Nothing Special   »   [go: up one dir, main page]

JP4753313B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP4753313B2
JP4753313B2 JP2006351688A JP2006351688A JP4753313B2 JP 4753313 B2 JP4753313 B2 JP 4753313B2 JP 2006351688 A JP2006351688 A JP 2006351688A JP 2006351688 A JP2006351688 A JP 2006351688A JP 4753313 B2 JP4753313 B2 JP 4753313B2
Authority
JP
Japan
Prior art keywords
substrate
stage
levitation
unit
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006351688A
Other languages
Japanese (ja)
Other versions
JP2008166359A (en
Inventor
寿史 稲益
義治 太田
文彦 池田
剛 山崎
慶崇 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006351688A priority Critical patent/JP4753313B2/en
Priority to TW096144261A priority patent/TWI356467B/en
Priority to CN200710160567A priority patent/CN100594584C/en
Priority to KR1020070137143A priority patent/KR20080061298A/en
Publication of JP2008166359A publication Critical patent/JP2008166359A/en
Application granted granted Critical
Publication of JP4753313B2 publication Critical patent/JP4753313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、矩形の被処理基板をステージ上で浮かせて水平方向に搬送しながら基板上に所定の処理を施す浮上搬送式の基板処理装置に係り、特に搬送機構の簡易化・低コスト化を図る基板処理装置に関する。   The present invention relates to a floating transport type substrate processing apparatus that performs a predetermined process on a substrate while a rectangular substrate to be processed is floated on a stage and transported in a horizontal direction, and in particular, simplification and cost reduction of a transport mechanism. The present invention relates to a substrate processing apparatus.

近年、フラットパネルディスプレイ(FPD)製造のためのフォトリソグラフィーの技術分野においては、被処理基板(ガラス基板等)上にレジストを塗布するレジスト塗布装置に浮上搬送式が採り入れられている。   In recent years, in the technical field of photolithography for manufacturing a flat panel display (FPD), a levitation conveyance type is adopted in a resist coating apparatus that coats a resist on a substrate to be processed (such as a glass substrate).

浮上搬送式を採用する従来のレジスト塗布装置は、たとえば特許文献1に開示されるように、矩形の被処理基板(たとえばガラス基板)を気体の圧力で浮かせる浮上式のステージによって浮上搬送路を形成するとともに、ステージ上で浮いている基板を平流しで移動させるための搬送機構として、ステージの左右両側に配置された一対のガイドレールと、それらのガイドレールに沿って平行に直進移動する左右一対のスライダと、基板の左右両辺部に一定間隔で着脱可能に吸着する左右一列のバキューム式吸着パッドと、それら左右一列のバキューム式吸着パッドを左右のスライダにそれぞれ連結し、かつ基板の浮上高さに追従して上下に変位する板ばね等の連結部材とを備える。
特開2005−244155
A conventional resist coating apparatus that employs a levitation conveyance type forms a levitation conveyance path by a levitation type stage that floats a rectangular substrate to be processed (for example, a glass substrate) with a gas pressure, as disclosed in Patent Document 1, for example. In addition, as a transport mechanism for moving the substrate floating on the stage in a flat flow, a pair of guide rails arranged on the left and right sides of the stage and a pair of left and right that move straight in parallel along these guide rails The left and right vacuum suction pads that are detachably attached to the left and right sides of the substrate at fixed intervals, and the left and right vacuum suction pads are connected to the left and right sliders, respectively, and the flying height of the substrate And a connecting member such as a leaf spring that moves up and down following the movement.
JP-A-2005-244155

従来の浮上搬送式基板処理装置は、搬送機構が上記のようにガイドレール、スライダ、バキューム式吸着パッド等を必要とするため大掛かりで装置コストが非常に高くついている。特に、フォトリソグラフィーにおいて、塗布工程、露光工程および現像工程の前後または合間に補助工程として熱処理を行うベーキング装置等には、簡易で低コストの浮上搬送機構が望まれている。   The conventional floating transfer substrate processing apparatus requires a guide rail, a slider, a vacuum suction pad, etc. as described above, and is large and expensive. In particular, in photolithography, a simple and low-cost floating transport mechanism is desired for a baking apparatus or the like that performs heat treatment as an auxiliary step before, during, or between the coating step, the exposure step, and the development step.

本発明は、上記のような従来技術の問題点に鑑みてなされたものであって、簡易・低コストの構成で浮上搬送式の基板処理を行うようにした基板処理装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a substrate processing apparatus configured to perform floating conveyance type substrate processing with a simple and low-cost configuration. And

上記の目的を達成するために、本発明の基板処理装置は、水平な所定の搬送方向に延びるステージ上で矩形の被処理基板を気体の圧力により浮かせて前記搬送方向に搬送しながら、前記ステージに沿って配置した処理部で前記基板に所定の液体、気体、光または熱を供給して所定の処理を施す浮上搬送式の基板処理装置であって、前記ステージ上で浮上する前記基板の後端の辺と接触するように板状の第1の浮上キャリアを前記ステージ上で前記基板と同じ浮上高さで浮上させ、前記基板を前記第1の浮上キャリアで後から押して前記基板の搬送を行う。
In order to achieve the above object, the substrate processing apparatus of the present invention is configured to float the rectangular target substrate by a gas pressure on a stage extending in a predetermined horizontal transfer direction and transfer the substrate in the transfer direction. A floating transport substrate processing apparatus for performing predetermined processing by supplying a predetermined liquid, gas, light or heat to the substrate at a processing unit disposed along the substrate, after the substrate floating on the stage A plate-like first floating carrier is floated on the stage at the same flying height as the substrate so as to come into contact with the edge of the end, and the substrate is pushed later by the first floating carrier to transport the substrate. Do.

上記の構成においては、浮上搬送の駆動力を第1の浮上キャリアに直接及ぼし、第1の浮上キャリアを介して間接的に基板に及ぼす。好ましい一態様によれば、第1の浮上キャリアの下面にくぼみ状または溝状の凹部を形成し、ステージの上面より搬送方向に向かって斜め上方に浮上用の気体を噴射させる。また、別の好適な一態様によれば、ステージ上で浮上する基板の前端の辺と接触するように板状の第2の浮上キャリアをステージ上で基板と同じ浮上高さで浮上させ、第2の浮上キャリアを設定位置で止めて基板の搬送を停止する。 In the above-described configuration, the driving force for the levitation conveyance is directly applied to the first levitation carrier, and is indirectly applied to the substrate via the first levitation carrier. According to a preferred aspect, a concave or groove-like recess is formed on the lower surface of the first levitation carrier, and the levitation gas is injected obliquely upward in the transport direction from the upper surface of the stage. According to another preferred embodiment, the plate-like second levitation carrier is levitated at the same levitating height as the substrate on the stage so as to come into contact with the side of the front end of the substrate levitating on the stage . The second floating carrier is stopped at the set position to stop the substrate transport.

本発明の基板処理装置によれば、上記のような構成および作用により、浮上搬送式の基板処理を簡易・低コストの構成で実現することができる。   According to the substrate processing apparatus of the present invention, levitation conveyance type substrate processing can be realized with a simple and low-cost configuration by the configuration and operation as described above.

以下、添付図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の基板処理装置を適用できる一構成例としての塗布現像処理システムを示す。この塗布現像処理システム10は、クリーンルーム内に設置され、たとえば矩形のガラス基板を被処理基板とし、LCD製造プロセスにおいてフォトリソグラフィー工程の中の洗浄、レジスト塗布、プリベーク、現像およびポストベーク等の一連の処理を行うものである。露光処理は、このシステムに隣接して設置される外部の露光装置12で行われる。   FIG. 1 shows a coating and developing treatment system as one configuration example to which the substrate processing apparatus of the present invention can be applied. This coating and developing processing system 10 is installed in a clean room. For example, a rectangular glass substrate is used as a substrate to be processed, and a series of processes such as cleaning, resist coating, pre-baking, developing, and post-baking in a photolithography process in an LCD manufacturing process. The processing is performed. The exposure process is performed by an external exposure apparatus 12 installed adjacent to this system.

この塗布現像処理システム10は、中心部に横長のプロセスステーション(P/S)16を配置し、その長手方向(X方向)両端部にカセットステーション(C/S)14とインタフェースステーション(I/F)18とを配置している。   In the coating and developing system 10, a horizontally long process station (P / S) 16 is disposed at the center, and a cassette station (C / S) 14 and an interface station (I / F) are disposed at both ends in the longitudinal direction (X direction). ) 18.

カセットステーション(C/S)14は、システム10のカセット搬入出ポートであり、基板Gを多段に積み重ねるようにして複数枚収容可能なカセットCを水平な一方向(Y方向)に4個まで並べて載置可能なカセットステージ20と、このステージ20上のカセットCに対して基板Gの出し入れを行う搬送機構22とを備えている。搬送機構22は、基板Gを1枚単位で保持できる搬送アーム22aを有し、X,Y,Z,θの4軸で動作可能であり、隣接するプロセスステーション(P/S)16側と基板Gの受け渡しを行えるようになっている。   The cassette station (C / S) 14 is a cassette loading / unloading port of the system 10, and arranges up to four cassettes C that can accommodate a plurality of substrates C in a horizontal direction (Y direction) by stacking substrates G in multiple stages. A cassette stage 20 that can be placed, and a transport mechanism 22 that takes in and out the substrate G to and from the cassette C on the stage 20 are provided. The transport mechanism 22 has a transport arm 22a that can hold the substrate G in units of one sheet, can be operated with four axes of X, Y, Z, and θ, and is adjacent to the adjacent process station (P / S) 16 side and the substrate. G can be delivered.

