Nothing Special   »   [go: up one dir, main page]

JP4656473B2 - Coated tool for hot working with excellent lubricant adhesion and wear resistance - Google Patents

Coated tool for hot working with excellent lubricant adhesion and wear resistance Download PDF

Info

Publication number
JP4656473B2
JP4656473B2 JP2001111707A JP2001111707A JP4656473B2 JP 4656473 B2 JP4656473 B2 JP 4656473B2 JP 2001111707 A JP2001111707 A JP 2001111707A JP 2001111707 A JP2001111707 A JP 2001111707A JP 4656473 B2 JP4656473 B2 JP 4656473B2
Authority
JP
Japan
Prior art keywords
layer
lubricant
coating
adhesion
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001111707A
Other languages
Japanese (ja)
Other versions
JP2002307129A (en
Inventor
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001111707A priority Critical patent/JP4656473B2/en
Publication of JP2002307129A publication Critical patent/JP2002307129A/en
Application granted granted Critical
Publication of JP4656473B2 publication Critical patent/JP4656473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温間ないしは熱間で金属同士の摺動を伴う環境にて使用される鍛造用金型等の温熱間加工用被覆工具に関するものである。
【0002】
【従来の技術】
従来、温熱間加工用工具には、主にJISに規定されるSKD61、SKT4といった熱間金型用鋼が広く用いられており、特に耐久性を要求される用途には、これらよりも高温強度の高いSKD7、SKD8、高速度工具鋼あるいはこれらの改良鋼が使用されている。
【0003】
例えば、温熱間鍛造用金型(以下、金型と記す)においては、近年の、加工効率の向上、被加工製品の高精度化、ニアネットシェイプ化の要求に対し、金型の靭性を保持するとともに、金型作業面の耐摩耗性、耐焼付き性、耐ヒートクラック性を向上させる目的で、プラズマ法、塩浴法、ガス法等による窒化処理や、アークイオンプレーティング法等の物理蒸着法(以下、PVD法と記す)による皮膜が窒化処理と組み合わされて適用されるようになってきた。
【0004】
特開平11−92909号には、金型母材とPVD皮膜の密着性を向上させるために、CrNまたはTiAlNといったPVDによる被覆の前処理として、ダイアモンドペースト等による被覆母材の表面粗さの調整、真空ガス窒化処理の適用、電解法による洗浄が提案されている。また、特開平11−152583号には、金型の耐ヒートクラック性、耐酸化性の向上を目的に、窒化処理とPVD法によるTiN、CrN、TiCrNの併用が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平11−92909号、特開平11−152583号の提案による効果は、従来工具と比較して、2〜3割程度の寿命向上であり、飛躍的な工具寿命の改善は達成できず、加工効率の向上、被加工製品の高精度化、ニアネットシェイプ化といった要求に対しては十分に満足できるものではなかった。
【0006】
特に被加工製品のニアネットシェイプ化は、製品形状が複雑となるため、加工時には金型作業面への負荷応力も大きくなるだけでなく、被加工材の肉流れ速度が金型の場所によって大きく異なる。つまり、金型の表面温度が不安定な鍛造初期においては、被加工材との摺動発熱による金型の表面温度も場所によって大きく異なることとなる。
【0007】
一般に温熱間鍛造においては、鍛造毎に潤滑剤を噴霧するが、潤滑剤はある任意の金型表面温度で最も付着しやすくなる特性を有している。このため、金型の表面温度が場所により大きく異なるということは、潤滑剤の付着量も金型の場所により大きく変化し、潤滑剤が適量付着する場所と、付着しない場所が生ずる。
当然、潤滑剤の付着量が低下する部位においては、早期に被加工材との焼付き、かじり等が発生しやすくなる。
【0008】
このような焼付き、かじり等の発生は、金型作業面と被加工材との界面で、過大な摩擦力を働かせることとなり、著しい摩擦熱が発生する。その結果、金型材表面部では熱により母材が極端に軟化するため、皮膜は容易に剥離してしまい、金型の耐摩耗性は極端に低下してしまう。製品形状によっては、上記摩擦熱が、金型材自身の変態点(700〜900℃)を上回るほど高温になる場合があり、金型がさらされる環境は、非常に厳しいものとなる。
【0009】
現在、温熱間金型用として提案されているPVD皮膜は、金型母材と皮膜の密着性向上を主体に改善が行われているため、先述の潤滑剤付着性にバラツキが生じる環境で使用すると、早期に焼付き、かじり等が発生してしまい、その効果を十分に発揮する間もなく剥離してしまうという問題があった。
【0010】
本発明の目的は、上記のような問題を解消した耐焼付き性、耐摩耗性に優れる温熱間加工用被覆工具を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、温熱間加工用工具における潤滑剤の付着性および耐焼付き性、耐かじり性に及ぼす、PVD皮膜の組成、層構造ならびに成膜条件の影響について詳細な検討を行った。
【0012】
その結果、最表層に粗さを特定値内に規定した層を適用し、かつ母材直上には、Ti、V、Cr、Al、Siから選んだ1種もしくは2種以上の金属元素が主体の窒化物、炭化物、炭窒化物の1種以上を形成することで温熱間加工用工具として極めて良好な潤滑剤付着性ならびに耐焼付き性が得られることを見いだした。この結果により、例えば熱間鍛造用金型においては、鍛造初期の局部的な焼付きは十分に抑制され、熱間鍛造金型として著しく寿命が向上するということを確認した。
【0013】
すなわち、本発明の第1発明は、熱間ダイス鋼もしくは高速度鋼を母材とする、少なくとも作業面に被覆層を有し、被覆層を有した作業面に潤滑剤を付着して使用される温熱間加工用工具であって、該被覆層の最表層は、表面粗さがRz:4〜15μmのa層であり、かつTi、V、Cr、Al、Siから選んだ1種もしくは2種以上の金属元素が主体の窒化物、炭化物、炭窒化物の1種以上からなるb層が、母材直上にあることを特徴とする潤滑剤付着性および耐摩耗性に優れた温熱間加工用被覆工具である。
【0014】
なお、本発明のa層は、Ti、V、Cr、Al、Si、Cuの1種もしくは2種以上の金属元素を主体とし、層厚を2〜15μmとすることが望ましい。また、上記被覆層は物理蒸着法により被覆されたことが望ましい。更に被覆母材は母材最表面から25μmの深さにおける硬さが、母材最表面から500μmの深さにおける硬さに比べ、200HV0.2以上高いことが望ましい。
【0015】
【発明実施の形態】
まず、本発明の温熱間加工用被覆工具は、その被覆層が形成される母材として、熱間強度に優れる材料を適用する。この材料としては、例えば従来よりその温熱間工具として適用されている鋼素材であればよく、例えばJISに規定される熱間ダイス鋼や高速度鋼、そしてそれらの改良鋼であってもよい。はじめに請求項中記載のa層に関し、その構成要件について詳しく述べる。
【0016】
TiN、CrN、TiAlNといったPVD法による皮膜は、窒化層に比べ著しく硬さは高いことから、切削工具を主体に適用が広がっている。例えば窒化層の硬さは、被処理材の組成にもよるが、1000〜1100HVであるのに対して、TiNでは2000〜2200HV、CrNでは1800〜2000HV、TiAlNでは2400〜2700HVと、窒化層に比べ約2倍以上の硬さが得られる。このため、本来耐摩耗性はPVDによる皮膜の方が優れているはずである。
【0017】
そこで発明者は温熱間加工用金型の使用環境と表面処理に必要とされる特性について種々検討を重ねた結果、従来より適用されてきたPVD皮膜は、温熱間加工用金型において、非常に重要な特性である潤滑剤の付着性が、窒化層に比べ極端に劣るということを確認した。
【0018】
図1は、予め表面処理を施したテストピースを100〜350℃の任意の温度で加熱し、10%の濃度に調整した白色系潤滑剤(大同化学株式会社製ホットアクアルブ#300TK)水溶液を、距離470mm、噴霧量2.0ml/sで2秒噴霧した際の、試験片表面に付着した潤滑剤の単位面積あたりの重量を示したものである。この時、テストピースは、表面処理を施さないものと、塩浴窒化材、ならびにPVD法(アークイオンプレーティング法)によるCrNを被覆したものを用いた。
【0019】
この結果によると、塩浴窒化材については、無処理材に比べ潤滑剤の付着量が多く、特に本潤滑剤が付着し難くなる試験片加熱温度250〜350℃において、その傾向は顕著になる。この時、CrN被覆材の潤滑剤付着性は、無処理材と同等もしくはそれ以下の結果であり、明らかにPVD皮膜の潤滑剤付着性は、他の表面処理に比べ劣っていることがわかる。このようなPVD皮膜の潤滑剤付着性に劣る点が、実際の温熱間加工用金型において、特に金型の場所によって表面温度が異なるような複雑な形状の場合では、顕著に現れるため、局部的に潤滑剤の付着し難い部位が発生し、焼付きやかじりを誘発するものと推察された。
【0020】
そこで、上記試験後のテストピースについて、潤滑剤付着状況の詳細な観察を行った結果、潤滑剤はテストピース表面の微小な凹凸を核にして凝固している様子が認められ、この凝固単位が微細なものほど潤滑剤の付着量は増加するということが確認された。
【0021】
そこでPVD法の成膜条件を制御して、被覆層の表面粗さが種々異なるテストピースを作製し、同様の試験方法により表面の面粗さと潤滑剤付着量の関係を調査した。このとき、試験片加熱温度は、潤滑剤が付着し難い300℃に設定した。
【0022】
また、PVD法による被覆には、純Cr製ターゲットを用い、被覆材温度500℃、アルゴン雰囲気中3〜25Paの圧力を選択し成膜を行った。表面粗さは成膜中の圧力により制御した。成膜初期の5分間についてはBias電圧を−100Vにし、後半の30分間は0Vにした。テストピース被覆面の面粗さは、長さ5mmの領域について、オリンパス光学株式会社製走査型レーザー顕微鏡OLS1000を用いて測定した。
【0023】
図2に結果を示すが、潤滑剤の付着量は、面粗さRz(JIS−B−0601:十点平均粗さ)で4μm付近を境に大きく増加し、図1で示した塩浴窒化材と同等以上に改善されることがわかった。また、面粗さRzが16μm以上になると、PVD皮膜は成膜直後の時点で剥離が生じてしまい、実型への適用は困難であることが認められた。
【0024】
本発明のa層は、金型の表面温度が不安定な鍛造初期において、潤滑剤の付着量を向上させることが主な役割であり、その存在は極めて重要である。この効果を発揮するためには、表面粗さRzで4μm以上必要であるが、15μmを越えると皮膜の密着性が極端に低下する。よって本発明のa層は、表面粗さRzで4〜15μmとする。本発明のa層は、特にその組成・構成の規定を設けないが、Ti、V、Cr、Al、Si、Cuの1種もしくは2種以上の金属元素を主体とすることが、以下の理由により、望ましい。
【0025】
上記組成の中でもTi、V、Cr、Al、Siについては、本発明の温熱間加工用被覆工具において、下記必須となる、被覆母材直上にTi、V、Cr、Al、Siから選んだ1種もしくは2種以上の金属元素が主体の窒化物、炭化物、炭窒化物の1種以上からなるb層を成膜することと関連している。例えば、PVD法の中でもスパッタリング法、アークイオンプレーティング法を適用した場合、a層とb層を構成する金属元素が異なることは、同様に種類の異なる金属ターゲットを用意する必要がある。このことは、高価なターゲットの種類が増加することとなり、結果的に成膜のコストを増加させてしまうため望ましくない。
【0026】
ただし、a層の望ましい構成元素にCuを挙げる理由については例外で、熱伝導率の高いCuを適用することにより、潤滑剤の乾燥時間が早まり、潤滑剤の付着量は著しく増加するためである。これはTi、V、Cr、Al、Siといった他の金属に比べ、その効果が絶大であり、潤滑剤が極めて付着し難い環境下では有効である。以上のような理由から、本発明のa層は、Ti、V、Cr、Al、Si、Cuの1種もしくは2種以上の金属元素を主体とすることが望ましい。
【0027】
なお、その主体とすることについては、例えば上記より選ばれた元素種の合計にて50(原子%)以上、特に効果の期待できるCuの選択も鑑みれば合計にて70(原子%)以上、更には90(原子%)とすればよいが(実質100(原子%)を含む)、これについては、その成膜コスト低減の上での、後に述べるb層との兼合いにて決定されればよいことは、上記の通りである。
【0028】
更に本発明のa層は、その層厚が2〜15μmであることが望ましい。層厚が2μm未満であると、加工時の負荷が極めて高い場合に、早期に滅失してしまい効果のない場合がある。逆に15μmを越えて成膜すると、成膜条件によっては、早期に剥離してしまう場合があるためである。よって、本発明のa層の層厚は、2〜15μmであることが望ましい。
【0029】
本発明のa層は、その表面粗さを適度に粗化することで潤滑剤の付着性を向上させ、焼付きを防止するものである。しかし、耐焼付き性の向上を主体に適用されているのみであり、温熱間加工用金型としての耐摩耗性は十分ではない。そのため、Ti、V、Cr、Al、Siから選んだ1種もしくは2種以上の金属元素が主体の窒化物、炭化物、炭窒化物の1種以上からなるb層を、母材直上に成膜することが必要である。
【0030】
ここで本発明のb層は、例えば窒化物においては、TiN、CrN、VN、CrNといった金属元素が1種の場合や、TiVN、TiAlN、TiSiN、CrSiN、CrAlN、TiAlSiNといった金属元素が2種類以上の場合が挙げられる。金型の形状が極めて複雑で、凸部において非常に応力が集中しやすい場合では、上記窒化物の中でも比較的残留応力が小さく、密着性に優れる、TiN、CrN、VN、TiVNといった皮膜の適用が好ましく、鍛造温度が高く、皮膜に耐酸化性が求められる場合には、TiAlN、TiSiN、CrAlN、CrSiNといったAl、Siを含む皮膜が望ましい。
【0031】
上記は窒化物を例として挙げたが、炭化物、炭窒化物についても同様の効果であり、また、Ti、V、Cr、Al、Siからの選択を主体(金属元素のみの原子%で実質100%を含む)とするも、必要に応じてIVa、Va、VIa属の金属元素ならびにB等を、金属元素のみの原子%で30%以下、更には10%以下微量添加してもよい。更に異なる組成の窒化物、炭化物、炭窒化物を2種以上選択し、多層膜として適用してもよい。
【0032】
以上、本発明の温熱間加工用被覆工具は、熱間ダイス鋼もしくは高速度鋼を母材とする、少なくとも作業面に、上記構成の被覆層を有す温熱間加工用工具であって、その効果を得るに好ましい一具体例としては、母材直上に本発明のb層を形成し、そして、該b層の上に最表層となる本発明のa層を形成するものである。
【0033】
本発明の温熱間加工用被覆工具は、その被覆方法について特に限定されるものではないが、被覆母材の熱影響、工具の疲労強度、皮膜の密着性等を考慮すると、被覆母材である熱間ダイス鋼もしくは高速度鋼の焼戻し温度以下で成膜でき、皮膜に圧縮応力が残留するアークイオンプレーティング法もしくはスパッタリング法といった被覆母材側にBias電圧を印可する物理蒸着法であることが望ましい。
【0034】
更に本発明の被覆母材は、より耐摩耗性の向上を目的に、母材最表面から25μmの深さにおける硬さが、母材最表面から500μmの深さにおける硬さに比べ、200HV0.2以上高いこと、つまりその具体例として、窒化処理、浸炭処理等と言った拡散を利用した表面硬化処理を予め適用することが望ましい。この時、窒化処理で形成される白層と呼ばれる窒化物層や、浸炭で認められる炭化物層と言った化合物層は、b層の密着性を低下させる原因となるため、処理条件の制御により形成させないようにするか、研磨等により除去することが望ましい。
【0035】
【実施例】
次に実施例に基づき詳細に説明するが、本発明は下記実施例によって限定を受けるものではなく、本発明の要旨を逸脱しない範囲で任意に変更が可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0036】
(実施例1)
JISに規定されるSKD61を用意し、1030℃より油焼入れ後、550〜630℃での焼戻しにより47HRCに調質した。その後、潤滑剤付着性の評価用に厚み3mm、一辺が30mmの板状テストピースの加工を行った。
【0037】
次に、流量比5%N(残H)雰囲気中で、550℃、10時間保持の条件でイオン窒化処理を施した後、それぞれ試験面を研磨によって鏡面に仕上げた。なお、仕上げ後の表面より25μmの深さにおける硬さは、全テストピースにて、その500μmの深さにおける硬さより200HV0.2以上に硬化されていることを確認済みである。そして、仕上げ後の母材表面に対し、次に示す条件にてPVD法による被覆を行った。
【0038】
母材直上のb層は、小型アークイオンプレーティング装置にて、圧力0.5PaのAr雰囲気中で、被覆母材に−400VのBias電圧を印可し、60分の熱フィラメントによるプラズマクリーニングを行った後、金属成分の蒸発源である各種金属製ターゲットならびに反応ガスとしてNガスを用い、被覆母材温度500℃、反応ガス圧力3.0Pa、−100VのBias電圧にて層厚が5μmとなるよう成膜した。
【0039】
また、最表層を形成するa層を被覆するものについては、b層を被覆した後、連続して被覆を行った。a層の成膜には、蒸発源として純Cuターゲットもしくはb層の成膜に使用したターゲットを用い、被覆材温度500℃で、成膜初期の5分間についてはBias電圧を−100Vにし、後の30分間は0Vにして、皮膜の層厚が5μmとなるよう成膜を行った。この時、純Cuターゲットを使用する場合にはN雰囲気、b層の成膜に使用したターゲットを使用する場合はAr雰囲気中で成膜を行い、比較例No.21、No.22、No.23の被覆には3Pa、本発明例および比較例No.24の被覆には15Paの圧力を用いた。
【0040】
また、従来例としては、前記イオン窒化処理後にTiN、CrN、(Ti0.60Al0.40)Nを、前記b層の被覆と同じ条件で成膜したものを用意した。
【0041】
得られたテストピースは、オリンパス光学株式会社製走査型レーザー顕微鏡OLS1000を用い、板状テストピース試験面の長さ3mmの領域について面粗さを測定した。その後、潤滑剤付着性の評価を実施した。潤滑剤付着性の評価は、テストピースを300℃に加熱し、10%の濃度に調整した白色系潤滑剤(大同化学株式会社製ホットアクアルブ#300TK)水溶液を、距離470mm、噴霧量2.0ml/sで2秒噴霧した際の、試験片表面に付着した潤滑剤の単位面積あたりの重量にて評価を行った。
【0042】
表1に各テストピースの被覆層の詳細と、潤滑剤付着性評価の結果を示す。なお、本発明の被覆層構成を満たさないテストピースにおいては、その成膜されたa、b層の定義がし難いものもあるが、本発明との比較を分かり易くするための便宜上、表1の通りに示すものである。
【0043】
【表1】

