Nothing Special   »   [go: up one dir, main page]

JP4771558B2 - Image forming method, magnetic toner and process unit - Google Patents

Image forming method, magnetic toner and process unit Download PDF

Info

Publication number
JP4771558B2
JP4771558B2 JP2009517934A JP2009517934A JP4771558B2 JP 4771558 B2 JP4771558 B2 JP 4771558B2 JP 2009517934 A JP2009517934 A JP 2009517934A JP 2009517934 A JP2009517934 A JP 2009517934A JP 4771558 B2 JP4771558 B2 JP 4771558B2
Authority
JP
Japan
Prior art keywords
toner
magnetic
acid
magnetic toner
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009517934A
Other languages
Japanese (ja)
Other versions
JPWO2008150034A1 (en
Inventor
正 道上
道久 馬籠
恵理子 柳瀬
崇 松井
智久 佐野
彰 榊原
就一 廣子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009517934A priority Critical patent/JP4771558B2/en
Publication of JPWO2008150034A1 publication Critical patent/JPWO2008150034A1/en
Application granted granted Critical
Publication of JP4771558B2 publication Critical patent/JP4771558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0813Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by means in the developing zone having an interaction with the image carrying member, e.g. distance holders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

本発明は、電子写真法、静電記録法、静電印刷法又はトナージェット方式記録法を利用した記録方法に用いられる画像形成方法に関する。   The present invention relates to an image forming method used in a recording method using an electrophotographic method, an electrostatic recording method, an electrostatic printing method, or a toner jet recording method.

近年電子写真法、静電記録法等の画像形成装置はより小型、軽量、高速なものが求められている。小型化を達成するためには、画像形成工程における潜像担持体、トナー担持体等の径を小さくすることが必須条件となってくる。潜像担持体たる感光ドラムやトナー担持体たる現像スリーブの径が小さくなるにつれて曲率が大きくなるため、現像部においては現像領域が極めて狭くなる。特に磁性一成分トナーを使用する乾式現像法の一つであるジャンピング現像法においては、現像領域が狭くなることでいくつかの弊害が起こる(特開平6−110324号公報)。
現像領域が狭くなることによる弊害の一つとして、トナーの供給不足による濃度の低下が挙げられる。このような濃度低下を維持するために現像スリーブに内包されるマグネットの磁力を下げる等、諸々の現像条件を変化させると、十分に帯電されていないトナーも飛翔するようになりカブリやトナー飛散が増大する。また現像スリーブ周期での濃淡ムラ(いわゆるスリーブゴースト)等も発生しやすくなる。
また現像領域が狭くなることでジャンピング現像法において見られるいくつかの現象に関してもより促進されるようになる。例えば潜像端部に磁性トナーが集中して現像するエッジ効果が生じ、接触転写方法の場合等で感光体上に形成されたトナー像を転写材へ圧接した場合に起こる転写中抜けが起こりやすくなる。また、現像時に磁性トナーが鎖状(「穂」と呼ばれている)となって現像されるため、磁性トナーが画像部から穂の状態のままはみ出す尾引きといった現象も起こりやすくなる。
更には現像スリーブの小径化に伴い回転数が増大することで、磁性トナーに大きなストレスがかかりやすくなる。このためトナー粒子へ後から外添した処理剤がトナーに埋没や脱離をしたり、トナー粒子が欠けたりする等のいわゆるトナー劣化という問題も発生しやすくなる。このような劣化が進むと、繰り返しで使用された場合に、帯電量が低下したり、発生した微粉が現像スリーブや規制部材に固着することで帯電不良に伴う画像欠陥が起こりやすくなる。
このような問題点に対して、磁性トナーの流動性を制御することで改善する試みがなされている。例えば凝集度を調整したもの(特開2003−43738号公報)、トナーの圧縮率を制御したもの(特開2000−181128号公報、特開2001−356516号公報)などがあるが、小径化した現像スリーブと組み合わせた場合における画像品質の向上、及び耐久性の改善には未だ課題を残している。
In recent years, image forming apparatuses such as electrophotographic methods and electrostatic recording methods have been required to be smaller, lighter, and faster. In order to achieve downsizing, it is an indispensable condition to reduce the diameter of the latent image carrier, the toner carrier and the like in the image forming process. Since the curvature increases as the diameter of the photosensitive drum as the latent image carrier and the developing sleeve as the toner carrier decreases, the development area becomes extremely narrow in the development portion. In particular, in the jumping development method, which is one of the dry development methods using a magnetic one-component toner, several disadvantages occur due to a narrow development area (Japanese Patent Laid-Open No. 6-110324).
One of the harmful effects of narrowing the development area is a decrease in density due to insufficient supply of toner. If various development conditions are changed, such as reducing the magnetic force of the magnet contained in the developing sleeve in order to maintain such a decrease in density, toner that is not sufficiently charged will also fly, causing fog and toner scattering. Increase. In addition, uneven density (so-called sleeve ghost) or the like in the developing sleeve cycle is likely to occur.
Further, since the development area is narrowed, some phenomena seen in the jumping development method are further promoted. For example, an edge effect occurs in which magnetic toner concentrates and develops at the end of the latent image, and transfer loss occurs easily when the toner image formed on the photosensitive member is pressed against the transfer material in the case of the contact transfer method. Become. Further, since the magnetic toner is developed in a chain shape (called “ear”) at the time of development, a phenomenon such as tailing in which the magnetic toner protrudes from the image portion in the state of the ear tends to occur.
Furthermore, since the number of rotations increases as the diameter of the developing sleeve is reduced, a large stress is easily applied to the magnetic toner. For this reason, the problem of so-called toner deterioration, such as the processing agent externally added to the toner particles being buried or detached from the toner or chipping of the toner particles, is likely to occur. When such deterioration progresses, when it is used repeatedly, the charge amount decreases, or the generated fine powder adheres to the developing sleeve or the regulating member, so that an image defect due to charging failure is likely to occur.
Attempts have been made to improve the problem by controlling the fluidity of the magnetic toner. For example, there are those in which the degree of aggregation is adjusted (Japanese Patent Laid-Open No. 2003-43738) and those in which the compression rate of the toner is controlled (Japanese Patent Laid-Open No. 2000-181128, Japanese Patent Laid-Open No. 2001-356516). There are still problems in improving image quality and durability when combined with a developing sleeve.

本発明は、上述のごとき問題点を解決することのできる画像形成方法、磁性トナー及びプロセスユニットを提供することにある。
即ち、本発明の目的は、小径化された現像スリーブに適用した場合でも使用環境によらず安定した画像濃度が得られ、カブリや尾引き、転写中抜けといった画像欠陥を起こさない画像形成方法、磁性トナー及びプロセスユニットを提供することにある。
また、本発明の目的は、小型化されたプロセスユニットを提供することにある。
本発明者らは、5.0mm以上12.0mm未満の径を有するトナー担持体に適用されるトナーにおいて、該磁性トナーの圧縮率及び粉体流動性測定装置において測定されたTotal Energyを最適化することで、安定した画像濃度と高画質化を達成するとともに、小型化を可能とする磁性トナー及びプロセスユニットを見出し、本発明を完成させるに至った。
すなわち本発明は、以下のとおりである。
潜像担持体と、磁性トナーを表面に担持し内部に磁界発生手段を有するトナー担持体とが一定の間隔を設けて配置されており、該潜像担持体と該トナー担持体との間に交番電界を印加して磁性トナーで該潜像担持体に担持される静電潜像の現像を行う画像形成方法であって、
該トナー担持体の外径が5.0mm以上12.0mm未満であり、
該磁性トナーは、少なくとも結着樹脂及び磁性粉体を含有する磁性トナー粒子と無機微粉体とを含んでおり、
該磁性トナーは、平均円形度が0.950以上であり、下記式(1)から得られる圧縮率が30以下であり、
圧縮率={1−(見掛け密度/タップ密度)}×100 (1)
該トナーの粉体流動性測定装置において測定されたTotal Energyが下記式(2)及び(3)を満足することを特徴とする画像形成方法。
600≦TE10≦1500 (2)
TE10/TE100≦1.60 (3)
(TE10:撹拌速度が10mm/secの時のTotal Energy(mJ)、TE100:撹拌速度が100mm/secの時のTotal Energy(mJ))
本発明により、小型化が可能であり、使用環境によらず安定した画像濃度が得られ、更にはカブリ、尾引き、転写中抜けのない高画質な画像が得られる画像形成方法、磁性トナー及びプロセスユニットが得られた。
An object of the present invention is to provide an image forming method, a magnetic toner, and a process unit that can solve the above-described problems.
That is, an object of the present invention is to provide an image forming method that can provide a stable image density regardless of the use environment even when applied to a developing sleeve having a reduced diameter, and does not cause image defects such as fogging, tailing, and transfer loss. It is to provide a magnetic toner and a process unit.
Another object of the present invention is to provide a miniaturized process unit.
The present inventors have optimized the total energy measured by a compressibility of the magnetic toner and a powder fluidity measuring device in a toner applied to a toner carrier having a diameter of 5.0 mm or more and less than 12.0 mm. As a result, a magnetic toner and a process unit that achieve stable image density and high image quality and that can be miniaturized have been found, and the present invention has been completed.
That is, the present invention is as follows.
A latent image carrier and a toner carrier having a magnetic toner on the surface and having a magnetic field generating means are disposed at a predetermined interval, and between the latent image carrier and the toner carrier. An image forming method for developing an electrostatic latent image carried on a latent image carrier with a magnetic toner by applying an alternating electric field,
The outer diameter of the toner carrier is 5.0 mm or more and less than 12.0 mm;
The magnetic toner includes magnetic toner particles containing at least a binder resin and magnetic powder, and inorganic fine powder,
The magnetic toner has an average circularity of 0.950 or more and a compression ratio obtained from the following formula (1) of 30 or less.
Compression rate = {1- (apparent density / tap density)} × 100 (1)
An image forming method, wherein the total energy measured by the powder flowability measuring device of the toner satisfies the following formulas (2) and (3):
600 ≦ TE 10 ≦ 1500 (2)
TE 10 / TE 100 ≦ 1.60 (3)
(TE 10 : Total Energy (mJ) when the stirring speed is 10 mm / sec, TE 100 : Total Energy (mJ) when the stirring speed is 100 mm / sec)
According to the present invention, an image forming method, a magnetic toner, which can be miniaturized, can obtain a stable image density regardless of the use environment, and can obtain a high-quality image free from fogging, trailing, and transfer omission. A process unit was obtained.

図1は、本発明の磁性トナーを適用できるプロセスユニットの説明図である。
図2A及び2Bは、total energy測定に用いられる粉体流動性分析装置のプロペラ型ブレードの概略図である。
FIG. 1 is an explanatory diagram of a process unit to which the magnetic toner of the present invention can be applied.
2A and 2B are schematic views of a propeller blade of a powder fluidity analyzer used for total energy measurement.

以下、本発明について詳細に説明する。
プロセスユニットの小型化等に伴いトナー担持体(例えば、現像スリーブ)を小径化した場合、規制部材との接触回数が増加することでトナー担持体上のトナー担持量及び帯電量の安定化には有利である一方、狭い現像領域内での磁性トナーの飛翔状態が画像品位を大きく左右する。磁性トナーの感光ドラムへの飛翔状態は、トナー担持体上のトナーの「穂」形成、及び現像領域におけるトナーの「穂」の崩壊し易さに大きく影響される。
本発明者らが鋭意検討した結果、このトナー担持体上のトナーの「穂」形成と現像領域内でのトナー飛翔状態とが、磁性トナーの圧縮率及び粉体流動性測定装置において測定されるTotal Energyと密接に相関しているとの知見を得、本発明に至った。
まず本発明において、磁性トナーの圧縮率は下記式(1)で定義される。
圧縮率={1−(見掛け密度/タップ密度)}×100 (1)
この圧縮率はトナーの見掛け密度及びタップ密度から計算される値であり、見掛け密度とタップ密度の変化率を表す。トナー担持体近傍において磁性トナーの撹拌状態やトナー担持体への押圧状態は、環境変化、経時使用に伴うトナー残量等に対応して変動する。特にトナー担持体が小径化されると、その表面積が小さくなることで磁性トナーとの接触機会が少ないため、このような変動に対して「穂」形成が不安定となりやすい。磁性トナーの圧縮率は、このような変動に対してのトナー「穂」形成の安定性をはかる指標となるものである。
本発明において、磁性トナーの圧縮率を30以下とする必要がある。圧縮率が30より大きくなると、小径化した場合においてはトナー担持体近傍での押圧されている状態の変化が大きくなり、トナー担持体上でのトナーの「穂」形成が不安定化しやすくなる。具体的にはトナー担持体上の穂長が長くなったり、穂の密度が高くなりすぎたりすると、現像領域においてトナーの「穂」が崩壊しづらくなり、転写中抜けや尾引きといった画像欠陥が起こりやすくなる。
さらに本発明において、磁性トナーの粉体流動性測定装置において測定されたTotal Energyが下記式(2)及び(3)を満足することを特徴とする。尚、Total Energyとは、粉体中に攪拌羽根を押し込んでいくのに要する力と、粉体中で攪拌羽根を回転させるのに要する力の合計のことである。
600≦TE10≦1500 (2)
TE10/TE100≦1.60 (3)
(TE10;撹拌速度が10mm/secの時のTotal Energy、TE100;撹拌速度が100mm/secの時のTotal Energy)
本測定では、従来の凝集度などの測定とは異なり、撹拌速度を変化させたときのTotal Energyを測定することが可能となる。そして、本発明者らが検討した結果、この“Total Energyの値及び変化率”と“トナー担持体と潜像担持体間でのトナー飛翔状態”とが、相関があることが見出された。
撹拌速度を変化させることによって、粉体の流速変化に対してトナー間凝集力がどのように変化しているかを推察することができる。Total Energyが低く且つ流速の変動に対する変化率が小さいということは、トナー間凝集力が低いレベルで安定化していることに対応する。特に小径化した現像スリーブでの狭い現像領域において、現像スリーブと感光ドラム間でトナーの「穂」を崩した状態で安定して飛翔させるためにはこのトナー間凝集力をできるだけ低減させる必要がある。そして、このトナー間凝集力を見積もるには、粉体流動性測定装置での測定が有効である。
本発明においてTE10は600mJ以上1500mJ以下である。1500mJ超となるとトナー間凝集力が高くなりすぎるために、トナーの「穂」の崩壊が進まないうえ、現像領域自体が狭くなることに伴い濃度低下傾向や画像品質が低下しやすいためである。また600mJ以上とすることで、トナーに適度なストレスを与えることが可能となり、小径化したトナー担持体に適用した場合でも素早くかつシャープに帯電するようになる。
またTE10/TE100は1.60以下である。この値が1.60超となると、上述したようなトナー担持体上のトナーの「穂」の状態が変化したときに、飛翔状態がさらに変化しやすくなる。このため環境変化、経時変化に伴い、転写中抜けやカブリ、尾引きといった画像品質の低下を招きやすいものである。
これら、トナーの圧縮率や、粉体流動性測定装置でのTotal Energyを制御する方法の例としては、下記の(A)乃至(D)の方法が挙げられる。これらの方法は、単独で行ってもよいが、複数を組み合わせることによって達成しても良い。
(A)磁性トナーの粒度分布を適正化し、微粉及び粗粉量を適正化してパッキング性を制御する方法。
(B)磁性トナーの形状(平均円形度)及び表面平滑性を高め、トナー粒子間の接触面積を減少させる方法。
(C)磁性トナー表面に表面エネルギー/疎水性/粒径などを適正化した有機及びまたは無機微粒子層を複数種付着させる方法。
(D)磁性トナーの磁気特性を適正化し、磁気凝集性を低減させる方法。
本発明では、トナーの平均円形度が0.950以上であり、好ましくは0.960以上である。これは一つには磁性トナーにおいて、平均円形度が高いことで現像スリーブ上でのトナーの「穂」が短くなりやすく、更にはトナー間凝集力が低減することで現像領域内での「穂」の崩壊が進みやすいためと考えられる。そして、平均円形度がこの範囲内であれば、高画像濃度で高画質な画像が得られる。
また、本発明のトナーは、重量平均粒径(D4)が4.0μm以上9.0μm以下であることが好ましい。トナーの重量平均粒径(D4)が9.0μmを超えるような場合、微小ドット画像の再現性が低下する。一方、トナーの重量平均粒径(D4)が4.0μmより小さい場合には、トナーの比表面積が増大し、トナー間凝集力が高くなりすぎるために、濃度薄や画像欠陥等の問題が発生しやすくなる。本発明のトナーにおいて帯電安定性や流動性の改善等の効果がより顕著に現れるのは、重量平均粒径が4.0μm以上9.0μm以下の場合であり、さらに、より一層の高画質化という点では5.0μm以上8.0μm以下が好ましい。
本発明において、更に磁性トナーの磁気特性を制御することで効果を得られやすくなる。磁場79.6kA/mで着磁したときの残留磁化を3.0Am/kg以下とすることで、トナーの磁気凝集性を低下することが可能となり、現像領域内でのトナー飛翔状態がより「穂」を崩壊させた状態になりやすく、好ましいものである。
次に図1を参照しながら、本発明の構成について説明する。
図1において、100は潜像担持体たる感光ドラム、102はトナー担持体たる現像スリーブ、104は磁界発生手段たるマグネットローラ、140は磁性トナーを収容するトナー容器を兼ねる現像容器、103はトナー規制部材としての現像ブレードである。
感光ドラム100は図1中の矢印方向に回転し、その表面には不図示の帯電手段と潜像形成露光手段で静電潜像が形成される。
現像スリーブ102の内部には、マグネットローラ104が配置される。マグネットローラ104には複数の磁極が配置され、この磁力により現像容器140の中の磁性トナーが現像スリーブ102の表面上に担持される。現像スリーブ102は図1中の矢印方向に回転し、その表面に当接する現像ブレード103によって磁性トナーが規制され、均一な担持量のトナー層となる。
感光ドラム100の母線と現像スリーブ102の軸線とは略平行に配置され、且つ感光ドラム100と現像スリーブ102は所定の間隔をもって接近対向している。マグネットローラ104の磁極の1つは感光ドラム100と現像スリーブ102の最近接位置にほぼ合致するように設置される。感光ドラム100と現像スリーブ102の各面移動速度(周速)は略同一であるか、現像スリーブ102の周速が若干早い。感光ドラム100と現像スリーブ102間には交番電界が印加される。即ち、交番バイアス電圧印加手段と直流バイアス電圧印加手段によって、直流電圧と交流電圧が重畳印加される。
本発明において、現像スリーブ(トナー担持体)の径は5.0mm以上12.0mm未満である。12.0mm以上となると、十分なコンパクト化が図れず、プロセスユニットの小型化が達成できない。また5.0mm未満では、現像スリーブ自体の剛性が低くなり、撓みなどによるピッチムラなどの画像欠陥が起こりやすくなるとともに、磁性トナーと現像スリーブの接触機会が極端に低下し、適正な帯電量を得ることが難しくなる。尚、本発明においては、現像スリーブの径は6.0mm以上10.0mm以下であることがより好ましい。
また、トナー担持体に内包される磁界発生手段の潜像担持体方向への磁束密度がトナー担持体表面において600G以上800G以下であることが好ましい。磁束密度が上記の範囲内にある場合には、適度な磁気的拘束力が得られ、潜像担持体とトナー担持体との間におけるトナーの行き来が良好となり、特に良好な画像形成が可能となる。
次に本発明に用いられるトナー担持体の構成について説明する。本発明に用いられるトナー担持体は、少なくとも基体及びその表面に形成された樹脂被覆層を有することが好ましい。
基体としては、円筒状部材、円柱状部材、ベルト状部材等を用いることができる。感光ドラムに非接触の現像方法においては、金属のような剛体の円筒管もしくは中実棒が基体として好ましく用いられる。このような基体はアルミニウム、ステンレス鋼、真鍮等の非磁性の金属または合金を円筒状あるいは円柱状に成型し、研磨、研削等を施して調製することができる。これらの基体は画像の均一性を良くするために、高精度に成型あるいは加工される。例えば長手方向の真直度は30μm以下とするのが好ましく、20μm以下とするのがより好ましく、10μm以下とするのがさらに好ましい。トナー担持体と潜像担持体との間隙の振れ、例えば、垂直面に対し均一なスペーサーを介して突き当て、トナー担持体を回転させた場合の垂直面との間隙の振れは、30μm以下とするのが好ましく、20μm以下とするのがより好ましく、10μm以下とするのがさらに好ましい。材料コストや加工のしやすさからアルミニウムが好ましく用いられる。
基体の表面に対しては、トナーの搬送性を高める為にブラスト処理を行っても良い。具体的には、球形ガラスビーズ等のブラスト材(これに限定されるものではない。)を用い、ブラストノズルから上記ガラスビーズを基体表面に所定の圧力で所定時間吹き付けてブラスト処理を行い、基体表面に多数の窪みを形成させる。
次に、樹脂被覆層について詳細に説明する。
本発明のトナー担持体の樹脂被覆層に含まれる結着樹脂成分として、一般に公知の樹脂が使用可能である。例えば、ポリエステル樹脂、フッ素樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリフェニレンオキサイド樹脂、繊維素系樹脂等の熱可塑性樹脂、フェノール樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、メラミン樹脂、グアナミン樹脂、尿素樹脂、エポキシ樹脂、アルキッド樹脂等の熱あるいは光硬化性樹脂等を使用することができる。なかでもシリコーン樹脂のような離型性のあるもの、或いはフェノール樹脂、ポリウレタン樹脂、メラミン樹脂、グアナミン樹脂、尿素樹脂、フッ素樹脂、ポリイミド樹脂、ポリエステル樹脂、アクリル系樹脂、スチレン系樹脂のような機械的・物理的な負荷に対する耐性に優れたものが好ましい。上記トナー担持体の樹脂被覆層が結着樹脂成分としてこれらの樹脂を含むと、トナー担持体としてトナーに好適な摩擦帯電電荷を付与することができる。その結果、画像濃度低下、画像濃度ムラ等の問題を好ましく抑制することが可能となる。
さらに、樹脂被覆層を、複数の樹脂を結着樹脂成分として含み、そのうちの一つをフェノール樹脂とすると、トナー担持体を更に高耐久化できる。このため、連続複写においてもトナー担持体上のトナーに均一な帯電を付与し、耐久中の画像濃度低下や均一で濃度ムラやカブリのない高品位の画像を得ることのできる現像方法を提供することが可能になる。
また、本発明においては、樹脂被覆層を導電性を有するものとすることが好ましい。粒径の小さいトナーや球形化度の高いトナーを用いて画像形成を行った場合には、初期トナーの不均一な帯電やチャージアップが生じやすいが、トナー担持体に導電性樹脂被覆層を設けることによって、良好に制御できる。更に、異なる環境下においても安定したトナーへの摩擦帯電付与が可能となり、また、画出し枚数を重ねることでトナーのトリボが立ち上がった状態になっても、トナーのチャージアップが起こることがなく、終始安定した高品位の画像を得ることが可能となる。
樹脂被覆層の体積抵抗値としては、10−1Ω・cm以上10Ω・cm以下とすることが好ましく、10−1Ω・cm以上10Ω・cm以下とすることがより好ましい。樹脂被覆層の体積抵抗値を10Ω・cm以下とするとトナーへの帯電付与を安定して行うことができる。
樹脂被覆層の体積抵抗値を調整するために使用することのできる導電性物質として、例えば、アルミニウム、銅、ニッケル、銀等の金属粉体、酸化アンチモン、酸化インジウム、酸化スズ等の金属酸化物粉体、カーボンファイバー、カーボンブラック、黒鉛化カーボンブラック、グラファイト等の炭素物等が挙げられる。これらのうち、カーボンブラック、とりわけ導電性のアモルファスカーボンは、特に電気伝導性に優れ、その添加量をコントロールするだけで、ある程度任意の導電度を得ることができるため好適に用いられる。また、高分子材料に充填して導電性を調整した上で添加することもできる。
また本発明に使用できる黒鉛化カーボンブラックは、一次粒子径が10nm以上100nm以下のものを用いることが好ましく、更には10nm以上70nm以下のものを用いることが好ましい。一次粒子径を10nm以上とすると黒鉛化カーボンブラック同士の凝集性が低くなり、結着樹脂成分等と共に分散させて得られる塗工液の粘度が高くなるのを抑制することができる。これにより、黒鉛化カーボンブラックの塗工液中での分散性が向上し均一になり易い。一次粒子径を100nm以下とすると、樹脂被覆層中で黒鉛化カーボンブラックが高い密度で存在し、導電性が優れ樹脂被覆層表面の導電性が均一となり、そのため現像バイアスが印加された際にも電荷のリークが生じにくい。
本発明において好適なこれらの導電性物質の添加量は、樹脂被覆層に含まれる結着樹脂成分100質量部に対して1質量部乃至100質量部の範囲とすることが好ましい。
また、樹脂被覆層中に表面粗さを均一にし、且つ適切な表面粗さを維持するために、凹凸形成の為の固体粒子(凹凸付与粒子と表すことがある)を添加することにより更に好ましい結果を得ることができる。
本発明に使用することのできる凹凸付与粒子は、球状のものが好ましい。球状の凹凸付与粒子を用いると、不定形の凹凸付与粒子に比べ、より少ない添加量で所望の表面粗さが得られるとともに、表面形状の均一な凹凸面が得られる。さらに、樹脂被覆層表面が摩耗した場合においても樹脂被覆層の表面粗さの変化が少なく、トナー担持体上のトナーの層厚の変化が起きにくいことからトナーの帯電を均一化し、スジ・ムラを発生させにくくすることができる。
本発明で使用する球状の凹凸付与粒子の体積平均粒径は、0.3μm以上30μm以下とすることが好ましく、2μm以上20μm以下とすることがより好ましい。球状の凹凸付与粒子の体積平均粒径を0.3μm以上とすると、樹脂被覆層表面に均一な表面粗さを付与することができ、樹脂被覆層の摩耗によるトナーのチャージアップ、トナーによるトナー担持体の汚染及び融着を防止することができる。また、スリーブゴーストによる画像の悪化や画像濃度の低下もなく好ましい。一方、球状の凹凸付与粒子の体積平均粒径を30μm以下とすると、樹脂被覆層の表面の粗さが適切な範囲となり、トナーの搬送量、トナー担持体上のトナーコートが均一となり、トナーの帯電が均一に行われる。また粗い粒子の突出もなく画像スジやバイアスリークによる白ポチ・黒ポチの発生を防止することができる。更に、樹脂被覆層の機械的強度の低下もなく好ましい。
本発明においては、体積平均粒径が0.3μm以上30μm以下であれば、従来公知の球状の凹凸付与粒子をいずれも好適に使用することができる。本発明において好適に使用することのできる凹凸付与粒子としては、例えば、球状の樹脂粒子、球状の金属酸化物粒子、球状の炭素化物粒子等が挙げられる。これらの中でも、球状の樹脂粒子が、樹脂被覆層中に添加した場合により少ない添加量で好適な表面粗さが得られ、且つ均一な表面形状が得られやすいので好ましい。本発明で使用することのできる球状の樹脂粒子は、例えば、懸濁重合法、分散重合法等によって容易に得られる。勿論、粉砕法によって得られた樹脂粒子を、熱的な或いは物理的な球形化処理を行って球状化して用いてもよい。
また、樹脂被覆層中への分散性、形成される樹脂被覆層の表面の均一性、樹脂被覆層の耐汚染性、トナーへの帯電付与性、樹脂被覆層の耐摩耗性等を向上させるために、本発明で使用する球状の凹凸付与粒子として、その表面に無機微粉体を付着させたり、固着させたり、あるいは内部に分散させたものを使用してもよい。
使用することのできる無機微粉体として、SiO、SrTiO、CeO、CrO、Al、ZnO、MgOの如き酸化物、Siの如き窒化物、SiCの如き炭化物、CaSO、BaSO、CaCOの如き硫酸塩や炭酸塩等の無機微粉末を挙げることができる。これらの無機微粉末は、カップリング剤によって処理したものを用いることが好ましい。即ち、特に、樹脂被覆層に含まれる結着樹脂成分との密着性を向上させる目的で、あるいは凹凸付与粒子に疎水性を与える等の目的で、カップリング剤により処理した無機微粉体を好ましく用いることができる。
また、本発明のトナー担持体を構成する樹脂被覆層には、導電性を有する球状の凹凸付与粒子と併用して固体潤滑剤を分散させると、より本発明の効果が促進されるため好ましい。この固体潤滑剤としては、例えば、結晶性グラファイト、二硫化モリブデン、窒化ホウ素、雲母、フッ化グラファイト、銀−セレン化ニオブ、塩化カルシウム−グラファイト、滑石及びステアリン酸亜鉛の如き脂肪酸金属塩からなる物質等が挙げられる。中でも結晶性グラファイトは、導電性を有する球状の凹凸付与粒子と併用した場合に導電性樹脂被覆層の導電性が損なわれないので特に好ましく用いられる。
この固体潤滑剤は、体積平均粒径が好ましくは0.2μm以上20μm以下であり、より好ましくは1μm以上15μm以下のものを使用するのがよい。固体潤滑剤の体積平均粒径を0.2μm以上とすると、十分な潤滑性を得ることができる。体積平均粒径を20μm以下とすると、表面粗さに対する影響が小さく、且つ耐久により削られにくく表面粗さが変化しにくく、樹脂被覆層表面が安定となり、トナー担持体上へのトナーのコーティング、及びトナーの帯電が安定化されるという点で好ましい。
本発明においては、トナー担持体の帯電性を調整するために、上記樹脂被覆層中に荷電制御剤を含有させてもよい。
荷電制御剤としては、例えば、ニグロシン及び脂肪酸金属塩などによる変性物、トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルフォン酸塩、テトラブチルアンモニウムテトラフルオロボレート等の四級アンモニウム塩、及びこれらの類似体であるホスホニウム塩等のオニウム塩及びこれらのレーキ顔料(レーキ化剤としては、燐タングステン酸、燐モリブデン酸、燐タングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物、フェロシアン化物等)、高級脂肪酸の金属塩;ブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイド等のジオルガノスズオキサイド;ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレート等のジオルガノスズボレート類;グアニジン類、イミダゾール化合物等が挙げられる。
次に本発明におけるトナーの製造方法を説明する。
本発明のトナーは、公知のいずれの方法によっても製造することが可能である。この中で、分散重合法、会合凝集法、懸濁重合法など湿式媒体中でトナーを製造する重合法は、トナー形状及び表面性を制御しやすく、本発明のトナー物性を得やすいため好ましい。この中で懸濁重合法は特に好ましい。
製造法の一例として懸濁重合法によるトナーの製造について説明する。懸濁重合法では重合性単量体中に、磁性粉体(磁性酸化鉄)、着色剤、離型剤、可塑剤、結着剤、荷電制御剤、架橋剤等のトナーとして必要な成分及びその他の添加剤、例えば重合反応で生成する重合体の粘度を低下させるために入れる有機溶媒、分散剤等を適宜加えて、ホモジナイザー、ボールミル、コロイドミル、超音波分散機等の分散機に依って均一に溶解または分散させる。こうして得られた単量体系(単量体組成物)を、分散安定剤を含有する水系媒体中に懸濁する。この時、高速撹拌機もしくは超音波分散機のような高速分散機を使用して一気に所望のトナー粒子のサイズとするほうが、得られるトナー粒子の粒径がシャープになる。重合開始剤添加の時期としては、重合性単量体に他の添加剤を添加する時に同時に加えても良いし、水系媒体中に懸濁する直前に混合しても良い。また、造粒直後、重合反応を開始する前に重合性単量体あるいは溶媒に溶解した重合開始剤を加えることもできる。
造粒後は通常の撹拌機を用いて、粒子状態が維持され且つ粒子の浮遊・沈降が防止される程度の撹拌を行えば良い。
懸濁重合法においては、分散安定剤として公知の界面活性剤や有機・無機分散剤が使用できる。中でも無機分散剤が有害な超微粉を生じ難く、その立体障害性により分散安定性を得ているので反応温度を変化させても安定性が崩れ難く、洗浄も容易でトナーに悪影響を与え難いので、好ましく使用できる。こうした無機分散剤の例としては、燐酸カルシウム、燐酸マグネシウム、燐酸アルミニウム、燐酸亜鉛の如き燐酸多価金属塩;炭酸カルシウム、炭酸マグネシウムの如き炭酸塩;メタ硅酸カルシウム、硫酸カルシウム、硫酸バリウムの如き無機塩;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、シリカ、ベントナイト、アルミナの如き無機酸化物が挙げられる。
これら無機分散剤を用いる場合には、そのまま使用しても良いが、より細かい粒子を得るため、水系媒体中にて該無機分散剤粒子を生成させることができる。例えば燐酸カルシウムの場合、高速撹拌下、燐酸ナトリウム水溶液と塩化カルシウム水溶液とを混合して、水不溶性の燐酸カルシウムを生成させることができ、より均一で細かな分散が可能となる。この時、同時に水溶性の塩化ナトリウム塩が副生するが、水系媒体中に水溶性塩が存在すると、重合性単量体の水への溶解が抑制されて、乳化重合に依る超微粒トナーが発生し難くなるので、より好都合である。但し、この塩化ナトリウム塩は重合反応終期に残存重合性単量体を除去する時には障害となることから、水系媒体を交換するか、イオン交換樹脂で脱塩したほうが良い。無機分散剤は、重合終了後酸あるいはアルカリで溶解して、ほぼ完全に取り除くことができる。
これらの無機分散剤は、重合性単量体100質量部に対して、0.2質量部以上20質量部以下を単独でまたは2種類以上組み合わせて使用することが好ましい。
また微粒化されたトナーを目的とする場合には、0.001質量部以上0.1質量部以下の界面活性剤を併用しても良い。界面活性剤としては、例えばドデシルベンゼン硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸カリウムが挙げられる。
前記重合工程においては、重合温度は40℃以上、一般には50℃以上90℃以下の温度に設定して重合を行うことが好ましい。この温度範囲で重合を行うと、内部に封じられるべき離型剤が、相分離により析出して内包化がより完全となる。残存する重合性単量体を消費するために、重合反応終期ならば、反応温度を90℃以上150℃以下にまで上げることは可能である。
本発明においては、磁性トナーの形状及び表面平滑性を制御するために、得られたトナー粒子を含む重合体分散液に水蒸気を導入することで調整することが好ましい。例えば重合後半或いは重合終了後、該容器内の水系媒体に温度100℃以上の飽和水蒸気を導入する等が挙げられる。
本発明に使用される重合性単量体系を構成する重合性単量体としては以下のものが挙げられる。
重合性単量体としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−エチルスチレンの如きスチレン系単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニルの如きアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きメタクリル酸エステル類;アクリロニトリル、メタクリロニトリル、アクリルアミドが挙げられる。
これらの重合性単量体は単独または混合して使用し得る。上述の重合性単量体の中でも、スチレンまたはスチレン誘導体を単独で、あるいは他の重合性単量体と混合して使用することがトナーの現像特性及び耐久性の点から好ましい。
本発明のトナーを重合法で製造する際には、重合反応時に半減期0.5乃至30時間である重合開始剤を、重合性単量体の0.5乃至20質量%の添加量で用いて重合反応を行うと、分子量1万以上10万以下の間に極大を有する重合体を得、トナーに望ましい強度と適当な溶融特性を与えることができる。重合開始剤の例としては、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリルの如きアゾ系またはジアゾ系重合開始剤;ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシカーボネート、クメンヒドロパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイドの如き過酸化物系重合開始剤が挙げられる。
本発明では、架橋剤を添加しても良く、好ましい添加量としては、重合性単量体の0.001乃至15質量%である。
ここで、架橋剤としては、主として2個以上の重合可能な二重結合を有する化合物が用いられ、例えば、ジビニルベンゼン、ジビニルナフタレン等のような芳香族ジビニル化合物;例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,3−ブタンジオールジメタクリレート等のような二重結合を2個有するカルボン酸エステル;ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルホン等のジビニル化合物;及び3個以上のビニル基を有する化合物;が単独もしくは混合物として用いられる。
本発明のトナーで使用される磁性体としては、従来公知の磁性材料が用いられる。磁性トナーに含まれる磁性材料としては、マグネタイト、マグヘマイト、フェライト等の酸化鉄、及び他の金属酸化物を含む酸化鉄;Fe、Co、Niのような金属あるいはこれらの金属とAl、Co、Cu、Pb、Mg、Ni、Sn、Zn、Sb、Be、Bi、Cd、Ca、Mn、Se、Ti、W、Vのような金属との合金;及びこれらの混合物等が挙げられる。
具体的には、四三酸化鉄(Fe)、三二酸化鉄(γ−Fe)、酸化鉄亜鉛(ZnFe)、酸化鉄イットリウム(YFe12)、酸化鉄カドミニウム(CdFe)、酸化鉄ガドリニウム(GdFe12)、酸化鉄銅(CuFe)、酸化鉄鉛(PbFe1219)、酸化鉄ニッケル(NiFe)、酸化鉄ネオジム(NdFe)、酸化鉄バリウム(BaFe1219)、酸化鉄マグネシウム(MgFe)、酸化鉄マンガン(MnFe)、酸化鉄ランタン(LaFeO)、鉄粉(Fe)、コバルト粉(Co)、ニッケル粉(Ni)等が挙げられる。本発明では磁性材料として、少なくとも磁性酸化鉄を含有し、必要に応じて一種又は二種以上の他の金属を任意に選択して使用することが可能である。
このような磁性酸化鉄は、窒素吸着法によるBET比表面積が好ましくは2m/g以上30m/g以下、特に3m/g以上28m/g以下であり、更にモース硬度が5以上7以下のものが好ましい。
また、磁性酸化鉄の形状としては、8面体、6面体、球状、針状、鱗片状などがあるが、8面体、6面体、球状、不定形の如き異方性の少ないものが画像濃度を高める上で好ましい。こういった形状は、SEMなどによって確認することができる。
磁性酸化鉄の粒度としては、0.03μm以上の粒径を有する粒子を対象とした粒度の測定において、個数平均粒径が0.10乃至0.30μmであり、かつ0.03乃至0.10μmの粒子が40個数%以下であることが好ましい。
個数平均粒径が0.10μm未満の磁性酸化鉄を用いた磁性トナーから画像を得ると、画像の色味が赤味にシフトし、画像の黒色度が不足したり、ハーフトーン画像ではより赤味が強く感じられる傾向が強くなったりするなど、一般的に好ましいものではない。また、磁性酸化鉄の表面積が増大するために分散性が低下し、製造時に要するエネルギーが増大し、効率的ではない。また、磁性酸化鉄の着色剤としての効果が弱くなり、画像の濃度が不足することもあり、好ましいものではない。
一方、磁性酸化鉄の個数平均粒径が0.30μmを超えると、一粒子あたりの質量が大きくなるため、製造時にバインダーとの比重差の影響でトナー表面に露出する確率が高まったり、製造装置の摩耗などが著しくなる可能性が高まったり、分散物の沈降安定性などが低下するため好ましくない。
またトナー中において、該磁性酸化鉄の0.10μm以下の粒子が40個数%を超えると、磁性酸化鉄微粒子の表面積が増大して分散性が低下し、トナー中にて凝集塊を生じやすくなりトナーの帯電性を損なったり、着色力が低下したりする可能性が高まるため40個数%以下であることが好ましい。さらに30個数%以下とすると、その傾向はより小さくなるため好ましい。
また、本発明においては、磁性酸化鉄微粒子中の0.30μm以上の粒子が10個数%以下であることが好ましい。10個数%を超えると、着色力が低下し、画像濃度が低下する傾向になることに加え、同じ使用量であっても個数的に少ないためにトナー粒子表面の近傍まで存在させること及び各トナー粒子に均一個数を含有させることが確率的に難しくなり、好ましくない。より好ましくは5個数%以下とするのが良い。
これらの磁性酸化鉄の79.58kA/m(1kエルステッド)印加での磁気特性は、抗磁力が1.5kA/m以上12kA/m以下、飽和磁化が30Am/kg以上120Am/kg以下(好ましくは40Am/kg以上80Am/kg以下)、残留磁化が1Am/kg以上10Am/kg以下のものが好ましい。なお磁性体の磁気特性は、25℃,外部磁場79.6kA/mの条件下において振動型磁力計、例えばVSM P−1−10(東英工業社製)を用いて測定することができる。
本発明においては、磁性トナーの79.58kA/m(1kエルステッド)の磁場で着磁後の残留磁化が3.0Am/kg以下となるように磁性体の磁気特性及び添加量を調整することが好ましい。
本発明に係るトナーを重合法に適用する場合には、磁性体として使用される磁性酸化鉄微粒子は、疎水化処理されたものであることが好ましい。この疎水化処理を調整することで、磁性酸化鉄のトナー中での存在状態を厳密にコントロールできる。
磁性酸化鉄表面をカップリング剤等で処理する方法としては、乾式処理と湿式処理の二つがある。本発明ではどちらの方法で行っても良いが、水系媒体中での湿式処理方法は、気相中での乾式処理に比べ、酸化鉄粒子同士の合一が生じにくい。また疎水化処理による磁性酸化鉄間の帯電反発作用が働き、磁性酸化鉄はほぼ一次粒子の状態でカップリング剤による表面処理されるようになるため好ましい。
本発明において磁性酸化鉄の表面処理に使用できるカップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤が挙げられる。より好ましく用いられるのはシランカップリング剤であり、一般式(A)
SiY (A)
[式中、Rはアルコキシ基を示し、mは1以上3以下の整数を示し、Yはアルキル基、ビニル基、メタクリル基、フェニル基、アミノ基、エポキシ基、メルカプト基又はこれらの誘導体を示し、nは1以上3以下の整数を示す。]
で示されるものである。例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシランを挙げることができる。
特に、式(B)
2p+1−Si−(OC2q+1 (B)
[式中、pは2〜20の整数を示し、qは1〜3の整数を示す]
で示されるアルキルトリアルコキシシランカップリング剤を使用して磁性酸化鉄表面を疎水化処理するのが好ましい。
上記式におけるpが2より小さいと、疎水化処理は容易となるが、疎水性を十分に付与することが困難となることがある。またpが20より大きいと、疎水性は十分になるが、磁性酸化鉄同士の合一が多くなり、トナー中へ磁性酸化鉄を十分に分散させることが困難となることがある。また、qが3より大きいと、シランカップリング剤の反応性が低下して疎水化が十分に行われにくくなることがある。
よって、式中のpが2〜20の整数(より好ましくは、3〜15の整数)を示し、qが1〜3の整数(より好ましくは、1又は2の整数)を示すアルキルトリアルコキシシランカップリング剤を使用するのが好ましい。その処理量は処理前の磁性酸化鉄微粒子100質量部に対して、0.05乃至20質量部、好ましくは0.1乃至10質量部とするのが良い。
本発明において、磁性酸化鉄の疎水性を制御する方法として、上記のカップリング剤のpが異なる2種類以上のシランカップリング剤で処理する方法が挙げられる。このカップリング剤の種類及び処理量の割合を適宜調整することで、疎水化処理の程度に分布を有する磁性酸化鉄を得ることが可能となる。
磁性酸化鉄の表面処理として水系媒体中でカップリング剤により処理するには、水系媒体中で適量の磁性酸化鉄及びカップリング剤を撹拌する方法が挙げられる。
水系媒体とは、水を主要成分としている媒体である。具体的には、水系媒体として水そのもの、水に少量の界面活性剤を添加したもの、水にpH調整剤を添加したもの、水に有機溶剤を添加したものが挙げられる。界面活性剤としては、ポリビニルアルコールの如きノンイオン系界面活性剤が好ましい。界面活性剤は、水に対して0.1乃至5質量%添加するのが良い。pH調整剤としては、塩酸の如き無機酸が挙げられる。
撹拌は、例えば撹拌羽根を有する混合機(具体的には、アトライター、TKホモミキサーの如き高剪断力混合装置)で、酸化鉄微粒子が水系媒体中で、一次粒子になるように充分に行うのが良い。
こうして得られる磁性酸化鉄は表面が均一に疎水化処理されているため、重合性単量体組成物中における分散性が非常に良好であり、磁性酸化鉄の含有率が揃ったトナー粒子を得ることができるようになる。
本発明に係るトナーに用いられる磁性酸化鉄は、例えば下記方法で製造される。
硫酸第一鉄水溶液などの第一鉄塩水溶液に、鉄成分に対して当量又は当量以上の水酸化ナトリウムの如きアルカリを加え、水酸化第一鉄を含む水溶液を調製する。調製した水溶液のpHをpH7以上(好ましくはpH8乃至10)に維持しながら空気を吹き込み、水溶液を70℃以上に加温しながら水酸化第一鉄の酸化反応を行い、磁性酸化鉄粒子の芯となる種晶をまず生成する。
次に、種晶を含むスラリー状の液に、前に加えたアルカリの添加量を基準として約1当量の硫酸第一鉄を含む水溶液を加える。液のpHを6乃至10に維持しつつ空気を吹込みながら水酸化第一鉄の反応を進め、種晶を芯にして磁性酸化鉄粒子を成長させる。酸化反応が進むにつれて液のpHは酸性側に移行していくが、液のpHは6未満にしない方が好ましい。酸化反応の終期に液のpHを調整し、磁性酸化鉄が一次粒子になるよう十分に撹拌する。カップリング剤を添加して十分に混合撹拌し、撹拌後に濾過し、乾燥し、軽く解砕することで疎水化処理磁性酸化鉄が得られる。あるいは、酸化反応終了後、洗浄、濾過して得られた酸化鉄を、乾操せずに別の水系媒体中に再分散させた後、再分散液のpHを調整し、十分撹拌しながらシランカップリング剤を添加し、カップリング処理を行っても良い。
いずれにせよ、水溶液中で生成した未処理の磁性酸化鉄を、乾燥工程を経る前の含水スラリーの状態で疎水化することが好ましい。これは、未処理の磁性酸化鉄をそのまま乾燥してしまうと粒子同士の凝集による合一が避けられず、こういった凝集状態の粉末にたとえ湿式疎水化処理を行っても均一な疎水化処理が難しいためである。
磁性酸化鉄微の製造の際に第一鉄塩水溶液に用いる第一鉄塩としては、一般的に硫酸法チタン製造に副生する硫酸鉄、鋼板の表面洗浄に伴って副生する硫酸鉄の利用が可能であり、硫酸第一鉄以外には更に塩化鉄等が可能である。
水溶液法による磁性酸化鉄の製造方法では一般に反応時の粘度の上昇を防ぐこと、及び、硫酸鉄の溶解度から鉄濃度0.5乃至2mol/リットルの硫酸第一鉄水溶液が用いられる。硫酸鉄の濃度は一般に薄いほど製品の粒度が細かくなる傾向を有する。また、反応に際しては、空気量が多い程、そして反応温度が低いほど微粒化しやすい。
本発明においては、このようにして製造された疎水性磁性酸化鉄を使用することが好ましい。
本発明に係るトナーに用いる磁性酸化鉄は、結着樹脂100質量部に対して、10乃至200質量部用いることが好ましく、より好ましくは20乃至180質量部、更に好ましくは40乃至160質量部である。上記の範囲内であれば、十分なトナーとしての着色力が得られ、また良好な現像性や定着性が得られる。
本発明においては、磁性トナーを5mol/l塩酸に分散させた際の3分、15分時点での磁性体総含有量に対する磁性体の抽出量S、S15(質量%)が下記式を満足することが好ましい。
0.5≦S≦10 (4)
40≦S15≦80 (5)
本発明においては磁性トナーを塩酸で抽出する時間を変更することで、トナーの最表面から内部への磁性体の存在状態を推定することが出来る。このとき5mol/l塩酸3分で抽出されるのはトナーの最表面部分に存在する磁性体であり、15分で抽出される磁性体量は表面近傍からトナー中心に向けて存在する磁性体の存在量を表すものと考えられる。
本発明において、磁性トナーを5mol/l塩酸で3分間抽出した磁性体量(S)は0.5%以上10%以下、好ましくは5%以下である。このように微量の磁性体のみが最表面近傍に存在する場合には、磁性体による吸湿の影響がほとんど生じないために、トナーとして、環境安定性に優れた帯電特性を得ることが出来る。更には磁性一成分現像方式において現像スリーブと規制部材間のストレスを受けた場合でも、遊離した磁性体の量を軽減することで、微粉によるトナー担持体への汚染を抑制することが可能となる。また、適度に磁性体が表面近傍に存在しているため、低湿環境下であってもチャージアップの発生を抑制することができる。
本発明において、5mol/l塩酸で15分間抽出した磁性体量(S15、S30)はそれぞれ40%以上80%以下、好ましくは45%以上75%以下である。S15は表面近傍に存在する磁性体量に対応している。本発明においては、磁性体がトナー表面近傍に偏在化しているように分布させることで、耐ストレス性を向上させることが可能となる。
15が40%未満となると、表面近傍に存在する磁性体量が少ないことで、トナーの対ストレス性が低下し、長期使用によりトナー劣化を起こしやすくなる。またS15が80%超になると、表面近傍に磁性体が集中するため、磁性体やその他の添加剤の分散性が悪化するようになり、耐久に伴う濃度薄や画像欠陥が発生しやすくなる。
本発明では、重合性単量体系に樹脂を添加して重合しても良い。例えば、単量体では水溶性のため水性懸濁液中では溶解して乳化重合を起こすため使用できないアミノ基、カルボン酸基、水酸基、スルホン酸基、グリシジル基、ニトリル基の如き親水性官能基含有の単量体成分をトナー中に導入したい時には、これらとスチレンあるいはエチレン等ビニル化合物とのランダム共重合体、ブロック共重合体、あるいはグラフト共重合体の如き共重合体の形にして、あるいはポリエステル、ポリアミドの如き重縮合体、ポリエーテル、ポリイミンの如き重付加重合体の形で使用が可能となる。こうした極性官能基を含む高分子重合体をトナー中に共存させると、前述のワックス成分を相分離させ、より内包化が強力となり、耐オフセット性、耐ブロッキング性、低温定着性の良好なトナーを得ることができる。その使用量としては、重合性単量体100質量部に対して1乃至20質量部が好ましい。使用量が1質量部未満では添加効果が小さく、一方20質量部を超えて使用された場合には、重合トナーの種々の物性設計が難しくなってしまう。またこれら極性官能基を含む高分子重合体としては、平均分子量が3000以上のものが好ましく用いられる。分子量3000未満、特に2000以下では、本重合体が表面付近に集中し易いことから、現像性、耐ブロッキング性等に悪い影響が起こり易くなり好ましくない。また、単量体を重合して得られるトナーの分子量範囲とは異なる分子量の重合体を単量体中に溶解して重合すれば、分子量分布の広い、耐オフセット性の高いトナーを得ることができる。
本発明に係るトナーは、重合性単量体に添加する樹脂としてポリエステル樹脂を添加することが好ましい。
次に本発明のトナーを粉砕法によって製造する場合について説明する。
結着樹脂、磁性体、及び必要に応じて他の添加剤をヘンシェルミキサー、ボールミルの如き混合機により十分混合し、ニーダー、エクストルーダーの如き熱混練機を用いて溶融、捏和及び練肉して樹脂類を互いに相溶せしめ、溶融混練物を冷却固化し、その後、固化物を粉砕し、粉砕物を分級することによりトナー粒子を得る方法が好ましい。このトナー粒子と外添剤をヘンシェルミキサーの如き混合機により必要に応じて十分混合することにより得ることができる。
また本発明のトナーを製造するに当たって、分級はトナー粒子生成後の任意の時期に行うことができ、例えば外添剤との混合後に分級を行っても良い。
以下にトナー製造用装置として一般的に使用できる装置の例を挙げるが、これらに限定されるものではない。表1にはトナー製造用粉砕装置の例を、表2にはトナー製造用分級装置の例を、表3にはトナー製造用篩装置の例を、表4にはトナー製造用混合装置の例を、表5にはトナー製造用混練装置の例を、それぞれ挙げる。

Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
本発明においては、粉砕法で得られたトナーの圧縮率や粉体流動性測定装置において測定されたTotal Energy制御するためには、得られた粒子を瞬間的にトナー粒子表面に高温の熱風を吹き付け、直後に冷風によってトナー粒子を冷却する装置を用いて磁性トナー粒子の形状及び表面改質を行う方法も好ましい。このような手法の熱処理によって磁性トナー粒子の表面を改質することは、トナー粒子に過度の熱を加えることがないので原材料成分の変質を防ぎつつトナー粒子の表面改質を行うことができる。また、瞬時に冷却するのでトナー粒子同士が過度に合一して、表面改質前のトナー粒径から大きく変動してしまうことがないので、トナー生産工程においても表面改質後のトナーの物性を制御しやすい。このような装置としては、例えばメテオレインボー(日本ニューマチック工業社製)が挙げられる。
本発明において、粉砕法で得られた磁性トナーのメタノール/水混合溶媒に対する濡れ性試験において、透過率が初期の50%時のメタノール濃度を60体積%以上80体積%以下とすることが好ましい。60体積%以上80体積%以下とすることで、水との親和性が適度となり、高湿環境下においても適度な帯電を保持できるようになり、また、低湿環境下においてもチャージアップ現象による現像スリーブのコート均一性の悪化や画像濃度薄、帯電付与部材や感光体へのトナー付着といった問題の発生を抑制することができる。トナーの濡れ性は、離型剤のトナー表面露出状態のコントロールや無機微粉体の疎水性や添加量のコントロールによって調整できる。
本発明において、粉砕法で製造する場合に使用される結着樹脂としては、ポリエステル樹脂、スチレン−アクリル系樹脂、ポリエステル樹脂成分とスチレン−アクリル系樹脂成分を含むハイブリッド樹脂、エポキシ樹脂、スチレン−ブタジエン樹脂、ポリウレタン樹脂などが挙げられるが、特に限定されず従来公知の樹脂を用いることができる。このうち特に、ポリエステル樹脂及びハイブリッド樹脂などが定着性などの点で好ましい。
本発明に用いられるポリエステル樹脂、及びポリエステル樹脂成分のモノマーとしては以下のものが挙げられる。
アルコール成分としては、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノ−ルA、また(ア)式で表されるビスフェノール誘導体及び下記(イ)式で示されるジオール類が挙げられる。
Figure 0004771558
また、全酸成分中50mol%以上を含む2価のカルボン酸としてはフタル酸、テレフタル酸、イソフタル酸、無水フタル酸等のベンゼンジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物、またさらに炭素数6乃至18のアルキル基で置換されたコハク酸もしくはその無水物;フマル酸、マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸またはその無水物などが挙げられる。
またグリセリン、ペンタエリスリトール、ソルビット、ソルビタン、さらには、例えばノボラック型フェノール樹脂のオキシアルキレンエーテル等の多価アルコール類;トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸やその無水物などの多価カルボン酸類等が挙げられる。
スチレン−アクリル系樹脂を生成するためのビニル系モノマーとしては次のようなものが挙げられる。
スチレン:o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−クロルスチレン、3,4−ジクロルスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレンの如きスチレン及びその誘導体;エチレン、プロピレン、ブチレン、イソブチレンの如きエチレン不飽和モノオレフィン類;ブタジエン、イソプレンの如き不飽和ポリエン類;塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニルの如きハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニルの如きビニルエステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きα−メチレン脂肪族モノカルボン酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニルの如きアクリル酸エステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルの如きビニルエーテル類:ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンの如きビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドンの如きN−ビニル化合物;ビニルナフタリン類;アクリロニトリル、メタクリロニトリル、アクリルアミドの如きアクリル酸もしくはメタクリル酸誘導体等が挙げられる。
さらに、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸の如き不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物の如き不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、マレイン酸エチルハーフエステル、マレイン酸ブチルハーフエステル、シトラコン酸メチルハーフエステル、シトラコン酸エチルハーフエステル、シトラコン酸ブチルハーフエステル、イタコン酸メチルハーフエステル、アルケニルコハク酸メチルハーフエステル、フマル酸メチルハーフエステル、メサコン酸メチルハーフエステルの如き不飽和塩基酸のハーフエステル;ジメチルマレイン酸、ジメチルフマル酸の如き不飽和塩基酸エステル;アクリル酸、メタクリル酸、クロトン酸、ケイヒ酸の如きα,β−不飽和酸無水物;該α,β−不飽和酸と低級脂肪酸との無水物;アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステルの如きカルボキシル基を有するモノマーが挙げられる。
さらに、2−ヒドロキシルエチルアクリレート、2−ヒドロキシルエチルメタクリレート、2−ヒドロキシルプロピルメタクリレートなどのアクリル酸またはメタクリル酸エステル類、4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルヘキシル)スチレンの如きヒドロキシル基を有するモノマーが挙げられる。
また必要に応じて以下に例示するような架橋性モノマーで架橋された重合体であってもよい。
芳香族ジビニル化合物として例えば、ジビニルベンゼン、ジビニルナフタレンが挙げられ;アルキル鎖で結ばれたジアクリレート化合物類として例えば、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたものが挙げられ:エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類としては、例えばジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたものが挙げられ;芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物類として例えば、ポリオキシエチレン(2)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート、ポリオキシエチレン(4)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたものが挙げられ;ポリエステル型ジアクリレート類として例えば、商品名MANDA(日本化薬)が挙げられる。
多官能の架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの;トリアリルシアヌレート、トリアリルトリメリテート;が挙げられる。
これらの架橋剤は、他のモノマー成分100質量%に対して、0.01乃至10質量%(さらに好ましくは0.03乃至5質量%)用いることができる。
これらの架橋性モノマーのうち、トナー用樹脂に定着性、耐オフセット性の点から好適に用いられるものとして、芳香族ジビニル化合物(特にジビニルベンゼン)、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物類が挙げられる。
本発明のスチレン−アクリル系樹脂を製造する場合に用いられる重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4ジメチルバレロニトリル)、2,2’−アゾビス(−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(−2−メチルブチロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、2−カーバモイルアゾ−イソブチロニトリル、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2,4−ジメチル−4−メトキシバレロニトリル、2,2’−アゾビス(2−メチル−プロパン)、メチルエチルケトンパーオキサイド、アセチルアセトンパ−オキサイド、シクロヘキサノンパ−オキサイドの如きケトンパ−オキサイド類、2,2−ビス(t−ブチルパ−オキシ)ブタン、t−ブチルハイドロパーオキサイド、クメンハイドロパ−オキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−クミルパーオキサイド、α,α’−ビス(t−ブチルパ−オキシイソプロピル)ベンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパ−オキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパ−オキサイド、m−トリオイルパーオキサイド、ジ−イソプロピルパ−オキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジ−メトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パ−オキシカ−ボネ−ト、アセチルシクロヘキシルスルホニルパ−オキサイド、t−ブチルパ−オキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパ−オキシネオデカノエイト、t−ブチルパーオキシ−2−エチルヘキサノエイト、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエイト、t−ブチルパーオキシイソプロピルカーボネ−ト、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシアリルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエイト、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、ジ−t−ブチルパーオキシアゼレートがあげられる。
ポリエステル樹脂成分及びスチレン−アクリル系樹脂成分からなるハイブリッド樹脂を合成する場合、上述のポリエステル樹脂成分とスチレン−アクリル系樹脂成分の両方と反応し得るモノマー成分を含むことが必要である。ポリエステル樹脂成分を構成するモノマーのうちスチレン−アクリル系樹脂成分と反応し得るものとしては、例えばフマル酸、マレイン酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸又はその無水物などが挙げられる。スチレン−アクリル系樹脂成分を構成するモノマーのうちポリエステル樹脂成分と反応し得るものとしては、カルボキシル基又はヒドロキシル基を有するものや、アクリル酸もしくはメタクリル酸エステル類が挙げられる。
ハイブリッド樹脂を得る方法としては、先に挙げたビニル系樹脂及びポリエステル樹脂のそれぞれと反応しうるモノマー成分を含むポリマーが存在しているところで、どちらか一方もしくは両方の樹脂の重合反応をさせることにより得る方法が好ましい。
さらに本発明においては、必要に応じて離型剤を含有させることもできる。
本発明のトナーに使用可能な離型剤としては、例えば低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックス等の脂肪族炭化水素系ワックス;酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合物;カルナバワックス、サゾールワックス、モンタン酸エステルワックス等の、脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックス等の、脂肪酸エステル類を一部又は全部を脱酸化したもの;パルミチン酸、ステアリン酸、モンタン酸等の飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコール等の飽和アルコール類;ソルビトール等の多価アルコール類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミド等の脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセバシン酸アミド等の不飽和脂肪酸アミド類;m−キシレンビスステアリン酸アミド、N,N’−ジステアリルイソフタル酸アミド等の芳香族系ビスアミド類;ステアリン酸カルシウム、フウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪族金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリド等の、脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加等によって得られる、ヒドロキシル基を有するメチルエステル化合物;炭素数12以上の長鎖アルキルアルコール又は長鎖アルキルカルボン酸;等が挙げられる。
トナーに含有させることのできる離型剤としては、脂肪族炭化水素系ワックスが挙げられる。このような脂肪族炭化水素系ワックスとしては、例えば、アルキレンを高圧化でラジカル重合し、又は低圧化でチーグラー触媒を用いて重合した低分子量のアルキレンポリマー;高分子量のアルキレンポリマーを熱分解して得られるアルキレンポリマー;一酸化炭素及び水素を含む合成ガスからアーゲ法により得られる炭化水素の蒸留残分から得られる合成炭化水素ワックス及びそれを水素添加して得られる合成炭化水素ワックス;これらの脂肪族炭化水素系ワックスをプレス発汗法、溶剤法、真空蒸留の利用や分別結晶方式により分別したもの;が挙げられる。
上記脂肪族炭化水素系ワックスの母体としての炭化水素としては、例えば、金属酸化物系触媒(多くは二種以上の多元系)を使用した一酸化炭素と水素の反応によって合成されるもの(例えばジントール法、ヒドロコール法(流動触媒床を使用)によって合成された炭化水素化合物);ワックス状炭化水素が多く得られるアーゲ法(同定触媒床を使用)により得られる炭素数が数百ぐらいまでの炭化水素;エチレン等のアルキレンをチーグラー触媒により重合した炭化水素;が挙げられる。このような炭化水素の中でも、本発明では、分岐が少なくて小さく、飽和の長い直鎖状炭化水素であることが好ましく、特にアルキレンの重合によらない方法により合成された炭化水素がその分子量分布からも好ましい。
本発明において離型剤は、離型剤を含有するトナー粒子を示差走査熱量計で測定したときに、得られるDSC曲線において50乃至90℃の領域に吸熱メインピークのピーク温度が現れるようにトナー粒子に含まれていることが、トナーの低温定着性及び耐高温オフセット性の点で好ましい。DSC測定において吸熱メインピークのピーク温度が上記範囲内である場合には、良好な定着性が得られることに加えて、保存環境におけるワックス成分の染み出しを良好に抑制できるため、優れた保存性が得られ、また、水系媒体中で重合法により直接トナー粒子を得る場合においても、良好な造粒性が得られる。
上記吸熱ピーク温度は、高精度の内熱式入力補償型の示差走査熱量計、例えばパーキンエルマー社製のDSC−7を用い、ASTM D3418−82に準じて測定することができ、上記のピークが出現する温度は、融点やガラス転移点、及び重合度等を適切に調整された離型剤を用いることによって調整することが可能である。なお、上記DSC−7は、上記ピーク温度の他、結着樹脂のガラス転移点、軟化点、ワックスの融点等の、トナー粒子やトナー粒子材料の熱的物性を示す温度の測定に適用することができる。
本発明において離型剤として使用できるワックスの具体的な例としては、ビスコール(登録商標)330−P、550−P、660−P、TS−200(三洋化成工業社)、ハイワックス400P、200P、100P、410P、420P、320P、220P、210P、110P(三井化学社)、サゾールH1、H2、C80、C105、C77(シューマン・サゾール社)、HNP−1、HNP−3、HNP−9、HNP−10、HNP−11、HNP−12(日本精鑞株式会社)、ユニリン(登録商標)350、425、550、700、ユニシッド(登録商標)、ユニシッド(登録商標)350、425、550、700(東洋ペトロライト社)、木ろう、蜜ろう、ライスワックス、キャンデリラワックス、カルナバワックス(株式会社セラリカNODAにて入手可能)等が挙げられる。
本発明に係るトナーには、帯電特性を安定化するために荷電制御剤を配合しても良い。荷電制御剤としては、公知のものが利用できるが、特に帯電スピードが速く、且つ、一定の帯電量を安定して維持できる荷電制御剤が好ましい。
具体的な化合物としては、ネガ系荷電制御剤としてサリチル酸、アルキルサリチル酸、ジアルキルサリチル酸、ナフトエ酸、ダイカルボン酸の如き芳香族カルボン酸の金属化合物、アゾ染料もしくはアゾ顔料の金属塩または金属錯体、スルホン酸又はカルボン酸基を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーンが挙げられる。ポジ系荷電制御剤として四級アンモニウム塩、その四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、ニグロシン系化合物、イミダゾール化合物が挙げられる。これらの荷電制御剤は、結着樹脂100質量部に対して0.5乃至10質量部使用することが好ましい。しかしながら、本発明の画像形成方法に関わるトナーは、荷電制御剤の添加は必須ではなく、トナーの層圧規制部材やトナー担持体との摩擦帯電を積極的に利用することでトナー中に必ずしも荷電制御剤を含む必要はない。
より具体的には、負帯電用として、例えばSpilon Black TRH、T−77、T−95(保土谷化学社)、BONTRON(登録商標)S−34、S−44、S−54、E−84、E−88、E−89(オリエント化学社)がより好ましいものとして挙げられ、正帯電用として、例えばTP−302、TP−415(保土谷化学社)、BONTRON(登録商標)N−01、N−04、N−07、P−51(オリエント化学社)、コピーブルーPR(クラリアント社)が好ましいものとして挙げられる。
本発明においては、磁性酸化鉄微粒子に着色剤としての機能を兼ねさせても良いが、磁性酸化鉄微粒子以外の他の着色剤を併用しても良い。併用し得る着色材料としては、磁性あるいは非磁性無機化合物、公知の染料及び顔料が挙げられる。具体的には、例えば、コバルト、ニッケルの如き強磁性金属粒子、またはこれらにクロム、マンガン、銅、亜鉛、アルミニウム、希土類元素を加えた合金、ヘマタイト、チタンブラック、ニグロシン染料/顔料、カーボンブラック、フタロシアニンが挙げられる。これらもまた、表面を処理して用いても良い。
本発明に係るトナーは、上述したトナー粒子に、トナーの種類に応じた種々の材料を外添して用いられる。外添される材料としては、例えば無機微粉体等のようにトナーの流動性を向上させる流動性向上剤や、金属酸化物微粒子等のようにトナーの帯電性を調整するための導電性微粉体等の外添剤が挙げられる。
上記流動性向上剤としては、トナー粒子に外添することによりトナーの流動性を向上し得るものが挙げられる。このような流動性向上剤としては、例えば湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉末酸化チタン、微粉末アルミナ;これらをシランカップリング剤、チタンカップリング剤、シリコーンオイル等により表面処理を施した処理シリカ、処理酸化チタン、処理アルミナ;等が挙げられる。
流動性向上剤は、BET法で測定した窒素吸着による比表面積が30m/g以上であることが好ましく、50m/g以上であることがより好ましい。流動性向上剤は、流動性向上剤の種類によって異なるが、例えばトナー粒子100質量部に対して0.01乃至5質量部を配合することが好ましく、0.1乃至3質量部を配合することがより好ましい。
好ましい流動性向上剤としては、ケイ素ハロゲン化合物の蒸気相酸化により生成された微粉体であり、乾式法シリカ又はヒュームドシリカと称されるものである。このようなシリカは、例えば、四塩化ケイ素ガスの酸素、水素中における熱分解酸化反応を利用するもので、基礎となる反応式は次のような式(6)で示されるものである。
SiCl+2H+O→SiO+4HCl (6)
この製造工程において、例えば塩化アルミニウム又は塩化チタンの如き他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによってシリカと他の金属酸化物の複合微粉体を得ることも可能であり、本発明で流動性向上剤として利用されるシリカ微粉体はそれらも包含する。その粒径は、平均一次粒径として0.001乃至2μmの範囲内であることが好ましく、特に0.002乃至0.2μmの範囲内であることがより好ましい。
ケイ素ハロゲン化合物の蒸気相酸化により生成された市販のシリカ微粉体としては、例えば以下のような商品名で市販されているもの、すなわちAEROSIL(日本アエロジル社)130、200、300、380、TT600、MOX170、MOX80、COK84;Ca−O−SiL(CABOT Co.社)M−5、MS−7、MS−75、HS−5、EH−5;Wacker HDK N 20(WACKER−CHEMIE GMBH社)V15、N20E、T30、T40;D−C Fine SiliCa(ダウコーニングCO.社);Franso1(Fransil社)等が挙げられる。
本発明では、上記シリカ微粉体は、疎水化処理されていることが好ましい。また上記シリカ微粉体は、メタノール滴定試験によって測定される疎水化度が30乃至80度の範囲の値を示すようにシリカ微粉体を処理したものが、トナーの濡れ性を制御する上で特に好ましい。なお上記疎水化度は、水中で撹拌されている所定量のシリカ微粉体にメタノールを滴下し、シリカ微粉体の沈降終了時におけるメタノール及び水の液状混合物中におけるメタノールの百分率として表される。シリカ微粉体の疎水化方法としては、例えばシリカ微粉体と反応し、又はシリカ微粒子に物理吸着する有機ケイ素化合物やシリコーンオイルでシリカ微粒子を化学的に処理する方法が挙げられる。より好ましくは、有機ケイ素化合物による疎水化処理である。ここで、上記有機ケイ素化合物としては、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、β−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3−ジビルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサン、及び1分子当り2から12個のシロキサン単位を有し末端に位置する単位においてSiに結合する水酸基を有するジメチルポリシロキサン等が挙げられる。これらは一種あるいは二種以上の混合物で用いられる。
シリカ微粉体の疎水化処理においては、上記有機ケイ素化合物の中でもさらに窒素原子を有するシランカップリング剤の一種又は二種以上を用いることが可能である。このような含窒素シランカップリング剤としては、例えばアミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、ジメチルアミノプロピルトリメトキシシラン、ジエチルアミノプロピルトリメトキシシラン、ジプロピルアミノプロピルトリメトキシシラン、ジブチルアミノプロピルトリメトキシシラン、モノブチルアミノプロピルトリメトキシシラン、ジオクチルアミノプロピルジメトキシシラン、ジブチルアミノプロピルジメトキシシラン、ジブチルアミノプロピルモノメトキシシラン、ジメチルアミノフェニルトリエトキシシラン、トリメトキシシリル−γ−プロピルフェニルアミン、トリメトキシシリル−γ−プロピルベンジルアミン等が挙げられる。
なおにおいて、好ましいシランカップリング剤としてはヘキサメチルジシラザン(HMDS)が挙げられる。
またシリカ微粉体の疎水化処理で好ましく使用されるシリコーンオイルとしては、25℃における粘度が0.5センチストークス以上10000センチストークス以下であることが好ましく、1以上1000センチストークス以下であることがより好ましく、10以上200センチストークス以下であることがより一層好ましい。また、特に好ましいシリコーンオイルとしては、例えばジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α−メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルが挙げられる。
シリコーンオイルを用いるシリカ微粉体の表面疎水化処理の方法としては、例えばシランカップリング剤で処理されたシリカ微粉体とシリコーンオイルとをヘンシェルミキサーの如き混合機を用いて直接混合する方法;ベースとなるシリカ微粉体にシリコーンオイルを噴霧する方法;適当な溶剤にシリコーンオイルを溶解又は分散せしめた後、シリカ微粉体を加え混合し溶剤を除去する方法;が挙げられる。
シリコーンオイルによってシリカ微粉体の表面疎水化処理を行う場合では、シリコーンオイルの処理後にシリカ微粉体を不活性ガス中で200℃以上(より好ましくは250℃以上)に加熱し、表面のコートを安定化させることがより好ましい。
本発明においては、シリカ微粉体の表面疎水化処理に、前述したシランカップリング剤及びシリコーンオイルの両方を用いることが可能である。このような表面疎水化処理方法としては、シリカ微粉体を予めシランカップリング剤で処理した後にシリコーンオイルで処理する方法、又はシリカ微粉体をシランカップリング剤とシリコーンオイルで同時に処理する方法等が挙げられる。
さらに、本発明に係るトナーには、必要に応じて流動性向上剤以外の外部添加剤を添加してもよい。
例えば、圧縮度を調整する等の目的で、一次粒径が30nmを超える微粒子、より好ましくは一次粒径が100nm以上で球状に近い無機微粒子または有機微粒子をさらにトナー粒子に添加することも好ましい形態の一つである。例えば球状のシリカ粒子、球状のポリメチルシルセスキオキサン粒子、球状の樹脂粒子を用いるのが好ましい。
このような粒子を添加することで、磁性トナーの圧縮度及び粉体流動性測定装置で測定されるTotal Energyを適正化することが行いやすくなり、好ましいものである。
更に他の添加剤、例えばポリフッ化エチレン粉末、ステアリン酸亜鉛粉末、ポリフッ化ビニリデン粉末の如き滑剤粉末;または酸化セリウム粉末、炭化硅素粉末、チタン酸ストロンチウム粉末の如き研磨剤;ケーキング防止剤;または例えばカーボンブラック粉末、酸化亜鉛粉末、酸化スズ粉末の如き導電性付与剤;また、逆極性の有機微粒子、及び無機微粒子を現像性向上剤として少量加えることもできる。これらの添加剤も、その表面を疎水化処理して用いることも可能である。
上述の如き外添剤は、磁性トナー粒子100質量部に対して0.1乃至2質量部(好ましくは0.1乃至1.5質量部)使用するのが定着性及び帯電特性の点で好ましい。
本発明における各物性の測定法を以下に詳述する。
(1)トナーの圧縮率の測定方法
トナーの見掛け密度とタップ密度はJIS K5101に準拠して測定する。
(2)TE10及びTE100の測定方法
本発明における、TE10(mJ)及びTE100(mJ)は、粉体流動性分析装置パウダーレオメータFT−4(Freeman Technology社製)(以下、FT−4と省略)を用いることによって測定する。
具体的には、以下の操作により測定を行う。尚、全ての操作においてプロペラ型ブレードは図2A及び2Bに示すようなFT−4測定専用48mm径ブレードを使用する。FT−4測定専用48mm径ブレードは48mm×10mmのブレード板の中心に法線方向に回転軸が存在し、ブレード板は、両最外縁部分(回転軸から24mm部分)が70°、回転軸から12mmの部分が35°といったように反時計回りになめらかにねじられたもの(材質;SUS製、型番;C210)である。
FT−4測定専用の直径50mm、容積160mlの円筒状のスプリット容器(型番:C203、容器底面からスプリット部分までの高さ82mm、材質:ガラス)に23℃,50%環境に3日以上放置されたトナーを100g入れることでトナー粉体層とする。
(1)コンディショニング操作
(a)粉体層表面に対して時計回り(ブレードの回転により粉体層がほぐされる方向)の回転方向に、ブレードの最外縁部の回転スピードが周速60(mm/sec)、粉体層への垂直方向の進入速度を、移動中のブレードの最外縁部が描く軌跡と粉体層表面とのなす角が5(deg)のスピード(以降、なす角と省略する場合がある)で、粉体層表面からトナー粉体層の底面から10mmの位置まで進入させる。その後、粉体層表面に対して時計回りの回転方向に、ブレードの回転スピードが60(mm/sec)、粉体層への垂直方向の進入速度をなす角が2(deg)のスピードで、トナー粉体層の底面から1mmの位置まで進入させる操作を行った後、粉体層表面に対して時計回りの回転方向に、ブレードの回転スピードが60(mm/sec)、粉体層からの抜き取り速度をなす角が5(deg)のスピードでトナー粉体層の底面から100mmの位置まで移動させ、抜き取りを行う。抜き取りが完了したら、ブレードを時計回り、反時計回りに交互に小さく回転させることでブレードに付着したトナーを払い落とす。
(b)一連の上記(1)−(a)の操作を5回行うことで、トナー粉体層中に巻き込まれている空気を取り除き、安定したトナー粉体層を作る。
(2)スプリット操作
上述のFT−4測定専用セルのスプリット部分でトナー粉体層をすり切り、粉体層上部のトナーを取り除くことで、同じ体積のトナー粉体層を形成する。
(3)測定操作
(i)TE100の測定
(a)上記1)−(a)と同様のコンディショニング操作を一回行う。次に粉体層表面に対して反時計回り(ブレードの回転により粉体層が押し込まれる方向)の回転方向に、ブレードの回転スピードが100(mm/sec)、粉体層への垂直方向の進入速度をなす角が5(deg)のスピードで、トナー粉体層の底面から10mmの位置まで進入させる。その後、粉体層表面に対して時計回りの回転方向に、ブレードの回転スピードが60(mm/sec)、粉体層への垂直方向の進入速度をなす角が2(deg)のスピードで、粉体層の底面から1mmの位置まで進入させる操作を行った後、粉体層表面に対して時計回りの回転方向に、ブレードの回転スピードが60(mm/sec)、粉体層からの垂直方向の抜き取り速度をなす角が5(deg)のスピードで粉体層の底面から100mmの位置まで抜き取りを行う。抜き取りが完了したら、ブレードを時計回り、反時計回りに交互に小さく回転させることでブレードに付着したトナーを払い落とす。
(b)上記、一連の操作を7回繰り返し、7回目にブレードの回転スピードが100(mm/sec)で、トナー粉体層の底面から100mmの位置から測定を開始し、底面から10mmの位置まで進入させた時に得られる、回転トルクと垂直荷重の総和Etを、TE100とする。
(ii)TE10の測定
(a)TE100の測定を終了したトナー粉体層を用い、まず上記3)−(i)−(a)の操作を1回行う。
(b)次に、上記3)−(i)−(a)における一連の操作において、ブレードの回転スピードを100(mm/sec)でトナー粉体層に進入させていたところを、70(mm/sec)に落として測定を行う。
(c)引き続き、3)−(ii)−(b)と同様に40(mm/sec)、10(mm/sec)に順次回転数を落とした測定を行い、回転スピードが10(mm/sec)でトナー粉体層の底面から100mmの位置から測定を開始し、底面から10mmの位置まで進入させた時に得られる、回転トルクと垂直荷重の総和を、TE10とする。
(3)トナーの重量平均粒径(D4)、個数平均粒径(D1)の測定方法トナーの重量平均粒径(D4)および個数平均粒径(D1)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように専用ソフトの設定を行った。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
具体的な測定法は以下の通りである。
(i)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(ii)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(iii)発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(iv)前記(ii)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(v)前記(iv)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(vi)サンプルスタンド内に設置した前記(i)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(v)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(vii)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)および個数平均粒径(D1)を算出する。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)であり、専用ソフトでグラフ/個数%と設定したときの、分析/個数統計値(算術平均)画面の「平均径」が個数平均粒径(D1)である。
(4)トナー平均円形度の測定
トナーの平均円形度は、フロー式粒子像測定装置「FPIA−2100」(シスメックス社製)を用いて測定する。詳細は以下の通りである。
先ず、円形度を次式より算出する。
円形度=(粒子投影面積と同じ面積の円の周囲長)/(粒子投影像の周囲長)
ここで、「粒子投影面積」とは二値化された粒子像の面積であり、「粒子投影像の周囲長」とは該粒子像のエッジ点を結んで得られる輪郭線の長さである。測定は、512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時の粒子像の周囲長を用いる。
円形度は粒子の凹凸の度合いを示す指標であり、粒子が完全な球形の場合に1.00を示し、表面形状が複雑になる程、円形度は小さな値となる。
また、円形度頻度分布の平均値を意味する平均円形度Cは、粒度分布の分割点iでの円形度をci、測定粒子数をmとすると、下記式から算出される。
Figure 0004771558
具体的な測定方法としては、容器中に予め不純固形物などを除去したイオン交換水10mlを用意し、その中に分散剤として界面活性剤、好ましくはドデシルベンゼンスルホン酸ナトリウム塩を加えた後、更に測定試料を0.02g加え、分散させる。分散させる手段としては、発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150型」(日科機バイオス社製)を用い、2分間分散処理を行い、測定用の分散液とする。その際、該分散液の温度が40℃以上とならない様に適宜冷却する。また、円形度のバラツキを抑えるため、フロー式粒子像分析装置FPIA−2100の機内温度が26〜27℃になるよう装置の設置環境を23℃±0.5℃にコントロールし、一定時間おきに、好ましくは2時間おきに2μmラテックス粒子を用いて自動焦点調整を行う。
トナー粒子の円形度測定には、前記フロー式粒子像測定装置を用い、測定時のトナー粒子濃度が約5000個/μlとなる様に該分散液濃度を再調整して計測する。計測後、このデータを用いて、円相当径2μm未満のデータをカットして、トナーの平均円形度を求める。尚、円相当径は、以下のようにして算出される値である。
円相当径=(粒子投影面積/π)1/2×2
本発明で用いている測定装置である「FPIA−2100」は、従来トナーの形状を観察するために用いられていた「FPIA−1000」と比較して、シースフローの薄層化(7μm→4μm)及び処理粒子画像の倍率の向上、さらに取り込んだ画像の処理解像度を向上(256×256→512×512)させた装置であり、トナーの形状測定の精度が向上した装置である。
(5)水/メタノール濡れ性試験方法
本発明においては、トナーの濡れ性、即ち疎水特性は、下記のようにして得たメタノール滴下透過率曲線から求める。
まず、メタノール60体積%と水40体積%とからなる含水メタノール液70mlを、直径5cm、厚さ1.75mmの円筒型ガラス容器中に入れ、その測定用サンプル中の気泡等を除去するために超音波分散器で5分間分散を行う。
次いで、トナーを目開き150μmのメッシュで振るい、メッシュを通ったトナー0.1gを精秤して、上記含水メタノール液が入れられた容器の中に添加し、測定用サンプル液を調製する。
そして、測定用サンプル液を粉体濡れ性試験機「WET−100P」(レスカ社製)にセットする。この測定用サンプル液を、マグネティックスターラーを用いて、6.7s−1(400rpm)の速度で攪拌する。尚、マグネティックスターラーの回転子として、フッ素樹脂コーティングされた、長さ25mm、最大胴径8mmの紡錘型回転子を用いる。
次に、この測定用サンプル液中に、上記装置を通して、メタノールを1.3ml/minの滴下速度で連続的に添加しながら波長780nmの光で透過率を測定し、メタノール滴下透過率曲線を作成する。
(6)磁性体抽出量の測定方法
5mol/l塩酸に分散させた際の磁性体の溶解量は下記のようにして測定する。
1)トナー25mg(4回分)を精秤する。
2)サンプルビンに試料を入れ、5mol/1塩酸100mlを加えたものを4サンプル準備する。それぞれをスターラーで撹拌しながらそれぞれ3分、15分、30分、一晩溶解させる。
3)溶解後の溶液をそれぞれサンプル処理フィルター(ポアサイズ0.2乃至0.5μm、例えばマイショリディスクH−25−2(東ソー社製)が使用できる。)でろ過した後、そのろ液を分光光度計により波長338nmにおける吸光度を測定する(例えば、島津製作所 UV−3100PC)。また、このとき対照セルにはトナーを分散させていない10mol/l塩酸を入れておく。なお本発明における吸光度とは、試料セルに光を入射させたときの入射光の強さIと、透過光の強さIの比である透過率I/Iの逆数の常用対数、すなわちlog(I/I)で表される。
・測定条件:スキャン速度(中速)、スリット幅(0.5nm)、サンプリングピッチ(2nm),測定範囲(600以上250nm以下)
本発明において、磁性体総含有量に対する3分、15分での溶解量は、一晩放置後(磁性体が完全に溶解している)の吸光度に対する、3分、15分時点でサンプリングした溶液の吸光度の割合によって算出される。
(7)トナーの凝集度測定方法
トナーの凝集度は、以下のようにして測定した。
測定装置としては、「パウダーテスター」(ホソカワミクロン社製)の振動台側面部分に、デジタル表示式振動計「デジバイブロ MODEL 1332A」(昭和測器社製)を接続したものを用いた。そして、パウダーテスターの振動台上に下から、目開き38μm(400メッシュ)の篩、目開き75μm(200メッシュ)の篩、目開き150μm(100メッシュ)の篩の順に重ねてセットした。測定は、23℃、60%RH環境下で、以下の様にして行った。
(i)デジタル表示式振動計の変位の値を0.60mm(peak−to−peak)になるように振動台の振動幅を予め調整した。
(ii)予め23℃、60%RH環境下において24時間放置したトナー5gを精秤し、最上段の目開き150μmの篩上に静かにのせた。
(iii)篩を15秒間振動させた後、各篩上に残ったトナーの質量を測定して、下式にもとづき凝集度を算出した。
凝集度(%)={(目開き150μmの篩上の試料質量(g))/5(g)}×100+{(目開き75μmの篩上の試料質量(g))/5(g)}×100×0.6+{(目開き38μmの篩上の試料質量(g))/5(g)}×100×0.2Hereinafter, the present invention will be described in detail.
When the diameter of the toner carrier (for example, the developing sleeve) is reduced due to the downsizing of the process unit or the like, the number of times of contact with the regulating member is increased so that the toner carrying amount and the charge amount on the toner carrier are stabilized. On the other hand, the flying state of the magnetic toner in a narrow development region greatly affects the image quality. The flying state of the magnetic toner to the photosensitive drum is greatly influenced by the formation of the “ears” of the toner on the toner carrier and the ease of the collapse of the “ears” of the toner in the development region.
As a result of intensive investigations by the present inventors, the formation of the “ear” of the toner on the toner carrier and the toner flying state in the developing region are measured by a magnetic toner compressibility and powder fluidity measuring device. The present inventors obtained the knowledge that there is a close correlation with Total Energy, and reached the present invention.
First, in the present invention, the compression ratio of the magnetic toner is defined by the following formula (1).
Compression rate = {1- (apparent density / tap density)} × 100 (1)
This compression rate is a value calculated from the apparent density and tap density of the toner, and represents the rate of change between the apparent density and the tap density. In the vicinity of the toner carrying member, the stirring state of the magnetic toner and the pressing state against the toner carrying member fluctuate corresponding to the environmental change, the remaining amount of toner accompanying the use over time, and the like. In particular, when the diameter of the toner carrier is reduced, the surface area of the toner carrier is reduced, so that there is less chance of contact with the magnetic toner. The compression rate of the magnetic toner is an index for measuring the stability of toner “ear” formation against such fluctuations.
In the present invention, the compression ratio of the magnetic toner needs to be 30 or less. When the compression ratio is larger than 30, when the diameter is reduced, a change in the pressed state in the vicinity of the toner carrying member becomes large, and the formation of “ears” of the toner on the toner carrying member tends to become unstable. Specifically, if the ear length on the toner carrier becomes long or the density of the ears becomes too high, the “ears” of the toner will not easily collapse in the development area, causing image defects such as transfer dropout and tailing. It tends to happen.
Furthermore, the present invention is characterized in that the total energy measured by the powder flowability measuring device for magnetic toner satisfies the following formulas (2) and (3). Total energy is the total of the force required to push the stirring blade into the powder and the force required to rotate the stirring blade in the powder.
600 ≦ TE 10 ≦ 1500 (2)
TE 10 / TE 100 ≦ 1.60 (3)
(TE 10 ; Total Energy when the stirring speed is 10 mm / sec, TE 100 ; Total Energy when the stirring speed is 100 mm / sec)
In this measurement, unlike the conventional measurement of the degree of aggregation or the like, it is possible to measure the total energy when the stirring speed is changed. As a result of investigations by the present inventors, it has been found that there is a correlation between the “total energy value and rate of change” and the “toner flying state between the toner carrier and the latent image carrier”. .
By changing the stirring speed, it can be inferred how the cohesive force between the toners changes with respect to the change in the flow rate of the powder. The fact that the total energy is low and the rate of change with respect to fluctuations in the flow rate is small corresponds to the fact that the cohesive force between toners is stabilized at a low level. In particular, in a narrow development region of a developing sleeve with a reduced diameter, in order to stably fly with the toner “spike” broken between the developing sleeve and the photosensitive drum, it is necessary to reduce the cohesive force between the toners as much as possible. . In order to estimate the cohesive force between toners, measurement with a powder fluidity measuring device is effective.
In the present invention, TE 10 Is 600 mJ or more and 1500 mJ or less. If it exceeds 1500 mJ, the cohesive force between the toners becomes too high, so that the “ears” of the toner do not collapse, and the developing area itself becomes narrower, and the density tends to decrease and the image quality tends to decrease. Further, by setting it to 600 mJ or more, it is possible to apply an appropriate stress to the toner, and even when applied to a toner carrier having a reduced diameter, the toner is quickly and sharply charged.
TE 10 / TE 100 Is 1.60 or less. When this value exceeds 1.60, the flying state is more likely to change when the state of the “ear” of the toner on the toner carrier as described above changes. For this reason, image quality is liable to be deteriorated such as transfer dropout, fogging, and tailing with environmental changes and changes with time.
Examples of the method for controlling the toner compression rate and the total energy in the powder fluidity measuring device include the following methods (A) to (D). These methods may be performed independently, but may be achieved by combining a plurality.
(A) A method of controlling the packing property by optimizing the particle size distribution of the magnetic toner and optimizing the amount of fine powder and coarse powder.
(B) A method of increasing the shape (average circularity) and surface smoothness of the magnetic toner and reducing the contact area between toner particles.
(C) A method in which a plurality of types of organic and / or inorganic fine particle layers with optimized surface energy / hydrophobicity / particle size are adhered to the magnetic toner surface.
(D) A method of optimizing the magnetic properties of the magnetic toner and reducing the magnetic cohesion.
In the present invention, the average circularity of the toner is 0.950 or more, preferably 0.960 or more. This is because, in magnetic toners, the average circularity is high, so that the toner “ears” on the developing sleeve tend to be shortened, and further, the cohesive force between the toners is reduced to reduce the “ears” in the development area. It is thought that the collapse of " If the average circularity is within this range, a high-quality image with a high image density can be obtained.
The toner of the present invention preferably has a weight average particle diameter (D4) of 4.0 μm or more and 9.0 μm or less. When the weight average particle diameter (D4) of the toner exceeds 9.0 μm, the reproducibility of the fine dot image is lowered. On the other hand, when the weight average particle diameter (D4) of the toner is smaller than 4.0 μm, the specific surface area of the toner increases and the cohesive force between the toners becomes too high, causing problems such as low density and image defects. It becomes easy to do. In the toner of the present invention, the effects such as improvement in charging stability and fluidity appear more remarkably when the weight average particle diameter is 4.0 μm or more and 9.0 μm or less, and the image quality is further improved. In this respect, 5.0 μm or more and 8.0 μm or less is preferable.
In the present invention, the effect can be easily obtained by further controlling the magnetic characteristics of the magnetic toner. The residual magnetization when magnetized with a magnetic field of 79.6 kA / m is 3.0 Am. 2 / Kg or less is preferable because the magnetic cohesiveness of the toner can be lowered, and the flying state of the toner in the developing region is more likely to cause the “ear” to collapse.
Next, the configuration of the present invention will be described with reference to FIG.
In FIG. 1, 100 is a photosensitive drum as a latent image carrier, 102 is a developing sleeve as a toner carrier, 104 is a magnet roller as magnetic field generating means, 140 is a developing container that also serves as a toner container for storing magnetic toner, and 103 is a toner regulation. A developing blade as a member.
The photosensitive drum 100 rotates in the direction of the arrow in FIG. 1, and an electrostatic latent image is formed on its surface by a charging unit and a latent image forming exposure unit (not shown).
A magnet roller 104 is disposed inside the developing sleeve 102. A plurality of magnetic poles are disposed on the magnet roller 104, and the magnetic toner in the developing container 140 is carried on the surface of the developing sleeve 102 by this magnetic force. The developing sleeve 102 rotates in the direction of the arrow in FIG. 1, and the magnetic toner is regulated by the developing blade 103 in contact with the surface of the developing sleeve 102 to form a toner layer having a uniform carrying amount.
The bus line of the photosensitive drum 100 and the axis of the developing sleeve 102 are disposed substantially parallel to each other, and the photosensitive drum 100 and the developing sleeve 102 are opposed to each other with a predetermined interval. One of the magnetic poles of the magnet roller 104 is installed so as to substantially match the closest position between the photosensitive drum 100 and the developing sleeve 102. The moving speed (peripheral speed) of each surface of the photosensitive drum 100 and the developing sleeve 102 is substantially the same, or the peripheral speed of the developing sleeve 102 is slightly faster. An alternating electric field is applied between the photosensitive drum 100 and the developing sleeve 102. That is, a DC voltage and an AC voltage are superimposed and applied by the alternating bias voltage applying unit and the DC bias voltage applying unit.
In the present invention, the diameter of the developing sleeve (toner carrier) is 5.0 mm or more and less than 12.0 mm. If it is 12.0 mm or more, sufficient compactness cannot be achieved, and the process unit cannot be miniaturized. If it is less than 5.0 mm, the rigidity of the developing sleeve itself becomes low, and image defects such as pitch unevenness due to bending are likely to occur, and the chance of contact between the magnetic toner and the developing sleeve is extremely reduced to obtain an appropriate charge amount. It becomes difficult. In the present invention, the diameter of the developing sleeve is more preferably 6.0 mm or more and 10.0 mm or less.
Further, the magnetic flux density in the direction of the latent image carrier of the magnetic field generating means included in the toner carrier is preferably 600 G or more and 800 G or less on the surface of the toner carrier. When the magnetic flux density is within the above range, an appropriate magnetic binding force can be obtained, and the toner can be transported between the latent image carrier and the toner carrier, so that particularly good image formation is possible. Become.
Next, the configuration of the toner carrier used in the present invention will be described. The toner carrier used in the present invention preferably has at least a substrate and a resin coating layer formed on the surface thereof.
As the substrate, a cylindrical member, a columnar member, a belt-like member, or the like can be used. In the development method without contact with the photosensitive drum, a rigid cylindrical tube or solid rod such as metal is preferably used as the substrate. Such a substrate can be prepared by molding a non-magnetic metal or alloy such as aluminum, stainless steel, or brass into a cylindrical or columnar shape and polishing or grinding it. These substrates are molded or processed with high accuracy in order to improve image uniformity. For example, the straightness in the longitudinal direction is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less. Swing of the gap between the toner carrying body and the latent image carrying body, for example, the gap running between the vertical surface when the toner carrying body is rotated by abutting against the vertical surface through a uniform spacer is 30 μm or less. Preferably, it is 20 μm or less, more preferably 10 μm or less. Aluminum is preferably used because of material cost and ease of processing.
Blasting may be performed on the surface of the substrate in order to improve the toner transportability. Specifically, a blasting material such as spherical glass beads (not limited to this) is used, and the glass beads are sprayed from the blast nozzle onto the surface of the substrate at a predetermined pressure for a predetermined time to perform a blast treatment. A number of depressions are formed on the surface.
Next, the resin coating layer will be described in detail.
As the binder resin component contained in the resin coating layer of the toner carrier of the present invention, generally known resins can be used. For example, thermoplastic resins such as polyester resins, fluororesins, polyimide resins, polyamide resins, acrylic resins, styrene resins, vinyl resins, polyethersulfone resins, polycarbonate resins, polyphenylene oxide resins, and fibrous resins, phenol resins Thermal or photo-curable resins such as polyurethane resin, polyester resin, polyimide resin, silicone resin, melamine resin, guanamine resin, urea resin, epoxy resin, alkyd resin, and the like can be used. Among them, those having releasability such as silicone resin, or machinery such as phenol resin, polyurethane resin, melamine resin, guanamine resin, urea resin, fluororesin, polyimide resin, polyester resin, acrylic resin, styrene resin Those having excellent resistance to physical and physical loads are preferred. When the resin coating layer of the toner carrier contains these resins as a binder resin component, a triboelectric charge suitable for the toner as a toner carrier can be imparted. As a result, problems such as image density reduction and image density unevenness can be preferably suppressed.
Further, when the resin coating layer includes a plurality of resins as a binder resin component and one of them is a phenol resin, the toner carrier can be further improved in durability. For this reason, a developing method is also provided that can uniformly charge the toner on the toner carrying member even in continuous copying, and can obtain a high-quality image with reduced image density and uniform density and no fogging during durability. It becomes possible.
In the present invention, the resin coating layer is preferably conductive. When image formation is performed using a toner having a small particle diameter or a toner having a high sphericity, non-uniform charging or charge-up of the initial toner is likely to occur, but a conductive resin coating layer is provided on the toner carrier. Can be controlled well. Furthermore, stable triboelectric charging can be imparted to the toner even in different environments, and toner charge-up does not occur even when the toner tribo is raised by overlapping the number of images to be printed. It is possible to obtain a stable and high-quality image from beginning to end.
The volume resistance value of the resin coating layer is 10 -1 Ω · cm or more 10 4 It is preferable to be Ω · cm or less. -1 Ω · cm or more 10 3 More preferably, it is Ω · cm or less. The volume resistance value of the resin coating layer is 10 4 When the resistance is Ω · cm or less, the toner can be stably charged.
Examples of conductive substances that can be used to adjust the volume resistance of the resin coating layer include metal powders such as aluminum, copper, nickel, and silver, and metal oxides such as antimony oxide, indium oxide, and tin oxide. Examples thereof include carbon materials such as powder, carbon fiber, carbon black, graphitized carbon black, and graphite. Of these, carbon black, particularly conductive amorphous carbon, is particularly suitable because it is excellent in electrical conductivity and can obtain a certain degree of conductivity only by controlling its addition amount. Moreover, it can also be added after filling the polymer material to adjust the conductivity.
The graphitized carbon black that can be used in the present invention preferably has a primary particle size of 10 nm to 100 nm, and more preferably 10 nm to 70 nm. When the primary particle diameter is 10 nm or more, the agglomeration property between the graphitized carbon blacks is lowered, and it is possible to suppress an increase in the viscosity of the coating liquid obtained by dispersing together with the binder resin component and the like. Thereby, the dispersibility in the coating liquid of graphitized carbon black improves, and it becomes easy to become uniform. When the primary particle diameter is 100 nm or less, graphitized carbon black is present in the resin coating layer at a high density, and the conductivity is excellent and the conductivity of the resin coating layer surface becomes uniform. Therefore, even when a developing bias is applied. Charge leakage is less likely to occur.
The addition amount of these conductive substances suitable in the present invention is preferably in the range of 1 to 100 parts by mass with respect to 100 parts by mass of the binder resin component contained in the resin coating layer.
Further, in order to make the surface roughness uniform and maintain an appropriate surface roughness in the resin coating layer, it is more preferable to add solid particles for forming unevenness (sometimes referred to as unevenness imparting particles). The result can be obtained.
The unevenness-imparting particles that can be used in the present invention are preferably spherical. When spherical unevenness-imparting particles are used, a desired surface roughness can be obtained with a smaller addition amount than that of irregular irregularity-imparting particles, and an uneven surface with a uniform surface shape can be obtained. Furthermore, even when the surface of the resin coating layer is worn, the change in the surface roughness of the resin coating layer is small, and the change in the toner layer thickness on the toner carrier is less likely to occur. Can be made difficult to occur.
The volume average particle size of the spherical unevenness-imparting particles used in the present invention is preferably 0.3 μm or more and 30 μm or less, and more preferably 2 μm or more and 20 μm or less. If the volume average particle size of the spherical irregularity imparting particles is 0.3 μm or more, it is possible to impart a uniform surface roughness to the surface of the resin coating layer, charge up of the toner due to wear of the resin coating layer, and toner support by the toner Body contamination and fusion can be prevented. Further, it is preferable that there is no deterioration of the image due to the sleeve ghost and no decrease in the image density. On the other hand, when the volume average particle diameter of the spherical irregularity imparting particles is 30 μm or less, the surface roughness of the resin coating layer is in an appropriate range, the toner transport amount and the toner coat on the toner carrier are uniform, Charging is performed uniformly. Further, there is no protrusion of coarse particles, and white spots and black spots due to image streaks and bias leaks can be prevented. Furthermore, it is preferable without lowering the mechanical strength of the resin coating layer.
In the present invention, if the volume average particle diameter is 0.3 μm or more and 30 μm or less, any conventionally known spherical irregularity imparting particles can be suitably used. Examples of the unevenness-imparting particles that can be suitably used in the present invention include spherical resin particles, spherical metal oxide particles, and spherical carbonized particles. Among these, when spherical resin particles are added to the resin coating layer, a preferable surface roughness can be obtained with a smaller addition amount, and a uniform surface shape is easily obtained, which is preferable. Spherical resin particles that can be used in the present invention can be easily obtained by, for example, a suspension polymerization method, a dispersion polymerization method, or the like. Of course, the resin particles obtained by the pulverization method may be used after spheroidizing by performing a thermal or physical spheroidizing treatment.
Also, to improve the dispersibility in the resin coating layer, the uniformity of the surface of the resin coating layer to be formed, the stain resistance of the resin coating layer, the charge imparting property to the toner, the wear resistance of the resin coating layer, etc. In addition, as the spherical unevenness-imparting particles used in the present invention, particles having an inorganic fine powder adhered, fixed, or dispersed inside may be used.
As an inorganic fine powder that can be used, SiO 2 , SrTiO 3 , CeO 2 , CrO, Al 2 O 3 , Oxides such as ZnO and MgO, Si 3 N 4 Nitrides such as SiC, carbides such as SiC, CaSO 4 , BaSO 4 , CaCO 3 And inorganic fine powders such as sulfates and carbonates. These inorganic fine powders are preferably treated with a coupling agent. That is, in particular, an inorganic fine powder treated with a coupling agent is preferably used for the purpose of improving the adhesion with the binder resin component contained in the resin coating layer, or for the purpose of imparting hydrophobicity to the irregularity imparting particles. be able to.
In the resin coating layer constituting the toner carrier of the present invention, it is preferable to disperse a solid lubricant in combination with conductive spherical unevenness-imparting particles because the effect of the present invention is further promoted. Examples of the solid lubricant include crystalline graphite, molybdenum disulfide, boron nitride, mica, graphite fluoride, silver-niobium selenide, calcium chloride-graphite, talc, and fatty acid metal salts such as zinc stearate. Etc. Among these, crystalline graphite is particularly preferably used because it does not impair the conductivity of the conductive resin coating layer when used in combination with conductive spherical irregularities.
This solid lubricant preferably has a volume average particle size of 0.2 μm or more and 20 μm or less, more preferably 1 μm or more and 15 μm or less. When the volume average particle size of the solid lubricant is 0.2 μm or more, sufficient lubricity can be obtained. When the volume average particle size is 20 μm or less, the influence on the surface roughness is small, the surface roughness is difficult to change due to durability, the surface roughness is difficult to change, the surface of the resin coating layer becomes stable, the toner coating on the toner carrier, In addition, it is preferable in that the charging of the toner is stabilized.
In the present invention, a charge control agent may be included in the resin coating layer in order to adjust the chargeability of the toner carrier.
Examples of charge control agents include modified products of nigrosine and fatty acid metal salts, quaternary ammonium salts such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetrafluoroborate, and the like. Onium salts such as phosphonium salts and their lake pigments (as rake agents, phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide) Etc.), metal salts of higher fatty acids; diorganotin oxides such as butyltin oxide, dioctyltin oxide, dicyclohexyltin oxide; diorganos such as dibutyltin borate, dioctyltin borate, dicyclohexyltin borate Borates; guanidines, and imidazole compounds.
Next, a method for producing toner according to the present invention will be described.
The toner of the present invention can be produced by any known method. Among these, a polymerization method for producing a toner in a wet medium such as a dispersion polymerization method, an association aggregation method, and a suspension polymerization method is preferable because the toner shape and surface properties can be easily controlled and the toner physical properties of the present invention can be easily obtained. Among these, the suspension polymerization method is particularly preferable.
As an example of the production method, toner production by a suspension polymerization method will be described. In the suspension polymerization method, components necessary as a toner such as magnetic powder (magnetic iron oxide), colorant, release agent, plasticizer, binder, charge control agent, and crosslinking agent are contained in the polymerizable monomer. Depending on the disperser, such as homogenizer, ball mill, colloid mill, ultrasonic disperser, etc. Dissolve or disperse uniformly. The monomer system (monomer composition) thus obtained is suspended in an aqueous medium containing a dispersion stabilizer. At this time, the particle size of the obtained toner particles becomes sharper by using a high-speed disperser such as a high-speed stirrer or an ultrasonic disperser to obtain a desired toner particle size at a stretch. The polymerization initiator may be added at the same time when other additives are added to the polymerizable monomer, or may be mixed immediately before being suspended in the aqueous medium. Also, a polymerization initiator dissolved in a polymerizable monomer or solvent can be added immediately after granulation and before starting the polymerization reaction.
After granulation, stirring may be performed using an ordinary stirrer to such an extent that the particle state is maintained and particle floating and sedimentation are prevented.
In the suspension polymerization method, known surfactants and organic / inorganic dispersants can be used as dispersion stabilizers. Among them, inorganic dispersants are unlikely to produce harmful ultrafine powders, and because of their steric hindrance, dispersion stability is obtained, so even if the reaction temperature is changed, stability is not easily lost, and cleaning is easy and does not adversely affect the toner. Can be preferably used. Examples of such inorganic dispersants include polyvalent metal phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate and zinc phosphate; carbonates such as calcium carbonate and magnesium carbonate; calcium metasuccinate, calcium sulfate and barium sulfate. Inorganic salts; inorganic oxides such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, silica, bentonite and alumina can be mentioned.
When these inorganic dispersants are used, they may be used as they are, but in order to obtain finer particles, the inorganic dispersant particles can be generated in an aqueous medium. For example, in the case of calcium phosphate, a sodium phosphate aqueous solution and a calcium chloride aqueous solution can be mixed with high-speed stirring to produce water-insoluble calcium phosphate, which enables more uniform and fine dispersion. At the same time, a water-soluble sodium chloride salt is produced as a by-product. However, if a water-soluble salt is present in the aqueous medium, dissolution of the polymerizable monomer in water is suppressed, and an ultrafine toner based on emulsion polymerization is produced. Since it becomes difficult to generate | occur | produce, it is more convenient. However, since this sodium chloride salt becomes an obstacle when removing the remaining polymerizable monomer at the end of the polymerization reaction, it is better to replace the aqueous medium or desalinate with an ion exchange resin. The inorganic dispersant can be almost completely removed by dissolving with an acid or alkali after completion of the polymerization.
These inorganic dispersants are preferably used in an amount of 0.2 parts by mass or more and 20 parts by mass or less alone or in combination of two or more with respect to 100 parts by mass of the polymerizable monomer.
In the case of aiming at atomized toner, a surfactant of 0.001 part by mass or more and 0.1 part by mass or less may be used in combination. Examples of the surfactant include sodium dodecylbenzene sulfate, sodium tetradecyl sulfate, sodium pentadecyl sulfate, sodium octyl sulfate, sodium oleate, sodium laurate, sodium stearate, and potassium stearate.
In the polymerization step, it is preferable to carry out the polymerization at a polymerization temperature of 40 ° C. or higher, generally 50 ° C. or higher and 90 ° C. or lower. When the polymerization is carried out in this temperature range, the release agent to be sealed inside is precipitated by phase separation, and the encapsulation becomes more complete. In order to consume the remaining polymerizable monomer, it is possible to raise the reaction temperature to 90 ° C. or more and 150 ° C. or less at the end of the polymerization reaction.
In the present invention, in order to control the shape and surface smoothness of the magnetic toner, it is preferable to adjust by introducing water vapor into the resulting polymer dispersion containing toner particles. For example, a saturated water vapor having a temperature of 100 ° C. or higher is introduced into the aqueous medium in the container after the latter half of the polymerization or after the polymerization is completed.
The following are mentioned as a polymerizable monomer which comprises the polymerizable monomer type | system | group used for this invention.
Examples of the polymerizable monomer include styrene monomers such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, and p-ethylstyrene; methyl acrylate, ethyl acrylate, Acrylic esters such as n-butyl acrylate, isobutyl acrylate, n-propyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate Class: Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenolic methacrylate , Dimethylaminoethyl methacrylate, such as methacrylic acid esters of diethylaminoethyl methacrylate; acrylonitrile, methacrylonitrile, acrylamide.
These polymerizable monomers can be used alone or in combination. Among the above-mentioned polymerizable monomers, styrene or a styrene derivative is preferably used alone or mixed with other polymerizable monomers from the viewpoint of development characteristics and durability of the toner.
When the toner of the present invention is produced by a polymerization method, a polymerization initiator having a half-life of 0.5 to 30 hours during the polymerization reaction is used in an addition amount of 0.5 to 20% by mass of the polymerizable monomer. When the polymerization reaction is carried out, a polymer having a maximum between 10,000 and 100,000 in molecular weight can be obtained, and the toner can have desirable strength and suitable melting characteristics. Examples of polymerization initiators include 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile ), 2,2′-azobis-4-methoxy-2,4-dimethylvaleronitrile, azo or diazo polymerization initiators such as azobisisobutyronitrile; benzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxycarbonate , Peroxide polymerization initiators such as cumene hydroperoxide, 2,4-dichlorobenzoyl peroxide, lauroyl peroxide.
In the present invention, a crosslinking agent may be added, and a preferable addition amount is 0.001 to 15% by mass of the polymerizable monomer.
Here, as the crosslinking agent, compounds having two or more polymerizable double bonds are mainly used. For example, aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene; for example, ethylene glycol diacrylate, ethylene Carboxylic acid esters having two double bonds such as glycol dimethacrylate, 1,3-butanediol dimethacrylate; divinyl compounds such as divinylaniline, divinyl ether, divinyl sulfide, divinylsulfone; and three or more vinyl groups Are used alone or as a mixture.
As the magnetic material used in the toner of the present invention, a conventionally known magnetic material is used. Examples of magnetic materials contained in the magnetic toner include iron oxides such as magnetite, maghemite, and ferrite, and iron oxides including other metal oxides; metals such as Fe, Co, Ni, or these metals and Al, Co, Cu , Pb, Mg, Ni, Sn, Zn, Sb, Be, Bi, Cd, Ca, Mn, alloys with metals such as Se, Ti, W, and V; and mixtures thereof.
Specifically, iron trioxide (Fe 3 O 4 ), Iron sesquioxide (γ-Fe 2 O 3 ), Zinc iron oxide (ZnFe 2 O 4 ), Iron yttrium oxide (Y 3 Fe 5 O 12 ), Iron cadmium oxide (CdFe 2 O 4 ), Gadolinium oxide (Gd) 3 Fe 5 O 12 ), Copper iron oxide (CuFe 2 O 4 ), Lead iron oxide (PbFe 12 O 19 ), Nickel iron oxide (NiFe) 2 O 4 ), Neodymium iron oxide (NdFe 2 O 3 ), Iron barium oxide (BaFe) 12 O 19 ), Magnesium iron oxide (MgFe 2 O 4 ), Iron manganese oxide (MnFe 2 O 4 ), Iron lanthanum oxide (LaFeO) 3 ), Iron powder (Fe), cobalt powder (Co), nickel powder (Ni) and the like. In the present invention, at least magnetic iron oxide is contained as a magnetic material, and one or two or more other metals can be arbitrarily selected and used as necessary.
Such magnetic iron oxide preferably has a BET specific surface area of 2 m as determined by the nitrogen adsorption method. 2 / G or more 30m 2 / G or less, especially 3m 2 / G or more 28m 2 / G or less and a Mohs hardness of 5 or more and 7 or less is preferable.
In addition, the shape of magnetic iron oxide includes octahedron, hexahedron, spherical shape, needle shape, scale shape, etc., but those having low anisotropy such as octahedron, hexahedron, spherical shape, and indefinite shape have a high image density. It is preferable in terms of enhancement. Such a shape can be confirmed by SEM or the like.
As the particle size of magnetic iron oxide, the number average particle size is 0.10 to 0.30 μm and 0.03 to 0.10 μm in the particle size measurement for particles having a particle size of 0.03 μm or more. The number of particles is preferably 40% by number or less.
When an image is obtained from a magnetic toner using magnetic iron oxide having a number average particle size of less than 0.10 μm, the color of the image shifts to red, and the blackness of the image is insufficient. It is generally not preferable, such as a tendency to feel a strong taste. Further, since the surface area of the magnetic iron oxide is increased, the dispersibility is lowered and the energy required for the production is increased, which is not efficient. Further, the effect of magnetic iron oxide as a colorant is weakened, and the image density may be insufficient, which is not preferable.
On the other hand, if the number average particle diameter of the magnetic iron oxide exceeds 0.30 μm, the mass per particle increases, so that the probability of exposure to the toner surface increases due to the difference in specific gravity with the binder during production, or the production apparatus This is not preferable because the possibility of significant wear of the particles increases and the sedimentation stability of the dispersion decreases.
In addition, if the number of particles of 0.10 μm or less of the magnetic iron oxide in the toner exceeds 40% by number, the surface area of the magnetic iron oxide fine particles is increased, the dispersibility is lowered, and agglomerates are easily generated in the toner. The number is preferably 40% by number or less because there is an increased possibility that the chargeability of the toner is impaired or the coloring power is lowered. Furthermore, if it is 30% by number or less, the tendency becomes smaller, which is preferable.
In the present invention, the number of particles of 0.30 μm or more in the magnetic iron oxide fine particles is preferably 10% by number or less. If it exceeds 10% by number, the coloring power tends to decrease and the image density tends to decrease. In addition, since the number of the same usage amount is small, it is necessary to make it exist up to the vicinity of the toner particle surface and each toner. It is difficult to make the particles contain a uniform number, which is not preferable. More preferably, it is 5% or less.
The magnetic characteristics of these magnetic iron oxides when 79.58 kA / m (1 k Oersted) is applied are such that the coercive force is 1.5 kA / m to 12 kA / m and the saturation magnetization is 30 Am. 2 / Kg or more 120Am 2 / Kg or less (preferably 40 Am 2 / Kg or more 80Am 2 / Kg or less), residual magnetization is 1 Am 2 / Kg or more 10Am 2 / Kg or less is preferable. The magnetic properties of the magnetic material can be measured using a vibration magnetometer such as VSM P-1-10 (manufactured by Toei Kogyo Co., Ltd.) under the conditions of 25 ° C. and an external magnetic field of 79.6 kA / m.
In the present invention, the residual magnetization of the magnetic toner after magnetization in a magnetic field of 79.58 kA / m (1 k Oersted) is 3.0 Am. 2 It is preferable to adjust the magnetic properties and the amount of addition of the magnetic material so as to be not more than / kg.
When the toner according to the present invention is applied to the polymerization method, it is preferable that the magnetic iron oxide fine particles used as the magnetic material have been subjected to a hydrophobic treatment. By adjusting this hydrophobization treatment, the presence state of magnetic iron oxide in the toner can be strictly controlled.
There are two methods of treating the surface of magnetic iron oxide with a coupling agent or the like, ie, dry treatment and wet treatment. In the present invention, either method may be used, but the wet processing method in the aqueous medium is less likely to cause coalescence of the iron oxide particles as compared with the dry processing in the gas phase. In addition, the repulsive action between the magnetic iron oxides due to the hydrophobizing treatment works, and the magnetic iron oxides are preferable because they are surface-treated with a coupling agent in the state of primary particles.
Examples of the coupling agent that can be used for the surface treatment of magnetic iron oxide in the present invention include a silane coupling agent and a titanium coupling agent. More preferably used is a silane coupling agent, which has the general formula (A)
R m SiY n (A)
[Wherein, R represents an alkoxy group, m represents an integer of 1 to 3, Y represents an alkyl group, a vinyl group, a methacryl group, a phenyl group, an amino group, an epoxy group, a mercapto group, or a derivative thereof. , N represents an integer of 1 to 3. ]
It is shown by. For example, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethyl Mention may be made of methoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane and n-octadecyltrimethoxysilane.
In particular, the formula (B)
C p H 2p + 1 -Si- (OC q H 2q + 1 ) 3 (B)
[Wherein p represents an integer of 2 to 20, and q represents an integer of 1 to 3]
It is preferable to hydrophobize the magnetic iron oxide surface using an alkyltrialkoxysilane coupling agent represented by
When p in the above formula is smaller than 2, the hydrophobization treatment is easy, but it may be difficult to sufficiently impart hydrophobicity. On the other hand, when p is larger than 20, hydrophobicity is sufficient, but the coalescence of magnetic iron oxides increases, and it may be difficult to sufficiently disperse the magnetic iron oxides in the toner. On the other hand, when q is larger than 3, the reactivity of the silane coupling agent is lowered, and the hydrophobicity may not be sufficiently performed.
Therefore, p in the formula represents an integer of 2 to 20 (more preferably an integer of 3 to 15), and q represents an integer of 1 to 3 (more preferably an integer of 1 or 2). It is preferred to use a coupling agent. The treatment amount is 0.05 to 20 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the magnetic iron oxide fine particles before treatment.
In the present invention, as a method for controlling the hydrophobicity of magnetic iron oxide, a method of treating with two or more types of silane coupling agents having different p in the above coupling agent can be mentioned. By appropriately adjusting the type of the coupling agent and the ratio of the treatment amount, it is possible to obtain magnetic iron oxide having a distribution in the degree of the hydrophobic treatment.
In order to treat the surface of the magnetic iron oxide with a coupling agent in an aqueous medium, a method of stirring an appropriate amount of magnetic iron oxide and the coupling agent in the aqueous medium can be mentioned.
An aqueous medium is a medium containing water as a main component. Specific examples of the aqueous medium include water itself, water added with a small amount of a surfactant, water added with a pH adjusting agent, and water added with an organic solvent. As the surfactant, a nonionic surfactant such as polyvinyl alcohol is preferable. The surfactant is preferably added in an amount of 0.1 to 5% by mass with respect to water. Examples of the pH adjuster include inorganic acids such as hydrochloric acid.
Stirring is sufficiently performed by, for example, a mixer having a stirring blade (specifically, a high shear force mixing device such as an attritor or a TK homomixer) so that the iron oxide fine particles become primary particles in the aqueous medium. Is good.
The magnetic iron oxide obtained in this way has a uniform hydrophobic surface, so that the dispersibility in the polymerizable monomer composition is very good, and toner particles having a uniform magnetic iron oxide content are obtained. Will be able to.
The magnetic iron oxide used in the toner according to the present invention is produced, for example, by the following method.
An aqueous solution containing ferrous hydroxide is prepared by adding an alkali such as sodium hydroxide in an amount equivalent to or higher than the iron component to an aqueous ferrous salt solution such as an aqueous ferrous sulfate solution. Air was blown in while maintaining the pH of the prepared aqueous solution at pH 7 or higher (preferably pH 8 to 10), and iron oxide hydroxide was oxidized while heating the aqueous solution to 70 ° C. or higher. First, a seed crystal is formed.
Next, an aqueous solution containing about 1 equivalent of ferrous sulfate is added to the slurry-like liquid containing seed crystals based on the amount of alkali added previously. While maintaining the pH of the solution at 6 to 10, the reaction of ferrous hydroxide proceeds while blowing air to grow magnetic iron oxide particles with the seed crystal as the core. As the oxidation reaction proceeds, the pH of the liquid shifts to the acidic side, but the pH of the liquid is preferably not less than 6. At the end of the oxidation reaction, the pH of the solution is adjusted and sufficiently stirred so that the magnetic iron oxide becomes primary particles. A coupling agent is added, mixed and stirred sufficiently, filtered after stirring, dried, and lightly crushed to obtain a hydrophobized magnetic iron oxide. Alternatively, after the oxidation reaction is completed, the iron oxide obtained by washing and filtering is redispersed in another aqueous medium without drying, and then the pH of the redispersion is adjusted and the silane is stirred well. A coupling agent may be added to perform the coupling treatment.
In any case, it is preferable that the untreated magnetic iron oxide formed in the aqueous solution is hydrophobized in the state of the water-containing slurry before passing through the drying step. This is because if untreated magnetic iron oxide is dried as it is, coalescence between particles cannot be avoided. Even if wet-hydrophobic treatment is performed on such agglomerated powder, uniform hydrophobization treatment is possible. Because it is difficult.
The ferrous salt used in the ferrous salt aqueous solution in the production of magnetic iron oxide fines generally includes iron sulfate by-produced in the production of sulfuric acid titanium, and iron sulfate by-produced as the steel sheet is cleaned. In addition to ferrous sulfate, iron chloride or the like can be used.
In the method for producing magnetic iron oxide by the aqueous solution method, an aqueous ferrous sulfate solution having an iron concentration of 0.5 to 2 mol / liter is generally used from the viewpoint of preventing the viscosity from increasing during the reaction and from the solubility of iron sulfate. Generally, the lower the iron sulfate concentration, the finer the particle size of the product. Further, in the reaction, the larger the amount of air and the lower the reaction temperature, the easier the atomization.
In the present invention, it is preferable to use the hydrophobic magnetic iron oxide thus produced.
The magnetic iron oxide used in the toner according to the present invention is preferably used in an amount of 10 to 200 parts by weight, more preferably 20 to 180 parts by weight, and still more preferably 40 to 160 parts by weight with respect to 100 parts by weight of the binder resin. is there. Within the above range, sufficient coloring power as a toner can be obtained, and good developability and fixability can be obtained.
In the present invention, the magnetic substance extraction amount S relative to the total magnetic substance content at 3 minutes and 15 minutes when the magnetic toner is dispersed in 5 mol / l hydrochloric acid. 3 , S 15 It is preferable that (mass%) satisfies the following formula.
0.5 ≦ S 3 ≦ 10 (4)
40 ≦ S 15 ≦ 80 (5)
In the present invention, by changing the time for extracting the magnetic toner with hydrochloric acid, it is possible to estimate the presence state of the magnetic substance from the outermost surface of the toner to the inside. At this time, the magnetic substance extracted at 5 mol / l hydrochloric acid for 3 minutes is the magnetic substance existing on the outermost surface portion of the toner, and the amount of magnetic substance extracted at 15 minutes is the amount of the magnetic substance existing from the vicinity of the surface toward the toner center. It is considered to represent the abundance.
In the present invention, the amount of magnetic material obtained by extracting magnetic toner with 5 mol / l hydrochloric acid for 3 minutes (S 3 ) Is 0.5% or more and 10% or less, preferably 5% or less. When only a small amount of magnetic material is present in the vicinity of the outermost surface in this way, the effect of moisture absorption by the magnetic material hardly occurs, so that charging characteristics excellent in environmental stability can be obtained as a toner. Furthermore, even when stress is applied between the developing sleeve and the regulating member in the magnetic one-component developing method, it is possible to reduce contamination of the toner carrier by fine powder by reducing the amount of the released magnetic material. . In addition, since the magnetic substance is appropriately present in the vicinity of the surface, the occurrence of charge-up can be suppressed even in a low humidity environment.
In the present invention, the amount of magnetic substance extracted with 15 mol / l hydrochloric acid for 15 minutes (S 15 , S 30 ) Is 40% or more and 80% or less, preferably 45% or more and 75% or less. S 15 Corresponds to the amount of magnetic material present in the vicinity of the surface. In the present invention, the stress resistance can be improved by distributing the magnetic material so as to be unevenly distributed in the vicinity of the toner surface.
S 15 If it is less than 40%, the amount of magnetic material present in the vicinity of the surface is small, so that the stress resistance of the toner is lowered, and the toner is liable to deteriorate due to long-term use. S 15 If it exceeds 80%, the magnetic substance concentrates in the vicinity of the surface, so that the dispersibility of the magnetic substance and other additives deteriorates, and the thinness of density and image defects are likely to occur due to durability.
In the present invention, polymerization may be performed by adding a resin to the polymerizable monomer system. For example, hydrophilic functional groups such as amino groups, carboxylic acid groups, hydroxyl groups, sulfonic acid groups, glycidyl groups, and nitrile groups that cannot be used because monomers are water-soluble and dissolve in aqueous suspension to cause emulsion polymerization. When it is desired to introduce the monomer component contained in the toner, it may be in the form of a copolymer such as a random copolymer of these and a vinyl compound such as styrene or ethylene, a block copolymer, or a graft copolymer, or It can be used in the form of a polycondensate such as polyester or polyamide, or a polyaddition polymer such as polyether or polyimine. When such a polymer containing a polar functional group is allowed to coexist in the toner, the above-mentioned wax component is phase-separated and the encapsulation becomes stronger, and a toner having good offset resistance, blocking resistance, and low-temperature fixability can be obtained. Obtainable. The amount used is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer. If the amount used is less than 1 part by mass, the effect of addition is small, whereas if it is used in excess of 20 parts by mass, it becomes difficult to design various physical properties of the polymerized toner. Moreover, as a high molecular polymer containing these polar functional groups, those having an average molecular weight of 3000 or more are preferably used. When the molecular weight is less than 3000, particularly 2000 or less, the present polymer is likely to concentrate near the surface, which is unfavorable because it tends to adversely affect developability, blocking resistance and the like. In addition, if a polymer having a molecular weight different from the molecular weight range of the toner obtained by polymerizing the monomer is dissolved in the monomer and polymerized, a toner having a wide molecular weight distribution and high offset resistance can be obtained. it can.
In the toner according to the present invention, it is preferable to add a polyester resin as a resin to be added to the polymerizable monomer.
Next, the case where the toner of the present invention is produced by a pulverization method will be described.
Mix the binder resin, magnetic material, and other additives as necessary using a mixer such as a Henschel mixer or ball mill, and melt, knead, and knead them using a heat kneader such as a kneader or extruder. A method of obtaining toner particles by making the resins compatible with each other, cooling and solidifying the melt-kneaded product, then pulverizing the solidified product and classifying the pulverized product is preferable. The toner particles and the external additive can be obtained by sufficiently mixing them as necessary with a mixer such as a Henschel mixer.
In the production of the toner of the present invention, the classification can be performed at any time after the toner particles are generated. For example, the classification may be performed after mixing with an external additive.
Examples of devices that can be generally used as toner manufacturing devices are listed below, but are not limited thereto. Table 1 shows an example of a pulverizing device for toner production, Table 2 shows an example of a classification device for toner production, Table 3 shows an example of a sieve device for toner production, and Table 4 shows an example of a mixing device for toner production. Table 5 gives examples of kneading apparatuses for toner production.
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
In the present invention, in order to control the total energy measured by the compressibility of the toner obtained by the pulverization method and the powder fluidity measuring device, the obtained particles are instantaneously heated with hot air on the surface of the toner particles. Also preferred is a method in which the shape and surface modification of the magnetic toner particles are performed using an apparatus that cools the toner particles with cold air immediately after spraying. Modifying the surface of the magnetic toner particles by such a heat treatment does not apply excessive heat to the toner particles, so that it is possible to modify the surface of the toner particles while preventing deterioration of the raw material components. In addition, since the toner particles are instantaneously cooled, the toner particles do not excessively coalesce and do not vary greatly from the toner particle diameter before the surface modification. Easy to control. As such an apparatus, for example, Meteorebombo (manufactured by Nippon Pneumatic Industry Co., Ltd.) can be mentioned.
In the present invention, in the wettability test of the magnetic toner obtained by the pulverization method with respect to the methanol / water mixed solvent, it is preferable that the methanol concentration when the transmittance is 50% at the initial stage is 60% by volume or more and 80% by volume or less. When the content is 60% by volume or more and 80% by volume or less, the affinity with water becomes appropriate, and it becomes possible to maintain an appropriate charge even in a high-humidity environment, and development by a charge-up phenomenon even in a low-humidity environment. Occurrence of problems such as deterioration in sleeve coating uniformity, thin image density, and toner adhesion to the charging member and the photoreceptor can be suppressed. The wettability of the toner can be adjusted by controlling the exposed state of the toner surface of the release agent, and controlling the hydrophobicity and addition amount of the inorganic fine powder.
In the present invention, the binder resin used in the production by the pulverization method includes a polyester resin, a styrene-acrylic resin, a hybrid resin containing a polyester resin component and a styrene-acrylic resin component, an epoxy resin, and a styrene-butadiene. Resins, polyurethane resins, and the like can be mentioned, but there is no particular limitation, and conventionally known resins can be used. Of these, polyester resins and hybrid resins are particularly preferred from the standpoint of fixing properties.
The following are mentioned as a polyester resin used for this invention, and the monomer of a polyester resin component.
As alcohol components, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1,6-hexane Examples include diol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, bisphenol derivatives represented by the formula (a), and diols represented by the following formula (a).
Figure 0004771558
Divalent carboxylic acids containing 50 mol% or more of the total acid components include benzenedicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and phthalic anhydride, or anhydrides thereof; succinic acid, adipic acid, sebacic acid, azelain Alkyl dicarboxylic acids such as acids or anhydrides thereof, and succinic acid or anhydrides further substituted with an alkyl group having 6 to 18 carbon atoms; unsaturated dicarboxylic acids such as fumaric acid, maleic acid, citraconic acid, itaconic acid or the like; The anhydride etc. are mentioned.
In addition, glycerin, pentaerythritol, sorbit, sorbitan, and polyhydric alcohols such as oxyalkylene ethers of novolak type phenol resins; polyhydric carboxylic acids such as trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and anhydrides thereof. Examples include acids.
Examples of the vinyl monomer for producing the styrene-acrylic resin include the following.
Styrene: o-methylstyrene, m-methylstyrene, p-methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert-butylstyrene, p- n-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecylstyrene, p-methoxystyrene, p-chlorostyrene, 3,4-dichlorostyrene Styrene and its derivatives such as m-nitrostyrene, o-nitrostyrene and p-nitrostyrene; ethylene unsaturated monoolefins such as ethylene, propylene, butylene and isobutylene; unsaturated polyenes such as butadiene and isoprene; vinyl chloride Such as vinylidene chloride, vinyl bromide, vinyl fluoride Vinyl esters; vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, methacrylic acid Α-methylene aliphatic monocarboxylic acid esters such as dodecyl, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate; methyl acrylate, ethyl acrylate, propyl acrylate , N-butyl acrylate, isobutyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, acrylic Acrylic esters such as phenyl oxalate; Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether: Vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and methyl isopropenyl ketone; N-vinyl pyrrole, N- N-vinyl compounds such as vinyl carbazole, N-vinyl indole and N-vinyl pyrrolidone; vinyl naphthalenes; acrylic acid or methacrylic acid derivatives such as acrylonitrile, methacrylonitrile and acrylamide.
In addition, unsaturated dibasic acids such as maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid; maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride, etc. Unsaturated dibasic acid anhydride; maleic acid methyl half ester, maleic acid ethyl half ester, maleic acid butyl half ester, citraconic acid methyl half ester, citraconic acid ethyl half ester, citraconic acid butyl half ester, itaconic acid methyl half ester, Alkenyl succinic acid methyl half ester, fumaric acid methyl half ester, mesaconic acid methyl half ester half ester of unsaturated base acid; dimethyl maleic acid, dimethyl fumaric acid unsaturated base acid ester; acrylic acid, methacrylate Α, β-unsaturated acid anhydrides such as acids, crotonic acid and cinnamic acid; anhydrides of the α, β-unsaturated acids and lower fatty acids; alkenylmalonic acid, alkenylglutaric acid, alkenyladipic acid, these acids Examples thereof include monomers having a carboxyl group such as anhydrides and monoesters thereof.
Further, acrylic acid or methacrylic acid esters such as 2-hydroxylethyl acrylate, 2-hydroxylethyl methacrylate, 2-hydroxylpropyl methacrylate, 4- (1-hydroxy-1-methylbutyl) styrene, 4- (1-hydroxy-1 -Methylhexyl) monomers having a hydroxyl group such as styrene.
Moreover, the polymer bridge | crosslinked with the crosslinkable monomer which is illustrated below may be sufficient as needed.
Examples of aromatic divinyl compounds include divinylbenzene and divinylnaphthalene; examples of diacrylate compounds linked by an alkyl chain include ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, and 1,4-butanediol di Examples include acrylate, 1,5-pentanediol diacrylate, 1,6-hexanediol diacrylate, neopentylglycol diacrylate, and those obtained by replacing acrylate of the above compound with methacrylate: linked with an alkyl chain containing an ether bond. Examples of the diacrylate compounds include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, and polyethylene glycol # 400 diacrylate. Acrylate, polyethylene glycol # 600 diacrylate, dipropylene glycol diacrylate, and those in which the acrylate of the above compound is replaced by methacrylate; as diacrylate compounds linked by a chain containing an aromatic group and an ether bond, for example , Polyoxyethylene (2) -2,2-bis (4-hydroxyphenyl) propane diacrylate, polyoxyethylene (4) -2,2-bis (4-hydroxyphenyl) propane diacrylate, and the above compounds Examples of the polyester-type diacrylates include trade name MANDA (Nippon Kayaku Co., Ltd.).
Examples of the polyfunctional cross-linking agent include pentaerythritol triacrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and those obtained by replacing the acrylate of the above compounds with methacrylate; And lucyanurate and triallyl trimellitate.
These crosslinking agents can be used in an amount of 0.01 to 10% by mass (more preferably 0.03 to 5% by mass) with respect to 100% by mass of other monomer components.
Among these crosslinkable monomers, those which are preferably used for toner resins from the viewpoint of fixing property and offset resistance, are bonded with an aromatic divinyl compound (particularly divinylbenzene), a chain containing an aromatic group and an ether bond. And diacrylate compounds.
Examples of the polymerization initiator used in producing the styrene-acrylic resin of the present invention include 2,2′-azobisisobutyronitrile and 2,2′-azobis (4-methoxy-2,4dimethyl). Valeronitrile), 2,2′-azobis (-2,4-dimethylvaleronitrile), 2,2′-azobis (-2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyrate, 1,1′-azobis (1-cyclohexanecarbonitrile), 2-carbamoylazo-isobutyronitrile, 2,2′-azobis (2,4,4-trimethylpentane), 2-phenylazo-2,4-dimethyl- 4-methoxyvaleronitrile, 2,2′-azobis (2-methyl-propane), methyl ethyl ketone peroxide, acetylacetone peroxide, cyclohexane Ketone peroxides such as non-peroxide, 2,2-bis (t-butylperoxy) butane, t-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroper Oxide, di-t-butyl peroxide, t-butylcumyl peroxide, di-cumyl peroxide, α, α′-bis (t-butylperoxyisopropyl) benzene, isobutyl peroxide, octanoyl peroxide, decanoyl peroxide Oxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, m-trioyl peroxide, di-isopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di- -Propyl peroxydicarbonate, di-2-ethoxyethyl peroxycarbonate, di-methoxyisopropyl peroxydicarbonate, di (3-methyl-3-methoxybutyl) peroxycarbonate, acetylcyclohexylsulfonyl Oxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxyneodecanoate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxylaurate, t -Butylperoxybenzoate, t-butylperoxyisopropyl carbonate, di-t-butylperoxyisophthalate, t-butylperoxyallyl carbonate, t-amylperoxy-2-ethylhexanoate, di -T-Butylperoxyhexa Idro terephthalate, di -t- butyl peroxy azelate and the like.
When a hybrid resin composed of a polyester resin component and a styrene-acrylic resin component is synthesized, it is necessary to include a monomer component that can react with both the polyester resin component and the styrene-acrylic resin component. Examples of the monomer constituting the polyester resin component that can react with the styrene-acrylic resin component include unsaturated dicarboxylic acids such as fumaric acid, maleic acid, citraconic acid, and itaconic acid, or anhydrides thereof. Among the monomers constituting the styrene-acrylic resin component, those that can react with the polyester resin component include those having a carboxyl group or a hydroxyl group, and acrylic acid or methacrylic acid esters.
As a method of obtaining a hybrid resin, a polymer containing a monomer component capable of reacting with each of the vinyl resins and polyester resins listed above is present, and by performing a polymerization reaction of one or both of the resins. The method obtained is preferred.
Furthermore, in this invention, a mold release agent can also be contained as needed.
Examples of the release agent usable in the toner of the present invention include aliphatic hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, microcrystalline wax, and paraffin wax; and aliphatic hydrocarbon waxes such as oxidized polyethylene wax. Oxides or block copolymers thereof; waxes based on fatty acid esters such as carnauba wax, sazol wax, and montanic acid ester wax; part or all of fatty acid esters such as deoxidized carnauba wax Deoxidized; saturated linear fatty acids such as palmitic acid, stearic acid, and montanic acid; unsaturated fatty acids such as brassic acid, eleostearic acid, and valinal acid; stearyl alcohol, aralkyl alcohol, behenyl alcohol, and carnauvir alcohol , Serilua Saturated alcohols such as chol and melyl alcohol; Polyhydric alcohols such as sorbitol; Fatty acid amides such as linoleic acid amide, oleic acid amide and lauric acid amide; Methylene bis stearic acid amide, ethylene biscapric acid amide, ethylene bis Saturated fatty acid bisamides such as lauric acid amide and hexamethylene bis stearic acid amide; ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid Unsaturated fatty acid amides such as amides; Aromatic bisamides such as m-xylene bis-stearic acid amide and N, N′-distearylisophthalic acid amide; Calcium stearate, calcium furate, zinc stearate and magnesium stearate Aliphatic metal salts (generally referred to as metal soaps); waxes grafted with aliphatic hydrocarbon waxes using vinyl monomers such as styrene and acrylic acid; fatty acids such as behenic acid monoglycerides Examples include partially esterified products of monohydric alcohols; methyl ester compounds having a hydroxyl group obtained by hydrogenation of vegetable oils and fats; long-chain alkyl alcohols or long-chain alkyl carboxylic acids having 12 or more carbon atoms; and the like.
Examples of the release agent that can be contained in the toner include aliphatic hydrocarbon waxes. As such an aliphatic hydrocarbon wax, for example, a low molecular weight alkylene polymer obtained by radical polymerization of alkylene at a high pressure or a Ziegler catalyst at a low pressure; a high molecular weight alkylene polymer is thermally decomposed. Alkylene polymers obtained; synthetic hydrocarbon waxes obtained from the distillation residue of hydrocarbons obtained by the age method from synthesis gas containing carbon monoxide and hydrogen, and synthetic hydrocarbon waxes obtained by hydrogenating them; these aliphatics And hydrocarbon waxes separated by press sweating, solvent method, vacuum distillation and fractional crystallization.
Examples of the hydrocarbon as the base of the aliphatic hydrocarbon wax include those synthesized by the reaction of carbon monoxide and hydrogen using a metal oxide catalyst (often a multi-component system of two or more types) (for example, Hydrocarbon compounds synthesized by the Gintor method and Hydrocol method (using a fluidized catalyst bed); Up to several hundred carbon atoms can be obtained by the Age method (using an identified catalyst bed) in which many waxy hydrocarbons are obtained Hydrocarbons; hydrocarbons obtained by polymerizing alkylene such as ethylene with a Ziegler catalyst. Among such hydrocarbons, in the present invention, it is preferable that the hydrocarbon is a linear hydrocarbon having a small number of branches and a long saturation, and particularly a hydrocarbon synthesized by a method not based on polymerization of alkylene has a molecular weight distribution. Is also preferable.
In the present invention, the release agent is such that when the toner particles containing the release agent are measured with a differential scanning calorimeter, the peak temperature of the endothermic main peak appears in the region of 50 to 90 ° C. in the obtained DSC curve. The inclusion in the particles is preferable from the viewpoint of the low-temperature fixability and high-temperature offset resistance of the toner. In the case where the peak temperature of the endothermic main peak in the DSC measurement is within the above range, in addition to obtaining good fixability, exudation of the wax component in the storage environment can be satisfactorily suppressed. In addition, even when toner particles are obtained directly by polymerization in an aqueous medium, good granulation properties can be obtained.
The endothermic peak temperature can be measured according to ASTM D3418-82 using a highly accurate internal heat input compensation type differential scanning calorimeter, for example, DSC-7 manufactured by PerkinElmer, Inc. The appearing temperature can be adjusted by using a release agent in which the melting point, glass transition point, polymerization degree, and the like are appropriately adjusted. The DSC-7 is applied to the measurement of the temperature indicating the thermal properties of the toner particles and the toner particle material such as the glass transition point of the binder resin, the softening point, and the melting point of the wax in addition to the peak temperature. Can do.
Specific examples of the wax that can be used as a release agent in the present invention include Biscol (registered trademark) 330-P, 550-P, 660-P, TS-200 (Sanyo Chemical Industries), high wax 400P, 200P. , 100P, 410P, 420P, 320P, 220P, 210P, 110P (Mitsui Chemicals), Sazol H1, H2, C80, C105, C77 (Schumann Sazol), HNP-1, HNP-3, HNP-9, HNP -10, HNP-11, HNP-12 (Nippon Seiki Co., Ltd.), Unilin (registered trademark) 350, 425, 550, 700, Unicid (registered trademark), Unicid (registered trademark) 350, 425, 550, 700 ( Toyo Petrolite), wood wax, beeswax, rice wax, candelilla wax, carnauba wax ( Available), and the like by a formula company Cerarica NODA.
The toner according to the present invention may contain a charge control agent in order to stabilize the charging characteristics. As the charge control agent, known ones can be used, but a charge control agent that has a high charging speed and can stably maintain a constant charge amount is particularly preferable.
Specific compounds include, as negative charge control agents, metal compounds of aromatic carboxylic acids such as salicylic acid, alkylsalicylic acid, dialkylsalicylic acid, naphthoic acid, dicarboxylic acid, metal salts or metal complexes of azo dyes or azo pigments, sulfones Examples thereof include a polymer compound having an acid or carboxylic acid group in the side chain, a boron compound, a urea compound, a silicon compound, and a calixarene. Examples of the positive charge control agent include a quaternary ammonium salt, a polymer compound having the quaternary ammonium salt in the side chain, a guanidine compound, a nigrosine compound, and an imidazole compound. These charge control agents are preferably used in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. However, the toner related to the image forming method of the present invention does not necessarily include the addition of a charge control agent, and the toner is not always charged by actively utilizing frictional charging with the toner layer pressure regulating member or the toner carrier. It is not necessary to include a control agent.
More specifically, for negative charging, for example, Spiron Black TRH, T-77, T-95 (Hodogaya Chemical Co., Ltd.), BONTRON (registered trademark) S-34, S-44, S-54, E-84. , E-88, E-89 (Orient Chemical Co., Ltd.) are more preferable, and for positive charging, for example, TP-302, TP-415 (Hodogaya Chemical Co., Ltd.), BONTRON (registered trademark) N-01, N-04, N-07, P-51 (Orient Chemical Co.) and Copy Blue PR (Clariant) are preferable.
In the present invention, the magnetic iron oxide fine particles may function as a colorant, but other colorants other than the magnetic iron oxide fine particles may be used in combination. Examples of coloring materials that can be used in combination include magnetic or nonmagnetic inorganic compounds, and known dyes and pigments. Specifically, for example, ferromagnetic metal particles such as cobalt and nickel, or alloys obtained by adding chromium, manganese, copper, zinc, aluminum, rare earth elements to these, hematite, titanium black, nigrosine dye / pigment, carbon black, Examples include phthalocyanine. These may also be used after treating the surface.
The toner according to the present invention is used by externally adding various materials according to the type of toner to the toner particles described above. Examples of the externally added material include a fluidity improver that improves the fluidity of the toner, such as inorganic fine powder, and a conductive fine powder that adjusts the chargeability of the toner, such as metal oxide fine particles. And other external additives.
Examples of the fluidity improver include those that can improve the fluidity of the toner by external addition to the toner particles. Such fluidity improvers include, for example, wet-process silica, fine-powder silica such as dry-process silica, fine-powder titanium oxide, fine-powder alumina; these can be surfaced with silane coupling agents, titanium coupling agents, silicone oils, etc. Treated silica, treated titanium oxide, treated alumina; and the like.
The fluidity improver has a specific surface area of 30 m by nitrogen adsorption measured by the BET method. 2 / G or more, preferably 50 m 2 / G or more is more preferable. Although the fluidity improver varies depending on the type of fluidity improver, it is preferable to blend 0.01 to 5 parts by weight, for example, 0.1 to 3 parts by weight with respect to 100 parts by weight of the toner particles. Is more preferable.
A preferred fluidity improver is a fine powder produced by vapor phase oxidation of a silicon halogen compound, and is referred to as dry process silica or fumed silica. Such silica utilizes, for example, a thermal decomposition oxidation reaction of silicon tetrachloride gas in oxygen and hydrogen, and the basic reaction formula is represented by the following formula (6).
SiCl 4 + 2H 2 + O 2 → SiO 2 + 4HCl (6)
In this production process, it is also possible to obtain a composite fine powder of silica and another metal oxide by using other metal halogen compounds such as aluminum chloride or titanium chloride together with silicon halogen compounds. The silica fine powder used as an improving agent also includes them. The particle diameter is preferably within the range of 0.001 to 2 μm as the average primary particle diameter, and more preferably within the range of 0.002 to 0.2 μm.
Examples of commercially available silica fine powders produced by vapor phase oxidation of silicon halogen compounds include those sold under the following trade names: AEROSIL (Nippon Aerosil Co., Ltd.) 130, 200, 300, 380, TT600, MOX170, MOX80, COK84; Ca—O—SiL (CABOT Co.) M-5, MS-7, MS-75, HS-5, EH-5; Wacker HDK N 20 (WACKER-CHEMIE GMBH) V15, N20E, T30, T40; DC Fine Silica (Dow Corning CO.); Franco1 (Fransil).
In the present invention, the silica fine powder is preferably hydrophobized. The silica fine powder is preferably treated with the silica fine powder so that the degree of hydrophobicity measured by a methanol titration test is in the range of 30 to 80 degrees in terms of controlling the wettability of the toner. . The hydrophobization degree is expressed as a percentage of methanol in a liquid mixture of methanol and water at the end of sedimentation of the silica fine powder by dropping methanol onto a predetermined amount of the silica fine powder stirred in water. Examples of the method for hydrophobizing silica fine powder include a method of chemically treating silica fine particles with an organosilicon compound or silicone oil that reacts with silica fine powder or is physically adsorbed on silica fine particles. More preferably, it is a hydrophobic treatment with an organosilicon compound. Here, examples of the organosilicon compound include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, and benzyldimethylchlorosilane. , Bromomethyldimethylchlorosilane, α-chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilylmercaptan, trimethylsilylmercaptan, triorganosilylacrylate, vinyldimethylacetoxysilane, dimethylethoxysilane, dimethyl Dimethoxysilane, diphenyldiethoxysilane, hexamethyldisiloxane, 1,3-divirtetramethyldisiloxa , 1,3-diphenyltetramethyldisiloxane, and dimethylpolysiloxane having 2 to 12 siloxane units per molecule and having a hydroxyl group bonded to Si in the terminal unit. These may be used alone or as a mixture of two or more.
In the hydrophobization treatment of the silica fine powder, it is possible to use one or more silane coupling agents having a nitrogen atom among the organosilicon compounds. Examples of such nitrogen-containing silane coupling agents include aminopropyltrimethoxysilane, aminopropyltriethoxysilane, dimethylaminopropyltrimethoxysilane, diethylaminopropyltrimethoxysilane, dipropylaminopropyltrimethoxysilane, dibutylaminopropyltrimethoxysilane. Methoxysilane, monobutylaminopropyltrimethoxysilane, dioctylaminopropyldimethoxysilane, dibutylaminopropyldimethoxysilane, dibutylaminopropylmonomethoxysilane, dimethylaminophenyltriethoxysilane, trimethoxysilyl-γ-propylphenylamine, trimethoxysilyl -Γ-propylbenzylamine and the like.
In addition, hexamethyldisilazane (HMDS) is mentioned as a preferable silane coupling agent.
Moreover, as a silicone oil preferably used in the hydrophobization treatment of silica fine powder, the viscosity at 25 ° C. is preferably 0.5 centistokes or more and 10000 centistokes or less, more preferably 1 or more and 1000 centistokes or less. Preferably, it is 10 or more and 200 centistokes or less. Particularly preferred silicone oils include, for example, dimethyl silicone oil, methylphenyl silicone oil, α-methylstyrene modified silicone oil, chlorophenyl silicone oil, and fluorine modified silicone oil.
As a method for surface hydrophobization treatment of silica fine powder using silicone oil, for example, silica fine powder treated with a silane coupling agent and silicone oil are directly mixed using a mixer such as a Henschel mixer; A method in which silicone oil is sprayed onto a silica fine powder; a method in which silicone oil is dissolved or dispersed in a suitable solvent, and then the silica fine powder is added and mixed to remove the solvent.
When the surface of the silica fine powder is hydrophobized with silicone oil, the silica fine powder is heated to 200 ° C or higher (more preferably 250 ° C or higher) in an inert gas after the silicone oil treatment to stabilize the surface coating. More preferably.
In the present invention, it is possible to use both the silane coupling agent and the silicone oil described above for the surface hydrophobization treatment of the silica fine powder. Examples of such a surface hydrophobization treatment method include a method in which silica fine powder is treated with a silane coupling agent in advance and then treated with silicone oil, or a method in which silica fine powder is treated with a silane coupling agent and silicone oil at the same time. Can be mentioned.
Furthermore, an external additive other than the fluidity improver may be added to the toner according to the present invention, if necessary.
For example, for the purpose of adjusting the degree of compression, it is also preferable to add fine particles having a primary particle size exceeding 30 nm, more preferably inorganic particles or organic fine particles having a primary particle size of 100 nm or more and nearly spherical to the toner particles. one of. For example, spherical silica particles, spherical polymethylsilsesquioxane particles, and spherical resin particles are preferably used.
By adding such particles, it is easy to optimize the compressibility of the magnetic toner and the total energy measured by the powder fluidity measuring device, which is preferable.
Still other additives, for example, lubricant powders such as polyethylene fluoride powder, zinc stearate powder, polyvinylidene fluoride powder; or abrasives such as cerium oxide powder, silicon carbide powder, strontium titanate powder; anti-caking agent; Conductivity imparting agents such as carbon black powder, zinc oxide powder and tin oxide powder; organic fine particles having opposite polarity and inorganic fine particles can be added in a small amount as a developability improver. These additives can also be used after hydrophobizing the surface.
The external additive as described above is preferably used in an amount of 0.1 to 2 parts by mass (preferably 0.1 to 1.5 parts by mass) with respect to 100 parts by mass of the magnetic toner particles in terms of fixing properties and charging characteristics. .
The measuring method of each physical property in the present invention is described in detail below.
(1) Measuring method of toner compression rate
The apparent density and tap density of the toner are measured according to JIS K5101.
(2) TE 10 And TE 100 Measuring method
TE in the present invention 10 (MJ) and TE 100 (MJ) is measured by using a powder fluidity analyzer, powder rheometer FT-4 (manufactured by Freeman Technology) (hereinafter abbreviated as FT-4).
Specifically, the measurement is performed by the following operation. In all operations, a 48 mm diameter blade dedicated to FT-4 measurement is used as the propeller blade as shown in FIGS. 2A and 2B. The 48 mm diameter blade dedicated to FT-4 measurement has a rotation axis in the normal direction at the center of the 48 mm × 10 mm blade plate, and the blade plate has both outermost edge parts (24 mm from the rotation axis) at 70 ° from the rotation axis. A 12 mm portion is smoothly twisted counterclockwise such as 35 ° (material: SUS, model number: C210).
FT-4 measurement dedicated 50 mm diameter, 160 ml cylindrical split container (model number: C203, 82 mm height from the bottom of the container to the split part, material: glass), left at 23 ° C, 50% environment for more than 3 days A toner powder layer is formed by adding 100 g of the toner.
(1) Conditioning operation
(A) The rotational speed of the outermost edge of the blade is 60 (mm / sec) peripheral speed in the clockwise direction (the direction in which the powder layer is loosened by the rotation of the blade) with respect to the powder layer surface. The vertical entry speed of the layer is a speed of 5 (deg) between the trajectory drawn by the outermost edge of the moving blade and the surface of the powder layer (hereinafter may be abbreviated as the formed angle). Then, it is made to enter from the powder layer surface to a position of 10 mm from the bottom surface of the toner powder layer. Then, in the clockwise rotation direction with respect to the powder layer surface, the rotation speed of the blade is 60 (mm / sec), and the angle forming the vertical entry speed to the powder layer is 2 (deg), After performing the operation to enter the position of 1 mm from the bottom surface of the toner powder layer, the rotational speed of the blade is 60 (mm / sec) in the clockwise rotation direction with respect to the powder layer surface. Extraction is performed by moving the extraction speed to a position of 100 mm from the bottom surface of the toner powder layer at a speed of 5 (deg). When the extraction is completed, the toner attached to the blade is wiped off by rotating the blade alternately in small clockwise and counterclockwise directions.
(B) By performing the series of operations (1) to (a) five times, the air entrained in the toner powder layer is removed, and a stable toner powder layer is formed.
(2) Split operation
The toner powder layer is ground at the split portion of the above-described cell dedicated for FT-4 measurement, and the toner powder layer having the same volume is formed by removing the toner above the powder layer.
(3) Measurement operation
(I) TE 100 Measurement
(A) The same conditioning operation as 1)-(a) above is performed once. Next, the rotational speed of the blade is 100 (mm / sec) in the counterclockwise direction (the direction in which the powder layer is pushed by the rotation of the blade), and the direction perpendicular to the powder layer is The angle forming the entry speed is 5 (deg), and the toner powder layer is entered to a position of 10 mm from the bottom surface. Then, in the clockwise rotation direction with respect to the powder layer surface, the rotation speed of the blade is 60 (mm / sec), and the angle forming the vertical entry speed to the powder layer is 2 (deg), After performing an operation to enter the position 1 mm from the bottom of the powder layer, the blade rotation speed is 60 (mm / sec) in the clockwise rotation direction with respect to the powder layer surface, and the vertical from the powder layer Extraction is performed from the bottom surface of the powder layer to a position of 100 mm at a speed of 5 (deg) that forms a direction extraction speed. When the extraction is completed, the toner attached to the blade is wiped off by rotating the blade alternately in small clockwise and counterclockwise directions.
(B) The above-described series of operations is repeated seven times, and at the seventh time, the rotation speed of the blade is 100 (mm / sec), the measurement starts from a position 100 mm from the bottom surface of the toner powder layer, and a position 10 mm from the bottom surface. The total Et of rotational torque and vertical load obtained when the 100 And
(Ii) TE 10 Measurement
(A) TE 100 First, the operations 3)-(i)-(a) are performed once using the toner powder layer for which the above measurement has been completed.
(B) Next, in the series of operations in the above 3)-(i)-(a), the blade was moved into the toner powder layer at a rotational speed of 100 (mm / sec). / Sec) for measurement.
(C) Subsequently, as in 3)-(ii)-(b), the measurement was carried out by sequentially reducing the rotational speed to 40 (mm / sec) and 10 (mm / sec), and the rotational speed was 10 (mm / sec). ), The measurement is started from the position of 100 mm from the bottom surface of the toner powder layer, and the total of the rotational torque and the vertical load obtained when the measurement is made to enter the position of 10 mm from the bottom surface 10 And
(3) Measuring method of weight average particle diameter (D4) and number average particle diameter (D1) of toner The weight average particle diameter (D4) and the number average particle diameter (D1) of the toner are fine with an aperture tube of 100 μm. Precise particle size distribution measuring device “Coulter Counter Multisizer 3” (registered trademark, manufactured by Beckman Coulter, Inc.) by pore electrical resistance method and attached dedicated software “Beckman Coulter Multisizer 3” for setting measurement conditions and analyzing measurement data Using “Version 3.51” (manufactured by Beckman Coulter, Inc.), measurement was performed with 25,000 effective measurement channels, and measurement data was analyzed and calculated.
As the electrolytic aqueous solution used for the measurement, special grade sodium chloride is dissolved in ion-exchanged water so as to have a concentration of about 1% by mass, for example, “ISOTON II” (manufactured by Beckman Coulter, Inc.) can be used.
Prior to measurement and analysis, the dedicated software was set as follows.
In the “Standard Measurement Method (SOM) Change Screen” of the dedicated software, set the total count in the control mode to 50000 particles, set the number of measurements once, and set the Kd value to “standard particles 10.0 μm” (Beckman Coulter, Inc.) Set the value obtained using The threshold and noise level are automatically set by pressing the threshold / noise level measurement button. Also, the current is set to 1600 μA, the gain is set to 2, the electrolyte is set to ISOTON II, and the aperture tube flash after measurement is checked.
In the “pulse to particle size conversion setting screen” of the dedicated software, the bin interval is set to logarithmic particle size, the particle size bin is set to 256 particle size bin, and the particle size range is set to 2 μm to 60 μm.
The specific measurement method is as follows.
(I) About 200 ml of the electrolytic solution is placed in a glass 250 ml round bottom beaker exclusively for Multisizer 3, set on a sample stand, and the stirrer rod is stirred counterclockwise at 24 rpm. Then, dirt and bubbles in the aperture tube are removed by the “aperture flush” function of the analysis software.
(Ii) About 30 ml of the electrolytic aqueous solution was placed in a glass 100 ml flat bottom beaker, and “Contaminone N” (nonionic surfactant, anionic surfactant, organic builder consisting of an organic builder as a dispersant was accurately measured in this. About 0.3 ml of a diluted solution obtained by diluting a 10% by weight aqueous solution of a neutral detergent for washing a vessel (made by Wako Pure Chemical Industries, Ltd.) 3 times with ion-exchanged water is added.
(Iii) Two oscillators with an oscillation frequency of 50 kHz are incorporated in a state where the phase is shifted by 180 degrees, and placed in a water tank of an ultrasonic disperser “Ultrasonic Disposition System Tetora 150” (manufactured by Nikka Ki Bios Co., Ltd.) having an electrical output of 120 W. A fixed amount of ion-exchanged water is added, and about 2 ml of the above-mentioned Contaminone N is added to this water tank.
(Iv) The beaker of (ii) is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. And the height position of a beaker is adjusted so that the resonance state of the liquid level of the electrolyte solution in a beaker may become the maximum.
(V) In the state where the electrolytic aqueous solution in the beaker of (iv) is irradiated with ultrasonic waves, about 10 mg of toner is added to the electrolytic aqueous solution little by little and dispersed. Then, the ultrasonic dispersion process is continued for another 60 seconds. In the ultrasonic dispersion, the temperature of the water tank is appropriately adjusted so as to be 10 ° C. or higher and 40 ° C. or lower.
(Vi) The electrolyte solution (v) in which the toner is dispersed is dropped using a pipette into the round bottom beaker (i) installed in the sample stand, and the measurement concentration is adjusted to about 5%. . Measurement is performed until the number of measured particles reaches 50,000.
(Vii) The measurement data is analyzed with the dedicated software attached to the apparatus, and the weight average particle diameter (D4) and the number average particle diameter (D1) are calculated. When the graph / volume% is set with the dedicated software, the “average diameter” on the analysis / volume statistics (arithmetic average) screen is the weight average particle size (D4), and the graph / number% is set with the dedicated software. The “average diameter” on the analysis / number statistic (arithmetic average) screen is the number average particle diameter (D1).
(4) Measurement of toner average circularity
The average circularity of the toner is measured using a flow type particle image measuring device “FPIA-2100” (manufactured by Sysmex Corporation). Details are as follows.
First, the circularity is calculated from the following equation.
Circularity = (perimeter of a circle having the same area as the particle projection area) / (perimeter of the particle projection image)
Here, the “particle projected area” is the area of the binarized particle image, and the “peripheral length of the particle projected image” is the length of the contour line obtained by connecting the edge points of the particle image. . The measurement uses the perimeter of the particle image when image processing is performed at an image processing resolution of 512 × 512 (pixels of 0.3 μm × 0.3 μm).
The degree of circularity is an index indicating the degree of unevenness of the particle, and is 1.00 when the particle is a perfect sphere. The more complicated the surface shape, the smaller the degree of circularity.
The average circularity C, which means the average value of the circularity frequency distribution, is calculated from the following equation, where ci is the circularity at the dividing point i of the particle size distribution and m is the number of measured particles.
Figure 0004771558
As a specific measurement method, 10 ml of ion-exchanged water from which impure solids have been previously removed is prepared in a container, and after adding a surfactant as a dispersant, preferably sodium dodecylbenzenesulfonate, Further, 0.02 g of a measurement sample is added and dispersed. As a means for dispersion, two oscillators with an oscillation frequency of 50 kHz are incorporated with the phase shifted by 180 degrees, and an ultrasonic disperser “Ultrasonic Dissipation System Tetora 150 type” (manufactured by Nikkei Bios Co., Ltd.) having an electrical output of 120 W is used. Use it for 2 minutes to make a dispersion for measurement. In that case, it cools suitably so that the temperature of this dispersion may not be 40 degreeC or more. In order to suppress variation in circularity, the installation environment of the apparatus is controlled at 23 ° C. ± 0.5 ° C. so that the temperature inside the flow type particle image analyzer FPIA-2100 is 26 to 27 ° C. Preferably, autofocus is performed using 2 μm latex particles every 2 hours.
To measure the circularity of the toner particles, the flow type particle image measuring device is used, and the concentration of the dispersion is readjusted so that the toner particle concentration at the time of measurement is about 5000 particles / μl. After the measurement, using this data, data having an equivalent circle diameter of less than 2 μm is cut to determine the average circularity of the toner. The equivalent circle diameter is a value calculated as follows.
Equivalent circle diameter = (particle projected area / π) 1/2 × 2
“FPIA-2100”, which is a measuring apparatus used in the present invention, has a thinner sheath flow (7 μm → 4 μm) than “FPIA-1000” which has been used for observing the shape of a conventional toner. ) And the magnification of the processed particle image, and further the processing resolution of the captured image is improved (256 × 256 → 512 × 512), and the accuracy of toner shape measurement is improved.
(5) Water / methanol wettability test method
In the present invention, the wettability, that is, the hydrophobic property of the toner is obtained from a methanol dropping transmittance curve obtained as follows.
First, in order to remove bubbles and the like in a measurement sample, 70 ml of a hydrated methanol solution composed of 60% by volume of methanol and 40% by volume of water is placed in a cylindrical glass container having a diameter of 5 cm and a thickness of 1.75 mm. Disperse for 5 minutes with an ultrasonic disperser.
Next, the toner is shaken with a mesh having an opening of 150 μm, 0.1 g of the toner that has passed through the mesh is precisely weighed, and added to the container containing the hydrated methanol solution to prepare a sample solution for measurement.
Then, the measurement sample solution is set in a powder wettability tester “WET-100P” (manufactured by Reska). Using a magnetic stirrer, this sample solution for measurement was 6.7 s. -1 Stir at a speed of (400 rpm). As the rotor of the magnetic stirrer, a spindle type rotor having a length of 25 mm and a maximum barrel diameter of 8 mm coated with a fluororesin is used.
Next, the transmittance is measured with light having a wavelength of 780 nm while continuously adding methanol to the measurement sample solution at a dropping rate of 1.3 ml / min through the above apparatus, and a methanol dropping transmittance curve is prepared. To do.
(6) Measuring method of magnetic substance extraction amount
The amount of magnetic substance dissolved when dispersed in 5 mol / l hydrochloric acid is measured as follows.
1) Weigh accurately 25 mg of toner (for 4 doses).
2) Put the sample in a sample bottle and prepare 4 samples with 5 mol / 1 hydrochloric acid 100 ml added. Each is stirred for 3 minutes, 15 minutes, 30 minutes and overnight with stirring by a stirrer.
3) Each solution after dissolution was filtered with a sample processing filter (pore size 0.2 to 0.5 μm, for example, Mysori Disc H-25-2 (manufactured by Tosoh Corporation)), and the filtrate was spectroscopically analyzed. Absorbance at a wavelength of 338 nm is measured with a photometer (for example, Shimadzu UV-3100PC). At this time, 10 mol / l hydrochloric acid in which the toner is not dispersed is put in the control cell. The absorbance in the present invention is the intensity I of incident light when light is incident on the sample cell. 0 And transmittance I / I, which is the ratio of transmitted light intensity I 0 The common logarithm of the reciprocal of i.e. log (I 0 / I).
Measurement conditions: scan speed (medium speed), slit width (0.5 nm), sampling pitch (2 nm), measurement range (600 to 250 nm)
In the present invention, the amount dissolved in 3 minutes and 15 minutes with respect to the total content of the magnetic material is the solution sampled at 3 minutes and 15 minutes with respect to the absorbance after standing overnight (the magnetic material is completely dissolved). It is calculated by the ratio of absorbance.
(7) Measuring method of toner aggregation degree
The degree of aggregation of the toner was measured as follows.
As the measuring apparatus, a “powder tester” (manufactured by Hosokawa Micron Co., Ltd.) having a vibration table side surface portion connected with a digital display vibrometer “Digivibro MODEL 1332A” (manufactured by Showa Keiki Co., Ltd.) was used. Then, a sieve having a mesh size of 38 μm (400 mesh), a sieve having a mesh size of 75 μm (200 mesh), and a sieve having a mesh size of 150 μm (100 mesh) were stacked in this order on the vibrating table of the powder tester. The measurement was performed as follows in an environment of 23 ° C. and 60% RH.
(I) The vibration width of the vibration table was adjusted in advance so that the displacement value of the digital display vibrometer was 0.60 mm (peak-to-peak).
(Ii) 5 g of toner that had been allowed to stand for 24 hours in an environment of 23 ° C. and 60% RH was precisely weighed and gently placed on a sieve having an opening of 150 μm.
(Iii) After vibrating the sieve for 15 seconds, the mass of the toner remaining on each sieve was measured, and the degree of aggregation was calculated based on the following equation.
Aggregation degree (%) = {(sample mass on a sieve having an opening of 150 μm (g)) / 5 (g)} × 100 + {(sample mass on a sieve having an opening of 75 μm) / 5 (g)} × 100 × 0.6 + {(Sample mass on a sieve having an opening of 38 μm (g)) / 5 (g)} × 100 × 0.2

以下、本発明を製造例及び実施例により具体的に説明するが、これは本発明を限定するものではない。尚、以下の配合における部数は全て質量部である。
<磁性酸化鉄の製造例1>
硫酸第一鉄水溶液中に、鉄イオンに対して1.0乃至1.1当量の苛性ソーダ溶液(Feに対しリン換算で1質量%のヘキサメタリン酸ナトリウムを含有)を混合し、水酸化第一鉄を含む水溶液を調製した。水溶液をpH9に維持しながら、空気を吹き込み、80乃至90℃で酸化反応を行い、種晶を生成させるスラリー液を調製した。
次いで、このスラリー液に当初のアルカリ量(苛性ソーダのナトリウム成分)に対し0.9乃至1.2当量となるよう硫酸第一鉄水溶液を加えた後、スラリー液をpH8に維持して、空気を吹込みながら酸化反応を進め、酸化反応の終期にpHを約6に調整し、シランカップリング剤として、n−CSi(OCH及びn−C17Si(OCを磁性酸化鉄100部に対しそれぞれ0.9部/0.6部添加し、十分撹拌した。生成した疎水性酸化鉄粒子を常法により洗浄、濾過、乾燥し、次いで凝集している粒子を解砕処理し、磁性酸化鉄1を得た。
磁性酸化鉄1の平均粒径は0.24μm、磁場79.6kA/m(1000エルステッド)における飽和磁化及び残留磁化が68.6Am/kg(emu/g)、3.4Am/kg(emu/g)であった。
<磁性酸化鉄の製造例2〜4>
表6に示すように、磁性酸化鉄の磁気特性及び処理剤の種類及び添加量を変更した以外は同様にして、表6に示す磁性酸化鉄2乃至4を得た。
<磁性酸化鉄の製造例5〜6>
磁性酸化鉄の製造例1,4において、シランカップリング剤での表面処理を行わなかった以外は同様にして、表6に示す磁性酸化鉄5、6を得た。

Figure 0004771558
<磁性トナーAの製造>
イオン交換水709部に0.1mol/リットル−NaPO水溶液451部を投入し60℃に加温した後、1.0mol/リットル−CaCl水溶液67.7部を徐々に添加してCa(POを含む水系媒体を得た。
一方、下記の処方をアトライター(三井三池化工機(株))を用いて均一に分散混合した。
・スチレン 76部
・n−ブチルアクリレート 24部
・飽和ポリエステル樹脂 4部
(モノマー構成;ビスフェノールAプロピレンオキサイド付加物/テレフタル酸、酸価;12mgKOH/g、Tg=72℃、Mn=3900、Mw=10000)
・負荷電性制御剤 2部
(T−77(モノアゾ染料系のFe化合物)(保土ヶ谷化学工業社製))
・磁性酸化鉄1 85部
この単量体組成物を60℃に加温し、そこに日本精鑞社製;HNP−9(ポリエチレンワックス、DSC吸熱メインピーク=78℃)10部を混合溶解し、これに重合開始剤ジベンゾイルパーオキサイド6部を溶解して重合性単量体系を得た。
前記水系媒体中に上記重合性単体系を投入し、60℃,N雰囲気下においてクレアミックス(エム・テクニック社製)にて12,000rpmで15分間撹拌し、造粒した。その後パドル撹拌翼で撹拌しつつ、75℃で1時間反応させた。その後更に6時間撹拌を続けた。重合反応終了後、加熱を停止し、1時間当り75質量部の飽和水蒸気(スチーム圧力205kPa:温度120℃)を内容物中に直接導入した。飽和水蒸気の導入を開始してから10分後、容器内の内容物の温度は100℃に達した。重合用容器内温度が100℃に達した3時間後、容器内温度が100℃に達してから3時間経過後に懸濁液を冷却し、塩酸を加えてCa(POを溶解し、濾過、水洗、乾燥した。この粉体を風力分級機にて分級し、磁性トナー粒子を得た。
この磁性トナー粒子100部と、ヘキサメチルジシラザン処理した後シリコーンオイルで処理し、処理後のBET比表面積が160m/gの疎水性シリカ微粉体1.0部、表7に示す外添剤2を0.5部と外添剤4を0.2部とをヘンシェルミキサー(三井三池化工機(株))で混合して磁性トナーAを調製した。この磁性トナーAの物性を表9に示す。
<磁性トナーB、Cの製造>
磁性トナーAの製造例において、重合性単量体を反応後、系内に水蒸気を導入する時間を1時間に変更した以外は同様にして磁性トナーBを得、5時間に変更した以外は同様にして磁性トナーCを得た。この磁性トナーB及びCの物性を表9に示す。
<磁性トナーD乃至Fの製造>
磁性トナーAの製造例において、表8に示す通りに磁性体、外添剤を変更し、更には分級条件を調整することで重量平均粒径(D4)及び重量平均粒径(D4)/個数平均粒径(D1)を変更した以外は同様にして、磁性トナーD乃至Fを得た。磁性トナーD乃至Fの物性を表9に示す。
<磁性トナーG乃至1の製造>
磁性トナーAの製造例において、磁性トナー粒子に添加する無機または有機微粉体の種類を表8に示す通りに変更した以外は上記磁性トナーAの製造と同様にして、磁性トナーG乃至1を得た。磁性トナーG乃至1の物性を表9に示す。
<磁性トナーJの製造>
磁性トナーAの製造例において、使用する磁性体の種類を表8に示すものに変更した以外は上記磁性トナーAの製造と同様にして、磁性トナーJを得た。磁性トナーJの物性を表9に示す。
<磁性トナーK、Lの製造>
磁性トナーAの製造例において、Ca(POの添加量を調整しトナーの粒径を変更した以外は上記磁性トナーAの製造と同様にして、磁性トナーK及びLを得た。磁性トナーK及びLの物性を表9に示す。
<比較用磁性トナーa乃至fの製造>
磁性トナーAの製造例において、表8に示す通りに磁性酸化鉄及び外添剤を変更し、更にトナー粒径を変更した以外は上記磁性トナーAの製造と同様にして、磁性トナーa乃至fを得た。磁性トナーa乃至fの物性を表9に示す。
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
<評価用現像装置の作製>
レーザービームプリンターLBP−3000(キヤノン製)のカートリッジにおいて、現像装置の現像スリーブの径及び現像極での磁束密度を表10に示すように改造したカートリッジ1乃至5を作製した。
[トナー担持体の製造方法]
下記に示す配合比にて現像スリーブ表面に設ける樹脂被覆層の塗工液の作製を行った。
・レゾール型フェノール樹脂(アンモニア触媒使用、メタノール40%含有、
大日本インキ化学工業社製、商品名:J325) 350部
・結晶性グラファイト(体積平均粒径:5.5μm) 90部
・導電性カーボンブラック(コロンビアカーボン社製、商品名:Conduc
tex975) 10部
・導電性球状粒子(日本カーボン社製、商品名:ニカビーズ PC1020)
30部
・イソプロピルアルコール 300部
上記材料を、ガラスビーズを用いてサンドミルにて分散した。分散方法としては、上記レゾール型フェノール樹脂溶液に、上記の導電性カーボンブラック、結晶性グラファイト、イソプロピルアルコール100部、を添加し、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて2時間分散した。ここに、更に残りのイソプロピルアルコール及び上記導電性球状粒子を添加し、更にサンドミル分散を30分進めて塗工液を得た。
上記塗工液を用いてスプレー法により外径8mm、10mm、14mmのアルミニウム製円筒管上に導電性被覆層を形成させ、続いて熱風乾燥炉により160℃、30分間加熱して導電性被覆層を硬化させて現像剤担持体aを作製した。このときの表面粗さ(算術平均粗さ)を測定したところRa=1.52μmであった。
Figure 0004771558
(実施例1)
市販のレーザービームプリンターLBP−3000に、表10のカートリッジ1に磁性トナーAを充填したもので下記評価を実施した。常温常湿環境(温度23℃、湿度50%)において、1500枚の通紙耐久試験を行った。原稿は画像比率5%のチャートを使用した。ここで耐久前後での画像濃度、及び画質(カブリ、尾引き、転写中抜け)を下記基準により評価した。
(画像評価)
1.画像濃度
初期及び1500枚画だし後に、印字紙全面にベタ画像部を形成し、このベタ画像の画像濃度をマクベス濃度計(マクベス社製)でSPIフィルターを使用して測定した。
2.カブリ
カブリ測定用反射測定機REFLECTMETER(東京電色(株))にて、上記の画像の白部及び未使用紙の反射率を測定し、両者の差をカブリとした。
カブリ(%)=未使用紙反射率−通紙後画像白部の反射率
A:カブリ0.3%未満
B:カブリ0.3%以上1.0%未満
C:カブリ1.0%以上2.0%未満
D:カブリ2.0%以上2.5%未満
E:カブリ2.5%以上
3.尾引き
尾引きは、初期及び1500枚画だし後に、画像面積比率約3%の横線のみからなる画像パターンを現像中にマシンを止め、現像後の感光ドラム上の文字部の尾引き状況を以下の基準に従い目視で判断した。
A:尾引きは未発生。
B:わずかに尾引きは発生しているものの、良好な画像。
C:尾引きは発生しているものの、実用的には問題のない画質。
D:尾引きが顕著に発生。
4.中抜け
中抜けは、初期及び1500枚画だし後に、ライン及び文字を含む画像をプリントアウトし、目視または拡大顕微鏡を使用して、以下の基準で評価した。
A:文字画像及びライン画像ともに、細部まで忠実に再現している。
B:細部に多少の乱れまたは中抜けが生じているが、目視では問題ないレベルである。
C:目視でも乱れや中抜けがわかるレベルである。
D:乱れ、中抜けが多数発生し、原稿を再現していない。
その結果、表12に示すように良好な結果が得られた。
(実施例2乃至15)
実施例1において、表11に示すような組み合わせで評価を行った結果、表12に示すように良好な結果が得られた。
(比較例1〜8)
実施例1において、表11に示すような組み合わせで評価を行った結果、表12に示すような結果が得られた。
Figure 0004771558
Figure 0004771558
<磁性トナーMの製造>
(結着樹脂の製造例)
テレフタル酸 27mol%
アジピン酸 15mol%
トリメリット酸 6mol%
前記式(ア)で示されるビスフェノール誘導体 35mol%
(プロピレンオキサイド2.5mol付加物)
前記式(ア)で示されるビスフェノール誘導体 17mol%
(エチレンオキサイド2.5mol付加物)
上記に示すポリエステルモノマー及びエステル化触媒を4つ口フラスコに仕込み、減圧装置、水分離装置、窒素ガス導入装置、温度測定装置及び撹拌装置を装着し、窒素雰囲気下にて230℃に昇温して反応を行った。反応終了後、生成物を容器から取り出し、冷却、粉砕し、軟化点143℃の樹脂Aを得た。
次に、
テレフタル酸 24mol%
アジピン酸 16mol%
トリメリット酸 10mol%
前記式(ア)で示されるビスフェノール誘導体 30mol%
(プロピレンオキサイド2.5mol付加物)
前記式(ア)で示されるビスフェノール誘導体 20mol%
(エチレンオキサイド2.5mol付加物)
上記に示すポリエステルモノマー及びエステル化触媒を4口フラスコに仕込み、減圧装置、水分離装置、窒素ガス導入装置、温度測定装置及び撹拌装置を装着し、窒素雰囲気下にて230℃に昇温して反応を行った。反応終了後、生成物を容器から取り出し、冷却、粉砕し、軟化点98℃の樹脂Bを得た。
樹脂A及びBのそれぞれ50部をヘンシェルミキサーで混合し、結着樹脂1とした。
この結着樹脂1のガラス転移温度は59℃、軟化点は128℃、ゲルパーミエーションクロマトグラフィーにおける分子量1万以下の成分を43%含有するものであった。
・結着樹脂1 100部
・磁性体1 95部
・モノアゾ鉄錯体(T−77:保土ヶ谷化学社製) 2部
・ポリエチレンワックス(融点105℃) 4部
(サゾール社製、C105)
上記混合物をヘンシェルミキサーで前混合した後、110℃に加熱された2軸エクストルーダで溶融混練し、冷却した混練物をハンマーミルで粗粉砕してトナー粗粉砕物を得た。得られた粗粉砕物を、機械式粉砕機ターボミル(ターボ工業社製;回転子および固定子の表面に炭化クロムを含有したクロム合金めっきでコーティング(めっき厚150μm、表面硬さHV1050)を用いて機械式粉砕させて微粉砕し、得られた微粉砕物をコアンダ効果を利用した多分割分級装置(日鉄鉱業社製エルボジェット分級機)で微粉及び粗粉を同時に分級除去した。そこで得られたトナー粒子の重量平均粒径(D)は7.5μmであった。
その原料トナー粒子を、熱風を吹き付けることによりトナー粒子の表面改質を行う装置であるメテオレインボーMR−3型(日本ニューマチック工業社製)で表面改質を行った。表面改質時の条件は、原料供給速度2kg/hr、熱風流量700l/min、吐出熱風温度250℃で行った。
この磁性トナー粒子100部と、ヘキサメチルジシラザン処理した後シリコーンオイルで処理した、処理後のBET比表面積が160m/gの疎水性シリカ微粉体1.0部、及び表13に示す外添剤2及び4とをヘンシェルミキサー(三井三池化工機(株))で混合して磁性トナーMを調製した。この磁性トナーMの物性を表14に示す。
<磁性トナーNの製造>
磁性トナーMの製造例において、メテオレインボーMR−3型(日本ニューマチック工業社製)で表面改質を行う条件を、原料供給速度2kg/hr、熱風流量500リットル/min、吐出熱風温度200℃で行った以外は同様に行い、磁性トナーNを得た。磁性トナーNの物性を表14に示す。
<磁性トナーO、Pの製造>
磁性トナーMの製造例において、表13に示す通りに磁性酸化鉄及び外添剤を変更した以外は上記磁性トナーAの製造と同様にして、磁性トナーO及びPを得た。磁性トナーO及びPの物性を表14に示す。
<比較用磁性トナーgの製造>
磁性トナーMの製造例において、表13に示す通りに外添剤を変更した以外は上記磁性トナーMの製造と同様にして、磁性トナーgを得た。磁性トナーgの物性を表14に示す。
<比較用磁性トナーh、iの製造>
磁性トナーMの製造例において、メテオレインボーMR−3型(日本ニューマチック工業社製)での表面改質を行わず、更に表13に示す通りに磁性体及び外添剤を変更した以外は上記磁性トナーMの製造と同様にして、磁性トナーh及びiを得た。磁性トナーh及びiの物性を表14に示す。
(実施例15)
市販のレーザービームプリンターLBP−3000に、カートリッジ1に磁性トナーAを充填したもので下記評価を実施した。常温常湿環境(温度23℃、湿度50%)及び高温高湿環境(温度30℃、湿度80%)において、1000枚の通紙耐久試験を行った。原稿は画像比率5%のチャートを使用した。ここで耐久前後での画像濃度、及び画質(カブリ、尾引き、転写中抜け)を実施例1と同様にして評価した。
(実施例16〜19)
実施例15において、表15に示すような組み合わせで評価を行った結果、表16に示すように良好な結果が得られた。
〔比較例9〜13〕
実施例15において、表15に示すような組み合わせで評価を行った結果、表16に示すような結果が得られた。
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
この出願は2007年6月8日に出願された日本国特許出願第2007−152221号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。Hereinafter, the present invention will be specifically described with reference to production examples and examples, but this does not limit the present invention. In addition, all the parts in the following mixing | blending are a mass part.
<Production Example 1 of Magnetic Iron Oxide>
In a ferrous sulfate aqueous solution, 1.0 to 1.1 equivalents of caustic soda solution (containing 1 mass% sodium hexametaphosphate in terms of phosphorus with respect to Fe) is mixed with ferrous sulfate, and ferrous hydroxide An aqueous solution containing was prepared. While maintaining the aqueous solution at pH 9, air was blown in, and an oxidation reaction was performed at 80 to 90 ° C. to prepare a slurry liquid for generating seed crystals.
Subsequently, after adding ferrous sulfate aqueous solution to this slurry liquid so that it may become 0.9 to 1.2 equivalent with respect to the original alkali amount (sodium component of caustic soda), the slurry liquid is maintained at pH 8 and air is supplied. The oxidation reaction proceeds while blowing, the pH is adjusted to about 6 at the end of the oxidation reaction, and n-C 4 H 9 Si (OCH 3 ) 3 and n-C 8 H 17 Si (OC 2 ) are used as silane coupling agents. H 5 ) 3 was added to 0.9 parts / 0.6 parts of 100 parts of magnetic iron oxide, respectively, and sufficiently stirred. The produced hydrophobic iron oxide particles were washed, filtered and dried by a conventional method, and then the aggregated particles were crushed to obtain magnetic iron oxide 1.
The average particle diameter of the magnetic iron oxide 1 0.24 .mu.m, saturation magnetization and the residual magnetization in a magnetic field 79.6 kA / m (1000 oersteds) is 68.6Am 2 /kg(emu/g),3.4Am 2 / kg (emu / G).
<Production Examples 2 to 4 of magnetic iron oxide>
As shown in Table 6, magnetic iron oxides 2 to 4 shown in Table 6 were obtained in the same manner except that the magnetic properties of magnetic iron oxide and the type and amount of treatment agent were changed.
<Production Examples 5 to 6 of magnetic iron oxide>
Magnetic iron oxides 5 and 6 shown in Table 6 were obtained in the same manner as in Production Examples 1 and 4 of magnetic iron oxide, except that the surface treatment with a silane coupling agent was not performed.
Figure 0004771558
<Manufacture of magnetic toner A>
After adding 451 parts of 0.1 mol / liter-Na 3 PO 4 aqueous solution to 709 parts of ion-exchanged water and heating to 60 ° C., 67.7 parts of 1.0 mol / liter-CaCl 2 aqueous solution was gradually added and Ca was added. An aqueous medium containing 3 (PO 4 ) 2 was obtained.
On the other hand, the following prescription was uniformly dispersed and mixed using an attritor (Mitsui Miike Chemical Co., Ltd.).
Styrene 76 parts n-butyl acrylate 24 parts Saturated polyester resin 4 parts (monomer composition; bisphenol A propylene oxide adduct / terephthalic acid, acid value; 12 mgKOH / g, Tg = 72 ° C., Mn = 3900, Mw = 10000 )
-Negative charge control agent 2 parts (T-77 (monoazo dye-based Fe compound) (Hodogaya Chemical Co., Ltd.))
・ 85 parts of magnetic iron oxide 1 This monomer composition was heated to 60 ° C., and 10 parts of HNP-9 (polyethylene wax, DSC endothermic main peak = 78 ° C.) were mixed and dissolved therein. In this, 6 parts of a polymerization initiator dibenzoyl peroxide was dissolved to obtain a polymerizable monomer system.
The polymerizable simple substance system was put into the aqueous medium, and the mixture was granulated by stirring at 12,000 rpm for 15 minutes with CLEARMIX (manufactured by M Technique Co., Ltd.) at 60 ° C. in an N 2 atmosphere. Thereafter, the mixture was reacted at 75 ° C. for 1 hour while stirring with a paddle stirring blade. Thereafter, stirring was continued for another 6 hours. After completion of the polymerization reaction, heating was stopped, and 75 parts by mass of saturated water vapor (steam pressure 205 kPa: temperature 120 ° C.) per hour was directly introduced into the contents. Ten minutes after the start of the introduction of saturated steam, the temperature of the contents in the container reached 100 ° C. 3 hours after the temperature in the polymerization vessel reached 100 ° C., 3 hours after the temperature in the vessel reached 100 ° C., the suspension was cooled, and hydrochloric acid was added to dissolve Ca 3 (PO 4 ) 2. Filtered, washed with water and dried. This powder was classified with an air classifier to obtain magnetic toner particles.
100 parts of the magnetic toner particles, 1.0 part of hydrophobic silica fine powder having a BET specific surface area of 160 m 2 / g, treated with hexamethyldisilazane and then treated with silicone oil, and external additives shown in Table 7 The magnetic toner A was prepared by mixing 0.5 part 2 and 0.2 part external additive 4 with a Henschel mixer (Mitsui Miike Chemical Co., Ltd.). Table 9 shows the physical properties of this magnetic toner A.
<Manufacture of magnetic toners B and C>
In the magnetic toner A production example, after reacting the polymerizable monomer, the magnetic toner B was obtained in the same manner except that the time for introducing water vapor into the system was changed to 1 hour. Thus, magnetic toner C was obtained. Table 9 shows the physical properties of the magnetic toners B and C.
<Manufacture of magnetic toners D to F>
In the production example of the magnetic toner A, the weight average particle diameter (D4) and the weight average particle diameter (D4) / number are obtained by changing the magnetic material and external additives as shown in Table 8, and further adjusting the classification conditions. Magnetic toners D to F were obtained in the same manner except that the average particle diameter (D1) was changed. Table 9 shows the physical properties of the magnetic toners D to F.
<Manufacture of magnetic toners G to 1>
In the production example of the magnetic toner A, the magnetic toners G to 1 were obtained in the same manner as in the production of the magnetic toner A except that the kind of the inorganic or organic fine powder added to the magnetic toner particles was changed as shown in Table 8. It was. Table 9 shows the physical properties of the magnetic toners G to 1.
<Manufacture of magnetic toner J>
Magnetic toner J was obtained in the same manner as in the production of magnetic toner A, except that in the production example of magnetic toner A, the type of magnetic material used was changed to that shown in Table 8. Table 9 shows the physical properties of Magnetic Toner J.
<Manufacture of magnetic toners K and L>
Magnetic toners K and L were obtained in the same manner as in the production of the magnetic toner A except that the amount of Ca 3 (PO 4 ) 2 was adjusted to change the particle size of the toner in the production example of the magnetic toner A. Table 9 shows the physical properties of the magnetic toners K and L.
<Production of Comparative Magnetic Toners a to f>
In the production example of the magnetic toner A, the magnetic toners a to f are produced in the same manner as in the production of the magnetic toner A except that the magnetic iron oxide and the external additive are changed as shown in Table 8 and the toner particle size is changed. Got. Table 9 shows the physical properties of the magnetic toners a to f.
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
<Preparation of development device for evaluation>
In the cartridge of the laser beam printer LBP-3000 (manufactured by Canon), cartridges 1 to 5 in which the diameter of the developing sleeve of the developing device and the magnetic flux density at the developing pole were modified as shown in Table 10 were produced.
[Method for producing toner carrier]
A coating liquid for a resin coating layer provided on the surface of the developing sleeve was prepared at the following blending ratio.
・ Resol type phenolic resin (using ammonia catalyst, containing 40% methanol,
Dainippon Ink & Chemicals, Inc., trade name: J325) 350 parts, crystalline graphite (volume average particle size: 5.5 μm) 90 parts, conductive carbon black (produced by Columbia Carbon Co., trade name: Conduc)
tex975) 10 parts, conductive spherical particles (manufactured by Nippon Carbon Co., Ltd., trade name: Nikabeads PC1020)
30 parts isopropyl alcohol 300 parts The above materials were dispersed in a sand mill using glass beads. As a dispersion method, the conductive carbon black, crystalline graphite, and 100 parts of isopropyl alcohol are added to the resol type phenol resin solution, and dispersed for 2 hours in a sand mill using glass beads having a diameter of 1 mm as media particles. did. The remaining isopropyl alcohol and the conductive spherical particles were further added thereto, and the sand mill dispersion was further advanced for 30 minutes to obtain a coating solution.
A conductive coating layer is formed on an aluminum cylindrical tube having an outer diameter of 8 mm, 10 mm, and 14 mm by spraying using the above coating solution, followed by heating at 160 ° C. for 30 minutes in a hot air drying furnace. Was cured to produce a developer carrier a. When the surface roughness (arithmetic average roughness) at this time was measured, Ra = 1.52 μm.
Figure 0004771558
Example 1
The following evaluation was carried out using a commercially available laser beam printer LBP-3000 in which the cartridge 1 in Table 10 was filled with the magnetic toner A. In a room temperature and normal humidity environment (temperature 23 ° C., humidity 50%), a paper passing durability test of 1500 sheets was performed. The original used a chart with an image ratio of 5%. Here, the image density before and after the endurance and the image quality (fogging, tailing, transfer loss) were evaluated according to the following criteria.
(Image evaluation)
1. Image density Initially and after printing 1500 sheets, a solid image portion was formed on the entire surface of the printing paper, and the image density of this solid image was measured with a Macbeth densitometer (manufactured by Macbeth) using an SPI filter.
2. The reflectance of the white portion of the above image and the unused paper was measured with a reflection measuring device REFECTECTOMETER (Tokyo Denshoku Co., Ltd.) for fogging, and the difference between the two was defined as fogging.
Fog (%) = reflectance of unused paper-reflectance of white portion of image after paper passing A: fog less than 0.3% B: fog 0.3% or more and less than 1.0% C: fog 1.0% or more Less than 0% D: Fog 2.0% or more and less than 2.5% E: Fog 2.5% or more Trailing In the initial stage and after 1500 sheets have been printed, the machine is stopped during development of an image pattern consisting only of horizontal lines with an image area ratio of about 3%. It was judged visually according to the criteria.
A: No tailing has occurred.
B: Good image with slight tailing.
C: Although there is tailing, there is no problem in practical use.
D: Tail is noticeably generated.
4). Cavity Cavity was evaluated according to the following criteria by printing out an image including lines and letters after initial printing and after 1500 sheets were drawn, and using a visual or magnifying microscope.
A: Both character images and line images are faithfully reproduced in detail.
B: Although some disorder or a hollow has occurred in the details, it is a level at which there is no problem with visual observation.
C: Level at which turbulence and voids can be seen visually.
D: Many disturbances and voids occur, and the document is not reproduced.
As a result, good results were obtained as shown in Table 12.
(Examples 2 to 15)
In Example 1, as a result of evaluation with combinations as shown in Table 11, good results were obtained as shown in Table 12.
(Comparative Examples 1-8)
In Example 1, as a result of evaluating with combinations as shown in Table 11, results as shown in Table 12 were obtained.
Figure 0004771558
Figure 0004771558
<Manufacture of magnetic toner M>
(Example of binder resin production)
Terephthalic acid 27mol%
Adipic acid 15 mol%
Trimellitic acid 6mol%
Bisphenol derivative represented by the formula (A) 35 mol%
(Propylene oxide 2.5 mol adduct)
Bisphenol derivative represented by the above formula (a) 17 mol%
(Ethylene oxide 2.5 mol adduct)
The polyester monomer and esterification catalyst shown above are charged into a four-necked flask, and equipped with a decompression device, a water separator, a nitrogen gas introduction device, a temperature measurement device, and a stirring device, and heated to 230 ° C. in a nitrogen atmosphere. The reaction was performed. After completion of the reaction, the product was taken out of the container, cooled and pulverized to obtain a resin A having a softening point of 143 ° C.
next,
Terephthalic acid 24mol%
Adipic acid 16mol%
Trimellitic acid 10mol%
Bisphenol derivative represented by the above formula (a) 30 mol%
(Propylene oxide 2.5 mol adduct)
Bisphenol derivative represented by the formula (A) 20 mol%
(Ethylene oxide 2.5 mol adduct)
Charge the polyester monomer and esterification catalyst shown above into a four-necked flask, attach a decompression device, a water separator, a nitrogen gas introduction device, a temperature measurement device, and a stirring device, and raise the temperature to 230 ° C. in a nitrogen atmosphere. Reaction was performed. After completion of the reaction, the product was taken out of the container, cooled and pulverized to obtain a resin B having a softening point of 98 ° C.
50 parts of each of the resins A and B was mixed with a Henschel mixer to obtain a binder resin 1.
The binder resin 1 had a glass transition temperature of 59 ° C., a softening point of 128 ° C., and 43% of a component having a molecular weight of 10,000 or less in gel permeation chromatography.
Binder resin 1 100 parts Magnetic body 1 95 parts Monoazo iron complex (T-77: Hodogaya Chemical Co., Ltd.) 2 parts Polyethylene wax (melting point 105 ° C.) 4 parts (Sazol Co., C105)
The mixture was premixed with a Henschel mixer, melt-kneaded with a biaxial extruder heated to 110 ° C., and the cooled kneaded product was coarsely pulverized with a hammer mill to obtain a coarsely pulverized toner product. The obtained coarsely pulverized product was coated with a mechanical pulverizer turbo mill (manufactured by Turbo Kogyo Co., Ltd .; chromium alloy plating containing chromium carbide on the rotor and stator surfaces (plating thickness 150 μm, surface hardness HV1050). The finely pulverized product obtained by mechanical pulverization was classified and removed at the same time by a multi-division classifying apparatus (Elbow Jet Classifier manufactured by Nittetsu Mining Co., Ltd.) using the Coanda effect. The toner particles had a weight average particle diameter (D 4 ) of 7.5 μm.
The raw toner particles were subjected to surface modification by Meteorbomb MR-3 type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) which is a device for modifying the surface of the toner particles by blowing hot air. The conditions for the surface modification were a raw material supply rate of 2 kg / hr, a hot air flow rate of 700 l / min, and a discharge hot air temperature of 250 ° C.
100 parts of the magnetic toner particles, 1.0 part of a hydrophobic silica fine powder having a BET specific surface area of 160 m 2 / g, which has been treated with hexamethyldisilazane and then with silicone oil, and external additives shown in Table 13 Agents 2 and 4 were mixed with a Henschel mixer (Mitsui Miike Chemical Co., Ltd.) to prepare magnetic toner M. Table 14 shows the physical properties of this magnetic toner M.
<Manufacture of magnetic toner N>
In the production example of the magnetic toner M, the conditions for surface modification with Meteorenbo MR-3 type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) are as follows. The magnetic toner N was obtained in the same manner as described above. Table 14 shows the physical properties of the magnetic toner N.
<Manufacture of magnetic toners O and P>
In the production example of the magnetic toner M, magnetic toners O and P were obtained in the same manner as in the production of the magnetic toner A except that the magnetic iron oxide and the external additive were changed as shown in Table 13. Table 14 shows the physical properties of the magnetic toners O and P.
<Manufacture of comparative magnetic toner g>
In the production example of the magnetic toner M, a magnetic toner g was obtained in the same manner as in the production of the magnetic toner M except that the external additive was changed as shown in Table 13. Table 14 shows the physical properties of the magnetic toner g.
<Manufacture of comparative magnetic toners h and i>
In the production example of the magnetic toner M, the surface was not modified with Meteolevo MR-3 type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.), and the magnetic substance and external additives were changed as shown in Table 13 above. In the same manner as in the production of the magnetic toner M, magnetic toners h and i were obtained. Table 14 shows the physical properties of the magnetic toners h and i.
(Example 15)
The following evaluation was performed using a commercially available laser beam printer LBP-3000 filled with magnetic toner A in the cartridge 1. A 1,000 sheet passing durability test was performed in a normal temperature and normal humidity environment (temperature 23 ° C., humidity 50%) and a high temperature and high humidity environment (temperature 30 ° C., humidity 80%). The original used a chart with an image ratio of 5%. Here, the image density before and after the endurance and the image quality (fogging, tailing, transfer omission) were evaluated in the same manner as in Example 1.
(Examples 16 to 19)
In Example 15, as a result of evaluation with combinations as shown in Table 15, good results were obtained as shown in Table 16.
[Comparative Examples 9 to 13]
In Example 15, as a result of evaluation using combinations as shown in Table 15, results shown in Table 16 were obtained.
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
Figure 0004771558
This application claims priority from Japanese Patent Application No. 2007-152221 filed on June 8, 2007, the contents of which are incorporated herein by reference.

Claims (3)

潜像担持体と、磁性トナーを表面に担持し内部に磁界発生手段を有するトナー担持体とが一定の間隔を設けて配置されており、該潜像担持体と該トナー担持体との間に交番電界を印加して磁性トナーで該潜像担持体に担持される静電潜像の現像を行う画像形成方法であって、
該トナー担持体の外径が.0mm以上10.0mm以下であり、
該磁性トナーは、少なくとも結着樹脂及び磁性粉体を含有する磁性トナー粒子と無機微粉体とを含んでおり、
該磁性トナーの磁場79.6kA/mで着磁したときの残留磁化が3.0Am /kg以下であり、
該磁性トナーは、平均円形度が0.950以上であり、下記式(1)から得られる圧縮率が30以下であり、
圧縮率={1−(見掛け密度/タップ密度)}×100 (1)
該トナーの粉体流動性測定装置において測定されたTotal Energyが下記式(2)及び(3)を満足することを特徴とする画像形成方法。
600≦TE10≦1500 (2)
TE10/TE100≦1.60 (3)
(TE10:撹拌速度が10mm/secの時のTotal Energy(mJ)、TE100:撹拌速度が100mm/secの時のTotal Energy(mJ))
A latent image carrier and a toner carrier having a magnetic toner on the surface and having a magnetic field generating means are disposed at a predetermined interval, and between the latent image carrier and the toner carrier. An image forming method for developing an electrostatic latent image carried on a latent image carrier with a magnetic toner by applying an alternating electric field,
The outer diameter of the toner carrier is 6 . 0 mm or more 10 . 0 mm or less ,
The magnetic toner includes magnetic toner particles containing at least a binder resin and magnetic powder, and inorganic fine powder,
The residual magnetization of the magnetic toner when magnetized with a magnetic field of 79.6 kA / m is 3.0 Am 2 / kg or less,
The magnetic toner has an average circularity of 0.950 or more and a compression ratio obtained from the following formula (1) of 30 or less.
Compression rate = {1- (apparent density / tap density)} × 100 (1)
An image forming method, wherein the total energy measured by the powder flowability measuring device of the toner satisfies the following formulas (2) and (3):
600 ≦ TE 10 ≦ 1500 (2)
TE 10 / TE 100 ≦ 1.60 (3)
(TE 10 : Total Energy (mJ) when the stirring speed is 10 mm / sec, TE 100 : Total Energy (mJ) when the stirring speed is 100 mm / sec)
該磁性トナーの重量平均粒径(D4)が、4.0μm以上9.0μm以下であることを特徴とする請求項1に記載の画像形成方法。  2. The image forming method according to claim 1, wherein the magnetic toner has a weight average particle diameter (D4) of 4.0 μm or more and 9.0 μm or less. 潜像担持体と、磁性トナーを表面に担持し内部に磁界発生手段を有するトナー担持体とが一定の間隔を設けて配置されており、該潜像担持体と該トナー担持体との間に交番電界を印加して磁性トナーで該潜像担持体に担持される静電潜像の現像を行うプロセスユニットであって、
該トナー担持体の外径が.0mm以上10.0mm以下であり、
該磁性トナーは、少なくとも結着樹脂及び磁性粉体を含有する磁性トナー粒子と無機微粉体とを含んでおり、
該磁性トナーの磁場79.6kA/mで着磁したときの残留磁化が3.0Am /kg以下であり、
該磁性トナーは、平均円形度が0.950以上であり、下記式(1)から得られる圧縮率が30以下であり、
圧縮率={1−(見掛け密度/タップ密度)}×100 (1)
該トナーの粉体流動性測定装置において測定されたTotal Energyが下記式(2)及び(3)を満足することを特徴とするプロセスユニット。
600≦TE10≦1500 (2)
TE10/TE100≦1.60 (3)
(TE10:撹拌速度が10mm/secの時のTotal Energy(mJ)、TE100:撹拌速度が100mm/secの時のTotal Energy(mJ))
A latent image carrier and a toner carrier having a magnetic toner on the surface and having a magnetic field generating means are disposed at a predetermined interval, and between the latent image carrier and the toner carrier. A process unit for developing an electrostatic latent image carried on the latent image carrier with magnetic toner by applying an alternating electric field,
The outer diameter of the toner carrier is 6 . 0 mm or more 10 . 0 mm or less ,
The magnetic toner includes magnetic toner particles containing at least a binder resin and magnetic powder, and inorganic fine powder,
The residual magnetization of the magnetic toner when magnetized with a magnetic field of 79.6 kA / m is 3.0 Am 2 / kg or less,
The magnetic toner has an average circularity of 0.950 or more and a compression ratio obtained from the following formula (1) of 30 or less.
Compression rate = {1- (apparent density / tap density)} × 100 (1)
A process unit characterized in that a total energy measured by the powder flowability measuring device of the toner satisfies the following formulas (2) and (3):
600 ≦ TE 10 ≦ 1500 (2)
TE 10 / TE 100 ≦ 1.60 (3)
(TE 10 : Total Energy (mJ) when the stirring speed is 10 mm / sec, TE 100 : Total Energy (mJ) when the stirring speed is 100 mm / sec)
JP2009517934A 2007-06-08 2008-06-06 Image forming method, magnetic toner and process unit Active JP4771558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517934A JP4771558B2 (en) 2007-06-08 2008-06-06 Image forming method, magnetic toner and process unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007152221 2007-06-08
JP2007152221 2007-06-08
PCT/JP2008/060814 WO2008150034A1 (en) 2007-06-08 2008-06-06 Image forming method, magnetic toner, and process unit
JP2009517934A JP4771558B2 (en) 2007-06-08 2008-06-06 Image forming method, magnetic toner and process unit

Publications (2)

Publication Number Publication Date
JPWO2008150034A1 JPWO2008150034A1 (en) 2010-08-26
JP4771558B2 true JP4771558B2 (en) 2011-09-14

Family

ID=40093830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517934A Active JP4771558B2 (en) 2007-06-08 2008-06-06 Image forming method, magnetic toner and process unit

Country Status (6)

Country Link
US (1) US8841054B2 (en)
EP (1) EP2071406B1 (en)
JP (1) JP4771558B2 (en)
KR (1) KR101238502B1 (en)
CN (1) CN101589345B (en)
WO (1) WO2008150034A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025357B2 (en) * 2007-07-11 2012-09-12 キヤノン株式会社 Toner and image forming method
JP5196904B2 (en) * 2007-08-01 2013-05-15 キヤノン株式会社 Developing method, developing apparatus, and developer carrier used in the developing method
JP5284049B2 (en) * 2007-11-21 2013-09-11 キヤノン株式会社 Magnetic toner
JP5317711B2 (en) * 2009-01-09 2013-10-16 キヤノン株式会社 Toner, image forming apparatus and developing method
JP5473725B2 (en) * 2009-04-15 2014-04-16 キヤノン株式会社 Magnetic toner
JP5350137B2 (en) * 2009-08-25 2013-11-27 キヤノン株式会社 Magnetic toner
JP2011047988A (en) * 2009-08-25 2011-03-10 Canon Inc Toner
JP5630192B2 (en) * 2009-11-04 2014-11-26 コニカミノルタ株式会社 Toner production method
US8426094B2 (en) 2010-05-31 2013-04-23 Canon Kabushiki Kaisha Magnetic toner
RU2506620C1 (en) * 2010-05-31 2014-02-10 Кэнон Кабусики Кайся Magnetic toner
US8544351B2 (en) * 2010-06-02 2013-10-01 Xerox Corporation Method and apparatus for characterizing the flowability of toner particles
US8614044B2 (en) 2010-06-16 2013-12-24 Canon Kabushiki Kaisha Toner
JP5921109B2 (en) 2010-08-23 2016-05-24 キヤノン株式会社 toner
KR101445048B1 (en) 2010-09-16 2014-09-26 캐논 가부시끼가이샤 Toner
JP5569292B2 (en) * 2010-09-21 2014-08-13 富士ゼロックス株式会社 Toner for developing electrostatic image, method for producing toner for developing electrostatic image, developer, and image forming method
JP5868165B2 (en) * 2011-12-27 2016-02-24 キヤノン株式会社 Developing apparatus and developing method
JP5442046B2 (en) * 2012-02-01 2014-03-12 キヤノン株式会社 Magnetic toner
WO2013146200A1 (en) * 2012-03-29 2013-10-03 三菱化学株式会社 Toner for electrostatic charge image development, and toner cartridge for accommodating same
US9575425B2 (en) * 2013-07-31 2017-02-21 Canon Kabushiki Kaisha Toner
US20150037720A1 (en) * 2013-07-31 2015-02-05 Canon Kabushiki Kaisha Magnetic toner
US9575461B2 (en) * 2014-08-07 2017-02-21 Canon Kabushiki Kaisha Process cartridge and image forming method using toner having properties for high image quality
JP6768423B2 (en) 2015-12-04 2020-10-14 キヤノン株式会社 Toner manufacturing method
DE102016116610B4 (en) 2015-12-04 2021-05-20 Canon Kabushiki Kaisha toner
US10228627B2 (en) 2015-12-04 2019-03-12 Canon Kabushiki Kaisha Toner
JP6991701B2 (en) 2015-12-04 2022-01-12 キヤノン株式会社 toner
JP6762706B2 (en) 2015-12-04 2020-09-30 キヤノン株式会社 toner
US9804519B2 (en) 2015-12-04 2017-10-31 Canon Kabushiki Kaisha Method for producing toner
JP6910805B2 (en) 2016-01-28 2021-07-28 キヤノン株式会社 Toner, image forming apparatus and image forming method
JP6859141B2 (en) 2016-03-24 2021-04-14 キヤノン株式会社 Manufacturing method of toner particles
JP6873796B2 (en) 2016-04-21 2021-05-19 キヤノン株式会社 toner
US9946181B2 (en) 2016-05-20 2018-04-17 Canon Kabushiki Kaisha Toner
JP6878133B2 (en) 2016-05-20 2021-05-26 キヤノン株式会社 toner
JP6891051B2 (en) 2016-06-30 2021-06-18 キヤノン株式会社 Toner, developing equipment, and image forming equipment
JP6869819B2 (en) 2016-06-30 2021-05-12 キヤノン株式会社 Toner, developing device and image forming device
JP6904801B2 (en) * 2016-06-30 2021-07-21 キヤノン株式会社 Toner, developing device and image forming device equipped with the toner
US10241430B2 (en) 2017-05-10 2019-03-26 Canon Kabushiki Kaisha Toner, and external additive for toner
US10545420B2 (en) 2017-07-04 2020-01-28 Canon Kabushiki Kaisha Magnetic toner and image-forming method
CN107340697B (en) * 2017-09-18 2021-01-12 太仓市鑫鹤印刷包装有限公司 Environment-friendly color ink powder for printing
CN110597034B (en) 2018-06-13 2024-03-19 佳能株式会社 Two-component developer
EP3582017B1 (en) 2018-06-13 2023-04-26 Canon Kabushiki Kaisha Toner and method for producing toner
US10877389B2 (en) 2018-06-13 2020-12-29 Canon Kabushiki Kaisha Toner
US10969704B2 (en) 2018-06-13 2021-04-06 Canon Kabushiki Kaisha Magnetic toner and method for manufacturing magnetic toner
CN110597033A (en) 2018-06-13 2019-12-20 佳能株式会社 Toner and method for producing toner
CN110597031B (en) 2018-06-13 2024-08-13 佳能株式会社 Toner and method for producing the same
EP3582016B1 (en) 2018-06-13 2023-10-18 Canon Kabushiki Kaisha Toner and two-component developer
EP3582018B1 (en) 2018-06-13 2024-03-27 Canon Kabushiki Kaisha Positive-charging toner
CN110597029A (en) 2018-06-13 2019-12-20 佳能株式会社 Toner and method for producing toner
JP7467219B2 (en) 2019-05-14 2024-04-15 キヤノン株式会社 toner
JP7292978B2 (en) 2019-05-28 2023-06-19 キヤノン株式会社 Toner and toner manufacturing method
JP7463086B2 (en) 2019-12-12 2024-04-08 キヤノン株式会社 toner
JP2022022127A (en) 2020-07-22 2022-02-03 キヤノン株式会社 toner
JP2022022128A (en) 2020-07-22 2022-02-03 キヤノン株式会社 toner
JP2022086874A (en) 2020-11-30 2022-06-09 キヤノン株式会社 toner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120968A (en) * 1993-10-27 1995-05-12 Matsushita Electric Ind Co Ltd Magnetic toner and image forming method
JP2002091142A (en) * 2000-09-13 2002-03-27 Canon Inc Developing unit, image forming method and single- component type developer for forming image
JP2002278146A (en) * 2001-03-21 2002-09-27 Canon Inc Magnetic toner
JP2004163476A (en) * 2002-11-08 2004-06-10 Canon Inc Developing device, process cartridge, and image forming apparatus
JP2004191546A (en) * 2002-12-10 2004-07-08 Ricoh Co Ltd Intermediate transfer member and image forming apparatus
JP2004212540A (en) * 2002-12-27 2004-07-29 Ricoh Co Ltd Electrophotographic toner, its image forming apparatus and image forming method
JP2004301867A (en) * 2003-03-28 2004-10-28 Canon Inc Image forming method
JP2005331821A (en) * 2004-05-21 2005-12-02 Canon Inc Magnetic toner
JP2006323326A (en) * 2005-04-22 2006-11-30 Canon Inc Magnetic toner
JP2007079117A (en) * 2005-09-14 2007-03-29 Canon Inc Magnetic toner, image forming method, and process cartridge
JP2007079116A (en) * 2005-09-14 2007-03-29 Canon Inc Toner, image forming method and process cartridge
JP2007108675A (en) * 2005-09-14 2007-04-26 Canon Inc Image forming method and process cartridge
JP2007139846A (en) * 2005-11-15 2007-06-07 Oki Data Corp Development device and image forming apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581257B1 (en) * 1992-07-29 1998-11-18 Matsushita Electric Industrial Co., Ltd. Electrophotographic magnetic toner for development an image and a method of producing the same
JP3155835B2 (en) 1992-09-30 2001-04-16 キヤノン株式会社 Image forming method and apparatus unit
JPH0980913A (en) * 1995-09-11 1997-03-28 Fuji Xerox Co Ltd Image forming method
DE69832221T2 (en) * 1997-02-20 2006-07-13 Sharp K.K. Production method of an electrophotographic toner
US5978634A (en) * 1997-08-21 1999-11-02 Konica Corporation Development method, development device, and image forming apparatus therewith
JP4061756B2 (en) * 1998-12-17 2008-03-19 松下電器産業株式会社 toner
JP2001356516A (en) * 2000-06-16 2001-12-26 Minolta Co Ltd Toner for one component development
JP3815200B2 (en) * 2000-10-06 2006-08-30 富士ゼロックス株式会社 Image forming method
JP2002278129A (en) * 2001-03-21 2002-09-27 Canon Inc Toner and method for image formation, and process cartridge
JP2003043738A (en) 2001-07-30 2003-02-14 Canon Inc Magnetic toner
JP4018520B2 (en) * 2002-12-04 2007-12-05 キヤノン株式会社 Toner production method
US7323279B2 (en) * 2003-07-16 2008-01-29 Canon Kabushiki Kaisha One-component magnetic toner for developing an electrostatic charge image, process cartridge, and method for recycling the process cartridge
JP2005049861A (en) * 2003-07-16 2005-02-24 Canon Inc One component magnetic toner for electrostatic charge development, process cartridge and reproduction method for process cartridge
EP1515194B1 (en) * 2003-09-12 2014-11-12 Canon Kabushiki Kaisha Magnetic toner
JP4164426B2 (en) * 2003-09-12 2008-10-15 キヤノン株式会社 Magnetic toner
JP4324120B2 (en) * 2005-02-18 2009-09-02 キヤノン株式会社 Magnetic toner
US20070065742A1 (en) * 2005-09-21 2007-03-22 Fuji Xerox Co., Ltd. Single-component magnetic developer, developing method and image-forming method
JP2007152221A (en) 2005-12-05 2007-06-21 Andes Denki Kk Photocatalytic material and method for preparing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120968A (en) * 1993-10-27 1995-05-12 Matsushita Electric Ind Co Ltd Magnetic toner and image forming method
JP2002091142A (en) * 2000-09-13 2002-03-27 Canon Inc Developing unit, image forming method and single- component type developer for forming image
JP2002278146A (en) * 2001-03-21 2002-09-27 Canon Inc Magnetic toner
JP2004163476A (en) * 2002-11-08 2004-06-10 Canon Inc Developing device, process cartridge, and image forming apparatus
JP2004191546A (en) * 2002-12-10 2004-07-08 Ricoh Co Ltd Intermediate transfer member and image forming apparatus
JP2004212540A (en) * 2002-12-27 2004-07-29 Ricoh Co Ltd Electrophotographic toner, its image forming apparatus and image forming method
JP2004301867A (en) * 2003-03-28 2004-10-28 Canon Inc Image forming method
JP2005331821A (en) * 2004-05-21 2005-12-02 Canon Inc Magnetic toner
JP2006323326A (en) * 2005-04-22 2006-11-30 Canon Inc Magnetic toner
JP2007079117A (en) * 2005-09-14 2007-03-29 Canon Inc Magnetic toner, image forming method, and process cartridge
JP2007079116A (en) * 2005-09-14 2007-03-29 Canon Inc Toner, image forming method and process cartridge
JP2007108675A (en) * 2005-09-14 2007-04-26 Canon Inc Image forming method and process cartridge
JP2007139846A (en) * 2005-11-15 2007-06-07 Oki Data Corp Development device and image forming apparatus

Also Published As

Publication number Publication date
KR20090096548A (en) 2009-09-10
US8841054B2 (en) 2014-09-23
KR101238502B1 (en) 2013-03-04
EP2071406A4 (en) 2012-05-16
US20090047043A1 (en) 2009-02-19
JPWO2008150034A1 (en) 2010-08-26
EP2071406B1 (en) 2013-04-03
CN101589345A (en) 2009-11-25
CN101589345B (en) 2012-07-18
EP2071406A1 (en) 2009-06-17
WO2008150034A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4771558B2 (en) Image forming method, magnetic toner and process unit
JP5284049B2 (en) Magnetic toner
JP4510927B2 (en) Magnetic toner
US7678524B2 (en) Magnetic toner
JP2008015248A (en) Magnetic toner
JP5230296B2 (en) Image forming method and process cartridge
JP3176282B2 (en) Electrostatic image developing toner, image forming method, developing device, and process cartridge
JP4724600B2 (en) Toner and toner production method
JP4401904B2 (en) Toner for electrostatic charge development and image forming method
JP4086487B2 (en) Magnetic toner and image forming apparatus
JP2003122047A (en) Toner kit and image forming method
JP2008304723A (en) Toner
JP2001265058A (en) Method for manufacturing toner particle, magnetic toner and image forming method
JP2002072546A (en) Magnetic toner
JP4191912B2 (en) Two-component developer, container filled with two-component developer, and image forming apparatus
JP5312004B2 (en) toner
JP2008304728A (en) Magnetic toner and image forming method
JP2002072540A (en) Magnetic toner and method for manufacturing the same
JP2007079117A (en) Magnetic toner, image forming method, and process cartridge
JP3880346B2 (en) toner
JPH10301326A (en) Negative charge type magnetic developer and image forming method using same
JP2002323790A (en) Toner and process cartridge
JP2012008397A (en) Image forming apparatus, image forming method and process cartridge
JP2002278130A (en) Toner for image forming, image forming method and process cartridge
JP2002278129A (en) Toner and method for image formation, and process cartridge

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101014

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150