食塩水300mlに加え、約50℃に温めたクロロホルム300mlで抽出した。溶媒を留去した後、トルエン100mlを加えて、固体が溶解するまで加熱、放冷した後、沈殿をろ過し、白色の固体9.9gを得た。
<N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 0004736471

不活性雰囲気下で、1000mlの3つ口フラスコに脱水N,N−ジメチルホルムアミド350mlを入れ、上記のN,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン5.2gを溶解した後、氷浴下でN−ブロモスクシンイミド3.5g/N,N−ジメチルホルムアミド溶液を滴下し、一昼夜反応させた。
反応液に水150mlを加え、析出した沈殿をろ過し、メタノール50mlで2回洗浄し白色の固体4.4gを得た。
1H−NMR(300MHz/THF−d8):
δ(ppm) = 1.3〔s,18H〕、2.0〔s,12H〕、6.6〜6.7〔d,4H〕、6.8〜6.9〔br,4H〕、7.1〔s,4H〕、7.2〜7.3〔d,4H〕
MS(FD+)M+ 738
<高分子化合物3の合成>
前記化合物D(2.65g、4.6mmol)、上記N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン(1.44g、2.0mmol)および2,2’−ビピリジル(2.31g、15mmol)を脱水したテトラヒドロフラン400mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(4.18g、15mmol)加え、60℃まで昇温し、攪拌しながら3時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水90mL/メタノール900mL/イオン交換水450mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥し、トルエン300mLに溶解させた。その後、1N塩酸300mLを加えて1時間攪拌し、水層を除去し、有機層に4%アンモニア水300mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール1800mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン300mLに溶解させた。その後、アルミナカラム(アルミナ量90g)を通して精製を行い、回収したトルエン溶液をメタノール2200mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られた共重合体(以後、高分子化合物3と呼ぶ)の収量は1.4gであった。ポリスチレン換算の数平均分子量Mn=2.8×104、Mw=1.1×105であった(移動相:テトラヒドロフラン)。
実施例2
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、BaytronP)を用いてスピンコートにより70nmの厚みで成膜して、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物3と高分子化合物1の3:7(重量比)混合物が1.0wt%となるように調製したトルエン溶液を用いてスピンコートにより1100rpmの回転速度で成膜した。さらに、これを減圧下80℃で1時間乾燥した後、フッ化リチウムを約4nmを蒸着し、陰極として、カルシウムを約5nm、次いでアルミニウムを約35nm蒸着して、EL素子を作製した。なお真空度が、1×10-4Pa以下に到達したのち、金属の蒸着を開始した。
得られた素子に電圧を印加することにより、468nmにピークを有するEL発光が得られた。発光効率の最大値は3.1cd/Aであった。初期輝度を625cd/m2に設定し、輝度の減衰を測定したところ20時間後の輝度は427cd/m2であった。
比較例1
高分子化合物3の代わりに高分子化合物2を用いて、高分子化合物2と高分子化合物1の3:7(重量比)混合物の1.5wt%トルエン溶液をスピンコートにより1300rpmの回転速度で成膜した以外は実施例2と同様に素子を作製した。
得られた素子に電圧を印加することにより464nmにピークを有するEL発光が得られた。発光効率の最大値は1.8cd/Aであった。また、初期輝度を413cd/m2に設定し、輝度の減衰を測定したところ、輝度の減衰を測定したところ20時間後の輝度は207cd/m2であった。
実施例3
<N,N−ジフェニル−N−(4−t‐ブチル−2,6−ジメチルフェニル)−アミンの合成>
Figure 0004736471

不活性雰囲気下で、300mlの3つ口フラスコに脱気した脱水トルエン100mlを入れ、ジフェニルアミン16.9g、4−t−ブチル−2,6−ジメチルブロモベンゼン25.3gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム0.92g、t−ブトキシナトリウム12.0g、を加えた後、トリ(t−ブチル)ホスフィン1.01gを加えた。その後、100℃で7時間反応させた。
反応液を飽和食塩水にあけ、トルエン100mlで抽出した。トルエン層を希塩酸、飽和食塩水で洗浄後、溶媒を留去して黒色の固体を得た。これをシリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム 9/1)で分離精製し、白色の固体30.1gを得た。
1H−NMR(300MHz/CDCl3):δ(ppm)=1.3〔s,9H〕、2.0〔s,6H〕、6.8〜7.3〔m,10H〕
<N,N−ビス(4−ブロモフェニル)−N−(4−t‐ブチル−2,6−ジメチルフェニル)−アミンの合成>
Figure 0004736471

不活性雰囲気下で、1000mlの3つ口フラスコに脱水N,N−ジメチルホルムアミド333ml、ヘキサン166mlを入れ、上記のN,N−ジフェニル−N−(4−t‐ブチル−2,6−ジメチルフェニル)−アミン29.7gを溶解した後、遮光および氷浴下でN−ブロモスクシンイミド33.6g/N,N−ジメチルホルムアミド溶液100mlを滴下し、一昼夜反応させた。
反応液を200mlまで減圧濃縮し、水1000mlに加え、析出した沈殿をろ過した。さらに得られた結晶をDMF/エタノールで2回再結晶して白色固体23.4gを得た。
1H−NMR(300MHz/CDCl3):
δ(ppm) = 1.3〔s,9H〕、2.0〔s,6H〕、6.8〔d,2H〕、7.1〔s,2H〕、7.3〔d,2H〕、
MS(APCI(+)):M+ 488
実施例4
前記化合物D4.08gとN,N−ビス(4−ブロモフェニル)−N−(4−t‐ブチル−2,6−ジメチルフェニル)−アミン 1.45gと2、2’−ビピリジル4.4gを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、テトラヒドロフラン350mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を7.7g加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水40ml/メタノール200ml/イオン交換水200ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をメタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン100mLに溶解し、不溶解残渣をろ過で取り除き、さらにアルミナカラム(アルミナ量20g)を通した。その後1N塩酸100mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水100mLを加え、1時間攪拌した後に水層を除去し、さらに水100mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール200mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られた高分子化合物を高分子化合物4とする。収量は1.7gであった。
ポリスチレン換算数平均分子量は、4.5x104であり、ポリスチレン換算重量平均分子量は1.2x105であった(移動相:テトラヒドロフラン)。
合成例7
前記化合物D 0.60g(1.0mmol)とN,N−ビス(4−ブロモフェニル)−N−(4−イソブチルフェニル)−アミン0.20g(0.44mmol)と2、2’−ビピリジル0.50g(3.2mmol)を反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)40mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.90g(3.2mmol)加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をメタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン50mLに溶解し、1N塩酸50mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水50mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール120mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン30mLに溶解させた。その後、アルミナカラム(アルミナ量20g)を通して精製を行い、回収したトルエン溶液をメタノール100mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られた高分子化合物を高分子化合物5とする。収量は0.35gであった。
ポリスチレン換算数平均分子量は、4.3x104であり、ポリスチレン換算重量平均分子量は1.4x105であった(移動相:テトラヒドロフラン)。
実施例5
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、BaytronP)を用いてスピンコートにより70nmの厚みで成膜して、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物4と高分子化合物1の3:7(重量比)混合物が1.0wt%となるように調製したトルエン溶液を用いてスピンコートにより1000rpmの回転速度で成膜した。さらに、これを減圧下80℃で1時間乾燥した後、フッ化リチウムを約4nmを蒸着し、陰極として、カルシウムを約5nm、次いでアルミニウムを約35nm蒸着して、EL素子を作製した。なお真空度が、1×10-4Pa以下に到達したのち、金属の蒸着を開始した。