Figure 0004656473
【0044】
表1に示すように、本発明例ならびに比較例No.24は、表面粗さが本発明の規定範囲を満足しているため、潤滑剤の付着性は著しく優れていることがわかる。一方、比較例No.21、22、23は、a層は存在しているものの、その表面粗さが本発明の規定範囲を外れるものであるために、いずれも潤滑剤の付着性が著しく劣る結果となった。言うまでもなく、従来例の潤滑剤付着性は、本発明例に比べ大幅に劣る。以上のことから、潤滑剤の付着性を向上させるには、本発明を満足しなければならないことがわかる。
【0045】
なお、図3はa層被覆直後における本発明例No.2の表面SEM像であり、粒径で約3μmのこぶ状粒子によって表面は覆われていることが認められる。
【0046】
(実施例2)
次に、表1中の本発明例No.1、No.2、No.4、No.7、比較例No.23、No.24、従来例No.32、No.33と同等の表面被覆層構成であるベアリングレース成型用熱間鍛造パンチを作製し、実金型における寿命で評価を行った。
【0047】
表2に示す化学成分の高速度鋼ベースの靭性改良材を、金型近似形状に粗加工し、1080℃の油焼入れを行い、600℃の焼戻しにより55HRCに調質した。その後、仕上げ加工を行い、それぞれ実施例1と同様の条件で窒化処理ならびにPVD法による成膜を施した。なお、窒化・仕上げ後の表面より25μmの深さにおける硬さが、その500μmの深さにおける硬さより200HV0.2以上に硬化されていることは確認済みである。
【0048】
【表2】
Figure 0004656473
【0049】
上記にて作製された金型は、直径130mm、高さ300mmの寸法で、その先端部にベアリングレース成型用パンチに加工が施されている。そして、1000tの鍛造プレスを用い、1070℃に加熱したSUJ2ワークを熱間鍛造成形した。表3に各パンチの寿命を示す。
【0050】
【表3】
Figure 0004656473
【0051】
本発明を適用したパンチは、比較例もしくは従来例適用のパンチに比べ、工具寿命は2倍以上に向上した。また、本発明適用のパンチは、いずれも摩耗による損傷で寿命となったが、比較例No.23および従来例を適用したパンチは、早期にパンチ先端でかじりを発生した後、局部的にえぐれたように損傷が進行し寿命となった。以上のように、本発明を熱間鍛造用パンチに適用することで、パンチの寿命は飛躍的に向上することが確認された。
【0052】
なお、実施例1および2においては、b層が窒化物の場合を例にして示したが、b層が炭化物もしくは炭窒化物、さらにはそれらを含む構成であっても、同様の効果が得られる。
【0053】
【発明の効果】
以上に述べたように、本発明で規定した表面被覆層構造を適用することにより、潤滑剤の付着性に優れ、耐焼付き性、耐かじり性が向上する。その結果、温熱間加工用工具として、耐摩耗性の改善が達成でき、工具寿命を飛躍的に向上させることが可能である。
【図面の簡単な説明】
【図1】各表面処理の試験片加熱温度と潤滑剤付着量の関係を示す図である。
【図2】試験片加熱温度300℃における表面粗さRzと潤滑剤付着量の関係を示す図である。
【図3】本発明例No.2の表面SEM像であり、本発明の一例を示す顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coated tool for hot working such as a forging die used in an environment involving sliding of metals between warm or hot.
[0002]
[Prior art]
Conventionally, hot mold steels such as SKD61 and SKT4, which are mainly defined in JIS, have been widely used for hot working tools. Especially for applications that require durability, higher temperature strength is required. High SKD7, SKD8, high speed tool steel, or improved steels thereof are used.
[0003]
For example, in hot forging dies (hereinafter referred to as dies), the toughness of the dies is maintained in response to the recent demands for improved processing efficiency, higher precision of processed products, and near net shape. In addition, for the purpose of improving the wear resistance, seizure resistance and heat crack resistance of the mold work surface, nitriding by plasma method, salt bath method, gas method, etc., physical vapor deposition such as arc ion plating method, etc. A film by a method (hereinafter referred to as a PVD method) has been applied in combination with a nitriding treatment.
[0004]
In JP-A-11-92909, in order to improve the adhesion between the mold base material and the PVD film, the surface roughness of the coating base material with diamond paste or the like is adjusted as a pretreatment of the PVD coating such as CrN or TiAlN. Application of vacuum gas nitriding treatment and cleaning by electrolytic method have been proposed. Japanese Patent Application Laid-Open No. 11-152583 proposes the combination of nitriding and TiN, CrN, and TiCrN by the PVD method for the purpose of improving the heat crack resistance and oxidation resistance of the mold.
[0005]
[Problems to be solved by the invention]
However, the effects of the proposals of JP-A-11-92909 and JP-A-11-152583 are about 20 to 30% longer life than conventional tools, and a dramatic improvement in tool life cannot be achieved. However, it has not been able to satisfy the requirements such as improvement of processing efficiency, high precision of processed products, and near net shape.
[0006]
In particular, the near-net shape of workpieces has a complicated product shape, which not only increases the stress applied to the work surface of the mold during machining, but also increases the flow rate of the workpiece depending on the location of the mold. Different. That is, in the initial stage of forging where the surface temperature of the mold is unstable, the surface temperature of the mold due to sliding heat generation with the workpiece also varies greatly depending on the location.
[0007]
In general, in warm hot forging, a lubricant is sprayed for each forging, and the lubricant has a characteristic that it is most likely to adhere at any given mold surface temperature. For this reason, the fact that the surface temperature of the mold varies greatly depending on the location means that the amount of lubricant attached also varies greatly depending on the location of the mold, resulting in a place where an appropriate amount of lubricant is attached and a place where the lubricant is not attached.
Naturally, seizure, galling, and the like with the workpiece are likely to occur at an early stage in a portion where the adhesion amount of the lubricant decreases.
[0008]
Such seizure, galling or the like causes an excessive frictional force to act at the interface between the mold work surface and the workpiece, and generates significant frictional heat. As a result, the base material is extremely softened by heat on the surface of the mold material, so that the coating is easily peeled off, and the wear resistance of the mold is extremely lowered. Depending on the product shape, the frictional heat may become so high that it exceeds the transformation point (700 to 900 ° C.) of the mold material itself, and the environment to which the mold is exposed becomes very severe.
[0009]
Currently, PVD coatings that have been proposed for hot molds have been improved mainly by improving the adhesion between the mold base material and the coating, so they can be used in environments where there is a variation in the adhesion of the above-mentioned lubricant. Then, there was a problem that seizure, galling, etc. occurred at an early stage, and the film peeled off soon without fully exhibiting its effects.
[0010]
An object of the present invention is to provide a coated tool for hot working which is excellent in seizure resistance and wear resistance, which solves the above problems.
[0011]
[Means for Solving the Problems]
The inventor has conducted detailed studies on the influence of the composition of the PVD film, the layer structure, and the film forming conditions on the adhesion, seizure resistance, and galling resistance of the lubricant in the hot working tool.
[0012]
As a result, a layer whose roughness is specified within a specific value is applied to the outermost layer, and one or more metal elements selected from Ti, V, Cr, Al, and Si are mainly formed immediately above the base material. It has been found that by forming at least one of nitrides, carbides, and carbonitrides, extremely good lubricant adhesion and seizure resistance can be obtained as a tool for hot working. From this result, for example, in a hot forging die, it was confirmed that local seizure at the initial stage of forging was sufficiently suppressed and the life was significantly improved as a hot forging die.
[0013]
That is, the first invention of the present invention, a hot-die steel or high speed steel as a base material, have a coating layer on at least the working surface, adhering the lubricant used in the work surface having a coating layer a thermal-working tool that, the outermost layer of the coating layer, the surface roughness Rz: a a layer of a range of 4-15 .mu.m, and Ti, V, Cr, Al, selected from Si 1 kind or 2 Hot-working with excellent lubricant adhesion and wear resistance characterized in that the b layer consisting of one or more of nitrides, carbides and carbonitrides mainly composed of more than one kind of metal element is directly above the base material. It is a coated tool.
[0014]
The a layer of the present invention is preferably composed mainly of one or more metal elements of Ti, V, Cr, Al, Si, and Cu and has a layer thickness of 2 to 15 μm. The coating layer is preferably coated by physical vapor deposition. Further, it is desirable that the coating base material has a hardness at a depth of 25 μm from the outermost surface of the base material higher by 200 HV0.2 or more than a hardness at a depth of 500 μm from the outermost surface of the base material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, in the coated tool for hot working of the present invention, a material excellent in hot strength is applied as a base material on which the coating layer is formed. The material may be a steel material that has been conventionally applied as a hot tool, for example, hot die steel or high speed steel defined in JIS, and improved steels thereof. First, the constituent requirements of the layer a described in the claims will be described in detail.
[0016]
The coating by the PVD method such as TiN, CrN, TiAlN has a remarkably high hardness compared to the nitride layer, so that the application is mainly applied to cutting tools. For example, the hardness of the nitrided layer is 1000 to 1100 HV, although it depends on the composition of the material to be treated, compared to 2000 to 2200 HV for TiN, 1800 to 2000 HV for CrN, 2400 to 2700 HV for TiAlN, About twice or more of the hardness can be obtained. For this reason, the coating by PVD should be superior in terms of wear resistance.
[0017]
Thus, as a result of various investigations on the usage environment of the hot working mold and the characteristics required for the surface treatment, the inventor has found that the PVD coating that has been applied conventionally is very different in the hot working mold. It was confirmed that the adhesion of the lubricant, which is an important characteristic, is extremely inferior to the nitrided layer.
[0018]
FIG. 1 shows an example of a white lubricant (Daido Chemical Co., Ltd. Hot Aqua Lub # 300TK) aqueous solution prepared by heating a surface-treated test piece at an arbitrary temperature of 100 to 350 ° C. to adjust the concentration to 10%. The weight per unit area of the lubricant adhering to the surface of the test piece when sprayed for 2 seconds at a distance of 470 mm and a spray amount of 2.0 ml / s is shown. At this time, the test piece was not subjected to surface treatment, and was coated with a salt bath nitride material and CrN by PVD method (arc ion plating method).
[0019]
According to this result, the salt bath nitride material has a larger amount of lubricant compared to the non-treated material, and the tendency becomes remarkable particularly at the test piece heating temperature of 250 to 350 ° C. at which the lubricant does not easily adhere. . At this time, the lubricant adhesion of the CrN coating material is equal to or less than that of the non-treated material, and it is apparent that the lubricant adhesion of the PVD film is inferior to other surface treatments. Such inferior adhesion of the PVD film to the lubricant is prominent in an actual hot-working mold, particularly in the case of a complicated shape with different surface temperatures depending on the location of the mold. It was speculated that a part where the lubricant hardly adheres was generated, and seizure and galling were induced.
[0020]
Therefore, as a result of detailed observation of the adhesion state of the lubricant on the test piece after the above test, it was found that the lubricant was solidified with the fine irregularities on the surface of the test piece as the core, and this solidification unit was It was confirmed that the finer the amount, the greater the amount of lubricant attached.
[0021]
Therefore, test pieces having different surface roughnesses of the coating layer were prepared by controlling the film formation conditions of the PVD method, and the relationship between the surface roughness and the amount of lubricant adhered was investigated by the same test method. At this time, the test piece heating temperature was set to 300 ° C. at which the lubricant hardly adheres.
[0022]
For the PVD coating, a pure Cr target was used, and a film was formed by selecting a coating material temperature of 500 ° C. and a pressure of 3 to 25 Pa in an argon atmosphere. The surface roughness was controlled by the pressure during film formation. The Bias voltage was set to −100 V for 5 minutes at the beginning of the film formation, and 0 V for the latter 30 minutes. The surface roughness of the test piece-coated surface was measured using a scanning laser microscope OLS1000 manufactured by Olympus Optical Co., Ltd. for a region having a length of 5 mm.
[0023]
The results are shown in FIG. 2, and the amount of lubricant adhered greatly increases with a surface roughness Rz (JIS-B-0601: 10-point average roughness) around 4 μm, and the salt bath nitriding shown in FIG. 1. It was found that the improvement was equal to or better than that of the material. Further, when the surface roughness Rz was 16 μm or more, the PVD film was peeled off immediately after film formation, and it was recognized that application to a real mold was difficult.
[0024]
The a layer of the present invention has a main role in improving the adhesion amount of the lubricant in the initial stage of forging where the surface temperature of the mold is unstable, and its existence is extremely important. In order to exert this effect, the surface roughness Rz needs to be 4 μm or more, but if it exceeds 15 μm, the adhesion of the film is extremely lowered. Therefore, the a layer of the present invention has a surface roughness Rz of 4 to 15 μm. The a layer of the present invention does not particularly define the composition and configuration, but it is mainly composed of one or more metal elements of Ti, V, Cr, Al, Si, and Cu for the following reasons. Is desirable.
[0025]
Among the above compositions, Ti, V, Cr, Al, and Si are selected from Ti, V, Cr, Al, and Si just above the coating base material, which is essential for the following in the coated tool for hot working of the present invention. This is related to the formation of a b layer composed of one or more of nitrides, carbides and carbonitrides mainly composed of seeds or two or more metal elements. For example, when the sputtering method and the arc ion plating method are applied among the PVD methods, it is necessary to prepare different types of metal targets in the same manner that the metal elements constituting the a layer and the b layer are different. This is undesirable because it increases the types of expensive targets and consequently increases the cost of film formation.
[0026]
However, the reason for mentioning Cu as a desirable constituent element of the a layer is an exception, and by applying Cu having a high thermal conductivity, the drying time of the lubricant is accelerated, and the adhesion amount of the lubricant is remarkably increased. . This is more effective than other metals such as Ti, V, Cr, Al, and Si, and is effective in an environment where the lubricant is extremely difficult to adhere. For the reasons described above, the a layer of the present invention is preferably composed mainly of one or more metal elements of Ti, V, Cr, Al, Si, and Cu.
[0027]
As for the main component, for example, 50 (atomic%) or more in total of the element types selected from the above, and 70 (atomic%) or more in total considering the selection of Cu that can be expected to be particularly effective. Further, it may be 90 (atomic%) (including substantially 100 (atomic%)), but this is determined by the balance with the b layer described later in reducing the film forming cost. What is necessary is as described above.
[0028]
Furthermore, the layer a of the present invention preferably has a layer thickness of 2 to 15 μm. When the layer thickness is less than 2 μm, there is a case where the layer is lost at an early stage when the load during processing is extremely high, which may not be effective. Conversely, when the film is formed to exceed 15 μm, it may be peeled off early depending on the film forming conditions. Therefore, the layer thickness of the a layer of the present invention is desirably 2 to 15 μm.
[0029]
The a layer of the present invention is intended to improve the adhesion of the lubricant by appropriately roughening the surface roughness and prevent seizure. However, only the improvement of seizure resistance is mainly applied, and the wear resistance as a hot working die is not sufficient. Therefore, a b layer composed of one or more of nitrides, carbides and carbonitrides mainly composed of one or more metal elements selected from Ti, V, Cr, Al and Si is formed directly on the base material. It is necessary to.
[0030]
Here, in the b layer of the present invention, for example, in the case of nitride, there are one or more kinds of metal elements such as TiN, CrN, VN, and CrN, or two or more kinds of metal elements such as TiVN, TiAlN, TiSiN, CrSiN, CrAlN, and TiAlSiN. Is the case. When the shape of the mold is extremely complex and stress is very likely to be concentrated on the convex part, the application of a coating such as TiN, CrN, VN, TiVN, which has a relatively small residual stress among the above nitrides and excellent adhesion When the forging temperature is high and oxidation resistance is required for the coating, a coating containing Al and Si such as TiAlN, TiSiN, CrAlN, and CrSiN is desirable.
[0031]
In the above, nitride is taken as an example, but the same effect is obtained with respect to carbide and carbonitride, and selection from Ti, V, Cr, Al, and Si is mainly performed (substantially 100% by atomic% of only metal element). If necessary, metal elements of group IVa, Va, VIa and B may be added in a trace amount of 30% or less, or even 10% or less in terms of atomic% of the metal element alone. Furthermore, two or more types of nitrides, carbides, and carbonitrides having different compositions may be selected and applied as a multilayer film.
[0032]
As described above, the coated tool for hot working according to the present invention is a hot working tool having a coating layer having the above-described configuration on at least a work surface, which is made of hot die steel or high speed steel. As a preferred specific example for obtaining the effect, the b layer of the present invention is formed directly on the base material, and the a layer of the present invention which is the outermost layer is formed on the b layer.
[0033]
The coated tool for hot working of the present invention is not particularly limited with respect to the coating method, but is a coated base material in consideration of the thermal effect of the coated base material, the fatigue strength of the tool, the adhesion of the film, and the like. It must be a physical vapor deposition method that applies a Bias voltage to the coating base material side such as an arc ion plating method or a sputtering method that can be formed at a temperature lower than the tempering temperature of hot die steel or high-speed steel and compressive stress remains in the film. desirable.
[0034]
Furthermore, the coated base material of the present invention has a hardness at a depth of 25 μm from the outermost surface of the base material of 200 HV0. 0 compared with a hardness at a depth of 500 μm from the outermost surface of the base material for the purpose of further improving the wear resistance. It is desirable to apply in advance a surface hardening treatment using diffusion such as nitriding treatment, carburizing treatment, etc. as a specific example of being 2 or higher. At this time, a nitride layer called a white layer formed by nitriding treatment and a compound layer called a carbide layer recognized by carburizing cause a decrease in the adhesion of the b layer, so that it is formed by controlling the processing conditions. It is desirable not to let it be removed or to be removed by polishing or the like.
[0035]
【Example】
Next, the present invention will be described in detail based on examples. However, the present invention is not limited by the following examples, and can be arbitrarily changed without departing from the gist of the present invention. Included in the technical scope.
[0036]
Example 1
SKD61 prescribed by JIS was prepared, oil-quenched from 1030 ° C, and tempered to 47HRC by tempering at 550 to 630 ° C. Thereafter, a plate-shaped test piece having a thickness of 3 mm and a side of 30 mm was processed for evaluation of lubricant adhesion.
[0037]
Next, ion nitriding treatment was performed in a flow rate ratio of 5% N 2 (residual H 2 ) atmosphere at 550 ° C. for 10 hours, and then the test surfaces were polished into mirror surfaces. It has been confirmed that the hardness at a depth of 25 μm from the finished surface is cured to 200 HV 0.2 or more from the hardness at a depth of 500 μm in all test pieces. Then, the surface of the base material after finishing was coated by the PVD method under the following conditions.
[0038]
The b layer directly above the base metal is subjected to plasma cleaning with a hot filament for 60 minutes by applying a Bias voltage of -400 V to the coated base metal in a small arc ion plating apparatus in an Ar atmosphere at a pressure of 0.5 Pa. After that, various metal targets which are evaporation sources of metal components and N 2 gas as a reaction gas, a coating base material temperature of 500 ° C., a reaction gas pressure of 3.0 Pa, and a Bias voltage of −100 V have a layer thickness of 5 μm. The film was formed to be
[0039]
Moreover, about what coat | covers a layer which forms outermost layer, after coating b layer, it coat | covered continuously. For the formation of the a layer, a pure Cu target or a target used for the formation of the b layer was used as an evaporation source, the coating temperature was 500 ° C., the bias voltage was set to −100 V for the initial 5 minutes, and the later The film was formed so that the film thickness was 5 μm for 30 minutes. At this time, when using a pure Cu target, the film was formed in an N 2 atmosphere, and when using the target used for forming the b layer, the film was formed in an Ar atmosphere. 21, no. 22, no. The coating of No. 23 is 3 Pa. For the 24 coating, a pressure of 15 Pa was used.
[0040]
Further, as a conventional example, a film in which TiN, CrN, (Ti 0.60 Al 0.40 ) N was formed under the same conditions as the coating of the b layer after the ion nitriding treatment was prepared.
[0041]
The obtained test piece was measured for surface roughness of a 3 mm long region of the plate-like test piece test surface using an Olympus Optical Scanning Laser Microscope OLS1000. Thereafter, evaluation of lubricant adhesion was performed. Lubricant adhesion was evaluated by heating a test piece to 300 ° C. and adjusting a concentration of 10% to a white lubricant aqueous solution (Daido Chemical Co., Ltd. Hot Aqua Lube # 300TK) at a distance of 470 mm and a spray amount of 2. Evaluation was performed based on the weight per unit area of the lubricant adhered to the surface of the test piece when sprayed at 0 ml / s for 2 seconds.
[0042]
Table 1 shows the details of the coating layer of each test piece and the results of the evaluation of lubricant adhesion. In some test pieces that do not satisfy the coating layer configuration of the present invention, it is difficult to define the formed a and b layers. However, for convenience in order to make the comparison with the present invention easier to understand, Table 1 It is shown as follows.
[0043]
[Table 1]
Figure 0004656473
[0044]
As shown in Table 1, the present invention example and comparative example No. No. 24 shows that the adhesiveness of the lubricant is remarkably excellent because the surface roughness satisfies the specified range of the present invention. On the other hand, Comparative Example No. In Nos. 21, 22, and 23, although the a layer was present, the surface roughness was outside the specified range of the present invention. Needless to say, the lubricant adhesion of the conventional example is significantly inferior to that of the present invention. From the above, it can be seen that the present invention must be satisfied in order to improve the adhesion of the lubricant.
[0045]
Note that FIG. 2 is a surface SEM image, and it is recognized that the surface is covered with knot-like particles having a particle size of about 3 μm.
[0046]
(Example 2)
Next, the present invention example No. 1 in Table 1 was used. 1, no. 2, no. 4, no. 7, Comparative Example No. 23, no. 24, Conventional Example No. 32, no. A hot forging punch for bearing race molding having a surface coating layer configuration equivalent to 33 was prepared and evaluated by the life of the actual mold.
[0047]
The high-speed steel-based toughness improving material having the chemical composition shown in Table 2 was roughly processed into a mold approximate shape, subjected to oil quenching at 1080 ° C., and tempered to 55 HRC by tempering at 600 ° C. Then, finishing was performed, and nitriding and film formation by the PVD method were performed under the same conditions as in Example 1, respectively. It has been confirmed that the hardness at a depth of 25 μm from the surface after nitriding / finishing is hardened to 200 HV 0.2 or more than the hardness at a depth of 500 μm.
[0048]
[Table 2]
Figure 0004656473
[0049]
The mold produced as described above has a diameter of 130 mm and a height of 300 mm, and a bearing race molding punch is processed at its tip. Then, a SUJ2 work heated to 1070 ° C. was hot forged using a 1000-ton forging press. Table 3 shows the life of each punch.
[0050]
[Table 3]
Figure 0004656473
[0051]
The punch to which the present invention is applied has improved the tool life by more than twice as compared with the punch of the comparative example or the conventional example. In addition, the punches according to the present invention all had a life due to damage due to wear. In the punches to which No. 23 and the conventional example were applied, galling occurred at the tip of the punch at an early stage, and after that, the damage progressed as if it was locally removed and the life was reached. As described above, it was confirmed that the life of the punch was dramatically improved by applying the present invention to the hot forging punch.
[0052]
In Examples 1 and 2, the case where the b layer is a nitride is shown as an example, but the same effect can be obtained even if the b layer is a carbide or carbonitride, and further includes such a structure. It is done.
[0053]
【The invention's effect】
As described above, by applying the surface coating layer structure defined in the present invention, the adhesion of the lubricant is excellent, and seizure resistance and galling resistance are improved. As a result, it is possible to achieve an improvement in wear resistance as a hot working tool, and to dramatically improve the tool life.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the test piece heating temperature and the amount of lubricant adhered in each surface treatment.
FIG. 2 is a graph showing the relationship between the surface roughness Rz and the lubricant adhesion amount at a test piece heating temperature of 300 ° C.
FIG. It is a surface SEM image of 2, and is a microscope picture which shows an example of this invention.

Claims (4)

熱間ダイス鋼もしくは高速度鋼を母材とする、少なくとも作業面に被覆層を有し、被覆層を有した作業面に潤滑剤を付着して使用される温熱間加工用工具であって、該被覆層の最表層は、表面粗さがRz:4〜15μmのa層であり、かつTi、V、Cr、Al、Siから選んだ1種もしくは2種以上の金属元素が主体の窒化物、炭化物、炭窒化物の1種以上からなるb層が、母材直上にあることを特徴とする潤滑剤付着性および耐摩耗性に優れた温熱間加工用被覆工具。Hot die steel or high speed steel as a base material, have a coating layer on at least the working surface, a thermal-working tool to be used in adhering the lubricant to the work surface having a coating layer, The outermost layer of the coating layer is a layer whose surface roughness is Rz: 4 to 15 μm, and a nitride mainly composed of one or more metal elements selected from Ti, V, Cr, Al, and Si. A coating tool for hot working excellent in lubricant adhesion and wear resistance, characterized in that a b layer composed of one or more of carbide, carbonitride is directly on the base material. 該a層は、Ti、V、Cr、Al、Si、Cuの1種もしくは2種以上の金属元素を主体とし、層厚が2〜15μmであることを特徴とする請求項1に記載の潤滑剤付着性および耐摩耗性に優れた温熱間加工用被覆工具。  2. The lubrication according to claim 1, wherein the a layer is mainly composed of one or more metal elements of Ti, V, Cr, Al, Si, and Cu, and has a layer thickness of 2 to 15 μm. Coated tool for hot working with excellent agent adhesion and wear resistance. 被覆層は物理蒸着法により被覆したことを特徴とする請求項1または2に記載の潤滑剤付着性および耐摩耗性に優れた温熱間加工用被覆工具。  3. The coating tool for hot working with excellent lubricant adhesion and wear resistance according to claim 1 or 2, wherein the coating layer is coated by a physical vapor deposition method. 被覆母材最表面から25μmの深さにおける硬さが、母材最表面から500μmの深さにおける硬さに比べ、200HV0.2以上高いことを特徴とする請求項1ないし3のいずれかに記載の潤滑剤付着性および耐摩耗性に優れた温熱間加工用被覆工具。  4. The hardness at a depth of 25 μm from the outermost surface of the coated base material is 200 HV0.2 or more higher than the hardness at a depth of 500 μm from the outermost surface of the base material. 5. Coated tool for hot working with excellent lubricant adhesion and wear resistance.
JP2001111707A 2001-04-10 2001-04-10 Coated tool for hot working with excellent lubricant adhesion and wear resistance Expired - Fee Related JP4656473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111707A JP4656473B2 (en) 2001-04-10 2001-04-10 Coated tool for hot working with excellent lubricant adhesion and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111707A JP4656473B2 (en) 2001-04-10 2001-04-10 Coated tool for hot working with excellent lubricant adhesion and wear resistance

Publications (2)

Publication Number Publication Date
JP2002307129A JP2002307129A (en) 2002-10-22
JP4656473B2 true JP4656473B2 (en) 2011-03-23

Family

ID=18963263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111707A Expired - Fee Related JP4656473B2 (en) 2001-04-10 2001-04-10 Coated tool for hot working with excellent lubricant adhesion and wear resistance

Country Status (1)

Country Link
JP (1) JP4656473B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445001C (en) 2003-12-17 2008-12-24 昭和电工株式会社 Method for producing forging die, forging die and forged article
JP4819352B2 (en) * 2003-12-17 2011-11-24 昭和電工株式会社 Manufacturing method of forging die, forging die and forged product
JP4513058B2 (en) 2004-08-10 2010-07-28 日立金属株式会社 Casting parts
CN100358652C (en) * 2005-12-06 2008-01-02 武汉理工大学 Hot-forging die and its preparing method
WO2007083361A1 (en) 2006-01-18 2007-07-26 Mitsubishi Heavy Industries, Ltd. Surface treatment coating film with resistance to erosion by solid particle and rotary machine
JP2007307690A (en) * 2006-05-22 2007-11-29 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP4699978B2 (en) * 2006-08-09 2011-06-15 株式会社神戸製鋼所 Hard coating material
JP4771223B2 (en) * 2006-09-27 2011-09-14 日立金属株式会社 Durable hard material coated mold for plastic working
JP4668214B2 (en) 2007-01-17 2011-04-13 株式会社神戸製鋼所 Mold for molding
IL182741A (en) 2007-04-23 2012-03-29 Iscar Ltd Coatings
JP5035527B2 (en) * 2007-07-24 2012-09-26 三菱マテリアル株式会社 Surface coated cutting tool
JP4774080B2 (en) 2007-08-02 2011-09-14 株式会社神戸製鋼所 Hard coating material and cold plastic working mold
JP2009068047A (en) 2007-09-11 2009-04-02 Kobe Steel Ltd Hard coating film, material coated with hard coating film and die for cold plastic working
JP5537782B2 (en) * 2007-09-14 2014-07-02 スルザー メタプラス ゲーエムベーハー Cutting tool and method of manufacturing cutting tool
JP5196122B2 (en) * 2007-11-21 2013-05-15 三菱マテリアル株式会社 Surface coated cutting tool
US8080324B2 (en) 2007-12-03 2011-12-20 Kobe Steel, Ltd. Hard coating excellent in sliding property and method for forming same
JP5234931B2 (en) 2008-06-23 2013-07-10 株式会社神戸製鋼所 Hard coating member and molding tool
JP5351875B2 (en) 2010-11-30 2013-11-27 株式会社神戸製鋼所 Mold for plastic working, method for producing the same, and method for forging aluminum material
EP2715784B1 (en) * 2011-05-27 2018-01-03 Nanomech Inc. Manufacturing process for a thick cubic boron nitride (cbn) layer
CN107142476B (en) * 2017-05-26 2023-09-29 深圳大学 Self-lubricating wear-resistant coating and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138834A (en) * 1990-09-28 1992-05-13 Isuzu Motors Ltd Method for forging in hot state of titanium alloy
JPH0716658A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Roll forming method
JPH07124677A (en) * 1993-10-18 1995-05-16 Kobe Steel Ltd Press-die forging method of thin web and rib member
JPH07328740A (en) * 1994-06-06 1995-12-19 Akamatsu Fuooshisu Kk Manufacture of helical gear
JPH0853732A (en) * 1994-06-09 1996-02-27 Furukawa Electric Co Ltd:The Aluminum alloy sheet for automobile body sheet, its production and its forming method
JP2000054108A (en) * 1998-08-06 2000-02-22 Kohan Kogyo Kk Die for forging
JP2000271699A (en) * 1999-03-23 2000-10-03 Sumitomo Electric Ind Ltd Surface coated forming die and production thereof
JP2001073087A (en) * 1999-09-02 2001-03-21 Hitachi Metals Ltd Nitrided die for warm and hot working, excellent in wear resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138834A (en) * 1990-09-28 1992-05-13 Isuzu Motors Ltd Method for forging in hot state of titanium alloy
JPH0716658A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Roll forming method
JPH07124677A (en) * 1993-10-18 1995-05-16 Kobe Steel Ltd Press-die forging method of thin web and rib member
JPH07328740A (en) * 1994-06-06 1995-12-19 Akamatsu Fuooshisu Kk Manufacture of helical gear
JPH0853732A (en) * 1994-06-09 1996-02-27 Furukawa Electric Co Ltd:The Aluminum alloy sheet for automobile body sheet, its production and its forming method
JP2000054108A (en) * 1998-08-06 2000-02-22 Kohan Kogyo Kk Die for forging
JP2000271699A (en) * 1999-03-23 2000-10-03 Sumitomo Electric Ind Ltd Surface coated forming die and production thereof
JP2001073087A (en) * 1999-09-02 2001-03-21 Hitachi Metals Ltd Nitrided die for warm and hot working, excellent in wear resistance

Also Published As

Publication number Publication date
JP2002307129A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
US6811899B2 (en) Coated tool for warm-and/or-hot working with superior galling resistance property and superior wear resistance
EP1626104B1 (en) Member with coating layers used for casting
Podgornik et al. Surface modification to improve friction and galling properties of forming tools
JP4771223B2 (en) Durable hard material coated mold for plastic working
KR20170129876A (en) Cloth mold and manufacturing method thereof
Panjan et al. PVD CrN coating for protection of extrusion dies
JP2009061465A (en) Metallic mold for cold forging and its manufacturing method
JP2011183545A (en) Coated tool excellent in sliding characteristic and method of manufacturing the same
JP6489412B2 (en) Hard coating layer and cold plastic working mold
KR100987685B1 (en) Hard-material-coated member excellent in durability
JP2002307128A (en) Coating tool for warm and hot working having excellent seizure resistance and wear resistance
JP6590213B2 (en) Manufacturing method of cold working mold
JP6806304B2 (en) Covered cold mold
JP2002146515A (en) Hard film superior in slidableness and its coating tool
JP2009061464A (en) Die for warm and hot forging, and its manufacturing method
JP4547656B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP4883400B2 (en) Casting parts
JP2002178126A (en) Valve device for die casting mold
JP7509129B2 (en) Coated mold, method for manufacturing coated mold, and target for forming hard film
Podgornik et al. Improvement in galling performance through surface engineering
JP2005246468A (en) Covering tool for warm and hot working excellent in lubricant adhesiveness and seizure resistance
EP0510977A1 (en) High Young's modulus materials and surface-coated tool members using the same
JP3604717B2 (en) Hard coating tool for plastic working
JP2006075867A (en) Member for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees