Nothing Special   »   [go: up one dir, main page]

JP4615196B2 - High Cr ferritic heat resistant steel - Google Patents

High Cr ferritic heat resistant steel Download PDF

Info

Publication number
JP4615196B2
JP4615196B2 JP2003190757A JP2003190757A JP4615196B2 JP 4615196 B2 JP4615196 B2 JP 4615196B2 JP 2003190757 A JP2003190757 A JP 2003190757A JP 2003190757 A JP2003190757 A JP 2003190757A JP 4615196 B2 JP4615196 B2 JP 4615196B2
Authority
JP
Japan
Prior art keywords
less
resistant steel
ferritic heat
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003190757A
Other languages
Japanese (ja)
Other versions
JP2005023378A (en
Inventor
利夫 藤田
広治 田村
恭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003190757A priority Critical patent/JP4615196B2/en
Publication of JP2005023378A publication Critical patent/JP2005023378A/en
Application granted granted Critical
Publication of JP4615196B2 publication Critical patent/JP4615196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフェライト系耐熱鋼に係り、特に発電効率を向上させた超々臨界圧火力プラントに好適なボイラ鋼管用高強度鋼に関するものである。
【0002】
【従来の技術】
近年、火力発電プラントでは二酸化炭素の排出量削減等、地球規模の環境問題を背景としてプラント効率向上のために蒸気条件の高温高圧化が進められており、現在得られる最高の蒸気温度である600℃程度の蒸気温度から、さらに究極的には650℃程度の蒸気温度を達成できるプラントの開発研究が種々進められている。このような蒸気温度の上昇に伴い、ボイラ高温耐圧部の伝熱管には従来使用されてきたフェライト系耐熱鋼に比較して、耐食性と高温強度の優れたオーステナイト系耐熱鋼が多く使われるようになってきた。しかし、これらオーステナイト系耐熱鋼はフェライト系耐熱鋼に比べて線膨張係数が高く、熱伝達率が小さいことから、管寄せや配管のような大径厚肉管に使用すると大きな熱応力が発生して熱疲労による損傷を受けやすいという問題があり、また材料費や加工費の上昇による経済的な問題もあった。このため高温強度が高く、耐食性も良好な新しいフェライト系耐熱鋼の開発が望まれていた。このようなフェライト系耐熱鋼の例としては、従来の9%Cr1%MoNbV鋼をベースにクロム(Cr)を増加し、タングステン(W)とコバルト(Co)等の合金元素を添加して高温強度の改善を図った特許第2528767号の発明がある。
また、本発明者らは、先に長時間クリープ破断強度の優れた高強度フェライト系耐熱鋼を発明して特許出願した(特開2002−180208号公報)。
【0003】
【特許文献1】
特許第2528767号
【0004】
【特許文献2】
特開2002−180208号公報
【0005】
【発明が解決しようとする課題】
しかしながら、650℃付近の蒸気温度となるボイラで使用することを考えた場合、フェライト系耐熱鋼は多くのWを含有するため、長時間使用していると脆弱な金属間化合物を形成し、長時間クリープ破断強度を低下させる。そのため、前記提案された合金では、まだ不十分であり、さらに高温強度が高く、しかも高温長時間にわたって強度の安定したフェライト系耐熱鋼が必要である。
【0006】
また、先に特許出願した本発明者の耐熱鋼は、9.0〜13.0%Crのフェライト系耐熱鋼であるが、そのクリープ破断強度から630℃が使用上限温度であり、650℃まで使用可能なフェライト系耐熱鋼に改良することが求められている。
【0007】
本発明の課題は、従来材に比べてさらに長時間クリープ破断強度の優れた高強度フェライト系耐熱鋼を提供することにある。
また、本発明の課題は、先に特許出願した本発明者の耐熱鋼と同等又はそれ以上の性能を発揮する高強度フェライト系耐熱鋼を提供することにある。
【0008】
【課題を解決するための手段】
本発明の上記課題は次の構成により解決される。
すなわち、請求項1記載の発明は、重量%で、炭素(C)0.01〜0.035%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.01〜0.5%、クロム(Cr)8.5%〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)0.5〜3.0、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.01〜0.1%、コバルト(Co)0.5〜5.0%、窒素(N)0.005〜0.1%、ホウ素(B)0.001〜0.01%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下、さらにMo%+1/2W%の量を1.3以上、かつ以下の式
Cr%+6Si%+4Mo%+1.5W%+11V%+5Nb%+12Al%
−40C%−30N%−4Ni%−2Mn%−Cu%−2Co%
により計算されたCr当量が10%以下に制限され、残部がFeである成分で、調質熱処理により得られる焼戻しマルテンサイト単相組織からなることを特徴とする高Crフェライト系耐熱鋼である。
【0009】
また、請求項2記載の発明は、重量%で、炭素(C)0.01〜0.035%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.01〜0.5%、クロム(Cr)8.5〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)0.5〜3.0、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.01〜0.1%、コバルト(Co)0.5〜5.0%、窒素(N)0.005〜0.1%、ホウ素(B)0.001〜0.01%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下、さらにMo%+1/2W%の量を1.3以上で、以下の式
Cr%+6Si%+4Mo%+1.5W%+11V%+5Nb%+12Al%
−40C%−30N%−4Ni%−2Mn%−Cu%−2Co%
により計算されたCr当量が10%超13%以下になるように成分が制限され、残部がFeである焼戻しマルテンサイト組織及び体積率で15%以下のδフェライト組織を含む2相組織からなることを特徴とする高Crフェライト系耐熱鋼である。
【0010】
【作用】
以下、本発明におけるフェライト系耐熱鋼の各成分の含有率の限定理由について説明する。
Alは本発明では最も重要なフェライト系耐熱鋼の添加元素であり、脱酸剤及び結晶粒微細化剤として添加される。しかし、Alは強窒化物形成元素であり、余剰のAlはクリープ強度に有効に働く窒素を固着させることにより、フェライト系耐熱鋼の長時間クリープ強度を低下させる作用がある。また、AlはWを主体とする脆弱な金属間化合物であるラーベス相の析出を促進し、結晶粒界への析出を招いてフェライト系耐熱鋼の長時間側のクリープ破断強度を低下させる。特にAlの含有率が0.002wt%を超えると650℃付近の高温域での1万時間以上のフェライト系耐熱鋼のクリープ強度及びクリープ破断延性を著しく低下させることが判明した。
【0011】
したがって、Alの含有率の上限を0.002%とする。Alの含有率をこのように極低レベルに抑えることは非常に困難であったが、近年真空炭素脱酸法で極低Alの鋼を製造することが可能になった。
【0012】
SiはAlと同様に脱酸材としての効果を有し、介在物の生成を回避し、さらにボイラ材として必要な耐水蒸気酸化性を確保するために最低0.20%は必要であるが、Siを多量に添加するとラーベス相の生成が促され、また粒界偏析等によって延性を低下させるために、上限を1.0wt%とするが、望ましい含有率は0.25〜0.6%である。
【0013】
Coは本発明のフェライト系耐熱鋼を特徴づける重要な添加元素である。Coはオーステナイト形成元素であって、δフェライトの生成を抑制するとともに、析出物を安定化させるので、本発明においては0.5%以上のCoを添加することで合金の高温強度が著しく改善される。これはWとの相互作用によるものと考えられ、Wを0.5%以上含む本発明の合金において特徴的な現象である。一方、5.0%を超える過度のCoを添加すると、析出物の凝集粗大化を促進し、得られる鋼の延性が低下する等の悪影響が生じるので0.5〜5.0%とするが、望ましくは0.5〜3.0%の含有率とする。
【0014】
Cは焼入れ性を確保し、また焼戻し過程でM236型炭化物を析出させて高温強度を高めるために不可欠の添加元素とされていたが、高Crフェライト系耐熱鋼においてCを多く添加するとM236型炭化物を過度に析出させてマトリックスの強度を低下させて、特に650℃でのクリープ破断強度を低下させることが分かった。図1に温度650℃で1000時間のクリープ破断強度(内挿値)に及ぼす炭素(C)含有量の影響を調べた結果を示すが、C量を0.10%以下にすると650℃でのクリープ破断強度は高くなる。このため、Cの含有率の上限は0.10%とする。しかし、焼ならし熱処理においてオーステナイト相を安定化させて焼入れ性を確保するためには、0.01%の含有量が必要であり、実用上0.01〜0.08%に含有率を限定する。
【0015】
Mnはδフェライトの生成を抑制し、M236型炭化物の析出を促進する構成元素であり、最低0.05%の含有率にする必要があるが、1.5%を超えると耐酸化性を劣化させるので、0.05〜1.5%に含有率を限定する。
【0016】
Niはδフェライトの生成を抑制して靭性を付与する添加元素であり、最低0.01%必要であるが、0.5%を超えて添加すると600℃以上のクリープ破断強度を低下させるので、0.01〜0.5%に含有率を限定する。
【0017】
Crは耐酸化性を付与し、M236型炭化物を析出させて高温強度を高めるために不可欠の添加元素であり、最低8.5%を必要とするが、13.0%を超えると、他の添加元素の量によっては、δフェライト相の生成量が多くなり、高温強度および靭性を低下させるので8.5〜13.0%に含有率を限定する。
【0018】
MoはM236型炭化物の微細析出を促進して凝集を妨げる作用があり、このため高温強度を長時間保持するのに有効で、最低0.05%の添加を必要とするが、1.0wt%以上になるとδフェライトを生成しやすくするので0.05〜1.0%に含有率を限定する。望ましい含有率は0.05〜0.5%で、より好ましくは0.1〜0.3%である。
【0019】
WはMo以上にM236型炭化物の凝集粗大化を抑制する作用が強く、またマトリックスを固溶強化するので高温強度の向上に有効であり、最低0.5%の添加を必要とするが、3.0%を超えるとδフェライトやラーベス相を生成しやすくなり、逆に高温強度を低下させるので、0.5〜3.0%の含有率で使用する。WとMoは複合してクリープ破断強度に影響することから、単独の含有率とともに、Mo%+1/2W%の値を制限する。Mo%+1/2W%の値を1.3以上にすると、クリープ破断強度の向上に有効であることから、Mo%+1/2W%の値は1.3以上とする。
【0020】
Vは、Vの炭窒化物を析出して高温強度を高めるのに有効であり、最低0.1wt%の添加を必要とするが、0.3%を超えると炭素を過度に固定し、M236型炭化物の析出量を減じて逆に高温強度を低下させるので、実用上0.1〜0.3%に含有率を限定する。
【0021】
Nbは、NbCを生成して結晶粒の微細化に役立ち、また一部は焼入れの際に固溶して焼戻し過程でNbCを析出し、高温強度を高める作用があり、最低0.01%必要であるが、0.1%を超えるとVと同様に炭素を過度に固定してM236型炭化物の析出量を減少させ、高温強度の低下を招くので、0.01〜0.1%の含有率に制限する。
【0022】
NはVの窒化物を析出させたり、また固溶した状態でMoやWと共同で侵入型固溶元素と置換型固溶元素の相互作用によって高温強度を高める作用があり、最低0.005%は必要であるが、0.1%を超えると延性を低下させるので、0.005〜0.1%に含有率を限定する。
【0023】
CuはCoと同様にδフェライトの生成を抑制する作用を有するが、600℃以上で長時間クリープ破断強度を低下させる場合があるので、含有率を0.01%以下に制限する。
【0024】
Bは粒界強化作用とM236中に固溶し、M236型炭化物の凝集粗大化を抑制する作用により高温強度を高める効果があり、最低0.001%添加すると有効であるが、0.010%を超えると溶接性や鍛造性を阻害するので、0.001〜0.010%に含有率を限定する。
【0025】
本発明のフェライト系耐熱鋼は溶解、鍛造後に1030〜1080℃の温度での焼きならし及び750〜800℃での焼戻しを行い、焼戻しマルテンサイト組織として使用する。靱性確保の観点からは請求項1記載の発明の耐熱鋼である焼戻しマルテンサイト組織単相とすることが望ましいが、高温用ボイラ部材として用いる際にある程度の靱性低下が許容される場合は、請求項2記載の発明の耐熱鋼であるCrやSi等のフェライト形成元素を上記制限範囲内で多めに設定してδフェライトを析出させてもよい。この場合、靱性とクリープ破断強度の点からもδフェライトは体積率で15%以下になるように限定する。
【0026】
本発明はクリープ破断強度の高いフェライト系耐熱鋼を提供するものであって、本発明の鋼の使用目的に応じて種々の製造方法を採ることが可能であり、鋼管のみならず鋼板としても使用できる。
【0027】
【発明の実施の形態】
本発明の実施の形態を説明する。表1に示す化学組成を有する本発明になるフェライト形耐熱鋼と比較鋼を真空誘導溶解炉にて溶製し、各々50kgのインゴットに鋳造した。熱間鋳造によって厚さ20mmの板とした後、1050℃×60分の焼きならし及び780℃×60分の焼戻しを施し、クリープ破断試験を実施した。
【0028】
【表1】

Figure 0004615196
【0029】
クリープ破断試験の結果から推定した650℃における10万時間クリープ破断強度を表2に示す。本発明になるフェライト系耐熱鋼(a鋼、b鋼)はC、Mo、W、Ni他の合金元素含有率の最適化に加え、Alの含有率を極低レベルに制限している結果、比較鋼(c鋼、d鋼)および既存フェライト系耐熱鋼(e鋼)に比べて著しくクリープ破断強度が改善されている。
【0030】
なお、a鋼については1080℃×60分の焼きならし及び780℃×60分の焼戻しを施し、クリープ破断試験を実施したが、その結果650℃10万時間のクリープ破断強度の外挿値は105MPaであり、焼ならし温度の上昇によって更に高いクリープ破断強度を得られる。
【0031】
【表2】
Figure 0004615196
【0032】
以上のように、本実施の形態におけるフェライト系耐熱鋼は、厚肉大径管材のみならず小径の伝熱管材としても用いることができ、特に蒸気温度が650℃前後の超々臨界圧ボイラの過熱器管寄せや主蒸気管材に好適である。
【0033】
【発明の効果】
本発明によるフェライト系耐熱鋼は従来のフェライト系耐熱鋼に比べて著しく高温強度を高め、かつ長時間の使用においても安定した強度を有することから、超々臨界圧ボイラの高温耐圧部に適用すれば蒸気温度を650℃前後に高めることが可能となって火力発電のプラント効率を向上でき、石炭焚火力発電プラントの石炭消費量低減及びCO2排出量削減に顕著な効果が得られる。
【図面の簡単な説明】
【図1】 フェライト系耐熱鋼における温度650℃で1000時間のクリープ破断強度(内挿値)に及ぼす炭素(C)含有量の影響を調べた結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic heat-resistant steel, and more particularly to a high-strength steel for boiler steel pipes suitable for an ultra-supercritical thermal power plant with improved power generation efficiency.
[0002]
[Prior art]
In recent years, high-temperature and high-pressure steam conditions have been promoted in order to improve plant efficiency against the background of global environmental problems such as reduction of carbon dioxide emissions in thermal power plants, and the highest steam temperature currently available is 600. Various researches are underway to develop plants that can achieve a steam temperature of about 650 ° C. from a steam temperature of about ℃. As the steam temperature rises, austenitic heat-resistant steels with superior corrosion resistance and high-temperature strength are used more frequently in the heat transfer tubes of boiler high-temperature pressure-resistant parts than conventional ferritic heat-resistant steels. It has become. However, these austenitic heat-resisting steels have a higher coefficient of linear expansion than ferritic heat-resisting steels and a low heat transfer coefficient. Therefore, when they are used for large-diameter thick-walled pipes such as headers and pipes, large thermal stresses are generated. In addition, there is a problem of being easily damaged by thermal fatigue, and there is also an economic problem due to an increase in material costs and processing costs. For this reason, development of a new ferritic heat-resistant steel having high high-temperature strength and good corrosion resistance has been desired. As an example of such a ferritic heat-resistant steel, chromium (Cr) is increased based on the conventional 9% Cr1% MoNbV steel, and alloying elements such as tungsten (W) and cobalt (Co) are added to increase the high temperature strength. There is an invention of Japanese Patent No. 2528767 which improves the above.
Further, the present inventors previously invented a high strength ferritic heat resistant steel having excellent long-term creep rupture strength and filed a patent application (Japanese Patent Laid-Open No. 2002-180208).
[0003]
[Patent Document 1]
Patent No. 2528767 [0004]
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-180208
[Problems to be solved by the invention]
However, when considering use in a boiler having a steam temperature near 650 ° C., ferritic heat-resistant steel contains a lot of W, and forms a brittle intermetallic compound when used for a long time. Reduces the time creep rupture strength. Therefore, the proposed alloy is still insufficient, and there is a need for a ferritic heat resistant steel having high high temperature strength and stable strength over a long period of time at high temperatures.
[0006]
In addition, the inventor's heat-resistant steel, which was previously filed as a patent application, is a 9.0 to 13.0% Cr ferritic heat-resistant steel. There is a need to improve the ferritic heat-resistant steel that can be used.
[0007]
An object of the present invention is to provide a high-strength ferritic heat-resisting steel that has an excellent creep rupture strength for a longer time than conventional materials.
Another object of the present invention is to provide a high-strength ferritic heat-resistant steel that exhibits performance equivalent to or higher than that of the inventor's heat-resistant steel filed earlier.
[0008]
[Means for Solving the Problems]
The above-described problems of the present invention are solved by the following configuration.
That is, the invention of claim 1, wherein, in weight percent, carbon (C) 0.01 to 0.035%, silicon (Si) 0.20 to 1.0%, manganese (Mn) 0.05 to 1. 5%, nickel (Ni) 0.01-0.5% , chromium (Cr) 8.5% -13.0% , molybdenum (Mo) 0.05-0.5 %, tungsten (W) 0.5 -3.0, vanadium (V) 0.10-0.30%, niobium (Nb) 0.01-0.1%, cobalt (Co) 0.5-5.0%, nitrogen (N) 0. 005 to 0.1%, boron (B) 0.001 to 0.01%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, and Mo% + 1 / 2W% 1.3 or more and the following formula Cr% + 6Si% + 4Mo% + 1.5W% + 11V% + 5Nb% + 12Al%
-40C% -30N% -4Ni% -2Mn% -Cu% -2Co%
Is a high Cr ferritic heat resistant steel characterized in that it is composed of a tempered martensite single-phase structure obtained by tempering heat treatment, with the Cr equivalent calculated by the above-mentioned being limited to 10% or less and the balance being Fe.
[0009]
Further, an invention according to claim 2, wherein, in weight percent, carbon (C) 0.01 to 0.035%, silicon (Si) 0.20 to 1.0%, manganese (Mn) 0.05 to 1. 5%, nickel (Ni) 0.01-0.5% , chromium (Cr) 8.5-13.0% , molybdenum (Mo) 0.05-0.5 %, tungsten (W) 0.5- 3.0, vanadium (V) 0.10 to 0.30%, niobium (Nb) 0.01 to 0.1%, cobalt (Co) 0.5 to 5.0%, nitrogen (N) 0.005 -0.1%, boron (B) 0.001-0.01%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, and further the amount of Mo% + 1 / 2W% is 1 .3 or more, the following formula Cr% + 6Si% + 4Mo% + 1.5W% + 11V% + 5Nb% + 12Al%
-40C% -30N% -4Ni% -2Mn% -Cu% -2Co%
The component is limited so that the Cr equivalent calculated by the above becomes more than 10% and 13% or less, and the balance is composed of a two-phase structure including a tempered martensite structure with Fe and a δ ferrite structure with a volume ratio of 15% or less. Is a high Cr ferritic heat resistant steel.
[0010]
[Action]
Hereinafter, the reasons for limiting the content of each component of the ferritic heat resistant steel in the present invention will be described.
Al is the most important additive element of ferritic heat resistant steel in the present invention, and is added as a deoxidizer and a grain refiner. However, Al is a strong nitride-forming element, and excess Al has the effect of reducing the long-term creep strength of ferritic heat-resistant steel by fixing nitrogen that works effectively on the creep strength. Further, Al promotes the precipitation of the Laves phase, which is a brittle intermetallic compound mainly composed of W, and causes precipitation to the grain boundaries, thereby reducing the long-term creep rupture strength of the ferritic heat resistant steel. In particular, it has been found that when the Al content exceeds 0.002 wt%, the creep strength and creep rupture ductility of a ferritic heat resistant steel of 10,000 hours or more in a high temperature region near 650 ° C. are significantly reduced.
[0011]
Therefore, the upper limit of the Al content is set to 0.002%. Although it has been very difficult to suppress the Al content to such an extremely low level, it has recently become possible to produce extremely low Al steel by a vacuum carbon deoxidation method.
[0012]
Si has an effect as a deoxidizing material like Al, avoids the formation of inclusions, and further requires 0.20% in order to ensure the steam oxidation resistance necessary as a boiler material, When Si is added in a large amount, the formation of a Laves phase is promoted, and in order to reduce ductility due to grain boundary segregation or the like, the upper limit is made 1.0 wt%, but the desirable content is 0.25 to 0.6% is there.
[0013]
Co is an important additive element that characterizes the ferritic heat resistant steel of the present invention. Co is an austenite forming element and suppresses the formation of δ ferrite and stabilizes precipitates. Therefore, in the present invention, the addition of 0.5% or more of Co significantly improves the high temperature strength of the alloy. The This is considered to be due to the interaction with W and is a characteristic phenomenon in the alloy of the present invention containing W of 0.5% or more. On the other hand, if excessive Co exceeding 5.0% is added, the aggregation and coarsening of precipitates is promoted, and adverse effects such as a decrease in the ductility of the resulting steel occur. The content is preferably 0.5 to 3.0%.
[0014]
C has been considered an indispensable additive element for ensuring hardenability and precipitating M 23 C 6 type carbides in the tempering process to increase the high-temperature strength. It has been found that excessive precipitation of M 23 C 6 type carbides reduces the strength of the matrix, especially the creep rupture strength at 650 ° C. FIG. 1 shows the results of investigating the effect of carbon (C) content on the creep rupture strength (interpolated value) for 1000 hours at a temperature of 650 ° C. When the C content is 0.10% or less, Creep rupture strength increases. For this reason, the upper limit of the C content is set to 0.10%. However, in order to stabilize the austenite phase and ensure hardenability in the normalizing heat treatment, a content of 0.01% is necessary, and the content is practically limited to 0.01 to 0.08%. To do.
[0015]
Mn is a constituent element that suppresses the formation of δ ferrite and promotes the precipitation of M 23 C 6 type carbide, and it must be at least 0.05% content, but if it exceeds 1.5%, it is resistant to oxidation. Since the property is deteriorated, the content is limited to 0.05 to 1.5%.
[0016]
Ni is an additive element that suppresses the formation of δ ferrite and imparts toughness, and at least 0.01% is necessary, but if added over 0.5%, the creep rupture strength at 600 ° C. or higher is reduced, so The content is limited to 0.01 to 0.5%.
[0017]
Cr imparts oxidation resistance and is an indispensable additive element for increasing the high temperature strength by precipitating M 23 C 6 type carbide, and requires a minimum of 8.5%, but if it exceeds 13.0% Depending on the amount of other additive elements, the amount of δ ferrite phase increases, and the high temperature strength and toughness are reduced, so the content is limited to 8.5 to 13.0%.
[0018]
Mo has the effect of promoting the fine precipitation of M 23 C 6 type carbides and hindering agglomeration. Therefore, Mo is effective for maintaining high temperature strength for a long time and requires addition of at least 0.05%. If it is 0.0 wt% or more, δ ferrite is easily generated, so the content is limited to 0.05 to 1.0%. A desirable content is 0.05 to 0.5%, more preferably 0.1 to 0.3%.
[0019]
W has a stronger effect of suppressing the aggregation and coarsening of M 23 C 6 type carbides than Mo, and is effective in improving high-temperature strength because it strengthens the solid solution of the matrix, and requires addition of at least 0.5%. However, if it exceeds 3.0%, δ ferrite and Laves phase are likely to be formed, and conversely, the high temperature strength is lowered. Therefore, it is used at a content of 0.5 to 3.0%. Since W and Mo are combined to affect the creep rupture strength, the value of Mo% + 1/2 W% is limited together with the single content. If the value of Mo% + 1 / 2W% is set to 1.3 or more, it is effective for improving the creep rupture strength. Therefore, the value of Mo% + 1 / 2W% is set to 1.3 or more.
[0020]
V is effective in precipitating the carbonitride of V to increase the high temperature strength, and requires addition of at least 0.1 wt%. However, if it exceeds 0.3%, carbon is excessively fixed, and M Since the amount of precipitation of 23 C 6 type carbide is reduced and the high temperature strength is reduced conversely, the content is practically limited to 0.1 to 0.3%.
[0021]
Nb generates NbC to help refine crystal grains, and partly dissolves during quenching and precipitates NbC during the tempering process, increasing the high-temperature strength and requires a minimum of 0.01%. However, if it exceeds 0.1%, carbon is excessively fixed in the same manner as V to reduce the amount of precipitation of M 23 C 6 type carbide, leading to a decrease in high-temperature strength. % Content.
[0022]
N precipitates V nitride, and has the effect of increasing the high-temperature strength by the interaction between the interstitial solid solution element and the substitutional solid solution element in cooperation with Mo and W in a solid solution state. % Is necessary, but if it exceeds 0.1%, ductility is lowered, so the content is limited to 0.005 to 0.1%.
[0023]
Cu, like Co, has the effect of suppressing the formation of δ ferrite, but may reduce the creep rupture strength for a long time at 600 ° C. or higher, so the content is limited to 0.01% or less.
[0024]
B is a solid solution in the grain boundary strengthening effect and M 23 C 6, has the effect of enhancing the high temperature strength by effect of suppressing aggregation coarsening of M 23 C 6 type carbide, it is effective to add a minimum 0.001% However, if it exceeds 0.010%, weldability and forgeability are hindered, so the content is limited to 0.001 to 0.010%.
[0025]
The ferritic heat resistant steel of the present invention is used as a tempered martensite structure after melting and forging, normalizing at a temperature of 1030 to 1080 ° C. and tempering at 750 to 800 ° C. From the viewpoint of securing toughness, it is desirable to use a tempered martensite structure single phase which is the heat-resistant steel of the invention according to claim 1, but if a certain degree of toughness reduction is allowed when used as a high-temperature boiler member, The ferrite forming element may be precipitated by setting a larger amount of ferrite-forming elements such as Cr and Si, which are heat-resistant steels of the invention described in Item 2, within the above-mentioned limit range. In this case, from the viewpoint of toughness and creep rupture strength, δ ferrite is limited to 15% or less by volume.
[0026]
The present invention provides a ferritic heat resistant steel having a high creep rupture strength, and various manufacturing methods can be adopted depending on the purpose of use of the steel of the present invention, and it can be used not only as a steel pipe but also as a steel sheet. it can.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described. The ferritic heat-resistant steel according to the present invention having the chemical composition shown in Table 1 and a comparative steel were melted in a vacuum induction melting furnace and cast into 50 kg ingots. After forming a 20 mm thick plate by hot casting, normalization at 1050 ° C. × 60 minutes and tempering at 780 ° C. × 60 minutes were performed, and a creep rupture test was performed.
[0028]
[Table 1]
Figure 0004615196
[0029]
Table 2 shows the 100,000 hour creep rupture strength at 650 ° C. estimated from the result of the creep rupture test. The ferritic heat resistant steel (a steel, b steel) according to the present invention results in limiting the Al content to an extremely low level in addition to optimizing the content of other alloy elements such as C, Mo, W, Ni, The creep rupture strength is remarkably improved as compared with the comparative steel (c steel, d steel) and the existing ferritic heat resistant steel (e steel).
[0030]
For steel a, normalization at 1080 ° C. × 60 minutes and tempering at 780 ° C. × 60 minutes were performed, and a creep rupture test was performed. As a result, the extrapolated value of the creep rupture strength at 650 ° C. for 100,000 hours was 105MPa, and higher creep rupture strength can be obtained by increasing the normalizing temperature.
[0031]
[Table 2]
Figure 0004615196
[0032]
As described above, the ferritic heat-resisting steel in the present embodiment can be used not only as a thick-walled and large-diameter pipe material but also as a small-diameter heat transfer pipe material. Suitable for container headers and main steam pipes.
[0033]
【The invention's effect】
The ferritic heat-resisting steel according to the present invention has significantly higher high-temperature strength than conventional ferritic heat-resisting steel, and has stable strength even after long-term use. The steam temperature can be increased to around 650 ° C., the plant efficiency of thermal power generation can be improved, and a remarkable effect can be obtained in the reduction of coal consumption and CO 2 emission of the coal-fired thermal power plant.
[Brief description of the drawings]
FIG. 1 shows the results of examining the effect of carbon (C) content on the creep rupture strength (interpolated value) for 1000 hours at a temperature of 650 ° C. in a ferritic heat resistant steel.

Claims (2)

重量%で、炭素(C)0.01〜0.035%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.01〜0.5%、クロム(Cr)8.5〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)0.5〜3.0、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.01〜0.1%、コバルト(Co)0.5〜5.0%、窒素(N)0.005〜0.1%、ホウ素(B)0.001〜0.01%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下、さらにMo%+1/2W%の量を1.3以上、かつ以下の式
Cr%+6Si%+4Mo%+1.5W%+11V%+5Nb%+12Al%
−40C%−30N%−4Ni%−2Mn%−Cu%−2Co%
により計算されたCr当量が10%以下に制限され、残部がFeである成分で、調質熱処理により得られる焼戻しマルテンサイト単相組織からなることを特徴とする高Crフェライト系耐熱鋼。
In weight percent, carbon (C) 0.01 to 0.035%, silicon (Si) 0.20 to 1.0%, manganese (Mn) 0.05 to 1.5%, nickel (Ni) 0.01 -0.5 %, chromium (Cr) 8.5-13.0% , molybdenum (Mo) 0.05-0.5 %, tungsten (W) 0.5-3.0, vanadium (V) 0. 10 to 0.30%, niobium (Nb) 0.01 to 0.1%, cobalt (Co) 0.5 to 5.0%, nitrogen (N) 0.005 to 0.1%, boron (B) 0.001 to 0.01%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, and the amount of Mo% + 1 / 2W% is 1.3 or more and the following formula Cr% + 6Si% + 4Mo% + 1.5W% + 11V% + 5Nb% + 12Al%
-40C% -30N% -4Ni% -2Mn% -Cu% -2Co%
A high Cr ferritic heat resistant steel characterized by comprising a tempered martensite single phase structure obtained by tempering heat treatment with a component in which the Cr equivalent calculated by is limited to 10% or less and the balance is Fe.
重量%で、炭素(C)0.01〜0.035%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.01〜0.5%、クロム(Cr)8.5〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)0.5〜3.0、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.01〜0.1%、コバルト(Co)0.5〜5.0%、窒素(N)0.005〜0.1%、ホウ素(B)0.001〜0.01%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下、さらにMo%+1/2W%の量を1.3以上で、以下の式
Cr%+6Si%+4Mo%+1.5W%+11V%+5Nb%+12Al%
−40C%−30N%−4Ni%−2Mn%−Cu%−2Co%
により計算されたCr当量が10%超13%以下になるように成分が制限され、残部がFeである焼戻しマルテンサイト組織及び体積率で15%以下のδフェライト組織を含む2相組織からなることを特徴とする高Crフェライト系耐熱鋼。
In weight percent, carbon (C) 0.01 to 0.035%, silicon (Si) 0.20 to 1.0%, manganese (Mn) 0.05 to 1.5%, nickel (Ni) 0.01 -0.5 %, chromium (Cr) 8.5-13.0% , molybdenum (Mo) 0.05-0.5 %, tungsten (W) 0.5-3.0, vanadium (V) 0. 10 to 0.30%, niobium (Nb) 0.01 to 0.1%, cobalt (Co) 0.5 to 5.0%, nitrogen (N) 0.005 to 0.1%, boron (B) 0.001 to 0.01%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, and the amount of Mo% + 1 / 2W% is 1.3 or more and the following formula Cr% + 6Si% + 4Mo% + 1.5W% + 11V% + 5Nb% + 12Al%
-40C% -30N% -4Ni% -2Mn% -Cu% -2Co%
The component is limited so that the Cr equivalent calculated by the above becomes more than 10% and 13% or less, and the balance is composed of a two-phase structure including a tempered martensite structure with Fe and a δ ferrite structure with a volume ratio of 15% or less. High Cr ferritic heat resistant steel characterized by
JP2003190757A 2003-07-03 2003-07-03 High Cr ferritic heat resistant steel Expired - Lifetime JP4615196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190757A JP4615196B2 (en) 2003-07-03 2003-07-03 High Cr ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190757A JP4615196B2 (en) 2003-07-03 2003-07-03 High Cr ferritic heat resistant steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008291809A Division JP2009074179A (en) 2008-11-14 2008-11-14 HIGH Cr FERRITIC HEAT RESISTANT STEEL

Publications (2)

Publication Number Publication Date
JP2005023378A JP2005023378A (en) 2005-01-27
JP4615196B2 true JP4615196B2 (en) 2011-01-19

Family

ID=34188541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190757A Expired - Lifetime JP4615196B2 (en) 2003-07-03 2003-07-03 High Cr ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP4615196B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779632B2 (en) * 2005-12-16 2011-09-28 住友金属工業株式会社 Martensitic iron-base heat-resistant alloy
JP2007162114A (en) * 2005-12-16 2007-06-28 Sumitomo Metal Ind Ltd Martensitic iron based heat resistant alloy
WO2007091535A1 (en) * 2006-02-06 2007-08-16 Babcock-Hitachi Kabushiki Kaisha Ferritic heat-resistant steel
CN102589002B (en) * 2012-03-30 2014-02-19 上海锅炉厂有限公司 Boiler water cooled wall
CN113388791B (en) * 2020-03-13 2022-05-13 钢铁研究总院 High-strength and high-toughness tempered martensite frog steel and heat treatment method thereof

Also Published As

Publication number Publication date
JP2005023378A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP5501434B2 (en) Heat resistant steel
CA2604428C (en) Low alloy steel
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
CN102453843B (en) Ferrite heat resistant steel
JP5206676B2 (en) Ferritic heat resistant steel
JP5838933B2 (en) Austenitic heat resistant steel
JP5137934B2 (en) Ferritic heat resistant steel
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JP3982069B2 (en) High Cr ferritic heat resistant steel
US8147748B2 (en) Creep-resistant steel
JP4615196B2 (en) High Cr ferritic heat resistant steel
JP4502239B2 (en) Ferritic heat resistant steel
JP3492969B2 (en) Rotor shaft for steam turbine
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
JP3422658B2 (en) Heat resistant steel
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP2716807B2 (en) High strength low alloy heat resistant steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
US20090214376A1 (en) Creep-resistant steel
JP2009074179A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JPH1036944A (en) Martensitic heat resistant steel
JP3866816B2 (en) High strength ferritic heat resistant steel with excellent high temperature creep strength and room temperature toughness
JPH0753898B2 (en) High strength austenitic heat resistant alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Ref document number: 4615196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term