得られた素子に電圧を印加することにより、452nmにピークを有するEL発光が得られた。発光効率の最大値は2.4cd/Aであった。初期輝度を300cd/m2に設定し、輝度の減衰を測定したところ5時間後の輝度は174cd/m2であった。
比較例2
高分子化合物4の代わりに高分子化合物5を用いて、高分子化合物5と高分子化合物1の3:7(重量比)混合物の1.5wt%トルエン溶液をスピンコートにより1000rpmの回転速度で成膜した以外は実施例5と同様に素子を作製した。
得られた素子に電圧を印加することにより448nmにピークを有するEL発光が得られた。発光効率の最大値は2.4cd/Aであった。また、初期輝度を300cd/m2に設定し、輝度の減衰を測定したところ、輝度の減衰を測定したところ5時間後の輝度は145cd/m2であった。
合成例7
(化合物Eの合成)
Figure 0004736471
化合物E
不活性雰囲気下、300ml三つ口フラスコに1‐ナフタレンボロン酸5.00g(29mmol)、2−ブロモベンズアルデヒド6.46g(35mmol)、炭酸カリウム10.0g(73mmol)、トルエン36ml、イオン交換水36mlを入れ、室温で撹拌しつつ20分間アルゴンバブリングした。続いてテトラキス(トリフェニルホスフィン)パラジウム16.8mg(0.15mmol)を入れ、さらに室温で撹拌しつつ10分間アルゴンバブリングした。100℃に昇温し、25時間反応させた。室温まで冷却後、トルエンで有機層を抽出、硫酸ナトリウムで乾燥後、溶媒を留去した。トルエン:シクロヘキサン=1:2混合溶媒を展開溶媒としたシリカゲルカラムで生成することにより、化合物E5.18g(収率86%)を白色結晶として得た。
1H−NMR(300MHz/CDCl3):
δ7.39〜7.62(m、5H)、7.70(m、2H)、7.94(d、2H)、8.12(dd、2H)、9.63(s、1H)
MS(APCI(+)):(M+H)+ 233
(化合物Fの合成)
Figure 0004736471
化合物F
不活性雰囲気下で300mlの三つ口フラスコに化合物E 8.00g(34.4mmol)と脱水THF46mlを入れ、−78℃まで冷却した。続いてn−オクチルマグネシウムブロミド(1.0mol/lTHF溶液)52mlを30分かけて滴下した。滴下終了後0℃まで昇温し、1時間撹拌後、室温まで昇温して45分間撹拌した。氷浴して1N塩酸20mlを加えて反応を終了させ、酢酸エチルで有機層を抽出、硫酸ナトリウムで乾燥した。溶媒を留去した後トルエン:ヘキサン=10:1混合溶媒を展開溶媒とするシリカゲルカラムで精製することにより、化合物F7.64g(収率64%)を淡黄色のオイルとして得た。HPLC測定では2本のピークが見られたが、LC−MS測定では同一の質量数であることから、異性体の混合物であると判断した。
(化合物Gの合成)
Figure 0004736471
化合物G
不活性雰囲気下、500ml三つ口フラスコに化合物F(異性体の混合物)5.00g(14.4mmol)と脱水ジクロロメタン74mlを入れ、室温で撹拌、溶解させた。続いて、三フッ化ホウ素のエーテラート錯体を室温で1時間かけて滴下し、的か終了後室温で4時間撹拌した。撹拌しながらエタノール125mlをゆっくりと加え、発熱がおさまったらクロロホルムで有機層を抽出、2回水洗し、硫酸マグネシウムで乾燥した。溶媒を留去後、ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、化合物G3.22g(収率68%)を無色のオイルとして得た。
1H−NMR(300MHz/CDCl3):
δ0.90(t、3H)、1.03〜1.26(m、14H)、2.13(m、2H)、4.05(t、1H)、7.35(dd、1H)、7.46〜7.50(m、2H)、7.59〜7.65(m、3H)、7.82(d、1H)、7.94(d、1H)、8.35(d、1H)、8.75(d、1H)
MS(APCI(+)):(M+H)+ 329
(化合物Hの合成)
Figure 0004736471
化合物H
不活性雰囲気下200ml三つ口フラスコにイオン交換水20mlをいれ、撹拌しながら水酸化ナトリウム18.9g(0.47mol)を少量ずつ加え、溶解させた。水溶液が室温まで冷却した後、トルエン20ml、化合物G5.17g(15.7mmol)、臭化トリブチルアンモニウム1.52g(4.72mmol)を加え、50℃に昇温した。臭化n−オクチルを滴下し、滴下終了後50℃で9時間反応させた。反応終了後トルエンで有機層を抽出し、2回水洗し、硫酸ナトリウムで乾燥した。ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、化合物H5.13g(収率74%)を黄色のオイルとして得た。
1H−NMR(300MHz/CDCl3):
δ0.52(m、2H)、0.79(t、6H)、1.00〜1.20(m、22H)、2.05(t、4H)、7.34(d、1H)、7.40〜7.53(m、2H)、7.63(m、3H)、7.83(d、1H)、7.94(d、1H)、8.31(d、1H)、8.75(d、1H)
MS(APCI(+)):(M+H)+ 441
(化合物Iの合成)
Figure 0004736471
化合物I
空気雰囲気下、50mlの三つ口フラスコに化合物H4.00g(9.08mmol)と酢酸:ジクロロメタン=1:1混合溶媒57mlを入れ、室温で撹拌、溶解させた。続いて三臭化ベンジルトリメチルアンモニウム7.79g(20.0mmol)を加えて撹拌しつつ、塩化亜鉛を三臭化ベンジルトリメチルアンモニウムが完溶するまで加えた。室温で20時間撹拌後、5%亜硫酸水素ナトリウム水溶液10mlを加えて反応を停止し、クロロホルムで有機層を抽出、炭酸カリウム水溶液で2回洗浄し、硫酸ナトリウムで乾燥した。ヘキサンを展開溶媒とするフラッシュカラムで2回精製した後、エタノール:ヘキサン=1:1、続いて10:1混合溶媒で再結晶することにより、化合物I4.13g(収率76%)を白色結晶として得た。
1H−NMR(300MHz/CDCl3):
δ0.60(m、2H)、0.91(t、6H)、1.01〜1.38(m、22H)、2.09(t、4H)、7.62〜7.75(m、3H)、7.89(s、1H)、8.20(d、1H)、8.47(d、1H)、8.72(d、1H)
MS(APPI(+)):(M+H)+ 598
合成例8
<高分子化合物6の合成>
化合物I(8.0g、0.015mol)、および2,2’−ビピリジル(5.9g、0.038mol)を脱水したテトラヒドロフラン300mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液を60℃まで昇温し、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(10.4g、0.038mol)加え、5時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水40mL/メタノール300mL/イオン交換水300mL混合溶液中に滴下して30分間攪拌した後、析出した沈殿をろ過して風乾した。その後、トルエン400mLに溶解させてからろ過を行い、ろ液をアルミナカラムを通して精製し、1N塩酸約300mLを加えて3時間攪拌し、水層を除去し、有機層に4%アンモニア水約300mLを加え、2時間攪拌した後に水層を除去した。有機層にイオン交換水約300mLを加え1時間攪拌した後、水層を除去した。有機層にメタノール約100mLを滴下して1時間攪拌し、上澄み液をデカンテーションで除去した。得られた沈殿物をトルエン100mLに溶解して、メタノール約200mLに滴下して1時間攪拌し、ろ過して2時間減圧乾燥した。得られた共重合体の収量は4.1gであった(以後、高分子化合物6と呼ぶ)。高分子化合物6のポリスチレン換算の平均分子量および重量平均分子量は、それぞれMn=1.5×105、Mw=2.7×105であった(移動相:テトラヒドロフラン)。
合成例9
<高分子化合物7の合成>
化合物I(0.40g)、N,N−ビス(4−ブロモフェニル)−N−(4−sec-ブチルフェニル)−アミン(0.34g)および2,2’−ビピリジル(0.46g)を脱水したテトラヒドロフラン50mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.80g)加え、60℃まで昇温し、攪拌しながら3時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水5mL/メタノール約50mL/イオン交換水約50mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥し、その後、トルエン50mLに溶解させてからろ過を行い、ろ液をアルミナカラムを通して精製し、4%アンモニア水約50mLを加え、2時間攪拌した後に水層を除去した。有機層にイオン交換水約50mLを加え1時間攪拌した後、水層を除去した。有機層はメタノール約100mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥した。得られた共重合体(以後、高分子化合物7と呼ぶ)の収量は241mgであった。ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=1.1×104、Mw=1.9×104であった(移動相:テトラヒドロフラン)。
実施例6
<高分子化合物8の合成>
化合物I(0.90g)、N,N−ビス(4−ブロモフェニル)−N−(4−t‐ブチル−2,6−ジメチルフェニル)−アミン(0.62g)および2,2’−ビピリジル(1.1g)を脱水したテトラヒドロフラン110mLに溶解した後、窒素でバブリングして系内を窒素置換した。窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(2.0g)加え、60℃まで昇温し、攪拌しながら3時間反応させた。反応後、この反応液を室温(約25℃)まで冷却し、25%アンモニア水30mL/メタノール約150mL/イオン交換水約150mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥し、その後、トルエン50mLに溶解させてからろ過を行い、ろ液をアルミナカラムを通して精製し、4%アンモニア水約50mLを加え、2時間攪拌した後に水層を除去した。有機層にイオン交換水約50mLを加え1時間攪拌した後、水層を除去した。有機層はメタノール約100mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥した。得られた共重合体(以後、高分子化合物8と呼ぶ)の収量は500mgであった。ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=5.7x104、Mw=1.5x104であった(移動相:テトラヒドロフラン)。
実施例7
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、BaytronP)を用いてスピンコートにより70nmの厚みで成膜して、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物8と高分子化合物6の2:8(重量比)混合物が1.5wt%となるように調製したトルエン溶液を用いてスピンコートにより1200rpmの回転速度で成膜した。さらに、これを減圧下90℃で1時間乾燥した後、フッ化リチウムを約4nmを蒸着し、陰極として、カルシウムを約5nm、次いでアルミニウムを約70nm蒸着して、EL素子を作製した。なお真空度が、1×10-4Pa以下に到達したのち、金属の蒸着を開始した。
得られた素子に電圧を印加することにより、456nmにピークを有するEL発光が得られた。初期輝度を956cd/m2に設定し、輝度の減衰を測定したところ20時間後の輝度は603cd/m2であった。
比較例3
高分子化合物8の代わりに高分子化合物7を用いて、高分子化合物7と高分子化合物6の2:8(重量比)混合物の1.5wt%トルエン溶液をスピンコートにより1200rpmの回転速度で成膜した以外は実施例7と同様に素子を作製した。
得られた素子に電圧を印加することにより456nmにピークを有するEL発光が得られた。初期輝度を928cd/m2に設定し、輝度の減衰を測定したところ20時間後の輝度は369cd/m2であった。



Claims (31)

  1. 下記式(1)で示される繰り返し単位少なくとも1種類と、下記式(2−1)で示される繰り返し単位少なくとも1種類とを含み、ポリスチレン換算の数平均分子量が103〜108であることを特徴とする高分子化合物。
    Figure 0004736471
    〔式中、Ar1 およびAr 3 、それぞれ独立にアリーレン基または2価の複素環基を表す。E 3、下記アリール基(A)を表す
    リール基(A):アルキル基を3個以上有するフェニル、アルキル基を3個以上有するナフチル基、アルキル基を3個以上有するアントラセニル基。〕
    Figure 0004736471
    〔式中、A環および環はそれぞれ独立に芳香環を表し、Xは、−O−、−S−、−S(=O)−、−SO2−、−C(R1)(R2)−、−B(R3)−、−Si(R4)(R5)−、−P(R6)−、−PR7(=O)−、または−N(R8)−を表し、R 1、R2、R3、R4、R5、R6、R7およびR8は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表す。〕
  2. アリール基(A)が、アルキル基を3個有するフェニル基、アルキル基を3個有するナフチル基、またはアルキル基を3個有するアントラセニル基であることを特徴とする請求項1に記載の高分子化合物。
  3. 前記式(2−1)におけるXが−C(R1)(R2)−であり、A環およびB環がベンゼン環であることを特徴とする請求項1または2に記載の高分子化合物。
  4. 3 がアリール基(A)であり、該アリール基(A)において、3個以上のアルキル基が次の計算方法により決定される順序に従いその芳香環の炭素原子に結合することを特徴とする請求項1〜のいずれかに記載の高分子化合物。
    (1) アリール基(A)の基本構造化合物として、該アリール基の芳香環を構成する炭素原子のうち、結合手の位置の炭素原子にアミノ基が結合し、その他の炭素原子には水素以外の原子または基が結合していない(無置換の)アリールアミン化合物を用いる
    (2) 該アリールアミン化合物の最高占有分子軌道を、半経験的分子軌道法であるAM1法により求め、該最高占有分子軌道の任意の一つを選び、該アリールアミン化合物に於ける水素原子が結合した炭素原子のそれぞれに対応する原子軌道係数の2乗の和の値を計算する
    (3) この原子軌道係数の2乗の和の値が大きい炭素原子の順序に従い、順次、当該炭素原子に、前記3個以上のアルキル基が結合する
  5. アリール基(A)が下記式(3)で示される基であることを特徴とする請求項1〜のいずれかに記載の高分子化合物。
    Figure 0004736471
    〔式中、Re、RfおよびRgは、それぞれ独立にアルキル基を表す。〕
  6. 式(3)において、ReおよびRfがそれぞれ独立に、炭素数3以下のアルキル基であることを特徴とする請求項5に記載の高分子化合物。
  7. 高分子化合物が有する全繰り返し単位のモル数の合計に対する上記式(1)で示される繰り返し単位のモル数の比をx、全繰り返し単位のモル数の合計に対する上記式(2-1)で示される繰り返し単位のモル数の合計の比をyとした場合に、0.01≦x+y≦1であることを特徴とする請求項1〜のいずれかに記載の高分子化合物。
  8. 0.01≦x/(x+y)≦0.99であることを特徴とする請求項7に記載の高分子化合物。
  9. 正孔輸送材料、電子輸送材料および発光材料から選ばれる少なくとも1種類の材料と請求項1〜のいずれかに記載の高分子化合物の少なくとも1種類を含有することを特徴とする組成物
  10. 請求項1〜のいずれかに記載の高分子化合物を含有することを特徴とする溶液。
  11. 2種類以上の有機溶媒を含有することを特徴とする請求項1に記載の溶液。
  12. ベンゼン環を少なくとも1個含む構造を有し、かつ融点が0℃以下、沸点が100℃以上である有機溶媒を含有することを特徴とする請求項1または1に記載の溶液。
  13. アニソール、キシレン、シクロヘキシルベンゼンおよびビシクロヘキシルから選ばれる少なくとも1種類の有機溶媒を含有することを特徴とする請求項1または1に記載の溶液。
  14. 最も沸点が高い溶媒が全溶媒の重量の40〜90wt%である請求項1〜1のいずれかに記載の溶液。
  15. 溶液中の高分子化合物の濃度が0.5〜2.0wt%であることを特徴とする請求項1〜1のいずれかに記載の溶液。
  16. 粘度が25℃において1〜20mPa・sであることを特徴とする請求項1〜1のいずれかに記載の溶液。
  17. さらに粘度および/または表面張力を調整するための添加剤を含有することを特徴とする請求項116のいずれかに記載の溶液。
  18. さらに酸化防止剤を含有することを特徴とする請求項117のいずれかに記載の
    溶液。
  19. 溶媒の溶解度パラメータと、高分子化合物との溶解度パラメータとの差が10以下であることを特徴とする118のいずれかに記載の溶液。
  20. 請求項1〜のいずれかに記載の高分子化合物を含有する発光性薄膜。
  21. 請求項1〜のいずれかに記載の高分子化合物を含有する導電性薄膜。
  22. 請求項1〜のいずれかに記載の高分子化合物を含有する有機半導体薄膜。
  23. 請求項2に記載の有機半導体薄膜を有することを特徴とする有機トランジスタ。
  24. インクジェット法を用いることを特徴とする請求項222のいずれかに記載の薄膜の製膜方法。
  25. 陽極および陰極からなる電極間に、請求項1〜のいずれかに記載の高分子化合物を含む層を有することを特徴とする高分子発光素子。
  26. 請求項1〜のいずれかに記載の高分子化合物を含む層が発光層であることを特徴とする請求項25に記載の高分子発光素子。
  27. 発光層がさらに正孔輸送材料、電子輸送材料または発光材料を含むことを特徴とする請求項26に記載の高分子発光素子。
  28. 請求項2527のいずれかに記載の高分子発光素子を含むことを特徴とする面状光源。
  29. 請求項2527のいずれかに記載の高分子発光素子を含むことを特徴とするセグメント表示装置。
  30. 請求項2527のいずれかに記載の高分子発光素子を含むことを特徴とするドットマトリックス表示装置。
  31. 請求項2527のいずれかに記載の高分子発光素子をバックライトとすることを特徴とする液晶表示装置。
JP2005050665A 2004-02-26 2005-02-25 高分子化合物およびそれを用いた高分子発光素子 Expired - Fee Related JP4736471B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050665A JP4736471B2 (ja) 2004-02-26 2005-02-25 高分子化合物およびそれを用いた高分子発光素子

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004051173 2004-02-26
JP2004051174 2004-02-26
JP2004051173 2004-02-26
JP2004051174 2004-02-26
JP2005050665A JP4736471B2 (ja) 2004-02-26 2005-02-25 高分子化合物およびそれを用いた高分子発光素子

Publications (2)

Publication Number Publication Date
JP2005272834A JP2005272834A (ja) 2005-10-06
JP4736471B2 true JP4736471B2 (ja) 2011-07-27

Family

ID=35172827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050665A Expired - Fee Related JP4736471B2 (ja) 2004-02-26 2005-02-25 高分子化合物およびそれを用いた高分子発光素子

Country Status (1)

Country Link
JP (1) JP4736471B2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952032B2 (ja) * 2006-04-18 2012-06-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP4952037B2 (ja) * 2006-04-24 2012-06-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5239129B2 (ja) * 2006-05-31 2013-07-17 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5162856B2 (ja) * 2006-07-31 2013-03-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5162868B2 (ja) * 2006-09-20 2013-03-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP4983524B2 (ja) * 2007-01-29 2012-07-25 東レ株式会社 光起電力素子に好適な組成物および光起電力素子
JP2009132882A (ja) * 2007-10-31 2009-06-18 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP5587172B2 (ja) 2008-03-05 2014-09-10 出光興産株式会社 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
DE102011008463B4 (de) * 2010-01-15 2022-01-13 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung einer flüssigen Zusammensetzung für eine organische Halbleitervorrichtung
JP2012041537A (ja) * 2011-09-15 2012-03-01 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
WO2013046592A1 (ja) * 2011-09-28 2013-04-04 凸版印刷株式会社 有機el素子、有機el素子の製造方法
JP5981440B2 (ja) 2011-10-19 2016-08-31 出光興産株式会社 カルバゾール系重合体とそれを用いた有機エレクトロルミネッセンス素子
WO2013156125A1 (de) * 2012-04-17 2013-10-24 Merck Patent Gmbh Vernetzbare sowie vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
KR102430840B1 (ko) 2016-11-30 2022-08-08 호도가야 가가쿠 고교 가부시키가이샤 치환 트리아릴아민 구조 단위를 포함하는 고분자량 화합물
KR102500364B1 (ko) 2017-03-15 2023-02-16 호도가야 가가쿠 고교 가부시키가이샤 치환 트리아릴아민 골격을 갖는 고분자량 화합물
JP7318233B2 (ja) * 2019-03-04 2023-08-01 株式会社レゾナック 有機エレクトロニクス材料及びその利用
KR20220016828A (ko) 2019-06-05 2022-02-10 호도가야 가가쿠 고교 가부시키가이샤 치환 트리아릴아민 구조 단위를 포함하는 고분자량 화합물 및 유기 일렉트로 루미네선스 소자
EP4108701A4 (en) 2020-02-20 2024-03-06 Hodogaya Chemical Co., Ltd. High molecular weight compound and light emitting diode including said high molecular weight compound
CN117295779A (zh) 2021-05-21 2023-12-26 保土谷化学工业株式会社 三芳基胺高分子量化合物以及包含其高分子量化合物的有机电致发光元件
WO2023167253A1 (ja) 2022-03-04 2023-09-07 保土谷化学工業株式会社 トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子
WO2023182377A1 (ja) 2022-03-25 2023-09-28 保土谷化学工業株式会社 トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子
TW202406972A (zh) 2022-07-07 2024-02-16 日商保土谷化學工業股份有限公司 高分子量化合物及使用其等之有機電致發光元件
TW202446824A (zh) 2023-03-08 2024-12-01 日商保土谷化學工業股份有限公司 高分子量化合物及有機電致發光元件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896612B2 (ja) * 1991-02-08 1999-05-31 チッソ株式会社 スフィンゴシンの製造法および中間体
US6309763B1 (en) * 1997-05-21 2001-10-30 The Dow Chemical Company Fluorene-containing polymers and electroluminescent devices therefrom
CN1205247C (zh) * 2000-01-05 2005-06-08 剑桥显示技术有限公司 聚合物,及其制备和应用
JP2002155274A (ja) * 2000-08-21 2002-05-28 Sumitomo Chem Co Ltd 高分子蛍光体および高分子発光素子
GB0125620D0 (en) * 2001-10-25 2001-12-19 Cambridge Display Tech Ltd Monomers and low band gap polymers formed therefrom
JP4182245B2 (ja) * 2001-11-09 2008-11-19 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP3825711B2 (ja) * 2002-04-05 2006-09-27 独立行政法人産業技術総合研究所 共重合体及びエレクトロルミネッセンス素子
SG124249A1 (en) * 2001-12-07 2006-08-30 Sumitomo Chemical Co New polymer and polymer light-emitting device using the same
JP4035995B2 (ja) * 2002-01-16 2008-01-23 住友化学株式会社 共重合体およびそれを用いた高分子発光素子
AU2003233887A1 (en) * 2002-05-10 2003-11-11 Cambridge Display Technology Limited Polymers their preparation and uses
JP4273856B2 (ja) * 2002-08-28 2009-06-03 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子

Also Published As

Publication number Publication date
JP2005272834A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5076433B2 (ja) 共重合体およびそれを用いた高分子発光素子
CN101184789B (zh) 高分子化合物及使用了它的高分子发光元件
JP4736471B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
CN101203539B (zh) 高分子材料和高分子发光元件
JP4273856B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5274754B2 (ja) 高分子材料及び高分子発光素子
JP2004002703A (ja) 高分子化合物およびそれを用いた高分子発光素子
WO2011078391A1 (ja) 組成物及び該組成物を用いてなる発光素子
WO2011078387A1 (ja) 組成物及び該組成物を用いてなる発光素子
JP5162868B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5092199B2 (ja) 有機エレクトロルミネッセンス素子
EP2471833A1 (en) Polymer, composition, liquid composition, and conductive thin film
EP1724294B1 (en) Polymer and polymeric luminescent element comprising the same
JP5256568B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
EP1961782A1 (en) Polymer material and polymer light-emitting device using same
JP4329486B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5617150B2 (ja) 共役高分子化合物およびそれを用いた高分子発光素子
JP5162856B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP4957669B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP2007211237A (ja) ブロック共重合体
JP4904805B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5299017B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP4956918B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP4896411B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
JP4904752B2 (ja) 高分子化合物およびそれを用いた高分子発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees