JP3869908B2 - High chromium ferritic heat resistant steel with excellent high temperature creep strength - Google Patents
High chromium ferritic heat resistant steel with excellent high temperature creep strength Download PDFInfo
- Publication number
- JP3869908B2 JP3869908B2 JP10156297A JP10156297A JP3869908B2 JP 3869908 B2 JP3869908 B2 JP 3869908B2 JP 10156297 A JP10156297 A JP 10156297A JP 10156297 A JP10156297 A JP 10156297A JP 3869908 B2 JP3869908 B2 JP 3869908B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- steel
- creep strength
- chromium ferritic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高温クリープ強度に優れた高クロムフェライト系耐熱鋼に関し、さらに詳しくはボイラ用鋼管鋼等に好適な高温クリープ強度に優れた高クロムフェライト系耐熱鋼に関するものである。
【0002】
【従来の技術】
最近、熱効率を向上させる観点から、火力発電においては蒸気条件の高温高圧化が進められ、現行の538℃/24.1MPa(246kgf/cm2 )から593℃/31.0MPa(316kgf/cm2 )、さらには650℃/34.3MPa(350kgf/cm2 )という所謂超々臨界圧条件に引き上げようとしている。このような動向に伴い、ボイラ管などの材料選択にあたっては耐酸化性と高温強度の観点から現在使われている2・1/4Cr−Mo鋼は適用できなくなる。一方、18−8オーステナイト系耐熱鋼の適用が考えられるが、繰り返し熱応力による疲労やコストアップなどの問題がある。従って、この両者の特性を満足する高強度の高クロムフェライト鋼の開発が望まれている。
【0003】
他方、このような用途にこれまで9Cr−Mo鋼及び2Mo鋼などの高クロムフェライト系耐熱鋼が用いられてきたが、これらは何れも上記の蒸気条件ではクリープ破断強度が不足するので適用できない。
【0004】
また、その他関連技術として、特公平3−60905号、特開昭61−231139号、特開平4−371552号の各公報などに記載のものがあり、それぞれの従来技術を簡単に説明する。
特公平3−60905号公報には8〜13%Cr鋼に0.5〜2.3%Moと0.2〜2.0%Wを添加して高クリープ強度と良好な靭性が得られ、特開昭61−231139号公報には8〜13%Cr鋼に0.1〜0.4%Moと1.8〜3.0%Wを添加して高クリープ強度と良好な靭性が得られ、特開平4−371552号公報には8〜13%Cr鋼に0.5%未満Moと2.0〜3.5%Wを添加して高クリープ強度と良好な靭性が得られているとの記載がある。
これらの公報の化学成分はWと共にMoを添加して高クリープ強度を狙ったフェライト鋼である。また、これらの組織は靭性の向上とクリープ強度を確保するため、δフェライトを含まない焼戻しマルテンサイト単相を基本としており、Ni,Co及びCu等のγ (オーステナイト)生成元素を添加している。
【0005】
【発明が解決しようとする課題】
しかし、現在計画している超々臨界圧ボイラに用いるには、これらフェライト鋼では高温クリープ強度が不足しており、その向上が大きな課題であった。
本発明は、以上のような技術の状況に鑑みてなされたものであり、超々臨界圧ボイラなどの素材として使用できるような高温クリープ強度に優れた高クロムフェライト系耐熱鋼を提供することを目的としている。
【0006】
【課題を解決するための手段】
上述の目的を達成するために本発明は、W及びMoの適正添加を行うと同時にC,N,Cr,Si,Mn,V及びNb等の合金成分の最適化をはかり、高温強度を低下させる元素であるNi,Co及びCu等のγ(オーステナイト)生成元素を使用しないで、高温クリープ強度に優れた高クロムフェライト系耐熱鋼を提供するものである。