プロセスステーション(P/S)16は、水平なシステム長手方向(X方向)に延在する平行かつ逆向きの一対のラインA,Bに各処理部をプロセスフローまたは工程の順に配置している。   In the process station (P / S) 16, the processing units are arranged in the order of the process flow or the process on a pair of parallel and opposite lines A and B extending in the horizontal system longitudinal direction (X direction).

より詳細には、カセットステーション(C/S)14側からインタフェースステーション(I/F)18側へ向う上流部のプロセスラインAには、搬入ユニット(IN PASS)24、洗浄プロセス部26、第1の熱的処理部28、塗布プロセス部30および第2の熱的処理部32が第1の平流し搬送路34に沿って上流側からこの順序で一列に配置されている。   More specifically, the upstream process line A from the cassette station (C / S) 14 side to the interface station (I / F) 18 side includes a carry-in unit (IN PASS) 24, a cleaning process unit 26, a first The thermal processing section 28, the coating process section 30, and the second thermal processing section 32 are arranged in a line in this order from the upstream side along the first flat flow path 34.

より詳細には、搬入ユニット(IN PASS)24はカセットステーション(C/S)14の搬送機構22から未処理の基板Gを受け取り、所定のタクトで第1の平流し搬送路34に投入するように構成されている。洗浄プロセス部26は、第1の平流し搬送路34に沿って上流側から順にエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38を設けている。第1の熱的処理部28は、上流側から順にアドヒージョンユニット(AD)40および冷却ユニット(COL)42を設けている。塗布プロセス部30は、上流側から順にレジスト塗布ユニット(COT)44および減圧乾燥ユニット(VD)46を設けている。第2の熱的処理部32は、上流側から順にプリベークユニット(PRE−BAKE)48および冷却ユニット(COL)50を設けている。第2の熱的処理部32の下流側隣に位置する第1の平流し搬送路34の終点にはパスユニット(PASS)52が設けられている。第1の平流し搬送路34上を平流しで搬送されてきた基板Gは、この終点のパスユニット(PASS)52からインタフェースステーション(I/F)18へ渡されるようになっている。   More specifically, the carry-in unit (IN PASS) 24 receives the unprocessed substrate G from the transfer mechanism 22 of the cassette station (C / S) 14 and inputs it into the first flat flow transfer path 34 at a predetermined tact. It is configured. The cleaning process section 26 is provided with an excimer UV irradiation unit (E-UV) 36 and a scrubber cleaning unit (SCR) 38 in order from the upstream side along the first flat flow path 34. The first thermal processing unit 28 includes an adhesion unit (AD) 40 and a cooling unit (COL) 42 in order from the upstream side. The coating process unit 30 is provided with a resist coating unit (COT) 44 and a vacuum drying unit (VD) 46 in order from the upstream side. The second thermal processing unit 32 includes a pre-bake unit (PRE-BAKE) 48 and a cooling unit (COL) 50 in order from the upstream side. A pass unit (PASS) 52 is provided at the end point of the first flat flow conveyance path 34 located adjacent to the downstream side of the second thermal processing unit 32. The substrate G that has been transported in a flat flow on the first flat flow transport path 34 is transferred from the pass unit (PASS) 52 at the end point to the interface station (I / F) 18.

一方、インタフェースステーション(I/F)18側からカセットステーション(C/S)14側へ向う下流部のプロセスラインBには、現像ユニット(DEV)54、ポストベークユニット(POST−BAKE)56、冷却ユニット(COL)58、検査ユニット(AP)60および搬出ユニット(OUT−PASS)62が第2の平流し搬送路64に沿って上流側からこの順序で一列に配置されている。ここで、ポストベークユニット(POST−BAKE)56および冷却ユニット(COL)58は第3の熱的処理部66を構成する。搬出ユニット(OUT PASS)62は、第2の平流し搬送路64から処理済の基板Gを1枚ずつ受け取って、カセットステーション(C/S)14の搬送機構22に渡すように構成されている。   On the other hand, in the downstream process line B from the interface station (I / F) 18 side to the cassette station (C / S) 14 side, a development unit (DEV) 54, a post-bake unit (POST-BAKE) 56, a cooling unit are provided. A unit (COL) 58, an inspection unit (AP) 60 and a carry-out unit (OUT-PASS) 62 are arranged in a line in this order from the upstream side along the second flat flow path 64. Here, the post-bake unit (POST-BAKE) 56 and the cooling unit (COL) 58 constitute a third thermal processing unit 66. The carry-out unit (OUT PASS) 62 is configured to receive the processed substrates G one by one from the second flat flow transfer path 64 and pass them to the transfer mechanism 22 of the cassette station (C / S) 14. .

両プロセスラインA,Bの間には補助搬送空間68が設けられており、基板Gを1枚単位で水平に載置可能なシャトル70が図示しない駆動機構によってプロセスライン方向(X方向)で双方向に移動できるようになっている。   An auxiliary transfer space 68 is provided between the process lines A and B, and a shuttle 70 capable of placing the substrate G horizontally in units of one sheet is both in the process line direction (X direction) by a drive mechanism (not shown). You can move in the direction.

インタフェースステーション(I/F)18は、上記第1および第2の平流し搬送路34,64や隣接する露光装置12と基板Gのやりとりを行うための搬送装置72を有し、この搬送装置72の周囲にロータリステージ(R/S)74および周辺装置76を配置している。ロータリステージ(R/S)74は、基板Gを水平面内で回転させるステージであり、露光装置12との受け渡しに際して長方形の基板Gの向きを変換するために用いられる。周辺装置76は、たとえばタイトラー(TITLER)や周辺露光装置(EE)等を第2の平流し搬送路64に接続している。   The interface station (I / F) 18 includes a transfer device 72 for exchanging the substrate G with the first and second flat flow transfer paths 34 and 64 and the adjacent exposure device 12. A rotary stage (R / S) 74 and a peripheral device 76 are arranged around the periphery. The rotary stage (R / S) 74 is a stage that rotates the substrate G in a horizontal plane, and is used to change the orientation of the rectangular substrate G when it is transferred to the exposure apparatus 12. The peripheral device 76 connects, for example, a titler (TITLER), a peripheral exposure device (EE), and the like to the second flat flow path 64.

図2に、この塗布現像処理システムにおける1枚の基板Gに対する全工程の処理手順を示す。先ず、カセットステーション(C/S)14において、搬送機構22が、ステージ20上のいずれか1つのカセットCから基板Gを1枚取り出し、その取り出した基板Gをプロセスステーション(P/S)16のプロセスラインA側の搬入ユニット(IN PASS)24に搬入する(ステップS1)。搬入ユニット(IN PASS)24から基板Gは第1の平流し搬送路34上に移載または投入される。   FIG. 2 shows a processing procedure of all steps for one substrate G in this coating and developing processing system. First, in the cassette station (C / S) 14, the transport mechanism 22 takes out one substrate G from any one of the cassettes C on the stage 20, and removes the taken substrate G in the process station (P / S) 16. It is carried into the carry-in unit (IN PASS) 24 on the process line A side (step S1). The substrate G is transferred or loaded onto the first flat flow path 34 from the carry-in unit (IN PASS) 24.

第1の平流し搬送路34に投入された基板Gは、最初に洗浄プロセス部26においてエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38により紫外線洗浄処理およびスクラビング洗浄処理を順次施される(ステップS2,S3)。スクラバ洗浄ユニット(SCR)38は、平流し搬送路34上を水平に移動する基板Gに対して、ブラッシング洗浄やブロー洗浄を施すことにより基板表面から粒子状の汚れを除去し、その後にリンス処理を施し、最後にエアーナイフ等を用いて基板Gを乾燥させる。スクラバ洗浄ユニット(SCR)38における一連の洗浄処理を終えると、基板Gはそのまま第1の平流し搬送路34を下って第1の熱的処理部28を通過する。   The substrate G put into the first flat transport path 34 is first subjected to an ultraviolet cleaning process and a scrubbing cleaning process by the excimer UV irradiation unit (E-UV) 36 and the scrubber cleaning unit (SCR) 38 in the cleaning process unit 26. Sequentially applied (steps S2, S3). The scrubber cleaning unit (SCR) 38 removes particulate dirt from the substrate surface by performing brushing cleaning and blow cleaning on the substrate G that moves horizontally on the flat flow path 34, and then rinses. Finally, the substrate G is dried using an air knife or the like. When a series of cleaning processes in the scrubber cleaning unit (SCR) 38 is completed, the substrate G passes through the first thermal processing section 28 as it is down the first flat flow path 34.

第1の熱的処理部28において、基板Gは、最初にアドヒージョンユニット(AD)40で蒸気状のHMDSを用いるアドヒージョン処理を施され、被処理面を疎水化される(ステップS4)。このアドヒージョン処理の終了後に、基板Gは冷却ユニット(COL)42で所定の基板温度まで冷却される(ステップS5)。この後も、基板Gは第1の平流し搬送路34を下って塗布プロセス部30へ搬入される。   In the first thermal processing unit 28, the substrate G is first subjected to an adhesion process using vapor HMDS in the adhesion unit (AD) 40, and the surface to be processed is hydrophobized (step S4). After the completion of this adhesion process, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 42 (step S5). Thereafter, the substrate G is carried into the coating process unit 30 along the first flat flow path 34.

塗布プロセス部30において、基板Gは最初にレジスト塗布ユニット(COT)44でスリットノズルを用いるスピンレス法により平流しで基板上面(被処理面)にレジスト液を塗布され、直後に下流側隣の減圧乾燥ユニット(VD)46で減圧による常温の乾燥処理を受ける(ステップS6)。   In the coating process unit 30, the substrate G is first applied in a resist coating unit (COT) 44 by a spinless method using a slit nozzle, and a resist solution is applied to the upper surface of the substrate (surface to be processed). The drying unit (VD) 46 is subjected to a drying process at room temperature by reduced pressure (step S6).

塗布プロセス部30を出た基板Gは、第1の平流し搬送路34を下って第2の熱的処理部32を通過する。第2の熱的処理部32において、基板Gは、最初にプリベークユニット(PRE−BAKE)48でレジスト塗布後の熱処理または露光前の熱処理としてプリベーキングを受ける(ステップS7)。このプリベーキングによって、基板G上のレジスト膜中に残留していた溶剤が蒸発して除去され、基板に対するレジスト膜の密着性が強化される。次に、基板Gは、冷却ユニット(COL)50で所定の基板温度まで冷却される(ステップS8)。しかる後、基板Gは、第1の平流し搬送路34の終点のパスユニット(PASS)からインタフェースステーション(I/F)18の搬送装置72に引き取られる。   The substrate G that has left the coating process unit 30 passes through the second thermal processing unit 32 through the first flat flow path 34. In the second thermal processing section 32, the substrate G is first pre-baked by the pre-bake unit (PRE-BAKE) 48 as a heat treatment after resist coating or a heat treatment before exposure (step S7). By this pre-baking, the solvent remaining in the resist film on the substrate G is evaporated and removed, and the adhesion of the resist film to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 50 (step S8). Thereafter, the substrate G is taken from the pass unit (PASS) at the end point of the first flat flow transfer path 34 to the transfer device 72 of the interface station (I / F) 18.

インタフェースステーション(I/F)18において、基板Gは、ロータリステージ74でたとえば90度の方向変換を受けてから周辺装置76の周辺露光装置(EE)に搬入され、そこで基板Gの周辺部に付着するレジストを現像時に除去するための露光を受けた後に、隣の露光装置12へ送られる(ステップS9)。
In the interface station (I / F) 18, the substrate G is subjected to, for example, a 90-degree direction change by the rotary stage 74 and then carried into the peripheral exposure device (EE) of the peripheral device 76 , where it adheres to the peripheral portion of the substrate G. After receiving the exposure for removing the resist to be developed, the resist is sent to the adjacent exposure apparatus 12 (step S9).

露光装置12では基板G上のレジストに所定の回路パターンが露光される。そして、パターン露光を終えた基板Gは、露光装置12からインタフェースステーション(I/F)18に戻されると(ステップS9)、先ず周辺装置76のタイトラー(TITLER)に搬入され、そこで基板上の所定の部位に所定の情報が記される(ステップS10)。しかる後、基板Gは、搬送装置72よりプロセスステーション(P/S)16のプロセスラインB側に敷設されている第2の平流し搬送路64の現像ユニット(DEV)54の始点に搬入される。
In the exposure device 12, a predetermined circuit pattern is exposed to the resist on the substrate G. Then, when the substrate G that has undergone pattern exposure is returned from the exposure apparatus 12 to the interface station (I / F) 18 (step S9), it is first carried into a titler (TITLER) of the peripheral device 76 , where a predetermined value on the substrate is obtained. Predetermined information is written in the part (step S10). Thereafter, the substrate G is carried from the transfer device 72 to the starting point of the developing unit (DEV) 54 of the second flat flow transfer path 64 laid on the process line B side of the process station (P / S) 16. .

こうして、基板Gは、今度は第2の平流し搬送路64上をプロセスラインBの下流側に向けて搬送される。最初の現像ユニット(DEV)54において、基板Gは、平流しで搬送される間に現像、リンス、乾燥の一連の現像処理を施される(ステップS11)。   In this way, the substrate G is transferred on the second flat flow transfer path 64 toward the downstream side of the process line B. In the first development unit (DEV) 54, the substrate G is subjected to a series of development processes of development, rinsing, and drying while being conveyed in a flat flow (step S11).

現像ユニット(DEV)54で一連の現像処理を終えた基板Gは、そのまま第2の平流し搬送路64に乗せられたまま第3の熱的処理部66および検査ユニット(AP)60を順次通過する。第3の熱的処理部66において、基板Gは、最初にポストベークユニット(POST−BAKE)56で現像処理後の熱処理としてポストベーキングを受ける(ステップS12)。このポストベーキングによって、基板G上のレジスト膜に残留していた現像液や洗浄液が蒸発して除去され、基板に対するレジストパターンの密着性が強化される。次に、基板Gは、冷却ユニット(COL)58で所定の基板温度に冷却される(ステップS13)。検査ユニット(AP)60では、基板G上のレジストパターンについて非接触の線幅検査や膜質・膜厚検査等が行われる(ステップS14)。   The substrate G that has undergone a series of development processes in the development unit (DEV) 54 is sequentially passed through the third thermal processing unit 66 and the inspection unit (AP) 60 while being put on the second flat flow path 64 as it is. To do. In the third thermal processing section 66, the substrate G is first subjected to post-baking as post-development heat treatment in the post-bake unit (POST-BAKE) 56 (step S12). By this post-baking, the developing solution and the cleaning solution remaining in the resist film on the substrate G are removed by evaporation, and the adhesion of the resist pattern to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 58 (step S13). In the inspection unit (AP) 60, non-contact line width inspection, film quality / film thickness inspection, and the like are performed on the resist pattern on the substrate G (step S14).

搬出ユニット(OUT PASS)62は、第2の平流し搬送路64から全工程の処理を終えてきた基板Gを受け取って、カセットステーション(C/S)14の搬送機構22へ渡す。カセットステーション(C/S)14側では、搬送機構22が、搬出ユニット(OUT PASS)62から受け取った処理済の基板Gをいずれか1つ(通常は元)のカセットCに収容する(ステップS1)。   The carry-out unit (OUT PASS) 62 receives the substrate G that has been processed in all steps from the second flat-carrying conveyance path 64 and transfers it to the conveyance mechanism 22 of the cassette station (C / S) 14. On the cassette station (C / S) 14 side, the transfer mechanism 22 stores the processed substrate G received from the carry-out unit (OUT PASS) 62 in any one (usually the original) cassette C (step S1). ).

この塗布現像処理システム10においては、第1および第2の平流し搬送路34,64の一部または全部に浮上式の搬送路を適用することができる。   In the coating and developing treatment system 10, a floating transport path can be applied to part or all of the first and second flat flow transport paths 34 and 64.

図3に、第1の平流し搬送路34において第1の熱的処理部28のアドヒージョンユニット(AD)40および冷却ユニット(COL)42を通る区間に浮上式搬送路を適用した構成例を示す。図示のように、基板Gを浮上ステージ80上で略水平に浮上させながら図示しない搬送機構によりステージ長手方向つまり搬送方向(X方向)に平流しで搬送する。   FIG. 3 shows a configuration example in which a floating conveyance path is applied to a section passing through the adhesion unit (AD) 40 and the cooling unit (COL) 42 of the first thermal processing unit 28 in the first flat flow conveyance path 34. Indicates. As shown in the figure, the substrate G is transported in a flat flow in the longitudinal direction of the stage, that is, in the transport direction (X direction) by a transport mechanism (not shown) while floating substantially horizontally on the floating stage 80.

アドヒージョンユニット(AD)40は、搬送上流側から下流側に向かってステージ80の上方に均熱放射板82、HMDSノズル84、ガス案内カバー86および排気用吸い込み口88を配置している。平流しの浮上搬送で基板Gがアドヒージョンユニット(AD)40を通過する際に、均熱放射板82は基板Gに上方から放射熱を浴びせて基板表面の水分を除去し、HMDSノズル84は基板表面にHMDSガスを吹き掛け、ガス案内カバー86は基板G上に滞留するHMDSガスを搬送下流側へ案内し、排気用吸い込み口88は上流側から流れてきたHMDSガスを周囲の空気と一緒に吸い込んで排気系へ送るようになっている。   In the adhesion unit (AD) 40, a soaking radiation plate 82, an HMDS nozzle 84, a gas guide cover 86, and an exhaust suction port 88 are disposed above the stage 80 from the upstream side to the downstream side. When the substrate G passes through the adhesion unit (AD) 40 in a floating flow, the heat equalizing radiation plate 82 radiates heat onto the substrate G from above to remove moisture on the substrate surface, and the HMDS nozzle 84. Sprays HMDS gas on the surface of the substrate, the gas guide cover 86 guides the HMDS gas staying on the substrate G to the downstream side of the conveyance, and the exhaust suction port 88 uses the HMDS gas flowing from the upstream side to the ambient air. They are sucked together and sent to the exhaust system.

冷却ユニット(COL)42は、搬送路に沿ってステージ80の上方に冷却ガスノズル90を1本または複数本多段に並べて配置しており、平流しの浮上搬送で直下を通る基板Gに各冷却ガスノズル90より所定温度の冷却ガス(たとえば空気)を吹き付けるようになっている。   The cooling unit (COL) 42 has one or a plurality of cooling gas nozzles 90 arranged in a multi-stage above the stage 80 along the conveyance path, and each cooling gas nozzle is placed on the substrate G that passes directly under the floating floating conveyance. A cooling gas (for example, air) having a predetermined temperature is sprayed from 90.

各ツールはステージ80の幅方向(Y方向)において基板Gの端から端までカバーするサイズを有しており、たとえばHMDSノズル84や冷却ガスノズル90はスリット状の吐出口を有する長尺形のノズルとして構成されている。   Each tool has a size that covers the substrate G from end to end in the width direction (Y direction) of the stage 80. For example, the HMDS nozzle 84 and the cooling gas nozzle 90 are long nozzles having slit-like discharge ports. It is configured as.

図4に、第1の平流し搬送路34において塗布プロセス部30のレジスト塗布ユニット(COT)44を通る区間に浮上式搬送路を適用した構成例を示す。やはり、浮上ステージ80上で基板Gを略水平に浮上させながら図示しない搬送機構によりステージ長手方向つまり搬送方向(X方向)に平流しで搬送する。ステージ80の上方には搬送方向の所定位置に長尺形のレジストノズル92を配置しており、平流しの浮上搬送で直下を通る基板Gに向けてレジストノズル92がスリット状の吐出口より液状のレジストRを帯状に吐出することにより、基板G上に基板前端から後端に向って絨毯が敷かれるようにしてレジストRの液膜が一面に形成されるようになっている。   FIG. 4 shows a configuration example in which a floating conveyance path is applied to a section passing through the resist coating unit (COT) 44 of the coating process unit 30 in the first flat flow conveyance path 34. Again, while the substrate G is levitated substantially horizontally on the levitation stage 80, the substrate G is conveyed in a flat flow in the longitudinal direction of the stage, that is, in the conveying direction (X direction) by a conveying mechanism (not shown). Above the stage 80, a long resist nozzle 92 is disposed at a predetermined position in the transport direction, and the resist nozzle 92 is liquidized from the slit-shaped discharge port toward the substrate G passing directly under the floating flow transport in a flat flow. By discharging the resist R in a strip shape, a liquid film of the resist R is formed on one surface so that a carpet is laid on the substrate G from the front end to the rear end of the substrate.

図5に、第1の平流し搬送路34において第2の熱的処理部32のプリベークユニット(PRE−BAKE)48および冷却ユニット(COL)50を通る区間に浮上式搬送路を適用した構成例を示す。やはり、浮上ステージ80上で基板Gを略水平に浮上させながら図示しない搬送機構によりステージ長手方向つまり搬送方向(X方向)に平流しで搬送する。プリベークユニット(PRE−BAKE)48は、ステージ80の上方でヒータたとえば均熱放射板94を搬送方向に複数枚多段に並べて配置しており、平流しの浮上搬送で直下を通る基板Gに各均熱放射板94より放射熱を浴びせて基板G上のレジストから残存溶媒を蒸発させる。図示省略するが、ステージ80の上方で溶媒蒸気を吸い込む排気用の吸い込み口または多孔板を設けてもよい。冷却ユニット(COL)50は、ステージ80の上方で冷却ガスノズル96を搬送方向に1本または複数本多段に並べて配置しており、平流しの浮上搬送で直下を通る基板Gに各冷却ガスノズル96より一定温度の冷却ガス(たとえば空気)を吹き付けるようになっている。   FIG. 5 shows a configuration example in which a floating conveyance path is applied to a section passing through a pre-bake unit (PRE-BAKE) 48 and a cooling unit (COL) 50 of the second thermal processing unit 32 in the first flat flow conveyance path 34. Indicates. Again, while the substrate G is levitated substantially horizontally on the levitation stage 80, the substrate G is conveyed in a flat flow in the longitudinal direction of the stage, that is, the conveying direction (X direction) by a conveying mechanism (not shown). The pre-bake unit (PRE-BAKE) 48 has a plurality of heaters, for example, heat equalizing radiation plates 94 arranged in a plurality of stages in the transport direction above the stage 80, and is arranged on each substrate G that passes directly under the floating flow transport in a flat flow. The residual solvent is evaporated from the resist on the substrate G by receiving radiant heat from the heat radiation plate 94. Although not shown, an exhaust suction port or a perforated plate for sucking solvent vapor may be provided above the stage 80. In the cooling unit (COL) 50, one or a plurality of cooling gas nozzles 96 are arranged in the transport direction above the stage 80, and the cooling gas nozzles 96 are arranged on the substrate G passing directly under the floating flow transport in the transport direction. A cooling gas (for example, air) having a constant temperature is blown.

第2の平流し搬送路64において第3の熱的処理部66のポストベークユニット(POST−BAKE)56および冷却ユニット(COL)58を通る区間にも図5と同様の浮上式搬送路を適用することができる。また、エキシマUV照射ユニット(E−UV)36を通る区間等にも同様の浮上式搬送路を適用することができる。   The same floating transport path as that in FIG. 5 is applied to the section passing through the post bake unit (POST-BAKE) 56 and the cooling unit (COL) 58 of the third thermal processing section 66 in the second flat flow transport path 64. can do. Further, a similar floating conveyance path can be applied to a section passing through the excimer UV irradiation unit (E-UV) 36 and the like.

図6に、浮上ステージ80の要部の構成例を示す。ステージ80の上面には、圧縮空気Qを噴出する(これによって基板Gに浮上力を及ぼす)多数の噴出口100を所定の配列パターンで(たとえばマトリクス状に)穿孔している。各噴出口100はステージ80内の圧縮空気供給路(またはバッファ室)102に連通しており、圧縮空気供給路102は外部配管(図示せず)を介してコンプレッサ等の圧縮空気供給源(図示せず)に通じている。   FIG. 6 shows a configuration example of a main part of the levitation stage 80. On the upper surface of the stage 80, a large number of outlets 100 for jetting compressed air Q (and thereby exerting a floating force on the substrate G) are perforated in a predetermined arrangement pattern (for example, in a matrix). Each jet outlet 100 communicates with a compressed air supply path (or buffer chamber) 102 in the stage 80, and the compressed air supply path 102 is supplied with a compressed air supply source such as a compressor (not shown) via an external pipe (not shown). (Not shown).

図7に示す構成は、浮上ステージ80の上面に噴出口100と混在させて負圧で空気を吸い込む(これによって基板Gに下向きの吸引力を及ぼす)吸引口104を設けている。各吸引口104は、ステージ内のバキューム通路(またはバッファ室)106に連通しており、バキューム通路106は外部配管(図示せず)を介して真空ポンプ等のバキューム源(図示せず)に通じている。このように、直上を通過する基板Gに対して噴出口100から圧縮空気による垂直上向きの力を加えると同時に吸引口104より負圧吸引力による垂直下向きの力を加えて、相対抗する双方向の力のバランスを制御することで浮上量hを設定値付近に安定に維持することができる。   In the configuration shown in FIG. 7, a suction port 104 is provided on the upper surface of the levitation stage 80 so as to be mixed with the ejection port 100 and suck air with a negative pressure (which exerts a downward suction force on the substrate G). Each suction port 104 communicates with a vacuum passage (or buffer chamber) 106 in the stage, and the vacuum passage 106 communicates with a vacuum source (not shown) such as a vacuum pump via an external pipe (not shown). ing. In this way, a vertical upward force due to compressed air is applied from the jet outlet 100 to the substrate G passing immediately above, and at the same time, a vertical downward force due to a negative pressure suction force is applied from the suction port 104 to oppose each other. By controlling the force balance, the flying height h can be stably maintained near the set value.

以下、この実施形態において浮上搬送に用いる搬送機構について詳細に説明する。   Hereinafter, the transport mechanism used for the floating transport in this embodiment will be described in detail.

図8および図9に、第1の構成例による浮上搬送機構の構成を示す。図8に示すように、搬送方向(X方向)からみてステージ80の左右両サイドにそれぞれ複数個のローラまたはサイドローラ110が搬送方向に一定ピッチで一列に配置されている。各サイドローラ110は円板体または円柱体からなり、その中心部からY方向外側に水平に延びるローラ支持軸112がその中間部で軸受114により回転可能に支持されるとともに、その先端部でかさ歯車116を介して共通駆動シャフト118に接続されている。駆動シャフト118は、回転駆動源のモータ120に駆動プーリ122、タイミングベルト124および従動プーリ126を介して接続されている。
8 and 9 show the configuration of the levitation transport mechanism according to the first configuration example . As shown in FIG. 8, a plurality of rollers or side rollers 110 are arranged in a line at a constant pitch in the transport direction on both the left and right sides of the stage 80 as viewed from the transport direction (X direction). Each side roller 110 is formed of a disk or cylinder, and a roller support shaft 112 that extends horizontally from the center to the outside in the Y direction is rotatably supported by a bearing 114 at an intermediate portion thereof, and a bevel gear at the tip thereof. 116 is connected to a common drive shaft 118 through 116. The drive shaft 118 is connected to a rotation drive source motor 120 via a drive pulley 122, a timing belt 124 and a driven pulley 126.

各サイドローラ110は、Z方向においてローラ外周面の頂部がステージ80の上面よりも基板浮上量に相当する分だけ高くなるように配置されている。一方、ステージ80上で基板Gの左右両側端部がステージ80から少しはみ出るようにステージ80の幅サイズが設定されている。ステージ80上で基板Gは、真下(ステージ上面)の噴出口100から受ける気体の圧力で空中に浮きながらその左右両側端部がステージ両サイドのサイドローラ110の上に乗るようになっている。   Each side roller 110 is disposed such that the top of the roller outer peripheral surface is higher than the upper surface of the stage 80 by an amount corresponding to the substrate flying height in the Z direction. On the other hand, the width of the stage 80 is set so that the left and right ends of the substrate G slightly protrude from the stage 80 on the stage 80. The substrate G is placed on the side rollers 110 on both sides of the stage 80 while the substrate G floats in the air by the pressure of the gas received from the jet outlet 100 directly below (the upper surface of the stage).

ステージ80の上面において、各サイドローラ110に最も近接する箇所に搬送駆動用の吸引口130が1個または複数個設けられている。各吸引口130は、基板Gとサイドローラ110との間の摩擦を高めてすべりを防止するために、負圧吸引力により基板Gに垂直下向きの力を加えるものである。サイドローラ110のローラ外周面をゴムにする構成もすべり止めに有効である。なお、図示していないが、ステージ上面の噴出口100に基板浮上量安定化のための吸引口104(図7)を混在させる構成も可能である。   On the upper surface of the stage 80, one or a plurality of suction ports 130 for driving driving are provided at locations closest to the side rollers 110. Each suction port 130 applies a vertically downward force to the substrate G by a negative pressure suction force in order to increase the friction between the substrate G and the side roller 110 and prevent slipping. A configuration in which the outer peripheral surface of the side roller 110 is made of rubber is also effective for preventing slipping. Although not shown, a configuration in which a suction port 104 (FIG. 7) for stabilizing the floating amount of the substrate is mixed in the jet port 100 on the upper surface of the stage is also possible.

モータ120が作動して、その回転駆動力が伝動機構(122,124,126,120,118,116,112)を介して各サイドローラ110に伝えられ、各サイドローラ110は所定の向き(前進方向)に回転する。かかるサイドローラ110の回転運動により、ステージ80上で浮上する基板Gはサイドローラ110の上を転々と伝わりながら搬送方向(X方向)に平流しで移動する。   The motor 120 is actuated, and the rotational driving force is transmitted to each side roller 110 via the transmission mechanism (122, 124, 126, 120, 118, 116, 112), and each side roller 110 is in a predetermined direction (forward). Direction). Due to the rotational movement of the side roller 110, the substrate G that floats on the stage 80 moves in the transport direction (X direction) while flowing along the side roller 110.

後述する他の構成例にも当てはまることであるが、この構成例における浮上搬送路はコロ搬送路132,134と好適に連結することができる。各コロ搬送路132,134は、棒状のコロ136を搬送方向(X方向)に一定ピッチで並べて敷設され、コロ搬送面の高さをステージ80上の浮上搬送路の高さに合わせている。各コロ136は、図示省略するが、専用の駆動モータに伝動機構を介して接続されている。
The same applies to other configuration examples described later, but the levitation conveyance path in this configuration example can be suitably connected to the roller conveyance paths 132 and 134. Each roller conveyance path 132, 134 is laid with bar-shaped rollers 136 arranged at a constant pitch in the conveyance direction (X direction), and the height of the roller conveyance surface is adjusted to the height of the floating conveyance path on the stage 80. Although not shown, each roller 136 is connected to a dedicated drive motor via a transmission mechanism.

上流側のコロ搬送路132をコロ搬送で移動してきた基板Gは停止せずにそのままステージ80上の浮上搬送路に乗り移り、上記のようにステージ80上で空中に浮きながらサイドローラ110の上を転々と伝わりながら搬送方向(X方向)に移動する。そして、ステージ80の終端を過ぎると、下流側のコロ搬送路134に乗り移り、コロ搬送でその先へ搬送される。   The substrate G that has been moved in the roller transport path 132 on the upstream side by roller transport does not stop and moves directly to the floating transport path on the stage 80 and floats on the stage 80 while floating on the stage 80 as described above. It moves in the transport direction (X direction) while being transmitted. Then, after the end of the stage 80, the transfer is made to the downstream roller conveyance path 134, and is conveyed further by roller conveyance.

図10および図11に、第2の構成例による浮上搬送機構の構成を示す。この構成例では、ステージ80が搬送方向(X方向)と直交する方向で水平面Hに対して所定の角度θ(たとえば2〜15°)で傾けられ、これによってステージ80上で浮く基板Gもステージ80の上面と平行に同じ角度で傾く。そして、ステージ80の低い方のサイド(図示の例では右サイド)に、基板Gの低い辺LGがステージ寄りのローラ外周面138aに重力で加圧接触するように縦方向の回転軸140を有するサイドローラ138を所定のピッチで搬送方向(X方向)に一列に配置する。回転軸140はモータ等の回転駆動源(図示せず)に伝動機構(図示せず)を介して接続されている。サイドローラ138が回転運動することで、ステージ80と平行な傾斜姿勢で浮上する基板Gは下辺LGにてサイドローラ138を転々と渡りながら搬送方向(X方向)に平流しで移動する。
10 and 11 show the configuration of the levitation transport mechanism according to the second configuration example . In this configuration example , the stage 80 is tilted at a predetermined angle θ (for example, 2 to 15 °) with respect to the horizontal plane H in a direction orthogonal to the transport direction (X direction), whereby the substrate G that floats on the stage 80 is also a stage. Inclined at the same angle parallel to the top surface of 80. Then, the lower side of the stage 80 (the right side in the illustrated example), the longitudinal direction of the rotary shaft 140 as lower sides L G of the substrate G is pressure contact by gravity to the stage side of the roller outer peripheral surface 138a The side rollers 138 having them are arranged in a line at a predetermined pitch in the transport direction (X direction). The rotating shaft 140 is connected to a rotational drive source (not shown) such as a motor via a transmission mechanism (not shown). By the side roller 138 rotates motion, the substrate G to be floated in parallel inclined attitude and stage 80 moves at a flat flow in the conveying direction (X-direction) while crossing a place to place a side roller 138 at the lower side L G.

このように、この実施例の浮上搬送機構は、ステージ80の片側にのみサイドローラ138を配置する構成によって基板Gの浮上搬送を行うものであり、一層簡便な構成となっている。   As described above, the levitation conveyance mechanism of this embodiment performs the levitation conveyance of the substrate G by the configuration in which the side roller 138 is disposed only on one side of the stage 80, and has a simpler configuration.

図12および図13に、第3の構成例による浮上搬送機構の構成を示す。この構成例は、上記した第2の構成例においてサイドローラ138を無端ベルト142に置き換えたものである。より詳細には、ステージ80の低い方のサイド(右サイド)に、基板Gの低い辺LGがステージ寄りのベルト外周面142aに重力で加圧接触するように搬送方向(X方向)に延びる無端ベルト142を設ける。この無端ベルト142は、ステージ80の右サイドに配置された縦方向の回転軸144を有する駆動プーリ146と従動プーリ(図示せず)との間に架け渡されている。駆動プーリ146が回転して、両プーリ間で無端ベルト142が直進運動することにより、ステージ80と平行な傾斜姿勢で浮上する基板Gは下辺LGにて無端ベルト142に乗って搬送方向(X方向)に平流しで移動する。
12 and 13 show the configuration of the levitation transport mechanism according to the third configuration example . This configuration example is obtained by replacing the side roller 138 with the endless belt 142 in the above-described second configuration example . More particularly, the lower side of the stage 80 (right side), extending in the conveying direction (X direction) to lower edge L G of the substrate G is gravity pressure contact to the stage toward the outer peripheral surface of the belt 142a An endless belt 142 is provided. The endless belt 142 is stretched between a drive pulley 146 having a vertical rotation shaft 144 disposed on the right side of the stage 80 and a driven pulley (not shown). The drive pulley 146 is rotated by the endless belt 142 between the pulleys is linear movement, the substrate G is conveyed direction riding endless belt 142 at the lower side L G which floats parallel inclined attitude the stage 80 (X Direction).

図14〜図16に、本発明の一実施例による浮上搬送機構の構成を示す。この実施例は、図14および図16に示すように、ステージ80上で基板Gの後に板状の浮上キャリア148を基板Gと略同じ浮上高さで浮上させ、浮上キャリア148が基板Gを後から押して一体に移動するものである。浮上キャリア148は、基板Gと同一または略同一の比重を有する材質が好ましく、その前端の辺が基板Gの後端の辺にぴったり合わさるような矩形の板体で構成されてよい。
14 to 16 show the configuration of the levitation transport mechanism according to one embodiment of the present invention . In this embodiment, as shown in FIGS. 14 and 16, a plate-like levitating carrier 148 is levitated on the stage 80 after the substrate G at the same levitating height as the substrate G, and the levitating carrier 148 moves the substrate G behind the substrate G. To move together. The levitation carrier 148 is preferably made of a material having the same or substantially the same specific gravity as the substrate G, and may be formed of a rectangular plate whose front end is closely aligned with the rear end of the substrate G.

この実施例では、浮上キャリア148に搬送推進力を付与するために、浮上キャリア148の裏面(下面)にたとえば図15に示すようなマトリクス状のパターンで多数のディンプル(くぼみ)150を形成している。そして、ステージ80上面には各噴出口100を搬送方向(X方向)に向かって斜め上方を向くように形成する。これにより、ステージ80上面の噴出口100より同方向に噴出される浮上用の高圧空気Qは、浮上キャリア148および基板Gのそれぞれの下面に均一な流量で当たるものの、浮上キャリア148下面のディンプル150に対してはその前部内壁に他よりも小さな照射角(法線となす角)で当たるため、浮上キャリア148には基板Gよりも大きな推進力が発生して、浮上キャリア148は基板Gを押しながら搬送方向(X方向)に移動する。   In this embodiment, in order to apply a transport driving force to the floating carrier 148, a large number of dimples 150 are formed on the back surface (lower surface) of the floating carrier 148 in a matrix pattern as shown in FIG. Yes. And each jet nozzle 100 is formed in the upper surface of the stage 80 so that it may face diagonally upward toward the conveyance direction (X direction). As a result, the high-pressure air Q for levitation jetted in the same direction from the jet outlet 100 on the upper surface of the stage 80 hits the lower surfaces of the levitation carrier 148 and the substrate G at a uniform flow rate, but the dimple 150 on the lower surface of the levitation carrier 148. Is applied to the inner wall of the front portion with a smaller irradiation angle (a normal angle) than the others, and thus the levitation carrier 148 generates a larger driving force than the substrate G, and the levitation carrier 148 Moves in the transport direction (X direction) while pressing.

この実施例の一変形例として、浮上キャリア148のディンプル150を、図17(A),(B)および図18に示すような搬送方向(X方向)と直交する方向(Y方向)に延びる溝152に置き換えることも可能である。この場合、図17の(B)に示すように、溝152の両端部を搬送方向前方に曲げることにより、それら両端部分で内向き(ステージ中心向きの)の推進力が発生し、浮上キャリア148ひいては基板Gの横ずれを防止するのに効果的である。   As a modification of this embodiment, the dimple 150 of the levitation carrier 148 has a groove extending in the direction (Y direction) orthogonal to the transport direction (X direction) as shown in FIGS. 17 (A), (B) and FIG. It is also possible to replace with 152. In this case, as shown in FIG. 17B, by bending both ends of the groove 152 forward in the transport direction, inward propulsive force is generated at both ends, and the levitation carrier 148 is generated. As a result, it is effective to prevent the lateral displacement of the substrate G.

図19に示す変形例は、浮上キャリア148に搬送推進力を付与するために、上記のように裏面にディンプル150を形成する代わりに、たとえば浮上キャリア148の一端または両端に形成した孔(開口)にピン154を着脱可能に係合させ、図示しない直進搬送機構によりピン154を介して浮上キャリア148を搬送方向(X方向)に移動させるようにしたものである。また、基板Gの平流し搬送を任意に停止させるために、ステージ80上で基板Gの前に別の板状の浮上キャリア156を基板Gと略同じ浮上高さで浮上させ、浮上キャリア156を所望の位置で止めてこれをブロックにして基板Gの前進移動を止めるようにしてもよい。   In the modification shown in FIG. 19, in order to apply a transport driving force to the levitation carrier 148, holes (openings) formed at one or both ends of the levitation carrier 148, for example, instead of forming the dimple 150 on the back surface as described above. The pins 154 are detachably engaged with each other, and the floating carrier 148 is moved in the transport direction (X direction) via the pins 154 by a straight transport mechanism (not shown). In addition, in order to arbitrarily stop the flat flow of the substrate G, another plate-like levitation carrier 156 is levitated on the stage 80 in front of the substrate G at substantially the same height as the substrate G, and the levitation carrier 156 is The substrate G may be stopped at a desired position and used as a block to stop the forward movement of the substrate G.

図20および図21に、第4の構成例による浮上搬送機構の構成を示す。この構成例は、ステージ80の上面より上方に噴出する圧縮空気Qの流量分布を搬送方向(X方向)において可変制御することにより、ステージ80上で浮上している基板Gを重力の推進力で前進移動させるものである。すなわち、図20の(A)に示すように、先ずステージ80上で基板Gを比較的大きな浮上高さ(たとえば2〜3mm)で水平に浮上させる。次に、図20の(B)に示すように、基板Gの後端の位置から搬送方向(X方向)の前方に向かって各位置の浮上用圧縮空気Qの流量(圧力)を次第に小さくする。そうすると、基板Gはあたかも滑り台をすべり落ちるように重力で搬送方向(X方向)の前方に移動する。この場合、図21に示すように、ステージ80の幅方向(方向)で両端部における浮上用圧縮空気QEの流量(圧力)を内側の領域におけるそれよりも大きくすることで、基板Gの横ずれを効果的に防止または抑制することができる。
20 and 21 show the configuration of the levitation transport mechanism according to the fourth configuration example . In this configuration example , the flow rate distribution of the compressed air Q ejected upward from the upper surface of the stage 80 is variably controlled in the transport direction (X direction), so that the substrate G floating on the stage 80 is driven by gravity. It moves forward. That is, as shown in FIG. 20A, first, the substrate G is floated horizontally on the stage 80 with a relatively large flying height (for example, 2 to 3 mm). Next, as shown in FIG. 20B, the flow rate (pressure) of the compressed air Q for levitation at each position is gradually decreased from the position at the rear end of the substrate G toward the front in the transport direction (X direction). . Then, the substrate G is moved forward in the transport direction (X direction) by gravity so as to slide down the slide. In this case, as shown in FIG. 21, by increasing the flow rate (pressure) of the compressed air for floating Q E at both ends in the width direction ( Y direction) of the stage 80 than that in the inner region, A lateral shift can be effectively prevented or suppressed.

図22〜図24に、第5の構成例による浮上搬送機構の構成を示す。この構成例は、図22に示すように、搬送方向(X方向)においてステージ80を水平面Hに対して所定の角度α(たとえば5〜15°)傾いた前傾の姿勢に設置し、ステージ80上で基板Gをあたかも滑り台を滑り落ちるように重力で搬送方向(X方向)の前方に移動させるものである。この場合、ステージ80の傾斜面上では浮上用圧縮空気Qの流量を均一にしてよい。もっとも、第5の実施例と同様の目的で(横ずれを防ぐ目的で)、図23に示すように、ステージ80の幅方向(Y方向)においては両端部の浮上用圧縮空気QEの流量(圧力)を内側の領域におけるそれよりも大きくしてよい。
22 to 24 show the configuration of the levitation transport mechanism according to the fifth configuration example . In this configuration example , as shown in FIG. 22, the stage 80 is installed in a forward inclined posture inclined by a predetermined angle α (for example, 5 to 15 °) with respect to the horizontal plane H in the transport direction (X direction). The substrate G is moved forward in the transport direction (X direction) by gravity as if it slides down the slide. In this case, the flow rate of the compressed air Q for floating may be made uniform on the inclined surface of the stage 80. However, for the same purpose as that of the fifth embodiment (for the purpose of preventing lateral deviation), as shown in FIG. 23, the flow rate of the compressed air Q E for floating at both ends in the width direction (Y direction) of the stage 80 ( Pressure) may be greater than that in the inner region.

また、基板Gは斜面を浮上搬送ですべり落ちることで加速がつくので、ステージ80が傾斜面から水平面に変わっても慣性でしばらく移動し続けることができる。ステージ80上の所望の位置で基板Gを強制的に停止させるには、図24に示すように、停止位置付近でステージ80上面より浮上用の圧縮空気Qが搬送方向(X方向)とは反対側に向かって斜め上方に噴出するように噴出口100を形成してよい。   In addition, since the substrate G accelerates by sliding down the inclined surface by floating conveyance, even if the stage 80 changes from the inclined surface to the horizontal surface, it can continue to move for a while due to inertia. In order to forcibly stop the substrate G at a desired position on the stage 80, as shown in FIG. 24, the compressed air Q for levitation from the upper surface of the stage 80 near the stop position is opposite to the transport direction (X direction). You may form the jet nozzle 100 so that it may jet out diagonally upward toward the side.

図25および図26に、第6の構成例による浮上搬送機構の構成を示す。この構成例は、ステージ80の左右両サイドに搬送方向(X方向)に延びる無端ベルト160を設け、無端ベルト160の外側面に吸着パッド162を一定間隔で取り付けている。無端ベルト160は、駆動プーリ164と従動プーリ166との間に水平に架け渡されている。ステージ80の左右両側面には無端ベルト160を介して吸着パッド162をプッシュピン168で下から押し上げるためのプッシャ170が取り付けられている。基板Gがステージ80の上に搬入され、無端ベルト160の吸着パッド162がプッシャ170の真上に来ると、そのタイミングでプッシャ170はプッシュピン170を瞬間的に突き上げて該吸着パッド162内の空気を押し出して基板Gの裏面に当接(吸着)させる。吸着パッド162は基板Gを保持したまま基板Gと一緒に搬送方向(X方向)に移動し、従動プーリ166付近で折り返しのため進行の向きを変えて基板Gから離脱するようになっている。
25 and 26 show the configuration of the levitation transport mechanism according to the sixth configuration example . In this configuration example , an endless belt 160 extending in the conveyance direction (X direction) is provided on both the left and right sides of the stage 80, and suction pads 162 are attached to the outer surface of the endless belt 160 at regular intervals. The endless belt 160 is stretched horizontally between the drive pulley 164 and the driven pulley 166. Pushers 170 for pushing up the suction pads 162 from below with push pins 168 are attached to the left and right sides of the stage 80 via an endless belt 160. When the substrate G is loaded onto the stage 80 and the suction pad 162 of the endless belt 160 comes directly above the pusher 170, the pusher 170 momentarily pushes up the push pin 170 at that timing, and the air in the suction pad 162 is Is pushed out and brought into contact (adsorption) with the back surface of the substrate G. The suction pad 162 moves in the transport direction (X direction) together with the substrate G while holding the substrate G, and is separated from the substrate G by changing the direction of travel for folding around the driven pulley 166.

上記した実施例のいずれの浮上搬送機構も、部品点数が少なくて簡易な構成であり、低コストで製作することができる。
Any of the levitation conveyance mechanisms of the above-described embodiments has a simple configuration with a small number of parts , and can be manufactured at low cost.

本発明における被処理基板はLCD用のガラス基板に限るものではなく、他のフラットパネルディスプレイ用基板や、フォトマスク、プリント基板等も可能である。基板上に塗布する処理液も、レジスト液に限らず、たとえば層間絶縁材料、誘電体材料、配線材料等の処理液も可能である。   The substrate to be treated in the present invention is not limited to a glass substrate for LCD, and other flat panel display substrates, photomasks, printed substrates and the like are also possible. The processing liquid applied on the substrate is not limited to the resist liquid, and processing liquids such as an interlayer insulating material, a dielectric material, and a wiring material are also possible.

本発明の基板処理装置の適用可能な塗布現像処理システムの構成を示す平面図である。It is a top view which shows the structure of the application | coating development processing system which can apply the substrate processing apparatus of this invention. 上記塗布現像処理システムにおける処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the said application | coating development processing system. 実施形態における基板処理装置の一例を示す略側面図である。It is a schematic side view which shows an example of the substrate processing apparatus in embodiment. 実施形態における基板処理装置の一例を示す略側面図である。It is a schematic side view which shows an example of the substrate processing apparatus in embodiment. 実施形態における基板処理装置の一例を示す略側面図である。It is a schematic side view which shows an example of the substrate processing apparatus in embodiment. 実施形態における浮上テーブルの要部構成例を示す拡大部分断面図である。It is an expanded partial sectional view which shows the principal part structural example of the floating table in embodiment. 実施形態における浮上テーブルの要部の別の構成例を示す拡大部分断面図である。It is an expanded partial sectional view which shows another structural example of the principal part of the floating table in embodiment. 第1の構成例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in a 1st structural example . 第1の構成例における浮上搬送機構の構成を示す側面図である。It is a side view which shows the structure of the levitation conveyance mechanism in a 1st structural example . 第2の構成例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in a 2nd structural example . 第2の構成例における浮上搬送機構の構成を示す側面図である。It is a side view which shows the structure of the levitation conveyance mechanism in a 2nd structural example . 第3の構成例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in a 3rd structural example . 第3の構成例における浮上搬送機構の構成を示す側面図である。It is a side view which shows the structure of the levitation conveyance mechanism in a 3rd structural example . 一実施例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in one Example . 実施例において浮上キャリアの裏面に設けるディンプルの配列パターン例を示す底面図である。Is a bottom view showing an arrangement pattern example of dimples provided on the rear surface of the flying carrier in the examples. 実施例における浮上搬送機構の構成および作用を示す側面図である。It is a side view which shows the structure and effect | action of a levitation conveyance mechanism in an Example . 実施例の一変形例として浮上キャリアの裏面に溝を設ける構成を示す底面図である。It is a bottom view showing a configuration of providing a groove on the back surface of the flying carrier as a modification of the embodiment. 図17の浮上キャリアの作用を示す側面図である。It is a side view which shows the effect | action of the floating carrier of FIG. 実施例の一変形例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in one modification of an Example . 第4の構成例における浮上搬送機構の構成と一作用を示す側面図である。It is a side view which shows a structure and one effect | action of the levitation conveyance mechanism in a 4th structural example . 第4の構成例における浮上搬送機構の構成と一作用を示す背面図である。It is a rear view which shows a structure and one effect | action of the levitation conveyance mechanism in a 4th structural example . 第5の構成例における浮上搬送機構の構成と一作用を示す側面図である。It is a side view which shows a structure and one effect | action of the levitation conveyance mechanism in a 5th structural example . 第5の構成例における浮上搬送機構の構成と一作用を示す背面図である。It is a rear view which shows a structure and one effect | action of the levitation conveyance mechanism in a 5th structural example . 第5の構成例における浮上搬送機構の構成と一作用を示す側面図である。It is a side view which shows a structure and one effect | action of the levitation conveyance mechanism in a 5th structural example . 第6の構成例における浮上搬送機構の構成を示す平面図である。It is a top view which shows the structure of the levitation conveyance mechanism in a 6th structural example . 第6の構成例における浮上搬送機構の構成を示す側面図である。It is a side view which shows the structure of the levitation conveyance mechanism in a 6th structural example .

符号の説明Explanation of symbols

10 塗布現像処理システム
28 第1の熱的処理部
30 塗布プロセス部
32 第2の熱的処理部
44 レジスト塗布ユニット(COT)
80 ステージ
82 均熱放射板
84 HMDSノズル
90 冷却ガスノズル
92 レジストノズル
94 均熱放射板
96 冷却ガスノズル
100 噴出口
104 吸引口
110 ガイドローラ
130 浮上搬送用吸引口
132,134 コロ搬送路
138 ガイドローラ
140 回転軸
142 無端ベルト
148 浮上キャリア
150 ディンプル
154 ピン
156 浮上キャリア
160 無端ベルト
162 吸着パッド
DESCRIPTION OF SYMBOLS 10 Application | coating development processing system 28 1st thermal processing part 30 Application | coating process part 32 2nd thermal processing part 44 Resist coating unit (COT)
80 Stage 82 Heat equalizing radiation plate 84 HMDS nozzle 90 Cooling gas nozzle 92 Resist nozzle 94 Heat equalizing radiation plate 96 Cooling gas nozzle 100 Spout 104 104 Suction port 110 Guide roller 130 Floating transport suction port 132, 134 Rolling transport path 138 Guide roller 140 Rotation Shaft 142 Endless belt 148 Levitation carrier 150 Dimple 154 Pin 156 Levitation carrier 160 Endless belt 162 Adsorption pad

Claims (3)

水平な所定の搬送方向に延びるステージ上で矩形の被処理基板を気体の圧力により浮かせて前記搬送方向に搬送しながら、前記ステージに沿って配置したツールより前記基板に所定の液体、気体、光または熱を供給して所定の処理を施す浮上搬送式の基板処理装置であって、
前記ステージ上で浮上する前記基板の後端の辺と接触するように板状の第1の浮上キャリアを前記ステージ上で前記基板と同じ浮上高さで浮上させ、前記基板を前記第1の浮上キャリアで後から押して前記基板の搬送を行う基板処理装置。
While a rectangular substrate to be processed is floated by a gas pressure on a stage extending in a horizontal predetermined transport direction and transported in the transport direction, a predetermined liquid, gas, light is applied to the substrate from a tool disposed along the stage. Or a floating conveyance type substrate processing apparatus for supplying heat and performing a predetermined process,
A plate-like first levitating carrier is levitated at the same levitating height as the substrate on the stage so as to come into contact with a rear end side of the substrate levitating on the stage, and the substrate is raised to the first levitating height. A substrate processing apparatus for carrying the substrate by pushing it later with a carrier.
前記第1の浮上キャリアの下面にくぼみ状または溝状の凹部を形成し、前記ステージの上面より搬送方向に向かって斜め上方に浮上用の気体を噴射させる請求項1に記載の基板処理装置。   2. The substrate processing apparatus according to claim 1, wherein a concave or groove-like recess is formed on a lower surface of the first levitation carrier, and a levitation gas is jetted obliquely upward from the upper surface of the stage toward the transport direction. 前記ステージ上で浮上する前記基板の前端の辺と接触するように板状の第2の浮上キャリアを前記ステージ上で前記基板と同じ浮上高さで浮上させ、前記第2の浮上キャリア設定位置で止めて前記基板の搬送を止める請求項1または請求項2記載の基板処理装置。 A plate-like second levitating carrier is levitated at the same levitating height as the substrate on the stage so as to be in contact with the front end side of the substrate levitating on the stage, and the second levitating carrier is set at a set position. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus stops the transfer of the substrate.
JP2006351688A 2006-12-27 2006-12-27 Substrate processing equipment Expired - Fee Related JP4753313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006351688A JP4753313B2 (en) 2006-12-27 2006-12-27 Substrate processing equipment
TW096144261A TWI356467B (en) 2006-12-27 2007-11-22 Substrate processing apparatus
CN200710160567A CN100594584C (en) 2006-12-27 2007-12-25 Substrate processing device
KR1020070137143A KR20080061298A (en) 2006-12-27 2007-12-26 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351688A JP4753313B2 (en) 2006-12-27 2006-12-27 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2008166359A JP2008166359A (en) 2008-07-17
JP4753313B2 true JP4753313B2 (en) 2011-08-24

Family

ID=39611678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351688A Expired - Fee Related JP4753313B2 (en) 2006-12-27 2006-12-27 Substrate processing equipment

Country Status (4)

Country Link
JP (1) JP4753313B2 (en)
KR (1) KR20080061298A (en)
CN (1) CN100594584C (en)
TW (1) TWI356467B (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056611B2 (en) * 2008-06-20 2012-10-24 凸版印刷株式会社 Substrate processing equipment
JP4755233B2 (en) * 2008-09-11 2011-08-24 東京エレクトロン株式会社 Substrate processing equipment
US8047354B2 (en) 2008-09-26 2011-11-01 Corning Incorporated Liquid-ejecting bearings for transport of glass sheets
JP4787872B2 (en) * 2008-10-16 2011-10-05 東京エレクトロン株式会社 Substrate transfer processing equipment
KR100985135B1 (en) * 2008-11-05 2010-10-05 세메스 주식회사 Apparatus for processing a substrate
JP5200868B2 (en) * 2008-11-11 2013-06-05 株式会社Ihi Levitation transfer device
US20110240223A1 (en) * 2008-11-14 2011-10-06 Tokyo Electron Limited Substrate processing system
KR101296659B1 (en) * 2008-11-14 2013-08-14 엘지디스플레이 주식회사 Washing device
JP2010123970A (en) * 2008-11-24 2010-06-03 Sfa Engineering Corp Substrate transfer apparatus
JP4696165B2 (en) * 2009-02-03 2011-06-08 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
TWI472467B (en) * 2009-04-23 2015-02-11 Corning Inc Liquid-ejecting bearings for transport of glass sheets
TWI466225B (en) * 2009-05-13 2014-12-21 Utechzone Co Ltd Suspended air float working platform
JP4785210B2 (en) * 2009-07-23 2011-10-05 東京エレクトロン株式会社 Substrate transfer device
JP4916035B2 (en) * 2009-08-28 2012-04-11 東京エレクトロン株式会社 Substrate transport apparatus and substrate transport method
KR101205832B1 (en) * 2009-11-27 2012-11-29 세메스 주식회사 Substrate transferring unit and method of transfering substrate using the same
JP2011124342A (en) * 2009-12-09 2011-06-23 Tokyo Electron Ltd Substrate processing device, substrate processing method, and recording medium recording program for implementing the substrate processing method
KR101099555B1 (en) * 2010-01-12 2011-12-28 세메스 주식회사 Apparatus for processing a substrate
JP5915521B2 (en) * 2010-02-17 2016-05-11 株式会社ニコン Conveying apparatus, conveying method, exposure apparatus, and device manufacturing method
KR101202455B1 (en) * 2010-06-07 2012-11-16 주식회사 나래나노텍 A Device for Feeding Transferring Carrier Used in Substrate Transferring Unit of Coating Region, and A Substrate Transferring Unit and A Coating Apparatus Having the Same
TW201214609A (en) 2010-09-27 2012-04-01 Toray Eng Co Ltd Substrate conveying apparatus
JP2012076877A (en) * 2010-10-01 2012-04-19 Nitto Denko Corp Workpiece transport method and workpiece transport apparatus
JP5877954B2 (en) * 2011-03-07 2016-03-08 株式会社ゼビオス Substrate processing apparatus having non-contact levitation transfer function
CN102167227B (en) * 2011-04-02 2012-09-05 东莞宏威数码机械有限公司 Substrate transmission equipment
CN102909714A (en) * 2011-08-05 2013-02-06 南通居梦莱家用纺织品有限公司 Automatic weight reduction operation platform
CN103065998A (en) * 2011-10-21 2013-04-24 东京毅力科创株式会社 Processing bench device and coating processing device using same
JP5912642B2 (en) * 2012-02-20 2016-04-27 日本電気硝子株式会社 Glass plate conveying apparatus and conveying method thereof
KR101809001B1 (en) * 2012-04-03 2017-12-13 가부시키가이샤 니콘 Transfer apparatus, and electronic device forming method
JP6243898B2 (en) 2012-04-19 2017-12-06 インテヴァック インコーポレイテッド Double mask device for solar cell manufacturing
SG11201406893XA (en) 2012-04-26 2014-11-27 Intevac Inc System architecture for vacuum processing
US10062600B2 (en) 2012-04-26 2018-08-28 Intevac, Inc. System and method for bi-facial processing of substrates
JP5915358B2 (en) * 2012-04-26 2016-05-11 株式会社Ihi Transport device
KR101212817B1 (en) 2012-09-14 2012-12-14 주식회사 나래나노텍 Coating Apparatus Having Device for Feeding Transferring Carrier Used in Substrate Transferring Unit of Coating Region
KR101212816B1 (en) 2012-09-14 2012-12-14 주식회사 나래나노텍 Substrate Transferring Unit of Coating Region Having Device for Feeding Transferring Carrier
TWI590367B (en) * 2012-11-20 2017-07-01 Toray Eng Co Ltd Suspension transfer heat treatment device
JP3183651U (en) * 2013-03-13 2013-05-30 揚博科技股▲ふん▼有限公司 Full flat circuit board processing and transportation equipment
WO2015052763A1 (en) * 2013-10-08 2015-04-16 ヤマハ発動機株式会社 Substrate transfer device
CN105185726B (en) * 2014-05-13 2018-09-21 芝浦机械电子株式会社 Substrate board treatment, substrate processing method using same, apparatus for manufacturing substrate and manufacture of substrates
JP6607923B2 (en) 2014-08-05 2019-11-20 インテヴァック インコーポレイテッド Implant mask and alignment
KR101563128B1 (en) * 2015-01-09 2015-10-27 엠에스티코리아(주) apparatus for transferring substrates
CN105151780B (en) * 2015-08-28 2018-11-23 武汉华星光电技术有限公司 A kind of ultrasonic delivery device
CN106081627B (en) * 2016-07-26 2019-07-02 中导光电设备股份有限公司 A kind of application method of high-speed air floatation plate
JP6698489B2 (en) * 2016-09-26 2020-05-27 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6860356B2 (en) * 2017-01-20 2021-04-14 株式会社Screenホールディングス Coating device and coating method
CN107187874B (en) * 2017-04-28 2019-03-22 武汉华星光电技术有限公司 A kind of transmission device
CN108750669B (en) * 2018-05-07 2020-04-24 芜湖良匠机械制造有限公司 Roller type high-precision glass substrate conveying device
CN110670070A (en) * 2019-11-19 2020-01-10 江苏上达电子有限公司 Design method of liquid floating spraying disc
TWI753631B (en) * 2020-10-28 2022-01-21 凌嘉科技股份有限公司 Cooling system
CN112357581A (en) * 2020-12-30 2021-02-12 彩虹(合肥)液晶玻璃有限公司 Glass substrate air-dries and conveyer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756402B2 (en) * 2000-12-08 2006-03-15 富士写真フイルム株式会社 Substrate transfer apparatus and method
JP3763125B2 (en) * 2001-07-03 2006-04-05 東京エレクトロン株式会社 Substrate processing equipment
JP4349101B2 (en) * 2003-11-21 2009-10-21 株式会社Ihi Substrate transfer device

Also Published As

Publication number Publication date
CN101211756A (en) 2008-07-02
TWI356467B (en) 2012-01-11
JP2008166359A (en) 2008-07-17
KR20080061298A (en) 2008-07-02
TW200845276A (en) 2008-11-16
CN100594584C (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4753313B2 (en) Substrate processing equipment
JP4272230B2 (en) Vacuum dryer
JP4592787B2 (en) Substrate processing equipment
JP4554397B2 (en) Stage device and coating treatment device
JP4745040B2 (en) Substrate transport apparatus and substrate processing apparatus
JP4341978B2 (en) Substrate processing equipment
JP5237176B2 (en) Substrate processing apparatus and substrate processing method
KR100687565B1 (en) Board processing apparatus
JP4384685B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4451385B2 (en) Coating processing apparatus and coating processing method
JP2011049434A (en) Substrate conveying apparatus, and substrate conveying method
JP2010050140A (en) Processing system
KR101300853B1 (en) Substrate conveying system, substrate conveying device and substrate treatment device
JP4638931B2 (en) Substrate processing equipment
TWI234796B (en) Solution treatment method and solution treatment unit
JP4805384B2 (en) Substrate processing equipment
JP2007173365A (en) System and method for processing application drying
JP4620536B2 (en) Substrate processing equipment
JP4180250B2 (en) Substrate processing apparatus and substrate processing method
KR101620547B1 (en) Apparatus and method for treating substrate, and substrate treating system including the apparatus
JP2004210511A (en) Device and method for processing substrate
JP5010019B2 (en) stage
JP4589986B2 (en) Substrate heating device
JP4892543B2 (en) Substrate processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees