Nothing Special   »   [go: up one dir, main page]

JP2001073087A - Nitrided die for warm and hot working, excellent in wear resistance - Google Patents

Nitrided die for warm and hot working, excellent in wear resistance

Info

Publication number
JP2001073087A
JP2001073087A JP24816799A JP24816799A JP2001073087A JP 2001073087 A JP2001073087 A JP 2001073087A JP 24816799 A JP24816799 A JP 24816799A JP 24816799 A JP24816799 A JP 24816799A JP 2001073087 A JP2001073087 A JP 2001073087A
Authority
JP
Japan
Prior art keywords
mold
hardness
wear resistance
nitrided
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816799A
Other languages
Japanese (ja)
Inventor
Kosuke Hara
康介 原
Mitsuhiro Ando
光浩 安藤
Isao Tamura
庸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24816799A priority Critical patent/JP2001073087A/en
Publication of JP2001073087A publication Critical patent/JP2001073087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrided die for warm and hot working, as a die to which nitriding treatment is applied and which has high hardness of nitrided layer and softening resistance of nitrided layer and excellent wear resistance. SOLUTION: The nitrided die for warm and hot working has a composition which consists of, by weight, 0.25-0.55% C, <=1.2% Si, <=1.5% Mn, <=2.0% Ni, 6.0-8.0% Cr, either or both of W and Mo in amounts within the range satisfying 1/2W+Mo<=5.0%, and the balance Fe with inevitable impurities and in which Cr and Mo satisfy Cr/Mo<=3. Moreover, carbides unentered into solid solution with >=0.1 μm grain size comprise >=1% of the structure surface by area ratio, and further, a nitrided layer is provided at least to the contact surface to be brought into contact with a material to be worked, and the hardness in a position at a depth of 25 μm from the surface of the nitrided layer is regulated to >=1100 HV. Further, V, Nb, N, Co, and Al can be added to the composition of the base material, if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、使用中に被加工材
との摩擦発熱および接触による昇温温度が高く、金型表
面が熱軟化により著しい摩耗作用を受ける各種寸法の温
間もしくは熱間鍛造型に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hot or hot metal of various dimensions which has a high heating temperature due to frictional heating and contact with a workpiece during use, and the mold surface is subjected to a remarkable wear action due to thermal softening. It relates to a forging die.

【0002】[0002]

【従来の技術】温間もしくは熱間加工用の金型(以後、
金型と称する)には、従来より、SKD61やSKD7、SKD8を
はじめとする高温強度ならびに熱間耐摩耗性に優れる材
料が用いられ、使用条件がより過酷でさらなる耐摩耗性
が要求れる用途には、これらの改良鋼や金型表面に窒化
などの表面処理を適用したものが使用されていた。
2. Description of the Related Art A mold for warm or hot working (hereinafter referred to as a mold)
Conventionally, materials with excellent high-temperature strength and hot wear resistance, such as SKD61, SKD7, and SKD8, have been used for molds, and are used under severer operating conditions and require more wear resistance. For these, those obtained by applying a surface treatment such as nitriding to the surfaces of these improved steels and molds have been used.

【0003】ところが、近年、塑性加工の分野では、ネ
ットシェイプ、ニアネットシェイプ化が盛んに進めら
れ、また、成形サイクル短縮のため鍛造速度を速くする
鍛造技術の実用化が進み、とくに金型表面と被加工材と
の摩擦による発熱がより過酷化し、金型表面での熱軟化
が著しく早期に摩耗に至り、金型命数が著しく低下する
ため、最近ではその殆どに窒化処理が適用され使用され
るケースが多くなった。
However, in recent years, in the field of plastic working, net shape and near net shape have been actively promoted, and forging techniques for increasing the forging speed to shorten the molding cycle have been put into practical use. Heat generation due to friction between the workpiece and the work material becomes more severe, thermal softening on the mold surface is remarkably early, leading to abrasion, and the life of the mold is remarkably reduced. More cases.

【0004】しかしながら、従来より行われてきた熱間
加工用金型の耐摩耗性向上に対する開発アプローチは、
その殆どが金型材料自身の高温強度ならびに靱性などの
特性に着目されたものが多く、これらに窒化処理が適用
される場合、金型の耐摩耗性、即ち、金型命数が母材の
特性よりも窒化特性により大きく変動するといった例が
報告されるようになった。
[0004] However, a development approach for improving the wear resistance of a hot working mold that has been conventionally performed is as follows.
Most of them focus on characteristics such as high-temperature strength and toughness of the mold material itself, and when nitriding is applied to these materials, the wear resistance of the mold, that is, the life of the mold depends on the characteristics of the base material. Examples have been reported in which the characteristics fluctuate more largely due to the nitriding characteristics than in the case.

【0005】[0005]

【発明が解決しようとする課題】窒化処理の適用による
熱間加工用金型の耐摩耗性の向上は、主に、窒化処理層
の最表面に生成する窒化化合物層による摺動性の向上お
よびそれによる熱伝達の抑制と窒素の侵入および基地中
に固溶した合金元素との結合により生成する微細な窒化
物の析出によって硬度が上昇し、表面強度が向上するこ
とによって付与されるが、前者の窒化化合物層の厚さは
窒化処理の条件により制御可能であるが、後者の窒化拡
散層の硬度は基地中に固溶している合金成分によりほぼ
特定される。即ち、熱間加工用金型材の窒化拡散層の硬
化は、その大半が基地中に固溶している合金元素と窒素
の結合により生成する窒化物の析出によりもたらされる
ものである。
The improvement of the wear resistance of the hot working mold by the application of the nitriding treatment is mainly attributable to the improvement of the slidability by the nitride compound layer formed on the outermost surface of the nitriding layer. The hardness is increased by the suppression of heat transfer, the penetration of nitrogen and the precipitation of fine nitrides generated by bonding with the alloy element dissolved in the matrix, and the hardness is increased. The thickness of the nitrided compound layer can be controlled by the conditions of the nitriding treatment, but the hardness of the latter nitrided diffusion layer is almost specified by the alloy component dissolved in the matrix. That is, the hardening of the nitrided diffusion layer of the hot working mold material is mostly caused by the precipitation of nitride generated by the bonding of nitrogen and the alloying element dissolved in the matrix.

【0006】そこで本発明者らは、窒化処理の適用を前
提とした金型の耐摩耗性について着目し、これに及ぼす
窒化層硬度および熱軟化特性ならびに未固溶炭化物量に
ついて検討した結果、上記、耐摩耗性に対し、母材の高
温強度および靱性を従来の5Cr鋼系のSKD61などと比較し
て低下させることなく、極めて高い窒化層硬度および窒
化層軟化抵抗性が得られ、さらには、未固溶炭化物量に
よっても耐摩耗性を向上できる組成があることを見出し
た。
Accordingly, the present inventors have focused on the wear resistance of a mold on the premise of applying a nitriding treatment, and studied the effects of the nitride layer hardness and the heat softening characteristic and the amount of undissolved carbide on the wear resistance. With respect to abrasion resistance, extremely high nitride layer hardness and nitride layer softening resistance can be obtained without lowering the high temperature strength and toughness of the base material compared to the conventional 5Cr steel SKD61 and the like. It has been found that there is a composition that can improve wear resistance depending on the amount of undissolved carbide.

【0007】ところで、熱間加工用金型に窒化処理を行
って金型の強度、耐摩耗性を高める効果については、特
開昭54-50421号、同54-56913号、同54-110916号に開示
されている。しかし、これらは、窒化処理を行った場合
に高い表面硬さと深い窒化層が得られやすい金型用鋼に
関する記述にとどまり、窒化層の硬さを限定し、窒化層
軟化抵抗性を向上させ、金型の耐摩耗性を高めるといっ
た記述はない。
The effect of increasing the strength and wear resistance of a hot working mold by nitriding is described in JP-A-54-50421, JP-A-54-56913, and JP-A-54-110916. Is disclosed. However, these are limited to the description of mold steel in which a high surface hardness and a deep nitrided layer are easily obtained when a nitriding treatment is performed, limit the hardness of the nitrided layer, improve the resistance of the nitrided layer to softening, There is no description of enhancing the wear resistance of the mold.

【0008】また、金型の摩耗を防ぐ目的での未固溶炭
化物の限定については、特開平6-145884号に開示されて
いるが、硬化した窒化層との組合わせにより相乗的に耐
摩耗性を向上させるといった記述はない。
The limitation of undissolved carbides for the purpose of preventing mold wear is disclosed in Japanese Patent Application Laid-Open No. H6-145884. However, in combination with a hardened nitride layer, the wear resistance is synergistically reduced. There is no description to improve the performance.

【0009】以上述べたように、本発明の目的は、窒化
処理を前提とした金型に対し、窒化層および母材の両特
性を考慮した合金設計を行うことにより、極めて高い窒
化層硬度および窒化層軟化抵抗性ならびに適量の未固溶
炭化物量が得られ、優れた耐摩耗性を有する温熱間加工
用窒化金型を提供することである。
As described above, an object of the present invention is to provide an extremely high nitrided layer hardness and extremely high hardness by performing an alloy design in consideration of both characteristics of a nitrided layer and a base material on a mold on the premise of a nitriding treatment. An object of the present invention is to provide a nitrided mold for hot working that has a nitride layer softening resistance and an appropriate amount of undissolved carbide and has excellent wear resistance.

【0010】[0010]

【課題を解決するための手段】本発明は、窒化処理の適
用を前提とした金型の耐摩耗性について着目し、これに
及ぼす窒化層硬度および熱軟化特性ならびに未固溶炭化
物量について検討した結果、上記、耐摩耗性に対し、各
種合金元素の添加量をバランスさせることによって、母
材の高温強度および靱性を従来鋼と比較して低下させる
ことなく、極めて高い窒化層硬度および窒化層軟化抵抗
性が得られ、さらには、未固溶炭化物量によっても耐摩
耗性を向上できる組成があることを見出したものであ
る。本発明の優れた窒化特性と母材特性を兼ね備える金
型を使用することにより、摩耗による損傷が問題となる
金型の摩耗寿命数を向上させることが可能となる。
SUMMARY OF THE INVENTION The present invention focuses on the wear resistance of a mold on the assumption that a nitriding treatment is applied, and examines the effects of the nitride layer hardness and the heat softening characteristic and the amount of undissolved carbide on the wear resistance. As a result, extremely high nitride layer hardness and nitride layer softening can be achieved without lowering the high temperature strength and toughness of the base material compared to conventional steel by lowering the high temperature strength and toughness of the base metal by balancing the amounts of the various alloy elements with respect to the wear resistance. It has been found that there is a composition that can provide resistance and that can improve wear resistance depending on the amount of undissolved carbide. By using the mold of the present invention having both excellent nitriding characteristics and base material characteristics, it is possible to improve the number of wear lives of the mold in which damage due to wear is a problem.

【0011】すなわち本発明は、重量%で、C:0.25〜0.5
5%、Si:1.2%以下、Mn:1.5%以下、Ni:2.0%以下、Cr:6.0
〜8.0%、WとMoの1種または2種を1/2W+Moで5.0%以下、か
つCrとMoがCr/Mo≦3を満足し、残部Feおよび不可避的不
純物からなり、組織面に占める粒径0.1μm以上の未固溶
炭化物の面積率が1%以上であり、少なくとも被加工材と
の接触面に窒化層を有し、かつ前記窒化層の表面から25
μm内部での硬さが1100HV以上の温熱間加工用窒化金型
である。
That is, in the present invention, C: 0.25 to 0.5% by weight.
5%, Si: 1.2% or less, Mn: 1.5% or less, Ni: 2.0% or less, Cr: 6.0
~ 8.0%, one or two kinds of W and Mo are less than 5.0% at 1 / 2W + Mo, and Cr and Mo satisfy Cr / Mo ≦ 3, and the balance consists of Fe and unavoidable impurities. The area ratio of the undissolved carbide having a particle size of 0.1 μm or more is 1% or more, and has a nitrided layer on at least a contact surface with a workpiece, and 25% from the surface of the nitrided layer.
This is a nitride mold for hot working with a hardness of 1100HV or more inside μm.

【0012】さらには、V:2.0%以下またはNb:0.30%以下
を含有する温熱間加工用窒化金型であり、好ましくは、
N:0.10%以下を含有する温熱間加工用窒化金型である。
そして、これら本発明に加えて、Co:10.0%以下またはA
l:3.0%以下を含有する温熱間加工用金型である。
Further, a nitride mold for hot working containing V: 2.0% or less or Nb: 0.30% or less, preferably,
N: A mold for warm working containing 0.10% or less.
And, in addition to these inventions, Co: 10.0% or less or A
l: A hot working mold containing 3.0% or less.

【0013】[0013]

【発明の実施の形態】上述したように、本発明金型の重
要な特徴は、窒化処理を前提とした金型に対し、各種合
金元素、とくにCr/Mo当量をバランスさせることにより
母材の高温強度ならびに靱性を従来鋼と同等とし、窒化
特性を大幅に向上した耐摩耗性に優れる温熱間加工用窒
化金型である。以下に本発明金型の成分範囲の限定理由
について述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the mold of the present invention is that various alloying elements, particularly Cr / Mo equivalents, are balanced with respect to a mold premised on nitriding treatment. This is a nitrided mold for hot working that has the same high-temperature strength and toughness as conventional steel, has greatly improved nitriding properties, and has excellent wear resistance. The reasons for limiting the component range of the mold of the present invention will be described below.

【0014】1)C Cは、本発明金型の優れた耐摩耗性を付与する重要な元
素であり、W、Mo、V、Crなどの炭化物形成元素と結合し
て炭化物を形成し、焼入れ時にその一部が未固溶炭化物
として母材基地中に残留分散して耐摩耗性を高める上、
窒化時に化合物層を形成させやすくして、本発明金型の
耐摩耗性向上に寄与し、さらには焼入れ性の向上、結晶
粒微細化、焼戻し軟化抵抗を与えるために添加するもの
であり、上記の効果を得るためには、最低0.25%以上の
添加が必要である。多すぎると過度の炭化物の析出を招
き靱性を低下させるため、0.55%以下とする。好ましく
は、0.40%以下である。
1) CC is an important element that imparts excellent wear resistance to the mold of the present invention, and combines with carbide-forming elements such as W, Mo, V, and Cr to form carbides. In addition to increasing the abrasion resistance by dispersing partly as undissolved carbide in the base metal matrix,
The compound is added to facilitate the formation of a compound layer during nitriding, which contributes to the improvement of the wear resistance of the mold of the present invention, and further improves hardenability, refines crystal grains, and provides resistance to tempering softening. In order to obtain the effect described above, it is necessary to add at least 0.25% or more. If it is too large, precipitation of excessive carbides is caused and the toughness is reduced, so the content is made 0.55% or less. Preferably, it is 0.40% or less.

【0015】2)Si、Mn Siは、脱酸剤および金型の耐酸化性を付与するために添
加するものであり、さらには窒化硬度の向上に寄与す
る。多すぎると焼戻し時の靱性を低下させるため1.2%以
下とする。なお、上記効果を得るに好ましくは0.1%以上
である。Mnは、脱硫剤および焼入れ性向上のため添加す
るが、多すぎるとA1変態点を低下させ、焼なまし硬さを
過度に高くし、被削性を低下させるので1.5%以下とす
る。なお、上記効果を得るに好ましくは0.1%以上であ
る。
2) Si and Mn Si are added to impart a deoxidizing agent and a mold with oxidation resistance, and further contribute to an improvement in nitriding hardness. If it is too large, the toughness during tempering is reduced, so that the content is made 1.2% or less. Note that the content is preferably 0.1% or more for obtaining the above effects. Mn is added for desulfurization agent and improving hardenability, when too much lowering the A 1 transformation point, excessively high annealing hardness, and 1.5% or less since lowering machinability. Note that the content is preferably 0.1% or more for obtaining the above effects.

【0016】3)Ni Niは、C、Cr、Mn、Mo、Wなどとともに本発明金型に優れ
た焼入れ性を付与し、焼入れ冷却速度の低下により靱性
が低下するのを防止すると同時に、基地の本質的な靱性
を改善できるため必要に応じて添加する。多すぎると、
A1変態点を過度に低下させたり、焼なまし硬さを過度に
高くして機械加工性を低下させるため2.0%以下とする。
なお、上記効果を得るに好ましくは0.1%以上である。
3) Ni Ni, together with C, Cr, Mn, Mo, W, etc., imparts an excellent hardenability to the mold of the present invention, and prevents a decrease in toughness due to a decrease in the quenching cooling rate, Is added as necessary because the essential toughness can be improved. If too much,
A 1 To make the transformation point excessively low or to excessively increase the annealing hardness to lower the machinability, the content is made 2.0% or less.
Note that the content is preferably 0.1% or more for obtaining the above effects.

【0017】4)Cr Crは、本発明金型の優れた耐摩耗性を付与する最も重要
な元素であり、Cと結合して炭化物を生成し耐摩耗性を
向上するとともに、窒化処理において基地中に固溶した
Crと窒素の結合により拡散層内に微細で高硬度な窒化物
を形成し、本発明金型の表面硬さや窒化層軟化抵抗性を
向上させ耐摩耗性の向上に寄与する。また、焼戻し軟化
抵抗および高温強度の向上、焼入れ性の向上を付与し、
さらには使用時に緻密な酸化被膜を形成し、金型表面の
熱間摺動性を向上する。多すぎると高温強度、軟化抵抗
性の低下を招き、少なすぎると目標の窒化硬度が得られ
ないためCr6.0〜8.0%とする。さらに上記特性を得るた
めに、Cr/Mo当量を3以下に規定する。
4) Cr Cr is the most important element that imparts excellent wear resistance to the mold of the present invention, and combines with C to form carbides to improve wear resistance. Solid solution in
A fine and high-hardness nitride is formed in the diffusion layer by the combination of Cr and nitrogen, thereby improving the surface hardness and the softening resistance of the nitride layer of the mold of the present invention and contributing to the improvement of wear resistance. In addition, it improves tempering softening resistance and high-temperature strength, and improves hardenability.
Further, a dense oxide film is formed at the time of use, and the hot slidability of the mold surface is improved. If the amount is too large, the high-temperature strength and the softening resistance are lowered. If the amount is too small, the target nitriding hardness cannot be obtained, so the Cr content is set to 6.0 to 8.0%. Further, in order to obtain the above characteristics, the Cr / Mo equivalent is specified to be 3 or less.

【0018】5)W、Mo W、Moは、本発明金型の用途に必要とされる高温強度や
軟化抵抗性および耐摩耗性の向上に有効な未固溶炭化物
量を保つ上で重要であり、さらにMoは、窒化層硬度の向
上に寄与する。W、Moは、Cと結合して強固な炭化物を形
成し、焼入れ時に一部は未固溶炭化物として残存し耐摩
耗性に寄与すると同時に、残りの基地に固溶したもの
は、焼戻し処理において微細な特殊炭化物を析出して、
高温強度、軟化抵抗性を向上する。さらにMoは、窒化処
理時に炭窒化物を形成し易く、本発明金型の特徴とする
窒化硬度を上昇させ、耐摩耗性の向上に寄与する。但
し、多すぎると過度の炭化物の析出を招き靱性を低下さ
せるばかりでなく、機械加工性をも低下させるため、金
型の使用条件および窒化特性に応じて添加する必要があ
り、添加量は、WとMoの1種または2種を1/2W+Moで5.0%以
下とする。さらに、Cr添加による高温強度および軟化抵
抗性の低下を抑えるため、Cr/Mo当量を3以下に規定す
る。即ち、Mo添加量は少なくとも2.0%以上の添加が必要
である。
5) W, Mo W and Mo are important for maintaining the amount of undissolved carbide effective for improving the high temperature strength, softening resistance and wear resistance required for the use of the mold of the present invention. In addition, Mo contributes to the improvement of the hardness of the nitrided layer. W and Mo combine with C to form strong carbides, and at the time of quenching, some remain as undissolved carbides and contribute to wear resistance. Precipitating fine special carbides,
Improves high-temperature strength and softening resistance. Further, Mo easily forms carbonitride during the nitriding treatment, increases the nitriding hardness which is a feature of the mold of the present invention, and contributes to the improvement of wear resistance. However, if it is too large, it not only causes excessive carbide precipitation and lowers toughness, but also lowers machinability, so it is necessary to add it according to the use conditions and nitriding characteristics of the mold. One or two types of W and Mo should be less than 5.0% by 1 / 2W + Mo. Further, the Cr / Mo equivalent is specified to be 3 or less in order to suppress a decrease in high-temperature strength and softening resistance due to the addition of Cr. That is, the addition amount of Mo must be at least 2.0% or more.

【0019】6)V Vは、固溶しにくい炭化物を形成して耐摩耗性および耐
焼付き性を向上するとともに窒化層硬度の向上に有効で
あり、本発明金型の耐摩耗性の向上に寄与する。焼入れ
処理時には基地中に固溶し、焼戻し時に微細な凝集しに
くい炭化物を析出して軟化抵抗性を大とし、高温耐力を
向上する。さらに、結晶粒を微細化して靱性を向上する
と同時にA1変態点を上昇させる効果を有する。但し、多
すぎると巨大な炭化物を生成し靱性を劣化するばかりで
なく、加工方向に沿って形成される炭化物の縞状偏析帯
の出現を増大し、その方向に沿ったクラックの進展を助
長するため、2.0%以下とする。上記添加の効果を得るた
めには、0.2%以上添加することが望ましい。
6) VV is effective for improving the wear resistance and seizure resistance by forming carbides which are hardly dissolved and improving the hardness of the nitrided layer, and contributes to the improvement of the wear resistance of the mold of the present invention. I do. At the time of quenching, it forms a solid solution in the matrix, precipitates fine hard-to-aggregate carbide during tempering, increases softening resistance, and improves high-temperature proof stress. Furthermore, it has the effect of raising the By improving toughness by refining crystal grains at the same time the A 1 transformation point. However, if it is too large, not only will a large carbide be generated and the toughness will be deteriorated, but also the appearance of banded segregation zones of carbide formed along the working direction will be increased, and cracks will be promoted along that direction. Therefore, it is set to 2.0% or less. In order to obtain the effect of the above addition, it is desirable to add 0.2% or more.

【0020】7)Nb Nbは、Vと同様に固溶しにくい炭化物を形成し、耐摩耗
性および耐焼付き性を向上すると同時に、焼入れ処理時
には基地中に固溶し、焼戻し時に微細な凝集しにくい炭
化物を析出して軟化抵抗性を大とし、高温耐力を向上す
る。さらに、焼入れ加熱時の結晶粒の成長を抑制し、結
晶粒を微細化して靱性の向上をもたらす。但し、多すぎ
ると巨大な炭化物を生成し靱性を劣化するため0.30%以
下とする。なお、上記効果を得るに好ましくは0.02%以
上である。
7) Nb Nb forms a carbide which hardly forms a solid solution like V and improves wear resistance and seizure resistance. At the same time, Nb forms a solid solution in a matrix during quenching treatment and finely aggregates during tempering. Precipitates difficult carbides to increase softening resistance and improve high temperature proof stress. Further, the growth of crystal grains during quenching and heating is suppressed, and the crystal grains are refined to improve toughness. However, if the content is too large, a large carbide is generated and the toughness is deteriorated. Note that the content is preferably 0.02% or more for obtaining the above effects.

【0021】8)N Nは、Cと同様にV、Nbなどと結合して炭窒化物を形成
し、結晶粒を微細化して靱性の向上をもたらすことか
ら、本発明のVまたはNbに合わせて添加することが有効
である。上記効果を得るために添加を行うが、多すぎる
と巨大炭化物の晶出を助長し、また、溶製、造塊時の製
造性を考慮して0.10%以下とする。なお、上記効果を得
るに好ましくは0.02%以上である。
8) Like NN, NN combines with V, Nb, etc. to form carbonitrides, refines crystal grains, and improves toughness. It is effective to add. Addition is carried out in order to obtain the above-mentioned effects. However, if it is too much, it promotes crystallization of giant carbides, and the content is made 0.10% or less in consideration of productivity during smelting and ingot making. Note that the content is preferably 0.02% or more for obtaining the above effects.

【0022】9)Co Coは、母材の固溶強化および軟化抵抗性を高めると同時
に、使用中の昇温時、極めて緻密で密着性の高い酸化被
膜を形成し、成形材との金属接触を防ぎ、金型表面の温
度上昇を抑制するとともに優れた耐摩耗性の向上をもた
らす。Coは、上記効果を付与するため必要に応じて添加
するとよいが、多すぎると靱性を低下させるため10.0%
以下とする。好ましくは5.0%以下である。
9) Co Co enhances the solid solution strengthening and softening resistance of the base material, and at the same time raises the temperature during use, forms an extremely dense and highly adherent oxide film, and makes metal contact with the molding material. To prevent the temperature of the mold surface from rising, and to improve the wear resistance. Co may be added as needed to impart the above effects, but if too large, the toughness is reduced by 10.0%.
The following is assumed. Preferably it is 5.0% or less.

【0023】10)Al Alは、基地中に固溶し、鋼中のNなどと結合して高硬度
な窒化物を形成し、析出強化の作用を有する。さらに、
窒化処理時には基地中に固溶したAlが窒素と結合し、窒
化層内に微細かつ高硬度な窒化物を析出し、本発明金型
の表面硬さを向上させ耐摩耗性の向上に寄与する。但
し、過度の添加は母材の強度低下を引き起こし、窒化層
の靱性低下を招くため、3.0%以下とする。なお、上記効
果を得るに好ましくは0.2%以上である。
10) Al Al forms a hardened nitride by forming a solid solution in the matrix and combining with N in the steel and has a function of strengthening the precipitation. further,
During nitriding, Al dissolved in the matrix combines with nitrogen to precipitate fine and hard nitrides in the nitrided layer, improving the surface hardness of the mold of the present invention and contributing to the improvement of wear resistance. . However, excessive addition causes a decrease in the strength of the base material and a decrease in the toughness of the nitrided layer. Note that the content is preferably 0.2% or more to obtain the above effect.

【0024】次に本発明金型の未固溶炭化物量の限定理
由について述べる。窒化処理された温間もしくは熱間加
工用金型の摩耗は、様々な要因によって発生するが、金
型表面と高温の被加工材との摩擦による発熱により表層
部が軟化し、塑性流動を生じることが大きな要因の一つ
である。そして、摩擦発熱が大きい場合、窒化層の最表
層に生成した窒化化合物層は早期に拡散・消失し、型材
の変態点を超えると型表層部に再焼入れ層が生ずる場合
もある。
Next, the reasons for limiting the amount of undissolved carbide in the mold of the present invention will be described. Wear of the nitriding warm or hot working mold occurs due to various factors, but the surface layer softens due to the heat generated by friction between the mold surface and the high temperature workpiece, causing plastic flow. This is one of the major factors. When the frictional heat is large, the nitride compound layer formed on the outermost layer of the nitride layer diffuses and disappears at an early stage, and when the temperature exceeds the transformation point of the mold material, a re-quenched layer may be formed on the mold surface layer.

【0025】ところで被加工材との摺動性や耐焼付き性
が母材に分散する炭化物の量を増すことによって向上す
ることは、粒径2μm以上の1次炭化物を多量に含む高速
度工具鋼については一般的によく知られている。一方、
焼入れ時に殆どの炭化物が基地中に固溶してしまい、未
固溶炭化物の粒径が1μm前後以下で、その面積率が3%前
後以下である温間もしくは熱間加工用金型の場合につい
ても、高温域で被加工材との摩擦による発熱を伴う摩耗
に対し、窒化処理によって表面の硬さを向上すると同時
に未固溶炭化物量を増やすことによって、相乗的に改善
できることを見出した。
The improvement in the sliding property and seizure resistance with the work material by increasing the amount of carbide dispersed in the base material can be attained by using a high-speed tool steel containing a large amount of primary carbide having a particle size of 2 μm or more. Is generally well known. on the other hand,
During quenching, most carbides form a solid solution in the matrix, and the diameter of undissolved carbides is around 1μm or less, and the area ratio is around 3% or less. In addition, it has been found that nitriding can improve the surface hardness by nitriding and increase the amount of undissolved carbides, thereby synergistically improving wear caused by friction with the workpiece in a high temperature range.

【0026】これら知見に基づき、その最適な条件を検
討したところ、本発明の金型では、例えば1030℃といっ
たその焼入れ時より残存する未固溶炭化物において、そ
の組織面に占める粒径0.1μm以上のものの面積率を1%以
上とすることが有効であることをつきとめた。なお、未
固溶炭化物の量は炭化物形成元素であるC、Cr、W、Mo、
V、Nbの添加量を増すことによって制限なく増加できる
が、母材の靱性や素材コストの面より、それらの上限を
定めることにより、未固溶炭化物の量の上限も定められ
る。具体的には、面積率にて5%を上限とすることが適当
である。
Based on these findings, the optimum conditions were examined. In the mold of the present invention, the undissolved carbide remaining after quenching, for example, at 1030 ° C., had a grain size of 0.1 μm or more occupying the structure surface. It has been found that it is effective to set the area ratio of the above to 1% or more. The amount of undissolved carbide is determined by the carbide forming elements C, Cr, W, Mo,
The amount can be increased without limitation by increasing the amount of V and Nb added. However, in view of the toughness of the base material and the material cost, setting the upper limit thereof also sets the upper limit of the amount of undissolved carbide. Specifically, it is appropriate that the upper limit of the area ratio is 5%.

【0027】次に本発明金型の窒化層硬さの限定理由に
ついて述べる。窒化処理により金型の耐摩耗性が向上す
る一つの理由は、金型材表面への過飽和な窒素の侵入お
よび基地中に固溶した合金元素との結合による微細な窒
化物の析出により硬化した窒化拡散層が形成されること
によって、金型表面の高温強度が母材に比して大幅に向
上するためである。
Next, the reasons for limiting the hardness of the nitrided layer of the mold of the present invention will be described. One of the reasons why the wear resistance of the mold is improved by the nitriding treatment is that nitriding hardened due to penetration of supersaturated nitrogen into the mold material surface and precipitation of fine nitrides by bonding with alloying elements dissolved in the matrix. This is because the formation of the diffusion layer significantly improves the high-temperature strength of the mold surface as compared with the base material.

【0028】一方、窒化処理された金型の表面近傍にお
ける軟化は、金型表面と被加工材との接触による熱伝達
および摩擦による発熱によって金型表面の温度が上昇
し、窒素が金型内部へ拡散すると同時に炭窒化物の凝集
が進むことによって引き起るが、おおきくは窒化層の軟
化抵抗性は窒化層の初期の硬さに依存する。即ち、同条
件での熱影響を受けた場合、窒化層の初期硬さの低いも
のほど軟化後の硬さの絶対値は低下し、金型の摩耗に対
して不利となる。
On the other hand, the softening in the vicinity of the surface of the mold subjected to the nitriding treatment causes the temperature of the mold surface to rise due to the heat transfer due to the contact between the mold surface and the workpiece and the heat generated by the friction, and nitrogen is formed inside the mold. The softening resistance of the nitrided layer depends on the initial hardness of the nitrided layer. In other words, when the nitride layer is affected by the heat under the same conditions, the lower the initial hardness of the nitride layer, the lower the absolute value of the hardness after softening, which is disadvantageous to the wear of the mold.

【0029】これら検討した結果、窒化層の表面から25
μm内部における窒化層の硬さが1100HV未満であれば軟
化、摩耗が進行して金型の廃却に至るまでの期間が短時
間になるので、窒化層の表面から25μm内部における窒
化層の硬さを1100HV以上に限定する。なお、ここで言う
窒化とは、上記特性が得られるならば、その方式、種類
などはとくに限定しない。
As a result of these studies, it was found that 25
If the hardness of the nitrided layer within 1 μm is less than 1100 HV, the period from softening and abrasion to the disposal of the mold becomes short, so the hardness of the nitrided layer within 25 μm from the surface of the nitrided layer is reduced. Limited to 1100HV or more. Note that the term “nitriding” used herein is not particularly limited as long as the above characteristics can be obtained.

【0030】[0030]

【実施例】(実施例1)以下、本発明を実施例に基づき
詳細に説明する。表1に実験に供した試験片素材の化学
成分を示す。本発明金型および比較金型の各素材より採
取した試験片は全て1030℃加熱後、200℃の油中に浸漬
する油焼入れを行った後、焼戻しにて約50HRCに調質し
た。また、窒化層の特性評価に使用する試験片について
は、前記同様の熱処理を行った後、ガス窒化により540
℃×20h、ガス組成NH3:N2=1:1の条件で窒化処理を行い
供試材とした。これより各試験片を作製し、母材靱性、
母材高温強度、窒化層初期硬度、母材および窒化層の軟
化抵抗性について評価を行った。
EXAMPLES (Example 1) Hereinafter, the present invention will be described in detail with reference to examples. Table 1 shows the chemical components of the test piece materials used in the experiment. All the test pieces collected from each material of the mold of the present invention and the comparative mold were heated at 1030 ° C., quenched in oil at 200 ° C., and then tempered to about 50 HRC by tempering. Further, for the test piece used for evaluating the characteristics of the nitrided layer, after performing the same heat treatment as described above, 540
A nitriding treatment was carried out at a temperature of 20 ° C. and a gas composition of NH 3 : N 2 = 1: 1 to obtain a test material. Each test piece was prepared from this, and the base material toughness,
The base metal high-temperature strength, the initial hardness of the nitride layer, and the softening resistance of the base material and the nitride layer were evaluated.

【0031】[0031]

【表1】 [Table 1]

【0032】母材靱性評価については、JIS3号試験片
(2mmUノッチ)を作製し、室温でのシャルピー衝撃試験
を行った。母材高温強度については、700℃で10分間加
熱保持した後、直ちに引張試験を行って引張強さで評価
した。窒化層初期硬度については、窒化処理直後の試験
片を切断し、窒化処理した表面より25μm位置での硬さ
をJIS規定のマイクロビッカース試験2.942Nで測定し評
価を行った。
For evaluation of base metal toughness, a JIS No. 3 test piece (2 mm U notch) was prepared and subjected to a Charpy impact test at room temperature. The base metal high-temperature strength was evaluated by tensile strength by immediately performing a tensile test after heating and holding at 700 ° C. for 10 minutes. The initial hardness of the nitrided layer was evaluated by cutting a test piece immediately after the nitriding treatment and measuring the hardness at a position 25 μm from the surface subjected to the nitriding treatment by a micro Vickers test 2.942N specified in JIS.

【0033】また、窒化層および母材の軟化抵抗性につ
いては、窒化処理した試験片を650℃、700℃の大気雰囲
気中で各3h保持した後、試験片を切断して前記同様の条
件で硬さ測定を行った。但し、大気中での加熱は試験片
の表面からの脱窒を伴うため、窒化層軟化硬さの測定は
表面より25〜100μmの範囲内で最も高い硬度で評価し
た。母材の軟化試験後の硬さ測定については、同試験片
の窒化層の影響がない表層から5mmの位置で前記同様の
測定を行った。表2に各鋼の試験結果を示す。
With respect to the softening resistance of the nitrided layer and the base material, the nitrided test pieces were held in air atmospheres at 650 ° C. and 700 ° C. for 3 hours each, and then cut and cut under the same conditions as described above. Hardness measurements were taken. However, since heating in the air involves denitrification from the surface of the test piece, the measurement of the softening hardness of the nitrided layer was evaluated at the highest hardness within the range of 25 to 100 μm from the surface. Regarding the hardness measurement after the softening test of the base material, the same measurement as described above was performed at a position 5 mm from the surface layer where the nitride layer of the test piece was not affected. Table 2 shows the test results for each steel.

【0034】[0034]

【表2】 [Table 2]

【0035】本発明金型−鋼1〜5のシャルピー衝撃値
は、比較例−鋼6、7に示す従来鋼に対して同等であり、
温間もしくは熱間鍛造用金型として十分な靱性を備えて
いることが分かる。高温強度(700℃引張強さ)につい
ては、図1に各鋼のCr添加量で整理して示す。図中、比
較例−鋼6〜8の高温強度を破線で結んで示すが、従来鋼
の場合、高温強度はCr量の増加とともに低下し、Cr量が
5%以上となると300MPa以下にまで低下することが分か
る。これに対して本発明金型は、Cr/Mo当量を3以下に規
定し、Cr量の増加によって低下する高温強度をMo量によ
って補うことにより、Cr添加量が5%以上であっても高温
強度が300MPa以上を有し、図3の試験前の窒化層硬さ
(図中−○−)に示すように、従来鋼に対して高温強度
を低下させることなく窒化層の硬さが1100HV以上にまで
向上していることが分かる。
The Charpy impact values of the mold of the present invention—steel 1 to 5 are equivalent to those of the conventional steels shown in Comparative Examples—steel 6 and 7,
It turns out that it has sufficient toughness as a mold for warm or hot forging. The high-temperature strength (700 ° C tensile strength) is shown in Fig. 1 organized by the amount of Cr added to each steel. In the figure, the high-temperature strength of Comparative Example-Steel 6 to 8 is indicated by a broken line, but in the case of the conventional steel, the high-temperature strength decreases with an increase in the Cr content,
It can be seen that when it exceeds 5%, it drops to 300 MPa or less. On the other hand, the mold of the present invention regulates the Cr / Mo equivalent to 3 or less and compensates for the high-temperature strength, which is reduced by the increase in Cr amount, by the Mo amount. It has a strength of 300 MPa or more, and the hardness of the nitrided layer is 1100 HV or more without lowering the high-temperature strength compared to conventional steel as shown in the hardness of the nitrided layer before the test in Fig. It can be seen that it has improved up to.

【0036】次に、図2、図3に母材および窒化層の窒化
処理直後の硬さおよび650℃×3h(図中−▲−)、700℃
×3h(図中−*−)軟化試験後の硬さをCr添加量で整理
した結果を示す。図2より、母材の軟化特性は、高温強
度と同じくCr添加量の増加によって硬さが低下しやすい
ことが分かる。比較例−鋼8の試験前の硬さが他と比較
して440HV程度まで低下しているが、これは窒化処理時
に軟化したためである。
Next, FIGS. 2 and 3 show the hardness immediately after the nitriding treatment of the base material and the nitrided layer, 650 ° C. × 3 h (−−− in the figure), and 700 ° C.
× 3h (-*-in the figure) shows the results of the hardness after the softening test arranged by the amount of Cr added. From FIG. 2, it can be seen that the softening characteristics of the base material tend to decrease in hardness as the Cr content increases, similarly to the high-temperature strength. Comparative Example-The hardness of the steel 8 before the test was reduced to about 440 HV as compared with the others, which was due to softening during the nitriding treatment.

【0037】一方、図3に示す窒化層の硬さの変化は、
母材の軟化挙動と異なり、試験前の窒化層の硬さの高い
ものほど軟化試験後においても高い硬さが維持されてい
ることが分かる。但し、比較例−鋼8に示されるよう
に、試験前の窒化層の硬さが1100HV以上であっても、Cr
/Mo当量が3以上であると窒化層の軟化が大きいことが分
かる。以上の結果、本発明金型が比較例−鋼6、7に示す
従来鋼と比較して母材の靱性および高温強度を低下させ
ることなく、窒化層の硬さ、軟化抵抗性を大幅に向上し
ていることが分かる。
On the other hand, the change in hardness of the nitrided layer shown in FIG.
It can be seen that, unlike the softening behavior of the base material, the higher the hardness of the nitrided layer before the test, the higher the hardness is maintained after the softening test. However, even if the hardness of the nitrided layer before the test was 1100 HV or more, as shown in Comparative Example-Steel 8, Cr
It can be seen that when the / Mo equivalent is 3 or more, the softening of the nitrided layer is large. As a result, the mold of the present invention significantly improved the hardness and softening resistance of the nitrided layer without reducing the toughness and high-temperature strength of the base material as compared with the conventional steels shown in Comparative Examples-Steels 6 and 7. You can see that it is doing.

【0038】(実施例2)次に熱間での摺動性および焼
付き性に及ぼす未固溶炭化物量の影響について評価した
結果について述べる。表1に示す鋼1〜8の組成の素材を
準備し、1030℃加熱後、200℃の油中に浸漬する油焼入
れを行った後、焼戻しにて50HRCに調質し、ガス窒化に
より540℃×20h、ガス組成NH3:N2=1:1の条件で窒化処理
を行い供試材とした。
(Example 2) Next, the results of evaluating the effect of the amount of undissolved carbide on the slidability and seizure properties during hot working will be described. Prepare a material of the composition of steel 1 to 8 shown in Table 1, after heating at 1030 ℃, immersion in oil at 200 ℃ oil quenching, tempered to 50HRC by tempering, 540 ℃ by gas nitriding Nitriding was performed under the conditions of × 20 h and a gas composition of NH 3 : N 2 = 1: 1 to obtain a test material.

【0039】試験片の寸法は、直径5mm、長さ30mmであ
り、600℃で30分加熱したSNCM439鋼の#1000仕上面に154
0rpmの回転速度で所定の荷重で押付け、試験片接触面が
再焼入れ状態になり、座屈が生じる荷重を限界荷重とし
て高温摺動試験評価を行った。なお、比較金型と本発明
金型の未固溶炭化物量は、SEM観察10000倍で面積240μm
2×10視野中の0.1μm以上の未固溶炭化物の面積率を測
定することによって評価した。
The dimensions of the test piece were 5 mm in diameter and 30 mm in length, and 154 mm was placed on the # 1000 finished surface of SNCM439 steel heated at 600 ° C. for 30 minutes.
The specimen was pressed with a predetermined load at a rotation speed of 0 rpm, and the contact surface of the test piece was re-quenched, and a high-temperature sliding test evaluation was performed using a load at which buckling occurs as a limit load. The amount of undissolved carbide in the comparative mold and the mold of the present invention was 240 μm in area by 10,000 times SEM observation.
It was evaluated by measuring the area ratio of undissolved carbide of 0.1 μm or more in a 2 × 10 visual field.

【0040】[0040]

【表3】 [Table 3]

【0041】表3に各鋼の未固溶炭化物量、窒化層硬さ
(窒化処理した表面より25μmの位置)および高温摺動
試験結果を示す。また、本発明金型−鋼2および比較例
−鋼6については比較として窒化未処理材についての評
価も行った。これより、高温における摺動特性は、窒化
処理を適用することによって大幅に改善され、未固溶炭
化物量および窒化層の硬さの増加によって相乗的に向上
する効果があることが分かる。
Table 3 shows the amount of undissolved carbide, the hardness of the nitrided layer (at a position 25 μm from the surface subjected to the nitriding treatment) and the results of the high-temperature sliding test of each steel. In addition, the mold of the present invention—steel 2 and the comparative example—steel 6 were also evaluated for the untreated material as a comparison. From this, it can be seen that the sliding characteristics at a high temperature are greatly improved by applying the nitriding treatment, and there is a synergistic effect of increasing the amount of undissolved carbide and the hardness of the nitrided layer.

【0042】(実施例3)以下、本発明金型を熱間後方
押出し鍛造型に実施した例を示す。表1に示す鋼1〜7の
組成の素材を準備し、これから熱間後方押出し鍛造型を
作製し、実機鍛造テストを行った。金型は自動車用部品
材を後方押出し成形するポンチであり、直径100mm、高
さ310mmである。鍛造温度は1150℃であり、最大能力150
0tのクランクプレスでで、毎分40ショットの速度で成形を行
った。
Example 3 Hereinafter, an example in which the die of the present invention is applied to a hot backward extrusion forging die will be described. A raw material having the composition of steels 1 to 7 shown in Table 1 was prepared, a hot backward extrusion forging die was manufactured from this, and an actual forging test was performed. The mold is a punch for extruding an automobile part material backward, and has a diameter of 100 mm and a height of 310 mm. Forging temperature is 1150 ℃, maximum capacity 150
Molding was performed at a speed of 40 shots per minute with a 0t crank press.

【0043】各金型の熱処理は、荒加工後の金型を、10
30℃加熱後、200℃の油に浸漬する油焼入れ後、焼戻し
にて約50HRCに調質し、仕上げ加工を行った。窒化処理
は全ての金型に実施し、ガス窒化により540℃×20h、ガ
ス組成NH3:N2=1:1の条件で窒化処理を行った。表4に実
機鍛造テストを行った結果によるこれらの熱間鍛造金型
の型寿命を示す。
The heat treatment of each mold is carried out by
After heating at 30 ° C, oil quenching immersed in oil at 200 ° C, tempered by tempering to about 50HRC, and finished. The nitriding treatment was performed on all the dies, and the nitriding treatment was performed by gas nitriding under the conditions of 540 ° C. × 20 hours and a gas composition of NH 3 : N 2 = 1: 1. Table 4 shows the tool life of these hot forging dies based on the results of the actual machine forging test.

【0044】[0044]

【表4】 [Table 4]

【0045】本鍛造金型は、成形速度が速いため、被加
工材と金型の摺動速度が速く、摩擦発熱により表層が軟
化・摩耗し、早期に寿命に至る。本発明金型は、窒化層
硬さ、軟化抵抗性を向上させ、さらには未固溶炭化物量
を増加させることによって、金型の摩耗寿命が大幅に改
善された。
In the present forging die, since the molding speed is high, the sliding speed between the workpiece and the die is high, and the surface layer is softened and abraded due to frictional heat, and the life is quickly reached. In the mold of the present invention, the wear life of the mold was significantly improved by improving the hardness of the nitrided layer, the resistance to softening, and further increasing the amount of undissolved carbide.

【0046】[0046]

【発明の効果】以上述べたように、本発明の温間もしく
は熱間加工用金型は、従来金型と比較して耐摩耗性に優
れ、温間もしくは熱間鍛造金型の摩耗寿命を大幅に改善
することができ、工業的価値は大きい。
As described above, the warm or hot working mold of the present invention has excellent wear resistance as compared with the conventional mold and has a long wear life of the warm or hot forging mold. It can be greatly improved, and the industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】700℃引張強さで表す高温強度に及ぼすCr添加
量の影響を示す図である。
FIG. 1 is a graph showing the effect of the amount of Cr added on high-temperature strength represented by tensile strength at 700 ° C.

【図2】窒化処理直後(試験前)および650℃、700℃に
各3h保持し、軟化処理したときの母材硬さとCr添加量の
関係を示す図である。
FIG. 2 is a graph showing the relationship between the hardness of the base metal and the amount of Cr added immediately after the nitriding treatment (before the test) and at 650 ° C. and 700 ° C. for 3 hours for each softening treatment.

【図3】窒化処理直後(試験前)および650℃、700℃に
各3h保持し、軟化処理したときの窒化層硬さとCr添加量
の関係を示す図である。
FIG. 3 is a graph showing the relationship between the hardness of a nitrided layer and the amount of Cr added immediately after nitriding treatment (before the test) and at 650 ° C. and 700 ° C. for 3 hours and softening treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/52 C22C 38/52 C23C 8/26 C23C 8/26 Fターム(参考) 4E050 JA01 JB09 JD05 4E087 AA09 AA10 CB01 CB02 EC01 ED04 ED06 4K028 AA02 AB01 AB06 AC08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C22C 38/52 C22C 38/52 C23C 8/26 C23C 8/26 F term (reference) 4E050 JA01 JB09 JD05 4E087 AA09 AA10 CB01 CB02 EC01 ED04 ED06 4K028 AA02 AB01 AB06 AC08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.25〜0.55%、Si:1.2%以
下、Mn:1.5%以下、Ni:2.0%以下、Cr:6.0〜8.0%、WとMo
の1種または2種を1/2W+Moで5.0%以下、かつCrとMoがCr/
Mo≦3を満足し、残部Feおよび不可避的不純物からな
り、組織面に占める粒径0.1μm以上の未固溶炭化物の面
積率が1%以上であり、少なくとも被加工材との接触面に
窒化層を有し、かつ前記窒化層の表面から25μm内部で
の硬さが1100HV以上であることを特徴とする耐摩耗性に
優れる温熱間加工用窒化金型。
C .: 0.25 to 0.55%, Si: 1.2% or less, Mn: 1.5% or less, Ni: 2.0% or less, Cr: 6.0 to 8.0%, W and Mo
1% or 2 types is less than 5.0% at 1 / 2W + Mo, and Cr and Mo are Cr /
Satisfies Mo ≦ 3, the balance consists of Fe and unavoidable impurities, and the area ratio of undissolved carbide with a grain size of 0.1 μm or more occupying the structure surface is 1% or more. A nitride mold for hot working having excellent wear resistance, comprising a layer and having a hardness of 1100 HV or more within 25 μm from the surface of the nitride layer.
【請求項2】 重量%で、V:2.0%以下を含有することを
特徴とする請求項1に記載の耐摩耗性に優れる温熱間加
工用窒化金型。
2. The nitride mold for hot working with excellent wear resistance according to claim 1, which contains V: 2.0% or less by weight.
【請求項3】 重量%で、Nb:0.30%以下を含有すること
を特徴とする請求項1または2に記載の耐摩耗性に優れ
る温熱間加工用窒化金型。
3. The nitride mold for hot working with excellent wear resistance according to claim 1, wherein the mold contains Nb: 0.30% or less by weight.
【請求項4】 重量%で、N:0.10%以下を含有することを
特徴とする請求項2または3に記載の耐摩耗性に優れる
温熱間加工用窒化金型。
4. The nitride mold for hot working with excellent wear resistance according to claim 2, which contains N: 0.10% or less by weight.
【請求項5】 重量%で、Co:10.0%以下を含有すること
を特徴とする請求項1ないし4のいずれかに記載の耐摩
耗性に優れる温熱間加工用窒化金型。
5. The nitride mold for hot working with excellent wear resistance according to claim 1, which contains, by weight percent, Co: 10.0% or less.
【請求項6】 重量%で、Al:3.0%以下を含有することを
特徴とする請求項1ないし5のいずれかに記載の耐摩耗
性に優れる温熱間加工用窒化金型。
6. The nitride mold for hot working excellent in wear resistance according to claim 1, which contains, by weight%, Al: 3.0% or less.
JP24816799A 1999-09-02 1999-09-02 Nitrided die for warm and hot working, excellent in wear resistance Pending JP2001073087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816799A JP2001073087A (en) 1999-09-02 1999-09-02 Nitrided die for warm and hot working, excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816799A JP2001073087A (en) 1999-09-02 1999-09-02 Nitrided die for warm and hot working, excellent in wear resistance

Publications (1)

Publication Number Publication Date
JP2001073087A true JP2001073087A (en) 2001-03-21

Family

ID=17174222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816799A Pending JP2001073087A (en) 1999-09-02 1999-09-02 Nitrided die for warm and hot working, excellent in wear resistance

Country Status (1)

Country Link
JP (1) JP2001073087A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292442A (en) * 2001-03-30 2002-10-08 Hitachi Metals Ltd Covering tool for warm and hot working excellent in lubricant adhesive property and abrasion resistance
JP2002307129A (en) * 2001-04-10 2002-10-22 Hitachi Metals Ltd Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
KR101555097B1 (en) * 2013-12-06 2015-09-23 주식회사 포스코 Die steel for plastic injection molding and manufacturing method using the same
JP2015168859A (en) * 2014-03-07 2015-09-28 大同特殊鋼株式会社 Steel for mold
EP3831966A1 (en) 2019-12-03 2021-06-09 Daido Steel Co., Ltd. Steel for mold, and mold
KR20210069584A (en) 2019-12-03 2021-06-11 다이도 토쿠슈코 카부시키가이샤 Steel for mold, and mold

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292442A (en) * 2001-03-30 2002-10-08 Hitachi Metals Ltd Covering tool for warm and hot working excellent in lubricant adhesive property and abrasion resistance
JP4547656B2 (en) * 2001-03-30 2010-09-22 日立金属株式会社 Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP2002307129A (en) * 2001-04-10 2002-10-22 Hitachi Metals Ltd Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
JP4656473B2 (en) * 2001-04-10 2011-03-23 日立金属株式会社 Coated tool for hot working with excellent lubricant adhesion and wear resistance
KR101555097B1 (en) * 2013-12-06 2015-09-23 주식회사 포스코 Die steel for plastic injection molding and manufacturing method using the same
JP2015168859A (en) * 2014-03-07 2015-09-28 大同特殊鋼株式会社 Steel for mold
EP3831966A1 (en) 2019-12-03 2021-06-09 Daido Steel Co., Ltd. Steel for mold, and mold
KR20210069584A (en) 2019-12-03 2021-06-11 다이도 토쿠슈코 카부시키가이샤 Steel for mold, and mold
US11535917B2 (en) 2019-12-03 2022-12-27 Daido Steel Co., Ltd. Steel for mold, and mold

Similar Documents

Publication Publication Date Title
TWI412606B (en) Steel for induction hardening
EP2679697B1 (en) Manufacturing method for cold-working die
JP5143531B2 (en) Cold mold steel and molds
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
EP0884398B1 (en) High strength and high tenacity non-heat-treated steel having excellent machinability
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
WO2021187484A1 (en) Steel for hot working die, die for hot working, and manufacturing method for same
JP2006161144A (en) Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
JP2006348321A (en) Steel for nitriding treatment
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
JP2001073087A (en) Nitrided die for warm and hot working, excellent in wear resistance
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP2002212672A (en) Steel member
JP2010163648A (en) Cold work die steel and die
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP6772915B2 (en) Cold tool steel
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JPH10121195A (en) Hot tool steel excellent in nitriding characteristics
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JPH06145884A (en) Die for hot working excellent in plastic flow resistance