【0007】
すなわち、本発明の要旨とするところは、下記の通りである。
(1)質量%で、
C :0.01%以上0.08%未満、 N :0.01〜0.10%、
Si:0.50%以下、 Mn:0.05〜0.50%、
Cr:8.00〜13.00%、 W :1.50超〜3.50%、
Mo:0.50%以下、 V :0.10〜0.30%、
Nb:0.01〜0.15%
を含有し、さらに、Ni、Co、Cuを、不純物元素として、
Ni:0.20%以下、Co:0.20%以下、Cu:0.20%以下
に制限し、残部がFe及び不可避の不純物よりなることを特徴とする、高温クリープ強度に優れた高クロムフェライト系耐熱鋼。
(2)さらに質量%で、B:0.0010〜0.0100%を含有することを特徴とする、前記(1)項に記載の高温クリープ強度に優れた高クロムフェライト系耐熱鋼。
【0008】
【発明の実施の形態】
以下、本発明の各成分の限定理由について説明する。Cは主にMC(Mは合金元素を指す、以下も同じ)及びM23C6 型の炭化物として析出し、強度及び靭性に大きな影響を有する。0.01%未満では析出量が少なく、強化には不十分であり、0.08%以上では炭化物の凝集粗大化が促進され、高温のクリープ破断強度を低下させるので、0.01%以上0.08%未満に限定した。
【0009】
NはNb,V及びCrなどと結合して窒化物または炭窒化物を析出させ、高温強度を高める重要な元素の一つである。最低0.01%で有効であるが、0.10%を超えると窒化物の粗大化と靭性の低下をもたらすだけではなく、製造上でも困難であるため、0.01〜0.10%に限定した。
【0010】
Siは強度への影響は少ないが、靭性を悪化させるので、0.50%以下に限定する。Mnは常温強度を向上させるので最低0.05%が必要であるが、0.50%を超えると高温強度を低下させるので上限は0.50%とした。
【0011】
Crは高温耐酸化性を確保する上で必要不可欠な元素であり、M23C6 型炭化物を析出する効果も有する。8.00%未満では高温での耐酸化性が不足となり、高温強度も低下する。一方、13.00%超ではδフェライトの抑制が難しくなり、強度と靭性が損なわれるので、8.00〜13.00%に限定した。
【0012】
Wは固溶体強化とM23C6 の微細析出の効果を奏すると同時に、炭化物の凝集粗大化を抑制し、高温クリープ破断強度の向上に極めて有効である。最低1.50%超必要であるが、3.50%を超えると粗大なLaves相が生成しやすくなり、高温強度を低下させるため、1.50超〜3.50%に限定した。
【0013】
Moは固溶体強化をもたらすと同時に、M23C6 を安定化させ、高温強度を向上させる。Wの添加量と関連して、0.50%超ではM6CとLaves相の析出及び凝集粗大化を促進して高温強度を低下させるので、0.50%以下とした。
【0014】
Vは微細な炭窒化物として析出し、高温強度を高める働きをする。0.10%未満では効果が小さく、0.30%超ではV(C,N)の粗大化を招くだけでなく、M23C6 として析出し得るC量を減少させ、逆に高温強度を低下させるので、0.10〜0.30%に限定した。
【0015】
Nbは炭窒化物として析出し、強度を高めるのに有効である。最低0.01%が必要であるが、0.15%を超えて添加すると焼きならし温度ではマトリックスに完全に溶けきれず、十分な強化効果が得られないので、0.01〜0.15%に限定した。
【0016】
Bは粒界強化及びM23(C,B)6 などとして析出強化の効果があり、高温強度を向上する。0.0010%未満では効果が小さく、0.0100%超では粗大なB含有相を生じさせる傾向があり、また脆化が起こりやすくなるため、0.0010〜0.0100%に限定するのが好ましい。
【0017】
Niはオーステナイト生成元素であり、δフェライトの生成を抑制する効果を有し靭性を向上させる影響を及ぼすが、Niの添加は析出物の凝集粗大化をきたし、また、A1 変態点を降下させる効果を有するため焼き戻しを十分行うことが困難となり長時間側のクリープ強度が低下する。従って、必要な靭性を確保できればNiの添加をしないことが望ましい。高クロムフェライト鋼の製造においてはNiは不可避的に混入してくるので、溶製上の管理限界とクリープ強度に対する影響の少ない範囲を考慮してNiは0.20%以下とした。
【0018】
Coはオーステナイト生成元素であり、Niと同様、δフェライトの生成を抑制する効果を有し靭性を向上させるが、Coの添加は金属管化合物σ相の凝集粗大化をきたし、A1 変態点を降下させる効果を有するため焼き戻しを十分行うことが困難となり、長時間側のクリープ強度が低下する。従って、Niと同様、Coの添加をしないことが望ましい。高クロムフェライト鋼の製造においては、Niは不可避的に混入してくるので、溶製上の管理限界とクリープ強度に対する影響の少ない範囲を考慮してCoは0.20%以下とした。
【0019】
Cuはオーステナイト生成元素であり、NiやCoと同様、σフェライトの生成を抑制する効果を有し靭性を向上させるが、Cuの添加は熱間加工性や溶接性を悪化させると共に、その粒界析出によりクリープ強度を低減する。従って、NiやCoと同様、Cuの添加をしないことが望ましい。高クロムフェライト鋼の製造においてはCuは不可避的に混入してくるので、溶製上の管理限界とクリープ強度に対する影響の少ない範囲を考慮してCuは0.20%以下とした。
【0020】
炭窒化物を形成し、かつ溶接性を確保するに必要な0.01%以上0.08%未満のC、0.01〜0.10%のN、0.50%以下のSi及び0.05〜0.50%のMnを含有する8〜13%のCr鋼に、1.5%超〜3.5%のW、0.5%以下のMo、0.10〜0.30%のV、0.01〜0.15%のNbを複合添加することにより高温強度を有する高Crフェライト鋼が得られることを見出した。
【0021】
上記で述べた化学成分を複合添加した高クロムフェライト鋼に、さらに0.0010〜0.0100%のBを添加することにより高温強度を有する高クロムフェライト鋼が得られる。
【0022】
上記で述べた化学成分を複合添加した高クロムフェライト鋼に、オーステナイト生成元素Ni,Co及びCuを0.20%以下にすることにより高温強度を有する高クロムフェライト鋼が得られる。
【0023】
【実施例】
表1に示す化学組成を有する本発明鋼(No.1〜8、11、12)と比較の9〜13Cr鋼(No.15〜17)を真空誘導溶解炉にて各20kg のインゴットに溶製し、熱間圧延によって厚さ15mmの板とした後、1060℃×60min.の焼きならし、760℃×60min.の焼戻しを施した。このように用意した試料を600℃、254N/mm 2 (26kgf/mm2 )と、650℃、157N/mm 2 (16kgf/mm2 )の2条件においてクリープ破断試験を行い、また600℃にて1000時間時効後20℃においてシャルピー衝撃試験を行った。その結果を表2に示す。
【0024】
表2から明らかなように、600℃、254N/mm 2 (26kgf/mm2 )及び650℃、157N/mm 2 (16kgf/mm2 )の2条件は、共に本発明鋼のクリープ破断時間が比較鋼に比べて長く、比較鋼No.17に比較して600℃、254N/mm 2 (26kgf/mm2 )の条件で2.4倍〜3.5倍、650℃、157N/mm 2 (16kgf/mm2 )の条件で2.3倍〜4.2倍の破断時間を示している。なお、本発明鋼は600℃にて1000時間時効後20℃でのシャルピー吸収エネルギーは比較鋼と比較して低目ではあるが、ボイラ用鋼管として必要な靭性を確保している。
【0025】
【表1】
【0026】
【表2】
【0027】
【発明の効果】
以上の如く、本発明により優れたクリープ破断強度と必要な靭性を有する高クロムフェライト系耐熱鋼の供給が可能となり、火力発電の分野への適用が期待される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high chromium ferritic heat resistant steel excellent in high temperature creep strength, and more particularly to a high chromium ferritic heat resistant steel excellent in high temperature creep strength suitable for steel pipe steel for boilers and the like.
[0002]
[Prior art]
Recently, from the viewpoint of improving the thermal efficiency, the thermal power is advanced high temperature high pressure steam conditions, the current 538 ℃ / 24.1MPa (246kgf / cm 2) from 593 ℃ / 31.0MPa (316kgf / cm 2) Furthermore, it is going to be raised to a so-called super-supercritical pressure condition of 650 ° C./34.3 MPa ( 350 kgf / cm 2 ) . Along with such trends, in the selection of materials for boiler tubes and the like, the 2 · 1 / 4Cr-Mo steel currently used from the viewpoint of oxidation resistance and high temperature strength cannot be applied. On the other hand, application of 18-8 austenitic heat resistant steel is conceivable, but there are problems such as fatigue and cost increase due to repeated thermal stress. Therefore, development of high-strength, high-chromium ferritic steel that satisfies these characteristics is desired.
[0003]
On the other hand, high chromium ferritic heat resistant steels such as 9Cr—Mo steel and 2Mo steel have been used for such applications, but none of these can be applied because the creep rupture strength is insufficient under the above steam conditions.
[0004]
Other related techniques include those described in Japanese Patent Publication Nos. 3-60905, 61-231139, and 4-371552, and the prior art will be briefly described.
In Japanese Examined Patent Publication No. 3-60905, 0.5 to 2.3% Mo and 0.2 to 2.0% W are added to 8 to 13% Cr steel to obtain high creep strength and good toughness. JP-A-61-231139 discloses that high creep strength and good toughness can be obtained by adding 0.1 to 0.4% Mo and 1.8 to 3.0% W to 8 to 13% Cr steel. JP-A-4-371552 discloses that, by adding less than 0.5% Mo and 2.0 to 3.5% W to 8 to 13% Cr steel, high creep strength and good toughness are obtained. Is described.
The chemical component of these publications is ferritic steel aiming at high creep strength by adding Mo together with W. In addition, these structures are based on a tempered martensite single phase that does not contain δ-ferrite, and add γ (austenite) -generating elements such as Ni, Co, and Cu in order to ensure improved toughness and creep strength. .
[0005]
[Problems to be solved by the invention]
However, these ferritic steels lack high-temperature creep strength to be used in the ultra-supercritical boilers currently planned, and their improvement has been a major issue.
The present invention has been made in view of the above technical situation, and an object of the present invention is to provide a high chromium ferritic heat resistant steel excellent in high temperature creep strength that can be used as a material such as a super supercritical pressure boiler. It is said.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention reduces the high-temperature strength by optimizing alloy components such as C, N, Cr, Si, Mn, V, and Nb while simultaneously adding W and Mo appropriately. elements and is Ni, without using the gamma (austenite) forming elements, such as Co and Cu, there is provided a high chromium ferritic heat-resistant steel having excellent high-temperature creep strength.
[0007]
That is, the gist of the present invention is as follows.
(1) In mass %,
C: 0.01 % or more and less than 0.08%, N: 0.01-0.10%,
Si: 0.50% or less, Mn: 0.05 to 0.50%,
Cr: 8.00 to 13.00%, W: more than 1.50 to 3.50%,
Mo: 0.50% or less, V: 0.10 to 0.30%,
Nb: 0.01 to 0.15%
In addition, Ni, Co, Cu as impurity elements,
Ni: 0.20% or less, Co: 0.20% or less, Cu: 0.20% or less
A high chromium ferritic heat-resistant steel excellent in high-temperature creep strength , characterized in that the remainder is made of Fe and inevitable impurities.
(2) In addition mass% B: characterized in that it contains 0.0010 to 0.0100%, wherein (1) high chromium ferritic heat-resistant steel having excellent high-temperature creep strength of Item.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason for limitation of each component of this invention is demonstrated. C mainly precipitates as MC (M is an alloying element, the same applies hereinafter) and M 23 C 6 type carbide, and has a great influence on strength and toughness. If it is less than 0.01%, the amount of precipitation is small and insufficient for strengthening, and if it is 0.08% or more , the coarsening of carbides is promoted and the creep rupture strength at high temperature is reduced. Limited to less than 08%.
[0009]
N is one of the important elements that combine with Nb, V, Cr, etc. to precipitate nitrides or carbonitrides and increase the high-temperature strength. It is effective at a minimum of 0.01%, but if it exceeds 0.10%, not only does it cause the coarsening of nitride and a decrease in toughness, but it is also difficult to manufacture, so 0.01 to 0.10% Limited.
[0010]
Although Si has little influence on strength, it deteriorates toughness, so it is limited to 0.50% or less. Since Mn improves the normal temperature strength, it needs to be at least 0.05%, but if it exceeds 0.50 %, the high temperature strength is lowered, so the upper limit was made 0.50%.
[0011]
Cr is an indispensable element for securing high-temperature oxidation resistance, and has an effect of precipitating M 23 C 6 type carbide. If it is less than 8.00%, the oxidation resistance at high temperatures becomes insufficient, and the high-temperature strength also decreases. On the other hand, if it exceeds 13.00%, it becomes difficult to suppress δ ferrite, and the strength and toughness are impaired, so the content was limited to 8.00 to 13.00%.
[0012]
W has the effects of solid solution strengthening and fine precipitation of M 23 C 6 , and at the same time, suppresses the coarsening of carbides and is extremely effective in improving the high temperature creep rupture strength. A minimum of over 1.50% is necessary, but if it exceeds 3.50%, a coarse Laves phase is likely to be formed, and the high-temperature strength is reduced. Therefore, it is limited to over 1.50 to 3.50%.
[0013]
Mo brings about solid solution strengthening, and at the same time stabilizes M 23 C 6 and improves high-temperature strength. In relation to the amount of addition of W, if it exceeds 0.50%, precipitation of M6C and Laves phases and agglomeration coarsening are promoted to lower the high-temperature strength, so the content was made 0.50% or less.
[0014]
V precipitates as fine carbonitrides and functions to increase high temperature strength. If it is less than 0.10%, the effect is small, and if it exceeds 0.30%, not only the coarsening of V (C, N) is caused, but also the amount of C that can be precipitated as M 23 C 6 is reduced, and conversely the high temperature strength is reduced. Therefore, the content is limited to 0.10 to 0.30%.
[0015]
Nb precipitates as carbonitride and is effective in increasing the strength. A minimum of 0.01% is necessary, but if added over 0.15%, the normalizing temperature does not completely dissolve in the matrix, and a sufficient reinforcing effect cannot be obtained. %.
[0016]
B has grain boundary strengthening and precipitation strengthening effects such as M 23 (C, B) 6 and improves high-temperature strength. If it is less than 0.0010%, the effect is small, and if it exceeds 0.0100%, there is a tendency to produce a coarse B-containing phase, and embrittlement tends to occur, so it is limited to 0.0010 to 0.0100%. Is preferred .
[0017]
Ni is an austenite-forming element and has the effect of suppressing the formation of δ ferrite and has an effect of improving toughness. However, the addition of Ni causes the coarsening of precipitates and lowers the A 1 transformation point. Since it has an effect, it is difficult to perform tempering sufficiently, and the creep strength on the long time side decreases. Therefore, it is desirable not to add Ni if necessary toughness can be ensured. Since Ni is inevitably mixed in the production of high chromium ferritic steel, Ni is set to 0.20% or less in consideration of the control limit on melting and the range having little influence on the creep strength.
[0018]
Co is an austenite-forming element and, like Ni, has the effect of suppressing the formation of δ ferrite and improves the toughness. However, the addition of Co causes agglomeration and coarsening of the metal tube compound σ phase, and the A 1 transformation point is increased. Since it has the effect of lowering, it becomes difficult to perform tempering sufficiently, and the creep strength on the long time side decreases. Therefore, like Ni, it is desirable not to add Co. In the production of high chromium ferritic steel, Ni is inevitably mixed, so Co is made 0.20% or less in consideration of the control limit on melting and the range having little influence on the creep strength.
[0019]
Cu is an austenite-forming element and, like Ni and Co, has the effect of suppressing the formation of σ ferrite and improves toughness. However, the addition of Cu deteriorates hot workability and weldability, and its grain boundary. Creep strength is reduced by precipitation. Therefore, it is desirable not to add Cu like Ni and Co. Since Cu is inevitably mixed in the production of high chromium ferritic steel, the Cu content is set to 0.20% or less in consideration of the control limit on melting and the range having little influence on the creep strength.
[0020]
0.01% or more and less than 0.08% C, 0.01 to 0.10% N, 0.50% or less Si and 0.005% or less , which are necessary for forming carbonitride and ensuring weldability. 8-13% Cr steel containing 05-0.50% Mn, more than 1.5 % -3.5% W, 0.5% or less Mo, 0.10-0.30% It has been found that a high Cr ferritic steel having high temperature strength can be obtained by composite addition of V and 0.01 to 0.15% Nb.
[0021]
By adding 0.0010 to 0.0100% of B to the high chromium ferritic steel combined with the chemical components described above, a high chromium ferritic steel having high temperature strength can be obtained.
[0022]
By making the austenite-forming elements Ni, Co and Cu 0.20% or less into the high chromium ferritic steel combined with the chemical components described above, a high chromium ferritic steel having high temperature strength can be obtained.
[0023]
【Example】
Soluble invention steels having the chemical compositions shown in Table 1 (No.1~ 8,11,12) and comparison of 9~13Cr steel (No.15~17) in a vacuum induction melting furnace to the ingot of each 20 kg After being manufactured and made into a plate having a thickness of 15 mm by hot rolling, normalization at 1060 ° C. × 60 min. And tempering at 760 ° C. × 60 min. Were performed. The specimen thus prepared was subjected to a creep rupture test under two conditions of 600 ° C. and 254 N / mm 2 ( 26 kgf / mm 2 ) and 650 ° C. and 157 N / mm 2 ( 16 kgf / mm 2 ) . A Charpy impact test was conducted at 20 ° C. after aging for 1000 hours. The results are shown in Table 2.
[0024]
As is apparent from Table 2, the creep rupture time of the steel of the present invention is compared under the two conditions of 600 ° C., 254 N / mm 2 ( 26 kgf / mm 2 ) and 650 ° C., 157 N / mm 2 ( 16 kgf / mm 2 ). It is longer than steel and comparative steel no. 2.4 times to 3.5 times under conditions of 600 ° C. and 254 N / mm 2 ( 26 kgf / mm 2 ) as compared to 17, and 2.3 under conditions of 650 ° C. and 157 N / mm 2 ( 16 kgf / mm 2 ). The breaking time is shown to be double to 4.2 times. In addition, although the steel of the present invention has low Charpy absorbed energy at 20 ° C. after aging at 600 ° C. for 1000 hours as compared with the comparative steel, the toughness necessary for a steel pipe for boiler is secured.
[0025]
[Table 1]
[0026]
[Table 2]
[0027]
【The invention's effect】
As described above, the present invention makes it possible to supply high chromium ferritic heat resistant steel having excellent creep rupture strength and necessary toughness, and is expected to be applied to the field of thermal power generation.
Claims (2)
C :0.01%以上0.08%未満、
N :0.01〜0.10%、
Si:0.50%以下、
Mn:0.05〜0.50%、
Cr:8.00〜13.00%、
W :1.50超〜3.50%、
Mo:0.50%以下、
V :0.10〜0.30%、
Nb:0.01〜0.15%
を含有し、さらに、Ni、Co、Cuを、不純物元素として、
Ni:0.20%以下、
Co:0.20%以下、
Cu:0.20%以下
に制限し、残部がFe及び不可避の不純物よりなることを特徴とする、高温クリープ強度に優れた高クロムフェライト系耐熱鋼。% By mass
C: 0.01 % or more and less than 0.08%,
N: 0.01-0.10%
Si: 0.50% or less,
Mn: 0.05 to 0.50%,
Cr: 8.00 to 13.00%,
W: more than 1.50 to 3.50%,
Mo: 0.50% or less,
V: 0.10 to 0.30%,
Nb: 0.01 to 0.15%
In addition, Ni, Co, Cu as impurity elements,
Ni: 0.20% or less,
Co: 0.20% or less,
Cu: 0.20% or less
A high chromium ferritic heat-resistant steel excellent in high- temperature creep strength, characterized in that the balance is made of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10156297A JP3869908B2 (en) | 1997-04-18 | 1997-04-18 | High chromium ferritic heat resistant steel with excellent high temperature creep strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10156297A JP3869908B2 (en) | 1997-04-18 | 1997-04-18 | High chromium ferritic heat resistant steel with excellent high temperature creep strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10287960A JPH10287960A (en) | 1998-10-27 |
JP3869908B2 true JP3869908B2 (en) | 2007-01-17 |
Family
ID=14303861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10156297A Expired - Lifetime JP3869908B2 (en) | 1997-04-18 | 1997-04-18 | High chromium ferritic heat resistant steel with excellent high temperature creep strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3869908B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4836063B2 (en) * | 2001-04-19 | 2011-12-14 | 独立行政法人物質・材料研究機構 | Ferritic heat resistant steel and its manufacturing method |
CN102808136B (en) * | 2012-08-16 | 2014-03-26 | 河北五维航电科技有限公司 | Manufacturing method for filter net body material of ultra-supercritical turbine in megawatt unit |
CN103215519A (en) * | 2013-04-10 | 2013-07-24 | 内蒙古包钢钢联股份有限公司 | Main steam pipeline for supercritical thermal power generating unit |
WO2023286204A1 (en) | 2021-07-14 | 2023-01-19 | 日本製鉄株式会社 | Ferritic heat-resistant steel |
-
1997
- 1997-04-18 JP JP10156297A patent/JP3869908B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10287960A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3334217B2 (en) | Low Cr ferritic heat resistant steel with excellent toughness and creep strength | |
JPH0621323B2 (en) | High strength and high chrome steel with excellent corrosion resistance and oxidation resistance | |
JP4369612B2 (en) | Steel plate for low quenching or normalizing type low alloy boiler steel pipe excellent in toughness, and method of manufacturing steel pipe using the same | |
JP3982069B2 (en) | High Cr ferritic heat resistant steel | |
JP2631250B2 (en) | High-strength ferritic heat-resistant steel for steel tubes for boilers | |
JP2808048B2 (en) | High-strength ferritic heat-resistant steel | |
JP5137934B2 (en) | Ferritic heat resistant steel | |
JP3508667B2 (en) | High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same | |
JPH0517850A (en) | High chrome ferrite heat resistant steel with excellent cutting resistance | |
JP3492969B2 (en) | Rotor shaft for steam turbine | |
JP3869908B2 (en) | High chromium ferritic heat resistant steel with excellent high temperature creep strength | |
JP4502239B2 (en) | Ferritic heat resistant steel | |
JP3848463B2 (en) | High strength austenitic heat resistant steel with excellent weldability and method for producing the same | |
JPH05263196A (en) | Ferritic heat resistant steel excellent in high temperature strength and toughness | |
JP3531228B2 (en) | High Cr ferritic heat resistant steel | |
JP2003286543A (en) | High-strength low-Cr ferrite-based steel pipe for boilers excellent in long-term creep characteristics and method for producing the same | |
JP2689198B2 (en) | Martensitic heat resistant steel with excellent creep strength | |
JP4615196B2 (en) | High Cr ferritic heat resistant steel | |
JPH05311345A (en) | Ferritic heat resistant steel with excellent high temperature strength and toughness | |
JP3368413B2 (en) | Manufacturing method of high Cr ferritic heat resistant steel | |
JPH0543986A (en) | High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone | |
JP3866816B2 (en) | High strength ferritic heat resistant steel with excellent high temperature creep strength and room temperature toughness | |
JP3301284B2 (en) | High Cr ferritic heat resistant steel | |
JP3418884B2 (en) | High Cr ferritic heat resistant steel | |
JP3355711B2 (en) | High Cr ferritic heat resistant steel with excellent high temperature strength and toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061016 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |