JP4634781B2 - Prepreg for fiber reinforced resin composite material - Google Patents
Prepreg for fiber reinforced resin composite material Download PDFInfo
- Publication number
- JP4634781B2 JP4634781B2 JP2004346583A JP2004346583A JP4634781B2 JP 4634781 B2 JP4634781 B2 JP 4634781B2 JP 2004346583 A JP2004346583 A JP 2004346583A JP 2004346583 A JP2004346583 A JP 2004346583A JP 4634781 B2 JP4634781 B2 JP 4634781B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- parts
- resin
- prepreg
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Polymerisation Methods In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Description
本発明は、繊維強化複合材料用プリプレグに関する。更に詳しくは、本発明は、独自の深みと光沢を有する繊維強化樹脂複合材料を短時間に製造することができ、更に後加熱により繊維強化樹脂複合材料に高い耐熱性と靭性を付与することが可能な繊維強化複合材料用プリプレグに関する。 The present invention relates to a prepreg for a fiber-reinforced composite material. More specifically, the present invention can produce a fiber reinforced resin composite material having a unique depth and gloss in a short time, and further impart high heat resistance and toughness to the fiber reinforced resin composite material by post-heating. The present invention relates to a prepreg for a fiber-reinforced composite material.
炭素繊維やガラス繊維等の強化繊維にて強化した繊維強化樹脂複合材料は、一般に、比強度、比剛性等に優れるという特徴を有する。更には、このような繊維強化樹脂複合材料は、その軽量性を活かして、例えば、航空機用構造材料から、自動車用部品、ラケットやゴルフシャフト等のスポーツ用途にわたる種々の用途に広範に使用されている。一方、これらの繊維強化樹脂複合材料は独特の光沢、深みのある意匠特性を持ち、その単体の形でも外観の美しさを有しているため、自動車のインパネやシフトノブ等の内装部品、ボンネットやウイング、バンパーといった自動車用外装部品のほか、オートバイの外装部品、椅子をはじめとする家具の表層材等の意匠材としても用いられている。 A fiber-reinforced resin composite material reinforced with reinforcing fibers such as carbon fibers and glass fibers generally has a feature of being excellent in specific strength, specific rigidity, and the like. Further, such fiber reinforced resin composite materials are widely used in various applications ranging from structural materials for aircraft to sports applications such as automotive parts, rackets and golf shafts, taking advantage of their light weight. Yes. On the other hand, these fiber reinforced resin composite materials have unique luster and depth of design characteristics, and also have a beautiful appearance even in a single form, so interior parts such as automotive instrument panels and shift knobs, bonnets and In addition to automotive exterior parts such as wings and bumpers, they are also used as design materials such as exterior parts for motorcycles and surface materials for furniture such as chairs.
この繊維強化樹脂複合材料の成形方法としては、強化繊維に熱硬化性樹脂を含浸させたプリプレグと呼ばれる中間材料を用いて、オートクレーブ成形、真空バック成形、プレス成形により、硬化し、成形する方法が一般的である。 As a molding method of this fiber reinforced resin composite material, there is a method of curing and molding by autoclave molding, vacuum back molding, press molding using an intermediate material called prepreg in which a reinforcing fiber is impregnated with a thermosetting resin. It is common.
プリプレグ用の樹脂としては、通常、常温での安定性と加熱等による硬化性を兼ね備えた樹脂であることが必要であるため、一般にはエポキシ樹脂組成物、(メタ)アクリル系樹脂を始めとする熱硬化性樹脂が多用されている。樹脂硬化後の透明性に優れる(メタ)アクリル系樹脂を用いると繊維強化樹脂複合材料の光沢性、深みが際立ち、また強化繊維の幾何学模様がより鮮明に映えるため、意匠用に好まれて使用されることが多い。 The resin for prepreg usually needs to be a resin having both stability at room temperature and curability due to heating, etc., and thus generally includes epoxy resin compositions and (meth) acrylic resins. Thermosetting resins are frequently used. The use of (meth) acrylic resin, which has excellent transparency after resin curing, is preferred for design because the gloss and depth of the fiber reinforced resin composite material stands out and the geometric pattern of the reinforced fiber looks more vivid. Often used.
しかしながら、熱硬化性樹脂の硬化には一定時間の加熱、もしくは常温下での養生が必要であり、所定温度までの昇温時間や成形体を取り出せる温度まで冷却するための時間を含めると、樹脂の硬化または重合に必要な時間は長くなり、生産サイクルの向上によるコストの低減には限界がある。他方、常温での硬化性の良好な樹脂は、常温で硬化が進行してしまいプリプレグとしての成立性、安定性が得られない。 However, the curing of the thermosetting resin requires heating for a certain period of time or curing at room temperature, and if the temperature rising time to a predetermined temperature or the time for cooling to a temperature at which the molded body can be taken out is included, the resin The time required for curing or polymerizing the resin becomes longer, and there is a limit to reducing the cost by improving the production cycle. On the other hand, a resin having good curability at room temperature is hardened at room temperature, and cannot be established and stable as a prepreg.
DVD(デジタル多用途ディスク)メディアや自動車用ヘッドランプ等で使われるコーティング材料分野では、ラジカル系紫外線硬化樹脂がよく用いられている。これは紫外線を照射するだけで樹脂を硬化できるため、加熱硬化と比較して格段に短時間で成形することができ、生産性を著しく向上させることができるためである。 In the field of coating materials used for DVD (Digital Versatile Disc) media, automotive headlamps, etc., radical ultraviolet curable resins are often used. This is because the resin can be cured only by irradiating with ultraviolet rays, so that the resin can be molded in a much shorter time than heat curing, and the productivity can be remarkably improved.
このように短時間成形が可能なラジカル系紫外線硬化樹脂組成物をプリプレグ用のマトリックス樹脂として用い、繊維強化樹脂複合材料の成形時間の短縮を図る試みが行われている。しかしながら、このようなマトリックス樹脂中に強化繊維が存在すると、強化繊維により紫外線が遮断され、内部のマトリックス樹脂の硬化が不充分となり、表面が硬化しても内部の未硬化の樹脂が表面に染み出してくる等の問題が生じてしまう。 Attempts have been made to shorten the molding time of the fiber-reinforced resin composite material by using the radical ultraviolet curable resin composition that can be molded in a short time as a matrix resin for prepreg. However, if reinforcing fibers are present in such a matrix resin, the ultraviolet rays are blocked by the reinforcing fibers, the internal matrix resin is insufficiently cured, and even if the surface is cured, the internal uncured resin is stained on the surface. Problems such as coming out will occur.
特開平3−146528号公報(特許文献1)においては、光ラジカル開始剤および熱ラジカル開始剤を含有するアクリロイル化合物をマトリックス樹脂、ガラス繊維を強化繊維とし、紫外線照射によってマトリックス樹脂を増粘B−ステージ化させたプリプレグを作製し、このBステージ化したプリプレグを加熱硬化することで、アクリル樹脂をマトリックス樹脂としたガラス強化繊維樹脂複合材料を成形する手法が示されている。しかしながら、この手法では比較的紫外線が透過しやすいガラス繊維と使っているにもかかわらず、紫外線照射によりマトリックス樹脂を増粘させ、Bステージ化することはできるが、紫外線照射のみで強化繊維樹脂複合材料を成形するまでにいたっていない。 In JP-A-3-146528 (Patent Document 1), an acryloyl compound containing a photo radical initiator and a thermal radical initiator is used as a matrix resin, glass fibers are used as reinforcing fibers, and the matrix resin is thickened by ultraviolet irradiation. A technique for forming a glass-reinforced fiber resin composite material using an acrylic resin as a matrix resin by producing a staged prepreg and heat-curing the B-staged prepreg is shown. However, although this technique uses glass fibers that are relatively easy to transmit ultraviolet rays, the matrix resin can be thickened by ultraviolet irradiation to form a B-stage. It is not enough to mold the material.
また一方で、このような透明性樹脂による繊維強化樹脂複合材料の光沢性、深みといった意匠性だけでなく、たとえばオートバイや自動車の外装用部品のような用途では、過酷な使用環境に耐えうるよう、マトリックス樹脂には優れた靭性や耐熱性が求められることも多い。 On the other hand, not only the design properties such as gloss and depth of the fiber reinforced resin composite material with such a transparent resin, but also withstand severe environments in applications such as motorcycles and automobile exterior parts. The matrix resin is often required to have excellent toughness and heat resistance.
本発明の目的は、意匠性に優れ、高い生産性及び後硬化で優れた靭性や耐熱性を実現できるラジカル硬化系繊維強化樹脂複合材料用プリプレグを提供することにある。 An object of the present invention is to provide a prepreg for a radical curable fiber-reinforced resin composite material that has excellent design properties and can realize high productivity and excellent toughness and heat resistance by post-curing.
本発明によれば、強化繊維と、ラジカル重合性樹脂組成物とを少なくとも含む繊維強化樹脂複合材料用プリプレグが提供される。該ラジカル重合性樹脂組成物は、以下の(a),(b),(c)成分:
(a)化学式Iで示されるトリ(メタ)アクリレート化合物30−50質量部
(b)ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物20−50質量部
(c)化学式IIで示されるジ(メタ)アクリレート化合物10−35質量部
を必須成分として含むラジカル重合性樹脂100質量部と、
(d)α−アミノアルキルフェノン型光重合開始剤及びチオキサントン型光重合開始剤を合わせて0.05−10質量部、および、
(e)熱重合開始剤0.05−10質量部を含むラジカル重合性樹脂組成物である。
According to the present invention, there is provided a prepreg for a fiber reinforced resin composite material including at least a reinforced fiber and a radical polymerizable resin composition. The radical polymerizable resin composition includes the following components (a), (b), and (c):
(A) 30-50 parts by mass of a tri (meth) acrylate compound represented by Formula I
(B) 20-50 parts by mass of (meth) acrylic acid adduct of bisphenol A diglycidyl ether (c) 10-35 parts by mass of di (meth) acrylate compound represented by chemical formula II
100 parts by mass of a radically polymerizable resin containing as an essential component,
(D) 0.05-10 parts by mass of the α-aminoalkylphenone type photopolymerization initiator and the thioxanthone type photopolymerization initiator in combination, and
(E) A radical polymerizable resin composition containing 0.05 to 10 parts by mass of a thermal polymerization initiator.
上記した(e)の熱重合開始剤としては、10時間の半減期を得るための温度が40℃以上130℃以下であるものを用いることが好ましい。上記した強化繊維としては、(メタ)アクリレート基およびエポキシ基を分子内にそれぞれ少なくとも1個づつ有する化合物を有するサイジング剤が付着した炭素繊維を用いることが、より好ましい。 As the thermal polymerization initiator (e) described above, it is preferable to use a thermal polymerization initiator having a temperature for obtaining a half-life of 10 hours of 40 ° C. or higher and 130 ° C. or lower. As the above-mentioned reinforcing fiber, it is more preferable to use a carbon fiber to which a sizing agent having a compound having at least one (meth) acrylate group and epoxy group in the molecule is attached.
上記のごとく構成された本発明によれば、紫外線の照射によりごく短時間で意匠性のある繊維強化樹脂複合材料を成形することができ、また、耐熱性、靭性が求められる用途に対しては、(例えば150℃程度の温度で)後硬化することにより耐熱性と靭性に優れた成形体を得ることができる。 According to the present invention configured as described above, it is possible to mold a fiber-reinforced resin composite material having a design property in a very short time by irradiation with ultraviolet rays, and for applications where heat resistance and toughness are required. , (For example, at a temperature of about 150 ° C.), a molded body having excellent heat resistance and toughness can be obtained.
以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量(重量)基準とする。 Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass (weight) unless otherwise specified.
(繊維強化樹脂複合材料用プリプレグ)
本発明の繊維強化樹脂複合材料用プリプレグは、強化繊維と、ラジカル重合性樹脂組成物とを少なくとも含む。
(Prepreg for fiber reinforced resin composite material)
The prepreg for fiber-reinforced resin composite material of the present invention includes at least reinforcing fibers and a radical polymerizable resin composition.
(ラジカル重合性樹脂組成物)
本発明において、ラジカル重合性樹脂組成物は、下記の(a),(b),(c)成分と、これに加えて下記の(d)および(e)成分を含む。
(Radical polymerizable resin composition)
In the present invention, the radical polymerizable resin composition includes the following components (a), (b), and (c), and in addition to the following components (d) and (e).
((a)成分)
本発明で用いられるラジカル重合性樹脂の必須成分(a)は、化学式Iで示されるトリ(メタ)アクリレート化合物である。(a),(b)および(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対し、この必須成分(a)は30〜50質量部含まれる必要がある。成分(a)の配合量が30質量部以上であれば、得られるラジカル重合性樹脂の耐熱性が高くなり、また該配合量が50質量部以下であれば、得られるラジカル重合性樹脂の靭性が高くなるためである。更に好ましい成分(a)の配合量は、35〜45質量部である。化学式Iで示されるトリアクリレート化合物としては、市販品ではアロニックスM−315(東亞合成)、カヤラッドR−790(日本化薬)等を例示することができるが、これらに限定されない。
((A) component)
The essential component (a) of the radical polymerizable resin used in the present invention is a tri (meth) acrylate compound represented by the chemical formula I. This essential component (a) needs to be contained in an amount of 30 to 50 parts by mass with respect to 100 parts by mass of the radical polymerizable resin in which the components (a), (b) and (c) are contained as essential components. If the blending amount of component (a) is 30 parts by mass or more, the heat resistance of the resulting radically polymerizable resin is increased, and if the blending amount is 50 parts by mass or less, the toughness of the resulting radically polymerizable resin. This is because of the increase. Furthermore, the compounding quantity of a preferable component (a) is 35-45 mass parts. Examples of the triacrylate compound represented by the chemical formula I include, but are not limited to, Aronix M-315 (Toagosei), Kayarad R-790 (Nippon Kayaku) and the like as commercial products.
(成分(b))
本発明で用いられるラジカル重合性樹脂の必須成分(b)はビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物である。(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対し、必須成分(b)は20〜50質量部含まれる必要がある。成分(b)の配合量が20質量部以上であれば、得られるラジカル重合性樹脂の靭性が高くなり、50質量部以下であれば得られるラジカル重合性樹脂の耐熱性が高くなるためである。更に好ましい成分(b)の配合量は25〜40質量部である。ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物としては、市販品では、エポキシエステル3000A(共栄社化学)、エポキシエステル3000M(共栄社化学)、リポキシSP1509(昭和高分子)、リポキシVR77(昭和高分子)、リポキシSP1507(昭和高分子)等を例示することができるが、これらに限定されない。
(Component (b))
The essential component (b) of the radical polymerizable resin used in the present invention is a (meth) acrylic acid adduct of bisphenol A diglycidyl ether. The essential component (b) needs to be contained in an amount of 20 to 50 parts by mass with respect to 100 parts by mass of the radical polymerizable resin in which the components (a), (b) and (c) are contained as essential components. If the blending amount of component (b) is 20 parts by mass or more, the toughness of the obtained radical polymerizable resin is increased, and if it is 50 parts by mass or less, the heat resistance of the obtained radical polymerizable resin is increased. . Furthermore, the compounding quantity of a preferable component (b) is 25-40 mass parts. As a (meth) acrylic acid adduct of bisphenol A diglycidyl ether, commercially available products include epoxy ester 3000A (Kyoeisha Chemical), epoxy ester 3000M (Kyoeisha Chemical), lipoxy SP1509 (Showa High Polymer), and lipoxy VR77 (Showa High Polymer). ), Lipoxy SP1507 (Showa Polymer) and the like, but are not limited thereto.
(成分(c))
本発明でラジカル重合性樹脂の必須成分(c)は化学式IIで示されるジ(メタ)アクリレート化合物である。(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対し、必須成分(c)は10〜35質量部含まれる必要ある。成分(c)の配合量が10質量部以上であれば、得られるラジカル重合性樹脂の靭性が高くなり、35質量部以下であれば得られるラジカル重合性樹脂の耐熱性が高くなる。更に好ましい成分(c)の配合量は20〜35質量部である。化学式IIで表されるジ(メタ)アクリレート化合物の具体例としては、脂肪族、脂環族、又は芳香族骨格のジアルコール1モルに2〜10モルのγ−ブチロラクトン、又はε−カプロラクトンを付加したジアルコール末端をメタクリレート又はアクリレート化した化合物が挙げられる。これらの中でも好ましいものとして、ヒドロキシピバリン酸ネオンペンチルグリコールのε−カプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、ヒドロキシピバリン酸ネオンペンチルグリコールのγ−ブチロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、ネオンペンチルグリコールのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、ブチレングリコールのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、シクロヘキサンジメタノールのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、シクロペンタンジオールのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、ビスフェノールAのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステル、ビスフェノールFのカプロラクトン付加物(m+n=2〜5)のジ(メタ)アクリル酸エステルが挙げられる。
(Component (c))
In the present invention, the essential component (c) of the radical polymerizable resin is a di (meth) acrylate compound represented by the chemical formula II. The essential component (c) needs to be contained in an amount of 10 to 35 parts by mass with respect to 100 parts by mass of the radical polymerizable resin in which the components (a), (b) and (c) are contained as essential components. If the compounding amount of component (c) is 10 parts by mass or more, the toughness of the obtained radical polymerizable resin is increased, and if it is 35 parts by mass or less, the heat resistance of the obtained radical polymerizable resin is increased. Furthermore, the compounding quantity of a preferable component (c) is 20-35 mass parts. Specific examples of the di (meth) acrylate compound represented by Chemical Formula II include addition of 2 to 10 mol of γ-butyrolactone or ε-caprolactone to 1 mol of an aliphatic, alicyclic, or aromatic skeleton dialcohol. And compounds obtained by methacrylate or acrylate conversion of the dialcohol terminal. Among these, di (meth) acrylic acid ester of neon pentyl glycol hydroxypivalate (m + n = 2 to 5), γ-butyrolactone adduct of neon pentyl glycol hydroxypivalate (m + n = 2-5) di (meth) acrylic acid ester, neon pentyl glycol caprolactone adduct (m + n = 2 to 5) di (meth) acrylic acid ester, butylene glycol caprolactone adduct (m + n = 2 to 5) Di (meth) acrylic acid ester, di (meth) acrylic acid ester of caprolactone adduct of cyclohexanedimethanol (m + n = 2 to 5), di (meth) of caprolactone adduct of cyclopentanediol (m + n = 2 to 5) Acrylic acid ester, bisphenol A Di (meth) acrylic acid ester of caprolactone adduct (m + n = 2 to 5), and di (meth) acrylic acid ester of caprolactone adduct (m + n = 2 to 5) of bisphenol F.
(他のラジカル重合性樹脂)
本発明において、上記したラジカル重合性樹脂は、必須の(a)、(b)および(c)成分に加えて、必要に応じてこれら以外のラジカル重合性樹脂を含んでいても良い。ビニルエステル樹脂、不飽和ポリエステル樹脂等の各種ビニルモノマーやビニルオリゴマーを含むことができる。本発明において、このような「他のラジカル重合性樹脂」の配合量は、上記した必須の(a)、(b)および(c)成分の合計量100質量部に対して、30質量部以下(更には10質量部以下)であることが好ましい。
(Other radical polymerizable resins)
In the present invention, the above-mentioned radical polymerizable resin may contain other radical polymerizable resins as necessary in addition to the essential components (a), (b) and (c). Various vinyl monomers and vinyl oligomers such as vinyl ester resins and unsaturated polyester resins can be included. In this invention, the compounding quantity of such "other radically polymerizable resin" is 30 mass parts or less with respect to 100 mass parts of total amounts of above-mentioned essential (a), (b) and (c) components. (Furthermore, it is preferably 10 parts by mass or less).
(ラジカル重合性樹脂以外の成分)
上記したラジカル重合性樹脂には、硬化物の耐熱性、靭性、剛性、難燃性、表面平滑性、ひずみの低減、金型からの剥離性、色調等の諸物性や、未硬化状態での粘着性や粘度等の取り扱い性等の調整を目的として、必要に応じて、ラジカル重合性樹脂以外の成分を含んでもよい。このような「ラジカル重合性樹脂以外の成分」としては、例えば、熱硬化性樹脂、熱可塑性樹脂、エラストマー、無機フィラー等が挙げられる。このような熱硬化性樹脂としては、エポキシ樹脂、トリアジン樹脂、ビスマレイミド樹脂、シアネートエステル樹脂等の架橋性樹脂とその硬化剤が挙げられる。熱可塑性樹脂としては、ポリスルフォン、ポリエーテルスルフォン、ポリイミド、ポリエーテルイミド、ポリビニルフォルマール、ポリアミド、フェノキシ樹脂、ポリウレタン、ポリスチレン、ポリエチレン、ポリアクリレート、ポリシロキサン等が挙げられる。エラストマー成分としては、ブタジエンゴム、アクリルゴム、スチレンゴム、クロロプレンゴム、スチレン−ブタジエンゴム、ブタジエン−アクリロニトリルゴム、カボキシル末端変性ブタジエン−アクリロニトリルゴム、イソプレンゴム、ブタジエンゴム等が挙げられる。無機フィラーとしては水酸化アルミ、水酸化マグネシウム等の水酸化金属類や、酸化マグネシウム、酸化アルミニウム等の参加金属類や、炭酸カルシウム、炭酸アルミニウム、炭酸マグネシウム等の炭酸金属類のほか、ガラスバルーン、シリカ等の無機フィラーが挙げられる。更には、脱泡剤、湿潤剤、レベリング剤等の添加剤を必要に応じて配合することができる。
(Components other than radical polymerizable resin)
The above-mentioned radical polymerizable resin has various physical properties such as heat resistance, toughness, rigidity, flame retardancy, surface smoothness, strain reduction, mold release property, color tone, etc. in the uncured state. Components other than the radical polymerizable resin may be included as necessary for the purpose of adjusting handling properties such as adhesiveness and viscosity. Examples of such “components other than radically polymerizable resins” include thermosetting resins, thermoplastic resins, elastomers, inorganic fillers, and the like. Examples of such thermosetting resins include crosslinkable resins such as epoxy resins, triazine resins, bismaleimide resins, cyanate ester resins, and curing agents thereof. Examples of the thermoplastic resin include polysulfone, polyethersulfone, polyimide, polyetherimide, polyvinyl formal, polyamide, phenoxy resin, polyurethane, polystyrene, polyethylene, polyacrylate, polysiloxane, and the like. Examples of the elastomer component include butadiene rubber, acrylic rubber, styrene rubber, chloroprene rubber, styrene-butadiene rubber, butadiene-acrylonitrile rubber, carboxy-terminal-modified butadiene-acrylonitrile rubber, isoprene rubber, butadiene rubber, and the like. Inorganic fillers include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, participating metals such as magnesium oxide and aluminum oxide, metal carbonates such as calcium carbonate, aluminum carbonate and magnesium carbonate, glass balloons, An inorganic filler such as silica can be used. Furthermore, additives such as a defoaming agent, a wetting agent, and a leveling agent can be blended as necessary.
(成分(d))
発明における成分(d)は、紫外線の照射のよりラジカルを発生する光重合開始剤である。この成分(d)として、α−アミノアルキルフェノン型光重合開始剤およびチオキサントン型光重合開始剤の両成分を含むことで、強化繊維存在下でのマトリックス樹脂の紫外線硬化性が良好になる。これらの両成分のうち、どちらか一方だけではプリプレグに紫外線を照射しても硬化が不充分となり、表面に未硬化の樹脂が染み出てしまうため、意匠性材料としての要求を満たすことができず好ましくない。
本発明においては、(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対して、α−アミノアルキルフェノン型光重合開始剤およびチオキサントン型光重合開始剤の両成分を合わせて0.05〜10質量部が含まれることが必要である。これら両成分を合わせて、0.04〜9質量部を含むことが特に好ましい。
(Component (d))
The component (d) in the invention is a photopolymerization initiator that generates radicals by irradiation with ultraviolet rays. By including both components of the α-aminoalkylphenone type photopolymerization initiator and the thioxanthone type photopolymerization initiator as this component (d), the UV curable property of the matrix resin in the presence of the reinforcing fibers becomes good. Of these two components, only one of these components will not cure sufficiently even if the prepreg is irradiated with ultraviolet rays, and the uncured resin will ooze out on the surface, thus satisfying the requirements as a design material. Not preferable.
In the present invention, an α-aminoalkylphenone type photopolymerization initiator and a thioxanthone type photopolymerization start are performed with respect to 100 parts by mass of the radical polymerizable resin containing the components (a), (b), and (c) as essential components. It is necessary that 0.05 to 10 parts by mass of both components of the agent are included. It is particularly preferable that these two components are combined to contain 0.04 to 9 parts by mass.
(α−アミノアルキルフェノン型光重合開始剤)
α−アミノアルキルフェノン型光重合開始剤は、(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対して0.04〜9質量部含まれることが好ましい。α−アミノアルキルフェノン型光開始剤の配合量が0.04質量部以上であれば、紫外線による硬化が進行しやすく、紫外線を照射した際の硬化不良の発生を抑えることができる。この含有量が9質量部以下の場合は、(a)、(b)、(c)成分に対してα−アミノアルキルフェノン型光開始剤を溶解させやすい。α−アミノアルキルフェノン型光開始剤の更に好ましい配合量は0.1質量部以上7質量部以下である。
(Α-aminoalkylphenone type photopolymerization initiator)
The α-aminoalkylphenone type photopolymerization initiator is contained in an amount of 0.04 to 9 parts by mass with respect to 100 parts by mass of the radical polymerizable resin containing the components (a), (b) and (c) as essential components. Is preferred. If the blending amount of the α-aminoalkylphenone type photoinitiator is 0.04 parts by mass or more, curing by ultraviolet rays tends to proceed, and the occurrence of poor curing when irradiated with ultraviolet rays can be suppressed. When this content is 9 parts by mass or less, the α-aminoalkylphenone type photoinitiator is easily dissolved in the components (a), (b), and (c). The more preferable amount of the α-aminoalkylphenone type photoinitiator is 0.1 parts by mass or more and 7 parts by mass or less.
α−アミノアルキルフェノン型光重合開始剤としては2−ベンジル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−オン等が挙げられるが、これに限られるものではない。 α-Aminoalkylphenone type photopolymerization initiators include 2-benzyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butanone-one and the like, but are not limited thereto.
(チオキサントン型光重合開始剤)
他方、チオキサントン型光重合開始剤は、(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対して0.01〜9質量部含まれることが好ましい。このチオキサントン型光重合開始剤の配合量は、0.01質量部以上であれば紫外線による硬化が進行しやすく、紫外線を照射した際の硬化不良の発生を抑えることができる。この配合量が9質量部以下の場合、チオキサントン型光重合開始剤を溶解させやすい。チオキサントン型光重合開始剤の更に好ましい配合量は、0.1質量部以上7質量部以下である。
(Thioxanthone photopolymerization initiator)
On the other hand, the thioxanthone-type photopolymerization initiator is preferably contained in an amount of 0.01 to 9 parts by mass with respect to 100 parts by mass of the radical polymerizable resin containing the components (a), (b) and (c) as essential components. . If the blending amount of the thioxanthone type photopolymerization initiator is 0.01 parts by mass or more, curing by ultraviolet rays is likely to proceed, and the occurrence of poor curing when irradiated with ultraviolet rays can be suppressed. When the amount is 9 parts by mass or less, the thioxanthone type photopolymerization initiator is easily dissolved. A more preferable blending amount of the thioxanthone type photopolymerization initiator is 0.1 parts by mass or more and 7 parts by mass or less.
チオキサントン型光重合開始剤としては、2,4−ジエチルチオキサントン、2−クロロチオキサントン、イソプロピルチオキサントン等を例示できるが、これらに限定されない。 Examples of the thioxanthone type photopolymerization initiator include, but are not limited to, 2,4-diethylthioxanthone, 2-chlorothioxanthone, isopropylthioxanthone, and the like.
(成分(e))
本発明の成分(e)は加熱によりラジカルを発生する熱重合開始剤である。(a),(b),(c)成分が必須成分として含まれるラジカル重合性樹脂100質量部に対して、成分(e)は0.05〜10質量部配合される。成分(e)の配合量が0.05質量部以上で、耐熱性や靭性を向上させるための後硬化時間を短くできる。成分(e)の配合量が10質量部以下であれば、硬化樹脂中の熱重合開始剤残査の溶出による硬化物の接着不良等が起こりにくい。成分(e)の配合量のより好ましい配合量は、0.5〜5質量部である。
(Ingredient (e))
Component (e) of the present invention is a thermal polymerization initiator that generates radicals upon heating. The component (e) is mixed in an amount of 0.05 to 10 parts by mass with respect to 100 parts by mass of the radical polymerizable resin containing the components (a), (b) and (c) as essential components. When the amount of component (e) is 0.05 parts by mass or more, the post-curing time for improving heat resistance and toughness can be shortened. If the amount of component (e) is 10 parts by mass or less, poor adhesion of the cured product due to elution of the residue of the thermal polymerization initiator in the cured resin is unlikely to occur. A more preferable amount of the component (e) is 0.5 to 5 parts by mass.
更には、この(e)成分の10時間の半減期を得るための温度が、40℃以上130℃以下であることが好ましい。この温度が40℃以上であれば樹脂の常温でのライフが長く、また加熱により樹脂粘度を下げたうえでの樹脂混合が容易になるので好ましい。他方、10時間の半減期を得るための温度が130℃以下であれば、紫外線硬化した強化繊維複合材料の耐熱性、靭性をあげるためのポストキュア温度を低くできるために好ましい。更には、10時間の半減期を得るための温度が60℃以上110℃以下がより好ましい。
成分(e)としてはケトンパーオキサイドやパーオキシケタール、ハイドロパーオキサイド、ジアリルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシカーボネート等の化合物またはその誘導体が用いられるが、これらの化合物に限られるものではない。
Furthermore, it is preferable that the temperature for obtaining the half-life of 10 hours of this (e) component is 40 degreeC or more and 130 degrees C or less. If this temperature is 40 ° C. or higher, the life of the resin at room temperature is long, and it is preferable because the resin can be easily mixed after the resin viscosity is lowered by heating. On the other hand, if the temperature for obtaining a half-life of 10 hours is 130 ° C. or less, it is preferable because the post-cure temperature for increasing the heat resistance and toughness of the ultraviolet-cured reinforcing fiber composite material can be lowered. Furthermore, the temperature for obtaining a half-life of 10 hours is more preferably 60 ° C. or higher and 110 ° C. or lower.
As the component (e), compounds such as ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, peroxycarbonates or derivatives thereof may be used. It is not something that can be done.
これらの化合物またはその誘導体の市販品としては、例えば、パーロイルO(日本油脂)、パーロイルL(日本油脂)、パーロイルS(日本油脂)、パーオクタO(日本油脂)、パーロイルSA(日本油脂)、パーヘキサ250(日本油脂)、パーヘキシルO(日本油脂)、ナイパーPMB(日本油脂)、パーブチルO(日本油脂)、ナイパーPMB(日本油脂)、パーブチルO(日本油脂)、ナイパーBMT(日本油脂)、ナイパーBW(日本油脂)、パーブチルIB(日本油脂)、パーヘキサMC(日本油脂)、パーヘキサTMH(日本油脂)、パーヘキサHC(日本油脂)、パーヘキサC(日本油脂)、パーテトラA(日本油脂)、パーヘキシルI(日本油脂)、パーブチルMA(日本油脂)、パーブチル355(日本油脂)、パーブチルL(日本油脂)、パーヘキサ25MT(日本油脂)、パーブチルI(日本油脂)、パーブチルE(日本油脂)、パーヘキシルZ(日本油脂)、パーヘキサV(日本油脂)、パーブチルP(日本油脂)、パークミルD(日本油脂)、パーヘキシルD(日本油脂)、パーヘキサ25B(日本油脂)、パーブチルD(日本油脂)、パーメンタH(日本油脂)、パーヘキシン25B(日本油脂)等を例示することができるがこれらに限るものではない。 Commercially available products of these compounds or derivatives thereof include, for example, Parroyl O (Japanese fats and oils), Parroyl L (Japanese fats and oils), Parroyl S (Japanese fats and oils), Perocta O (Japanese fats and oils), Parroyl SA (Japanese fats and oils), Perhexa 250 (Japanese fats and oils), Perhexyl O (Japanese fats and oils), Nyper PMB (Japanese fats and oils), Perbutyl O (Japanese fats and oils), Nyper PMB (Japanese fats and oils), Perbutyl O (Japanese fats and oils), Nyper BMT (Nippon fats and oils), Nyper BW (Japanese fats and oils), Perbutyl IB (Japanese fats and oils), Perhexa MC (Nippon fats and oils), Perhexa TMH (Nippon fats and oils), Perhexa HC (Japanese fats and oils), Perhexa C (Japanese fats and oils), Pertetra A (Japanese fats and oils), Perhexyl I ( Japanese fats and oils), perbutyl MA (Japanese fats and oils), perbutyl 355 (Japanese fats and oils), perb L (Japanese fats and oils), Perhexa 25MT (Japanese fats and oils), Perbutyl I (Japanese fats and oils), Perbutyl E (Japanese fats and oils), Perhexyl Z (Japanese fats and oils), Perhexa V (Japanese fats and oils), Perbutyl P (Japanese fats and oils), Park mill Examples include D (Japanese fats and oils), Perhexyl D (Japanese fats and oils), Perhexa 25B (Nippon fats and oils), Perbutyl D (Nippon fats and oils), Permenta H (Japanese fats and oils), Perhexine 25B (Japanese fats and oils) and the like. It is not limited.
(重合性樹脂組成物の物性)
必須成分(a)〜(e)を少なくとも含むラジカル重合性樹脂組成物は、320nm−390nmモニターでのピーク照度400mW/cm2の紫外線照射で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して硬化させた樹脂のTgが140℃以上であり、曲げ破断伸度6%以上であることが好ましい。このような320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して硬化させた樹脂のTgが140℃以上であれば、プリプレグを紫外線硬化させた後、後加熱することにより、繊維強化樹脂複合材料のTgを高くすることができるため好ましい。また同様の紫外線硬化条件にて硬化させた樹脂の曲げ破断伸度が6%以上であれば、プリプレグを紫外線硬化させた後、後加熱することにより、繊維強化樹脂複合材料の機械強度が良好になるため好ましい。
(Physical properties of polymerizable resin composition)
The radical polymerizable resin composition containing at least the essential components (a) to (e) is irradiated with ultraviolet light having a peak illuminance of 400 mW / cm 2 on a monitor of 320 nm to 390 nm, and a light amount of 930 mJ / cm 2 is applied to the back surface and the front surface. It is preferable that Tg of the resin cured by irradiation once is 140 ° C. or higher and the bending elongation at break is 6% or higher. Under such conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the Tg of the resin cured by irradiating the back surface and the surface once with an integrated light amount of 930 mJ / cm 2 is 140 ° C. or more. If it exists, it is preferable because the Tg of the fiber-reinforced resin composite material can be increased by post-heating the prepreg after ultraviolet curing. Further, if the bending rupture elongation of the resin cured under the same ultraviolet curing conditions is 6% or more, the fiber reinforced resin composite material has good mechanical strength by post-heating after curing the prepreg with ultraviolet rays. Therefore, it is preferable.
(強化繊維)
本発明で用いられる強化繊維は特に制限されないが、例えば、炭素繊維、黒鉛繊維、アラミド繊維、炭化珪素繊維、アルミナ繊維、ボロン繊維、高強度ポリエチレン繊維、タングステンカーバイド繊維、PBO繊維、ガラス繊維、金属繊維等を用いることができる。また、必要に応じて、これらの複数の強化繊維を組み合わせて用いてもかまわない。
これらの強化繊維のうち、炭素繊維や黒鉛繊維は、強化繊維として用いると比弾性および比強度が良好なため軽量で高強度、高弾性な繊維強化複合材料となり、更には独特の黒い光沢と立体感が表れるため本発明に好適である。
(Reinforced fiber)
The reinforcing fiber used in the present invention is not particularly limited. For example, carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, boron fiber, high-strength polyethylene fiber, tungsten carbide fiber, PBO fiber, glass fiber, metal Fiber etc. can be used. Moreover, you may use combining these some reinforcing fiber as needed.
Among these reinforcing fibers, carbon fibers and graphite fibers, when used as reinforcing fibers, have good specific elasticity and specific strength, so they become lightweight, high-strength, high-elasticity fiber-reinforced composite materials. Since a feeling appears, it is suitable for the present invention.
(サイジング剤)
炭素繊維や黒鉛繊維を強化繊維として用いる場合はサイジング剤として(メタ)アクリレート基およびエポキシ基を分子内に少なくともそれぞれ1個づつ有する化合物を有するサイジング剤を用いると、ラジカル硬化性樹脂を含浸させやすく、更に強化繊維とラジカル重合性樹脂の接着力が高くなるため好ましい。
このような(メタ)アクリレート基およびエポキシ基を主鎖末端にそれぞれ1個づつ有する化合物としては化学式III、化学式IV、化学式VIで表される化合物が例示でき、これらから選ばれる少なくとも1種類以上化合物を、ノニオン系の界面活性剤を用いて水系エマルジョンに調整したものを用いると、ラジカル重合性樹脂が強化繊維に含浸しやすく、強化繊維とラジカル重合性樹脂の接着性が良好になるので好ましい。
更に好ましくは、サイジング剤として、化学式Vで表される両末端にアクリル基およびエポキシ基を有するビスフェノールA型の化合物用いると、強化繊維との接着性およびラジカル硬化性マトリックス樹脂の含浸が良好になるため好ましい。
(Sizing agent)
When carbon fiber or graphite fiber is used as the reinforcing fiber, it is easy to impregnate the radical curable resin by using a sizing agent having a compound having at least one (meth) acrylate group and one epoxy group in the molecule as the sizing agent. Furthermore, it is preferable because the adhesive strength between the reinforcing fiber and the radical polymerizable resin is increased.
Examples of such a compound having one (meth) acrylate group and one epoxy group at the end of the main chain include compounds represented by chemical formula III, chemical formula IV, and chemical formula VI, and at least one compound selected from these compounds It is preferable to use an aqueous emulsion prepared using a nonionic surfactant because the radical polymerizable resin is easily impregnated into the reinforcing fiber and the adhesion between the reinforcing fiber and the radical polymerizable resin is improved.
More preferably, when a bisphenol A type compound having an acrylic group and an epoxy group at both ends represented by the chemical formula V is used as a sizing agent, adhesion to reinforcing fibers and impregnation with a radical curable matrix resin are improved. Therefore, it is preferable.
(強化繊維の形状)
本発明のプリプレグで用いられる強化繊維の形状としては特に制限はなく、強化繊維フィラメントを収束させた強化繊維トウや、強化繊維トウを一方向に引き揃えた一方向材、製織した織物又は短く裁断した強化繊維からなる不織布等、が挙げられるが、強化繊維として織物を用いると外観上の深み、光沢性、織物による幾何学模様の美しさにより意匠性が特に良好になるため好ましい。
(Reinforcing fiber shape)
The shape of the reinforcing fiber used in the prepreg of the present invention is not particularly limited, and a reinforcing fiber tow in which the reinforcing fiber filaments are converged, a unidirectional material in which the reinforcing fiber tows are aligned in one direction, a woven fabric, or a short cut Nonwoven fabrics made of reinforced fibers can be used, but it is preferable to use a woven fabric as the reinforced fiber because the design is particularly good due to the depth of appearance, gloss, and the beauty of the geometric pattern of the woven fabric.
織物の場合は、平織、綾織、朱子織、若しくはノン・クリンプト・ファブリックに代表される、繊維束を一方向に引き揃えたシートや角度を変えて積層したようなシートをほぐれないようにステッチしたステッチングシート、等が例示できる。 In the case of woven fabrics, stitches are made so as not to unravel the sheets of fiber bundles that are aligned in one direction, such as plain weave, twill weave, satin weave, or non-crimp fabric, or sheets that are laminated at different angles. A stitching sheet etc. can be illustrated.
強化繊維の目付け(繊維1m2当たりの重さ)としては特に制限されるものではないが、10g/m2〜650g/m2が好ましい。10g/m2以上の目付けになると繊維幅のムラや目開きが目立ちにくいため意匠性が良好になるので好ましい。650g/m2以下の目付けであれば樹脂の含浸が良好となり、またプリプレグの紫外線硬化性が良好になるので好ましい。この目付けは、更には50〜500g/m2がより好ましく、50〜300g/m2が特に好ましい。 There are no particular restrictions on the reinforcing fibers of basis weight (weight per fiber 1 m 2) but, 10g / m 2 ~650g / m 2 is preferred. A basis weight of 10 g / m 2 or more is preferable because unevenness of the fiber width and openings are less noticeable and the design is improved. A basis weight of 650 g / m 2 or less is preferable because the resin impregnation is good and the ultraviolet curable property of the prepreg is good. The basis weight is more is more preferable 50~500g / m 2, 50~300g / m 2 is particularly preferred.
(プリプレグを得る方法)
ラジカル重合性樹脂と強化繊維とから繊維強化樹脂複合材料用プリプレグを得る方法としては、特に制限されない。例えば、強化繊維フィラメントを収束させた強化繊維トウや強化繊維トウを一方向に引き揃えた一方向材、製織した織物又は短く裁断した強化繊維からなる不織布等の補強基材の片側面もしくは両側面から樹脂を供給し、加熱、加圧して樹脂を補強繊維織物に含侵させてプリプレグを製造する方法が好ましく用いられる。
(Method to obtain prepreg)
The method for obtaining the prepreg for fiber reinforced resin composite material from the radical polymerizable resin and the reinforced fiber is not particularly limited. For example, one side or both sides of a reinforcing base material such as a reinforcing fiber tow in which reinforcing fiber filaments are converged, a unidirectional material in which reinforcing fiber tows are aligned in one direction, a woven fabric, or a nonwoven fabric made of short cut reinforcing fibers. A method of producing a prepreg by supplying a resin from the above, heating and pressing to impregnate the resin into the reinforcing fiber fabric is preferably used.
プリプレグに用いるラジカル重合性樹脂組成物の量は、30質量%〜70質量%が好ましい。樹脂組成物の量が30質量%以上であれば、硬化したプリプレグ表面の光沢が良好になるため好ましく、70質量%以下であれば機械的特性が充分発現されるため好ましい。 The amount of the radical polymerizable resin composition used for the prepreg is preferably 30% by mass to 70% by mass. If the amount of the resin composition is 30% by mass or more, it is preferable because the gloss of the cured prepreg surface becomes good, and if it is 70% by mass or less, the mechanical properties are sufficiently expressed.
以下、本発明を実施例により具体的に説明する。なお、本実施例における評価方法は、以下のとおりである。 Hereinafter, the present invention will be specifically described by way of examples. In addition, the evaluation method in a present Example is as follows.
(樹脂曲げ伸度の測定)
インストロン社製万能試験機を用い、サンプルサイズは厚み2mm、幅8mm、長さ60mmとし、クロスヘッドスピード2mm/min、スパン対厚みの比を16として3点曲げ試験(圧子半径 3.2R、サポート半径 3.2R)を実施し、サンプル破断時点での伸度を破断伸度として記録した。
(Measurement of resin bending elongation)
Using an Instron universal testing machine, the sample size is 2 mm thick, 8 mm wide, 60 mm long, crosshead speed 2 mm / min, span to thickness ratio 16 and 3-point bending test (indenter radius 3.2R, Support radius 3.2R) was performed and the elongation at the time of sample break was recorded as the break elongation.
(Tgの測定)
UBM社製レオメーターG5000を用い、サンプルサイズは幅12mm、長さ30mmとし、測定周波数1.59Hz、5℃ステップ昇温、1min.ホールドモードにてDMA測定を行い。損失弾性率G’’と貯蔵弾性率G’の比tanδの温度依存性を測定した。tanδの温度依存性カーブからtanδのピークを求め、ピークにおける温度をTgとして記録した。
(Measurement of Tg)
A rheometer G5000 manufactured by UBM was used, the sample size was 12 mm wide and 30 mm long, with a measurement frequency of 1.59 Hz, a 5 ° C. step temperature rise, 1 min. Perform DMA measurement in hold mode. The temperature dependence of the ratio tan δ between the loss elastic modulus G ″ and the storage elastic modulus G ′ was measured. The peak of tan δ was determined from the temperature dependence curve of tan δ, and the temperature at the peak was recorded as Tg.
(樹脂及びプリプレグの硬化)
紫外線照射による樹脂及びプリプレグの硬化はFUSION(株)製 LIGHT HAMMER6により実施した。光源とベルト間の距離を104mmに設定した。照度及び光量の測定には株式会社オーク製作所製UV光量計 UV-350をLIGHT HAMMER6のサンプル移動用ベルトに通して測定した。
樹脂の硬化は株式会社オーク製作所製UV光量計 UV-350測定でピーク照度400mW/cm2、積算の光量930mJ/cm2の紫外線を2mmの厚みに調整した樹脂の裏面と表面にそれぞれ1回ずつ照射して実施した。
プリプレグの硬化は株式会社オーク製作所製UV光量計 UV-350測定でピーク照度400mW/cm2、積算の光量1850mJ/cm2の紫外線をプリプレグの裏面と表面にそれぞれ1回ずつ照射して実施した。
(Hardening of resin and prepreg)
Curing of the resin and prepreg by ultraviolet irradiation was carried out by LIGHT HAMMER6 manufactured by FUSION. The distance between the light source and the belt was set to 104 mm. For measurement of illuminance and light intensity, UV light meter UV-350 manufactured by Oak Manufacturing Co., Ltd. was passed through a sample moving belt of LIGHT HAMMER6.
The resin is cured once by UV light meter UV-350 manufactured by Oak Manufacturing Co., Ltd., with a peak illuminance of 400 mW / cm2 and an integrated UV light of 930 mJ / cm2 adjusted to a thickness of 2 mm. Carried out.
Curing of the prepreg was performed by irradiating the back and front surfaces of the prepreg once with ultraviolet rays having a peak illuminance of 400 mW / cm 2 and an integrated light amount of 1850 mJ / cm 2 as measured by UV light meter UV-350 manufactured by Oak Manufacturing Co., Ltd.
以下の実施例及び比較例の樹脂組成物に使用した各成分は、下記の略字で示す通りである。 Each component used for the resin compositions of the following Examples and Comparative Examples is as indicated by the following abbreviations.
(a)成分
アロニックスM−315:トリスアクリロイルオキシエチルイソシアヌレート (東亞合成)
(A) Component Aronix M-315: Trisacryloyloxyethyl isocyanurate (Toagosei)
(b)成分
エポキシエステル3000A:ビスフェノールAジグリシジルエーテルアクリル酸付加物 (共栄社化学)
(B) Component Epoxy ester 3000A: Bisphenol A diglycidyl ether acrylic acid adduct (Kyoeisha Chemical)
(c)成分
カヤラッドHX220:ヒドロキシピバリン酸ネオペンチルグリコールのカプロラクトン付加(m+n=2)のジアクリレート(日本化薬)
(C) Component Kayalad HX220: Caprolactone addition (m + n = 2) diacrylate (Nippon Kayaku) of neopentyl glycol hydroxypivalate
(a),(b),(c)成分以外のラジカル重合性アクリル樹脂
NKオリゴ U−2PHA:イソフォロンジイソシアネート−ヒドロキシエチルアクリレート (新中村化学工業)
Radical polymerizable acrylic resin other than components (a), (b), (c) NK Oligo U-2PHA: Isophorone diisocyanate-hydroxyethyl acrylate (Shin Nakamura Chemical Co., Ltd.)
ニューフロンティアBPE−10:EO変性ビスフェノールAジアクリレート (第一工業製薬) New Frontier BPE-10: EO-modified bisphenol A diacrylate (Daiichi Kogyo Seiyaku)
(d)成分
イルガキュア369:α−アミノアルキルフェノン型光重合開始剤 2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン (チバ・スペシャリティー・ケミカルズ)
(D) Component Irgacure 369: α-aminoalkylphenone type photopolymerization initiator 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (Ciba Specialty Chemicals)
カヤキュアITX: チオキサントン型光重合開始剤 イソプロピル チオキサントン (日本化薬) Kayacure ITX: Thioxanthone-type photopolymerization initiator Isopropyl thioxanthone (Nippon Kayaku)
カヤキュアDETX−S:チオキサントン型光重合開始剤 2,4−ジエチルチオキサントン (日本化薬) Kayacure DETX-S: Thioxanthone photopolymerization initiator 2,4-diethylthioxanthone (Nippon Kayaku)
(e)成分
パーブチルO:t−ブチル2−エチルペルヘキサノエート (日本油脂)
(E) Component Perbutyl O: t-butyl 2-ethyl perhexanoate (Nippon Yushi)
(実施例1)
ラジカル重合性樹脂として、アロニックスM−315を40質量部、エポキシエステル3000A を30質量部、カヤラッドHX220を30質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
Example 1
As a radically polymerizable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of epoxy ester 3000A, 30 parts by mass of Kayarad HX220, 2 parts by mass of Irgacure 369, 0.4 parts by mass of Kayacure ITX, 1 perbutyl O .5 parts by mass was weighed and mixed until the solid content was dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると148℃であった。また硬化物の曲げ破断伸度を測定したところ、8.4%であった。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. It was 148 degreeC when Tg of hardened | cured material was measured. Further, the bending elongation at break of the cured product was measured and found to be 8.4%.
強化繊維として炭素繊維フィラメント12000本を収束してなる炭素繊維(三菱レイヨン製炭素繊維TR50S)を用いた。この炭素繊維束をサイジング剤溶液Aにローラー含浸し、熱風乾燥してサイジング剤附着糸とした。このサイジング剤溶液Aとしては(化5)で表される化合物を主成分とし、ノニオン系の界面活性剤(旭電化社製、商品名F−88)を水を除くサイジング剤成分を基準として20質量%配合し、濃度2質量%の水性エマルジョンに調整したものを使用し、炭素繊維束に対するサイジング剤の塗布量は1.5重量%とした。 Carbon fiber (carbon fiber TR50S manufactured by Mitsubishi Rayon) formed by converging 12,000 carbon fiber filaments was used as the reinforcing fiber. This carbon fiber bundle was impregnated with a sizing agent solution A by roller and dried with hot air to obtain a sizing agent-attached yarn. This sizing agent solution A has a compound represented by (Chemical Formula 5) as a main component, and a nonionic surfactant (trade name F-88, manufactured by Asahi Denka Co., Ltd.) based on the sizing agent component excluding water. What was blended by mass% and adjusted to an aqueous emulsion having a concentration of 2 mass% was used, and the coating amount of the sizing agent on the carbon fiber bundle was 1.5% by weight.
このサイジング剤付着糸を製織して繊維目付け200g/m2の平織の織物とし、前記ラジカル重合性樹脂を樹脂含有率が50質量%となるよう含浸しプリプレグを作製した。 This sizing agent-attached yarn was woven to form a plain weave fabric with a basis weight of 200 g / m 2 , and the radical polymerizable resin was impregnated with a resin content of 50% by mass to prepare a prepreg.
このプリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。
また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgを示した。
上記により得られた成形体をカットし断面を研磨し光学顕微鏡(75倍)にて拡大観察したところ、樹脂の含浸不良、ボイドはほとんど確認されず、良好な成形状態であることが確認された。
When this prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under a condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, a stain of uncured resin on the surface of the molded body There was no sticking out, and it was confirmed that the prepreg had been cured.
Moreover, this molded object hardened | cured with the ultraviolet-ray was post-cured on 150 degreeC and the conditions for 1 hour, and Tg exceeding 150 degreeC was shown when Tg was measured.
When the molded body obtained above was cut, the cross-section was polished and magnified and observed with an optical microscope (75 times), poor resin impregnation and voids were hardly confirmed, and it was confirmed that the molded body was in a good molding state. .
(実施例2)
実施例1と同じ樹脂を用い、この樹脂を含侵させる強化繊維として炭素繊維フィラメント12000本を収束してなる炭素繊維(三菱レイヨン製炭素繊維TR50S)を用いた。この炭素繊維束をサイジング剤溶液Bにローラー含侵し、熱風乾燥してサイジング剤附着糸とした。このサイジング剤溶液Bとしては市販のビスフェノールA型エポキシ樹脂(エピコート828、ジャパンエポキシレジン製)を主成分とした以外は実施例1と同様に調整した。
このサイジング剤付着糸を製織して繊維目付け200g/m2の平織の織物とし、前記ラジカル硬化製樹脂を樹脂含有率が50質量%となるよう含侵させプリプレグを作製した。
(Example 2)
The same resin as in Example 1 was used, and carbon fibers (carbon fiber TR50S manufactured by Mitsubishi Rayon) formed by converging 12,000 carbon fiber filaments were used as reinforcing fibers impregnated with this resin. This carbon fiber bundle was impregnated with the sizing agent solution B by a roller and dried with hot air to obtain a sizing agent-attached yarn. The sizing agent solution B was prepared in the same manner as in Example 1 except that a commercially available bisphenol A type epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin) was used as a main component.
This sizing agent-attached yarn was woven to form a plain weave fabric with a fiber basis weight of 200 g / m 2 , and the curable resin was impregnated with a resin content of 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。
この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgを示した。この成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、炭素繊維束内部での含侵不良や多数のボイドが観察され、樹脂含侵が充分ではなかった。
When the prepreg was irradiated with a light amount of accumulated light amount of 1850 mJ / cm 2 once each on the back surface and the surface under the condition of peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the uncured resin on the surface of the molded body There was no oozing and hardening of the prepreg was confirmed.
The molded body cured with ultraviolet rays was post-cured under conditions of 150 ° C. and 1 hour, and Tg was measured to show Tg exceeding 150 ° C. When this molded body was cut and the cross section was polished and magnified and observed with an optical microscope, poor impregnation and many voids were observed inside the carbon fiber bundle, and resin impregnation was not sufficient.
(比較例1)
ラジカル重合性樹脂として、エポキシエステル3000A を60質量部、カヤラッドHX220を40質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 1)
As radically polymerizable resin, weigh 60 parts by weight of epoxy ester 3000A, 40 parts by weight of Kayarad HX220, 2 parts by weight of Irgacure 369, 0.4 parts by weight of Kayacure ITX, 1.5 parts by weight of perbutyl O, solid content The mixture was stirred until dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると95℃であり耐熱性が不足していることが確認された。また硬化物の曲げ破断伸度を測定したところ、7.2%であった。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. When Tg of the cured product was measured, it was 95 ° C., and it was confirmed that the heat resistance was insufficient. Further, the bending elongation at break of the cured product was measured and found to be 7.2%.
強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂を含有率が50質量%となるよう含浸しプリプレグを作製した。 The same carbon fiber fabric as in Example 1 was used as the reinforcing fiber, and the resin was impregnated so as to have a content of 50% by mass to prepare a prepreg.
このプリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgは確認できなかった。またこの成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、樹脂の含浸不良、ボイドはほとんど確認されず、良好な状態であることが確認された。 When this prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under a condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, a stain of uncured resin on the surface of the molded body There was no sticking out, and it was confirmed that the prepreg had been cured. Further, this molded body cured with ultraviolet rays was post-cured at 150 ° C. for 1 hour, and Tg was measured. As a result, Tg exceeding 150 ° C. could not be confirmed. Moreover, when this molded body was cut, the cross-section was polished and magnified with an optical microscope, the resin impregnation defect and void were hardly confirmed, and it was confirmed to be in a good state.
(比較例2)
ラジカル重合性樹脂として、アロニックスM−315を40質量部、NKオリゴU−2PHA を30質量部、カヤラッドHX220を30質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 2)
As a radical polymerizable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of NK Oligo U-2PHA, 30 parts by mass of Kayarad HX220, 2 parts by mass of Irgacure 369, 0.4 parts by mass of Kayacure ITX, perbutyl O Was weighed and mixed until the solid content was dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると153℃であった。また硬化物の曲げ破断伸度を測定したところ、4.5%であり、靭性の低い樹脂であることが確認された。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. It was 153 degreeC when Tg of hardened | cured material was measured. Moreover, when the bending fracture elongation of the cured product was measured, it was 4.5%, and it was confirmed that the resin had low toughness.
強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂を含有率が50質量%となるよう含浸しプリプレグを作製した。 The same carbon fiber fabric as in Example 1 was used as the reinforcing fiber, and the resin was impregnated so as to have a content of 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgを示した。またこの成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、樹脂の含浸不良、ボイドはほとんど確認されず、良好な状態であることが確認された。 When the prepreg was irradiated with a light amount of accumulated light amount of 1850 mJ / cm 2 once each on the back surface and the surface under the condition of peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the uncured resin on the surface of the molded body There was no oozing and hardening of the prepreg was confirmed. The molded body cured with ultraviolet rays was post-cured under conditions of 150 ° C. and 1 hour, and Tg was measured to show Tg exceeding 150 ° C. Moreover, when this molded body was cut, the cross-section was polished and magnified with an optical microscope, the resin impregnation defect and void were hardly confirmed, and it was confirmed to be in a good state.
(比較例3)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、NKオリゴU−2PHA を30質量部、ニューフロンティアBPE−10を30質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 3)
As a radical curable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of NK Oligo U-2PHA, 30 parts by mass of New Frontier BPE-10, 2 parts by mass of Irgacure 369, 0.4 parts by mass of Kayacure ITX Then, 1.5 parts by mass of perbutyl O was weighed and mixed with stirring until the solid content was dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると125℃であり耐熱性の低い樹脂であることが確認された。また硬化物の曲げ破断伸度を測定したところ、7.8%であった。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. When Tg of the cured product was measured, it was confirmed to be 125 ° C. and low heat resistance resin. Further, the bending elongation at break of the cured product was measured and found to be 7.8%.
強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂の含有率が50質量%となるよう含浸しプリプレグを作製した。 The same carbon fiber fabric as in Example 1 was used as the reinforcing fiber and impregnated so that the resin content was 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgは確認できなかった。またこの成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、含侵不良、ボイドはほとんど確認されず、良好な含侵状態であることが確認された。 When the prepreg was irradiated with a light amount of accumulated light amount of 1850 mJ / cm 2 once each on the back surface and the surface under the condition of peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the uncured resin on the surface of the molded body There was no oozing and hardening of the prepreg was confirmed. Further, this molded body cured with ultraviolet rays was post-cured at 150 ° C. for 1 hour, and Tg was measured. As a result, Tg exceeding 150 ° C. could not be confirmed. Moreover, when this molded body was cut, the cross section was polished and magnified with an optical microscope, the impregnation defect and void were hardly confirmed, and it was confirmed that the impregnation state was good.
(比較例4)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、カヤラッドHX2200を60質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 4)
As a radical curable resin, 40 parts by mass of Aronix M-315, 60 parts by mass of Kayarad HX2200, 2 parts by mass of Irgacure 369, 0.4 parts by mass of Kayacure ITX, 1.5 parts by mass of perbutyl O were measured and solids were measured. Stir and mix until the minutes are dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると131℃であり耐熱性の低い樹脂であることが確認された。また硬化物の曲げ破断伸度を測定したところ、9.0%であった。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. When Tg of the cured product was measured, it was 131 ° C., and it was confirmed that the resin had low heat resistance. Further, the bending elongation at break of the cured product was measured and found to be 9.0%.
強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂の含有率が50質量%となるよう含浸しプリプレグを作製した。 The same carbon fiber fabric as in Example 1 was used as the reinforcing fiber and impregnated so that the resin content was 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgは確認できなかった。またこの成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、含侵不良、ボイドはほとんど確認されず、良好な含侵状態であることが確認された。 When the prepreg was irradiated with a light amount of accumulated light amount of 1850 mJ / cm 2 once each on the back surface and the surface under the condition of peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the uncured resin on the surface of the molded body There was no oozing and hardening of the prepreg was confirmed. Further, this molded body cured with ultraviolet rays was post-cured at 150 ° C. for 1 hour, and Tg was measured. As a result, Tg exceeding 150 ° C. could not be confirmed. Moreover, when this molded body was cut, the cross section was polished and magnified with an optical microscope, the impregnation defect and void were hardly confirmed, and it was confirmed that the impregnation state was good.
(比較例5)
ラジカル硬化性樹脂として、アロニックスM−315を80質量部、カヤラッドHX220を20質量部、イルガキュア369を2質量部、カヤキュアITXを0.4質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 5)
As a radical curable resin, 80 parts by mass of Aronix M-315, 20 parts by mass of Kayarad HX220, 2 parts by mass of Irgacure 369, 0.4 parts by mass of Kayacure ITX, 1.5 parts by mass of perbutyl O were weighed. Stir and mix until the minutes are dissolved.
この樹脂を320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量930mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射して、厚さ2mmとなるように硬化させ、硬化物のTgを測定すると231℃であった。また硬化物の曲げ破断伸度を測定したところ、4.5%であり、靱性の低い樹脂であることが確認された。 The resin was irradiated with a cumulative light amount of 930 mJ / cm 2 once on the back surface and the front surface under conditions of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, and cured to a thickness of 2 mm. It was 231 degreeC when Tg of hardened | cured material was measured. Moreover, when the bending fracture elongation of the cured product was measured, it was 4.5%, and it was confirmed that the resin had low toughness.
強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂の含有率が50質量%となるよう含浸しプリプレグを作製した。 The same carbon fiber fabric as in Example 1 was used as the reinforcing fiber and impregnated so that the resin content was 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面への未硬化樹脂の染み出しはなく、プリプレグの硬化が確認された。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgを示した。またこの成形体をカットし断面を研磨し光学顕微鏡にて拡大観察したところ、含侵不良、ボイドはほとんど確認されず、良好な含侵状態であることが確認された。 When the prepreg was irradiated with a light amount of accumulated light amount of 1850 mJ / cm 2 once each on the back surface and the surface under the condition of peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the uncured resin on the surface of the molded body There was no oozing and hardening of the prepreg was confirmed. Moreover, this molded object hardened | cured with the ultraviolet-ray was post-cured on 150 degreeC and the conditions for 1 hour, and Tg exceeding 150 degreeC was shown when Tg was measured. Moreover, when this molded body was cut, the cross section was polished and magnified with an optical microscope, the impregnation defect and void were hardly confirmed, and it was confirmed that the impregnation state was good.
(比較例6)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、エポキシエステル3000A を30質量部、カヤラッドHX220を30質量部、イルガキュア369を2質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 6)
As a radical curable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of epoxy ester 3000A, 30 parts by mass of Kayarad HX220 and 2 parts by mass of Irgacure 369 were weighed and mixed until the solid content was dissolved.
この樹脂を含侵させる強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂含有率が50質量%となるよう含侵させプリプレグを作製した。 As the reinforcing fiber impregnated with this resin, the same carbon fiber fabric as in Example 1 was used, and impregnated so that the resin content became 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面へ未硬化樹脂が染み出しており、プリプレグの硬化は不充分であった。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ明確なtan δのピークを示さず、Tgを測定できなかった。 When the prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under a condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, uncured resin was stained on the surface of the molded body. The prepreg was insufficiently cured. Further, the molded body cured with ultraviolet rays was post-cured under conditions of 150 ° C. and 1 hour, and Tg was measured. As a result, no clear tan δ peak was shown, and Tg could not be measured.
(比較例7)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、エポキシエステル3000A を30質量部、カヤラッドHX220を30質量部、カヤキュアDETX−Sを2質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 7)
As a radical curable resin, 40 parts by weight of Aronix M-315, 30 parts by weight of epoxy ester 3000A, 30 parts by weight of Kayarad HX220, and 2 parts by weight of Kayacure DETX-S were weighed and mixed until the solid content was dissolved. .
この樹脂を含侵させる強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂含有率が50質量%となるよう含侵させプリプレグを作製した。 As the reinforcing fiber impregnated with this resin, the same carbon fiber fabric as in Example 1 was used, and impregnated so that the resin content became 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面は未硬化の樹脂でべたついており、プリプレグの硬化は不充分であった。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ明確なtan δのピークを示さず、Tgを測定できなかった。 When the prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under the condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the surface of the molded body was uncured resin. It was sticky and the prepreg was insufficiently cured. Further, the molded body cured with ultraviolet rays was post-cured under conditions of 150 ° C. and 1 hour, and Tg was measured. As a result, no clear tan δ peak was shown, and Tg could not be measured.
(比較例8)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、エポキシエステル3000A を30質量部、カヤラッドHX220を30質量部、パーブチルOを1.5質量部計量し、攪拌混合した。
(Comparative Example 8)
As a radical curable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of epoxy ester 3000A, 30 parts by mass of Kayarad HX220, 1.5 parts by mass of perbutyl O were weighed and mixed.
この樹脂を含侵させる強化繊維として実施例1と同じ炭素繊維織物を用い、樹脂含有率が50質量%となるよう含侵させプリプレグを作製した。 As the reinforcing fiber impregnated with this resin, the same carbon fiber fabric as in Example 1 was used, and impregnated so that the resin content became 50% by mass to prepare a prepreg.
この前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面は未硬化の樹脂でべたついており、プリプレグの硬化は不充分であった。また、この紫外線を照射したプリプレグを150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgが確認された。 When the prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under the condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, the surface of the molded body was uncured resin. It was sticky and the prepreg was insufficiently cured. Further, this prepreg irradiated with ultraviolet rays was post-cured at 150 ° C. for 1 hour, and Tg was measured. As a result, Tg exceeding 150 ° C. was confirmed.
(比較例9)
ラジカル硬化性樹脂として、アロニックスM−315を40質量部、エポキシエステル3000A を30質量部、カヤラッドHX220を30質量部、イルガキュア369を2質量部、パーブチルOを1.5質量部計量し、固形分が溶解するまで攪拌混合した。
(Comparative Example 9)
As a radical curable resin, 40 parts by mass of Aronix M-315, 30 parts by mass of epoxy ester 3000A, 30 parts by mass of Kayarad HX220, 2 parts by mass of Irgacure 369, 1.5 parts by mass of perbutyl O were measured, and the solid content The mixture was stirred until dissolved.
この樹脂を含侵させる強化繊維として実施例1と同じ炭素繊維織物を用い、前記ラジカル硬化製樹脂を樹脂含有率が50質量%となるよう含侵させプリプレグを作製した。 As the reinforcing fiber impregnated with this resin, the same carbon fiber fabric as in Example 1 was used, and the radical curable resin was impregnated so that the resin content was 50% by mass to prepare a prepreg.
前記プリプレグを320nm−390nmモニターでのピーク照度400mW/cm2の条件で、積算光量1850mJ/cm2の光量を裏面と表面にそれぞれ1回ずつ照射したところ、成形体表面へ未硬化樹脂が染み出しており、プリプレグの硬化は不充分であった。また、この紫外線にて硬化した成形体を150℃、1時間の条件にて後硬化し、Tgを測定したところ150℃を超えるTgが確認された。 When the prepreg was irradiated with a light amount of 1850 mJ / cm 2 on the back surface and the surface once each under a condition of a peak illuminance of 400 mW / cm 2 on a 320 nm-390 nm monitor, uncured resin oozes out to the surface of the molded body. The prepreg was not sufficiently cured. Further, this molded body cured with ultraviolet rays was post-cured at 150 ° C. for 1 hour, and Tg was measured. As a result, Tg exceeding 150 ° C. was confirmed.
上記した比較例および実施例により得られた結果を、表1および表2にまとめて示す。これらの表においては、紫外線照射によるプリプレグ硬化性の判断結果として下記の手法により判断した。
表面が硬化しており、硬化したプリプレグ表面を指で力を加えても未硬化樹脂の染み出しによるべた付きが出ないものを○とした。表面は硬化しているものの、硬化したプリプレグ表面に指で力を加えると内部の未硬化樹脂が表面に染み出すため、ベタつきが感じられ、内部が未硬化と判断されたものを△とした。紫外線照射後のプリプレグ表面を触るとべとつきが残っており、明らかに樹脂が未硬化と判断されるものを×として、表1及び表2中に表記した。
The results obtained by the comparative examples and examples are summarized in Tables 1 and 2. In these tables, judgment was made by the following method as a judgment result of prepreg curability by ultraviolet irradiation.
A case where the surface was cured and no stickiness due to exudation of the uncured resin even when a force was applied to the surface of the cured prepreg with a finger was rated as ◯. Although the surface was hardened, when force was applied to the hardened prepreg surface with a finger, the internal uncured resin oozed out to the surface, so that a sticky feeling was felt and the internal was judged to be uncured was evaluated as Δ. When the surface of the prepreg after UV irradiation was touched, stickiness remained, and those in which the resin was clearly judged to be uncured were marked as x in Tables 1 and 2.
また、後硬化後の耐熱性測定の結果として、Tgが150℃以上のものは○、150℃に満たないものは×として、表1および表2中に表記した。 Moreover, as a result of the heat resistance measurement after post-curing, those having a Tg of 150 ° C. or higher are shown in Tables 1 and 2 as “◯” and those having a Tg of less than 150 ° C.
樹脂組成物の強化繊維への含侵性を以下の方法で判断した。
まず、得られた繊維強化複合材料をダイヤモンドカッターにて切断し、その切断面を、サンドペーパー及びアルミナ微粒子を用いて切断面を研磨することによって、切断傷及び研磨傷を取り除いた後、その研磨した面を光学顕微鏡にて75倍の倍率で拡大観察を行なった。切断研磨したプリプレグ断面に、多数のボイドや未含侵部分が見られたものは△、ボイドや未含侵部分がほとんど見られず、良好な含侵状態を示したものは○とし、表1及び表2中に表記した。
The impregnation property of the resin composition into the reinforcing fibers was determined by the following method.
First, the obtained fiber-reinforced composite material is cut with a diamond cutter, and the cut surface is polished by sandpaper and alumina fine particles to remove the cut and abrasive scratches, and then the polishing is performed. The observed surface was magnified and observed with an optical microscope at a magnification of 75 times. In the cut and polished prepreg cross section, a large number of voids and non-impregnated portions were observed. And in Table 2.
Claims (4)
(a)化学式Iで示されるトリ(メタ)アクリレート化合物30−50質量部
(b)ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物20−50質量部
(c)化学式IIで示されるジ(メタ)アクリレート化合物10−35質量部
(d)α−アミノアルキルフェノン型光重合開始剤及びチオキサントン型光重合開始剤を合わせて0.05−10質量部、および
(e)10時間の半減期を得るための温度が60℃以上110℃以下の熱重合開始剤0.05−10質量部を含むラジカル重合性樹脂組成物である繊維強化樹脂複合材料用プリプレグ。 A prepreg for a fiber reinforced resin composite material comprising at least a reinforcing fiber and a radical polymerizable resin composition; the radical polymerizable resin composition comprises the following components (a), (b), (c):
(A) 30-50 parts by mass of a tri (meth) acrylate compound represented by Formula I
(B) 20-50 parts by mass of (meth) acrylic acid adduct of bisphenol A diglycidyl ether (c) 10-35 parts by mass of di (meth) acrylate compound represented by chemical formula II
(D) 0.05-10 parts by mass of the α-aminoalkylphenone type photopolymerization initiator and the thioxanthone type photopolymerization initiator in combination, and
( E) A prepreg for a fiber reinforced resin composite material, which is a radical polymerizable resin composition containing 0.05 to 10 parts by mass of a thermal polymerization initiator having a temperature for obtaining a half-life of 10 hours of 60 ° C. or higher and 110 ° C. or lower .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346583A JP4634781B2 (en) | 2004-11-30 | 2004-11-30 | Prepreg for fiber reinforced resin composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346583A JP4634781B2 (en) | 2004-11-30 | 2004-11-30 | Prepreg for fiber reinforced resin composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006152161A JP2006152161A (en) | 2006-06-15 |
JP4634781B2 true JP4634781B2 (en) | 2011-02-16 |
Family
ID=36630831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346583A Active JP4634781B2 (en) | 2004-11-30 | 2004-11-30 | Prepreg for fiber reinforced resin composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634781B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4979318B2 (en) * | 2005-10-07 | 2012-07-18 | 三菱レイヨン株式会社 | Radical polymerizable resin composition |
JP5584553B2 (en) * | 2010-08-11 | 2014-09-03 | 積水化学工業株式会社 | Curable composition and transparent composite sheet |
US9365685B2 (en) | 2012-02-28 | 2016-06-14 | Ut-Battelle, Llc | Method of improving adhesion of carbon fibers with a polymeric matrix |
WO2015060458A1 (en) * | 2013-10-25 | 2015-04-30 | 日産化学工業株式会社 | Polymerizable composition containing perfluoropolyether having hydroxyl group |
WO2017110446A1 (en) | 2015-12-21 | 2017-06-29 | Dic株式会社 | Prepreg and molded article |
JP6260754B1 (en) | 2016-03-24 | 2018-01-17 | Dic株式会社 | Prepregs and molded products |
JPWO2020085413A1 (en) * | 2018-10-25 | 2021-09-09 | 積水化学工業株式会社 | Photoreactive composition |
US20230108269A1 (en) | 2020-03-17 | 2023-04-06 | Dic Corporation | Prepreg and molded product |
TW202311387A (en) | 2021-05-24 | 2023-03-16 | 日商Dic股份有限公司 | Prepreg, method for producing prepreg, and molded article |
CN115748253B (en) * | 2022-12-20 | 2024-03-22 | 武汉纺织大学 | Preparation method and application method of photo-curing carbon fiber sizing agent |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03146528A (en) * | 1989-11-01 | 1991-06-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Method for molding fiber-reinforced plastic |
JPH07507836A (en) * | 1993-03-24 | 1995-08-31 | ロックタイト コーポレイション | Fiber/resin composition and its preparation method |
JPH10110048A (en) * | 1996-10-08 | 1998-04-28 | Dainippon Ink & Chem Inc | Patterned prepreg and frp molding made thereof |
JPH10293402A (en) * | 1997-04-21 | 1998-11-04 | Mitsubishi Rayon Co Ltd | Photosensitive resin composition, color filter and liquid crystal display device using that, and production of color filter and liquid crystal display device |
JP2004307851A (en) * | 2003-03-26 | 2004-11-04 | Sumitomo Bakelite Co Ltd | Optical sheet |
-
2004
- 2004-11-30 JP JP2004346583A patent/JP4634781B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03146528A (en) * | 1989-11-01 | 1991-06-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Method for molding fiber-reinforced plastic |
JPH07507836A (en) * | 1993-03-24 | 1995-08-31 | ロックタイト コーポレイション | Fiber/resin composition and its preparation method |
JPH10110048A (en) * | 1996-10-08 | 1998-04-28 | Dainippon Ink & Chem Inc | Patterned prepreg and frp molding made thereof |
JPH10293402A (en) * | 1997-04-21 | 1998-11-04 | Mitsubishi Rayon Co Ltd | Photosensitive resin composition, color filter and liquid crystal display device using that, and production of color filter and liquid crystal display device |
JP2004307851A (en) * | 2003-03-26 | 2004-11-04 | Sumitomo Bakelite Co Ltd | Optical sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2006152161A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768893B2 (en) | Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same | |
JP6260754B1 (en) | Prepregs and molded products | |
CN111133040B (en) | Resin composition for prepreg, and molded article | |
JP4634781B2 (en) | Prepreg for fiber reinforced resin composite material | |
WO2011037239A1 (en) | Fiber-reinforced composite material | |
WO2017110446A1 (en) | Prepreg and molded article | |
JP6610982B2 (en) | Prepreg resin composition, prepreg and molded product | |
JP7014348B2 (en) | Prepreg and molded products | |
WO2021106588A1 (en) | Resin composition for prepreg, prepreg and molded article | |
JP2003105109A (en) | Method for manufacturing molded article | |
JPWO2019142803A1 (en) | Matrix resin, intermediate materials and molded products | |
JP6150034B1 (en) | Prepregs and molded products | |
JP5080759B2 (en) | Radical polymerizable resin composition, prepreg and fiber reinforced composite material | |
JP2013053266A (en) | Molding material and molding | |
JP5399141B2 (en) | RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, RADICAL POLYMERIZABLE PREPREG AND METHOD FOR PRODUCING THE SAME | |
JP4979318B2 (en) | Radical polymerizable resin composition | |
WO2019131101A1 (en) | Resin composition for carbon fiber-reinforced plastic molding, molding material, molded article, and production method for molded article | |
JP7167976B2 (en) | Epoxy resin composition, method for producing molding material, and method for producing fiber-reinforced composite material | |
JP6866936B2 (en) | Sheet molding compound and molded products | |
JP5006017B2 (en) | Method for producing resin molded product and method for producing fiber-reinforced composite material | |
JP5601487B2 (en) | Prepreg and fiber-reinforced composite material cured from the same | |
JP2011074223A (en) | Method for producing fiber-reinforced resin composite material | |
JP5283912B2 (en) | Radical polymerizable resin composition | |
WO2023199692A1 (en) | Resin composition for prepregs, prepreg and molded article | |
WO2021261196A1 (en) | Radical curable resin composition, fiber-reinforced molding material, and molded article using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101119 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4634781 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |