Nothing Special   »   [go: up one dir, main page]

JP4511851B2 - High pressure tank and manufacturing method thereof - Google Patents

High pressure tank and manufacturing method thereof Download PDF

Info

Publication number
JP4511851B2
JP4511851B2 JP2004067893A JP2004067893A JP4511851B2 JP 4511851 B2 JP4511851 B2 JP 4511851B2 JP 2004067893 A JP2004067893 A JP 2004067893A JP 2004067893 A JP2004067893 A JP 2004067893A JP 4511851 B2 JP4511851 B2 JP 4511851B2
Authority
JP
Japan
Prior art keywords
liner
header
heat medium
heat
pressure tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004067893A
Other languages
Japanese (ja)
Other versions
JP2004354039A (en
Inventor
敬司 藤
秀人 久保
勝義 藤田
明子 熊野
雅彦 金原
大五郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2004067893A priority Critical patent/JP4511851B2/en
Priority to US10/841,279 priority patent/US7152665B2/en
Publication of JP2004354039A publication Critical patent/JP2004354039A/en
Priority to US11/595,128 priority patent/US7322398B2/en
Priority to US11/981,145 priority patent/US20080066887A1/en
Application granted granted Critical
Publication of JP4511851B2 publication Critical patent/JP4511851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fuel Cell (AREA)

Description

本発明は、中空状のライナとライナの外周面を覆う繊維強化プラスチックとを備え、ライナの内部を高圧にしてガスを貯蔵する高圧タンク及びその製造方法に関する。 The present invention relates to a high-pressure tank that includes a hollow liner and a fiber-reinforced plastic that covers an outer peripheral surface of the liner, and stores gas by setting the inside of the liner to a high pressure, and a method for manufacturing the same .

近年、地球温暖化を抑制する意識が高まり、特に車両から排出される二酸化炭素の低減を目的として燃料電池電気自動車や水素エンジン自動車等の開発が盛んである。燃料電池電気自動車では水素と酸素とを電気化学的に反応させて電力を起こし、その電気をモータに供給して駆動力を発生させる。この種の水素供給源としては水素が充填された高圧タンクが用いられ、その高圧タンクの一例が特許文献1等に開示されている。この高圧タンク(圧力容器)は金属又は樹脂製のライナを備え、その外周は耐圧性を確保するために被覆材で被覆されている。
特表2000−504810号(第6−42頁、第2図)
In recent years, awareness of suppressing global warming has increased, and fuel cell electric vehicles, hydrogen engine vehicles, and the like have been actively developed especially for the purpose of reducing carbon dioxide emitted from vehicles. In a fuel cell electric vehicle, hydrogen and oxygen are reacted electrochemically to generate electric power, and the electricity is supplied to a motor to generate driving force. As this type of hydrogen supply source, a high-pressure tank filled with hydrogen is used, and an example of the high-pressure tank is disclosed in Patent Document 1 and the like. The high-pressure tank (pressure vessel) is provided with a metal or resin liner, and the outer periphery thereof is covered with a covering material to ensure pressure resistance.
Special table 2000-504810 (page 6-42, Fig. 2)

ところで、高圧タンクはガスを充填する際に、圧縮仕事によるガスの温度上昇に伴い内圧も上昇する。しかし、伝熱が悪いCFRP(Carbon Fiber Reinforced Plastics)を被覆材として用いた場合には、高圧タンクの耐圧性がよくなるものの内部で発生した熱が外部に放熱され難く、タンク内部の温度上昇によってガスの充填量が規定量より少なくなる問題が生じる。また、高圧ガスのガス充填時間をなるべく短くしたい要望があるが、急速にガス充填を行うとその分だけ温度上昇が顕著になり、ガス充填量に支障を来す。   By the way, when the high-pressure tank is filled with gas, the internal pressure rises as the gas temperature rises due to compression work. However, when CFRP (Carbon Fiber Reinforced Plastics) with poor heat transfer is used as the coating material, the pressure generated by the high-pressure tank is improved, but the heat generated inside is difficult to dissipate to the outside. There arises a problem that the filling amount is less than the prescribed amount. In addition, there is a demand for shortening the gas filling time of the high-pressure gas as much as possible. However, if the gas filling is performed rapidly, the temperature rises so much that the gas filling amount is hindered.

また、高圧タンクは充填できるガス量を増やすために、タンク内部に吸蔵材を配置する場合がある。吸蔵材はガス分子と接触したときに吸着熱や反応熱が生じるので、吸蔵材を内蔵する場合はガスの圧縮熱に加え、吸着熱や反応熱を除去する必要がある。このため、高圧ガスを規定量で、かつ急速に充填するためには内部ガスを冷却しながら行う必要があり、この冷却方法としては高圧タンクに熱交換器を取り付ける方法がある。   Further, in order to increase the amount of gas that can be filled in the high-pressure tank, an occlusion material may be disposed inside the tank. Since the adsorption material generates heat of adsorption and reaction when it comes into contact with gas molecules, it is necessary to remove the heat of adsorption and reaction in addition to the compression heat of the gas when the material is incorporated. For this reason, in order to rapidly fill the high-pressure gas with a specified amount, it is necessary to cool the internal gas while cooling, and as this cooling method, there is a method of attaching a heat exchanger to the high-pressure tank.

この熱交換器はタンク内外に亘って通された熱媒管を備え、その熱媒管を介して外部から冷水を取り込んでガスの温度上昇を抑え、熱交換により温まった温水を外部へ放出する。熱交換器を高圧タンクに設置する場合、例えばライナの側部でライナを貫通させて熱媒管を外部へ引き出す必要があるが、その貫通部分でライナと熱媒管との間のシール性を確保する必要がある。そのシール確保としてはろう付けや接着等があるが、この場合にはライナの強度(疲労強度)が低下し、耐久性が悪くなる問題が生じていた。   This heat exchanger is equipped with a heat medium pipe that passes through the inside and outside of the tank, takes cold water from the outside through the heat medium pipe, suppresses the temperature rise of the gas, and discharges warm water heated by heat exchange to the outside . When installing a heat exchanger in a high-pressure tank, for example, it is necessary to penetrate the liner at the side of the liner and pull out the heat medium pipe to the outside, but the sealing property between the liner and the heat medium pipe is improved at the through part. It is necessary to secure. As for securing the seal, there are brazing and adhesion, but in this case, the liner strength (fatigue strength) is lowered and the durability is deteriorated.

本発明は前記の問題点に鑑みてなされたものであって、その目的は、ライナと熱交換器との間のシール性を確保する上で、ライナの強度を低下し難くできる高圧タンク及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to secure a sealing property between the liner and the heat exchanger, and to make it difficult to reduce the strength of the liner and its It is to provide a manufacturing method .

上記問題点を解決するために、請求項1に記載の発明は、少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクである。前記熱交換器をヘッダ部に接合し、前記ライナのライナ本体及び分割体のうち一方の内面に前記ヘッダ部を係止手段によって固定することで前記熱交換器が取り付けられており、前記ヘッダ部と、そのヘッダ部が接合される前記ライナ本体又は前記分割体との接合面には、前記ライナの内部と前記熱交換器の熱媒の通路との間の気密性を確保するシール材が介装されている。 In order to solve the above problems, the invention according to claim 1 is accommodated in the liner, a hollow liner that is divided at least on one side, a fiber reinforced plastic that covers the outer peripheral surface of the liner, and the liner. A high-pressure tank that includes a heat exchanger and stores the gas at a high pressure inside the liner. The heat exchanger is attached to the header portion by fixing the header portion to the inner surface of one of the liner body and the divided body of the liner by a locking means, and the header portion is attached. And a sealing material for ensuring airtightness between the inside of the liner and the passage of the heat medium of the heat exchanger is interposed on the joint surface of the liner main body or the divided body to which the header portion is joined. It is disguised.

この発明によれば、熱交換器をヘッダ部に接合し、そのヘッダ部を係止手段によってライナ本体及び分割体のうち一方の内面に固定することで熱交換器がライナに取り付けられる。ところで、熱交換器をライナに取り付ける場合、ロウ付けや溶接等を用いるとライナの強度が低下してしまうが、この構成では熱交換器をヘッダ部に接合し、それをライナに対して取り付ける構成であるので、ロウ付けや溶接等を用いずに済み、ライナ強度の低下が殆ど生じない。   According to this invention, the heat exchanger is attached to the liner by joining the heat exchanger to the header portion and fixing the header portion to one inner surface of the liner main body and the divided body by the locking means. By the way, when the heat exchanger is attached to the liner, the strength of the liner decreases if brazing, welding, or the like is used. In this configuration, the heat exchanger is joined to the header portion and attached to the liner. Therefore, it is not necessary to use brazing or welding, and the liner strength is hardly lowered.

請求項2に記載の発明では、請求項1に記載の発明において、前記ライナは一端側で分割され、分割された側と反対側の端部に前記ヘッダ部が固定される開口部が設けられている。前記ヘッダ部は前記開口部に挿通可能な小径部と、前記開口部より大径の大径部とを備え、前記小径部の外周面に雄ねじ部が形成され、前記雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている。   According to a second aspect of the present invention, in the first aspect of the present invention, the liner is divided at one end side, and an opening for fixing the header portion is provided at the end opposite to the divided side. ing. The header portion includes a small-diameter portion that can be inserted into the opening portion, and a large-diameter portion that is larger in diameter than the opening portion, a male screw portion is formed on an outer peripheral surface of the small-diameter portion, and the male screw portion is used to A header portion is fixed to the liner.

この発明によれば、ヘッダ部は小径部と大径部とを備え、ライナの分割された側と反対側に設けられた開口部に小径部が挿通され、小径部の外周面に形成された雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている。従って、ヘッダ部に作用する内圧がヘッダ部とライナ内面との間のシール部のシール性を高めるように作用し、シール性が高められる。   According to this invention, the header portion includes a small diameter portion and a large diameter portion, and the small diameter portion is inserted into the opening provided on the side opposite to the divided side of the liner, and is formed on the outer peripheral surface of the small diameter portion. The header portion is fixed to the liner using a male screw portion. Therefore, the internal pressure acting on the header portion acts to enhance the sealing performance of the sealing portion between the header portion and the liner inner surface, and the sealing performance is enhanced.

請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であって、前記ヘッダ部には前記熱媒が流れる流路が形成され、前記流路と前記熱媒管の内部とが連通するように前記熱媒管の端部が前記ヘッダ部に固着されている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the heat exchanger includes a heat medium pipe via a passage through which a heat medium supplied from the outside penetrates the liner. The header is formed with a flow path through which the heat medium flows, and the heat medium pipe is communicated with the flow path and the inside of the heat medium pipe. Is fixed to the header portion.

この発明によれば、請求項1又は請求項2に記載の発明の作用に加え、外部からの熱媒を熱媒管に流して冷却又は加熱を行う熱交換器を用いた場合、熱媒管の通路をライナ内部から外部へ引き出す必要がある。その引き出し部分のシール確保のためにロウ付けや溶接等を用いるとライナ強度の低下を招く。しかし、この発明の構成を用いればライナにロウ付けや溶接等を行わずに熱媒管の通路を外部に引き出せることになり、ライナ強度の低下が殆ど生じない。   According to the present invention, in addition to the operation of the invention according to claim 1 or 2, when a heat exchanger that cools or heats by flowing an external heat medium through the heat medium pipe is used, the heat medium pipe It is necessary to pull out the passage from the inside of the liner to the outside. If brazing, welding, or the like is used to secure the seal of the drawer portion, the liner strength is reduced. However, if the configuration of the present invention is used, the passage of the heat medium pipe can be drawn outside without brazing or welding the liner, and the liner strength hardly decreases.

請求項4に記載の発明では、請求項3に記載の発明において、前記ヘッダ部は前記分割体に取り付けられ、該分割体は樹脂製である。この発明では、ヘッダ部が取り付けられる分割体を介して熱媒が熱媒管の通路に出入りする。分割体が金属製の場合、分割体を介して熱媒の熱が外部に放射されたり、逆に熱媒が外部の熱で暖められたりし易くなる。しかし、分割体が樹脂製のため、金属製の場合に比較して断熱性が高く、熱媒が分割体を通過する間における熱媒の温度変化が抑制されて、熱交換器による熱交換が効率良く行われるようになる。 In invention of Claim 4 , in the invention of Claim 3 , the said header part is attached to the said division body, and this division body is resin. In the present invention, the heat medium enters and exits the passage of the heat medium pipe through the divided body to which the header portion is attached. When the divided body is made of metal, the heat of the heat medium is easily radiated to the outside through the divided body, or conversely, the heat medium is easily heated by the external heat. However, since the divided body is made of resin, the heat insulation is higher than in the case of metal, the temperature change of the heat medium while the heat medium passes through the divided body is suppressed, and heat exchange by the heat exchanger is performed. It will be done efficiently.

請求項5に記載の発明では、請求項2〜請求項4のいずれか一項に記載の発明において、前記熱媒は前記ライナの両側端部のうち片側で出入りする。この発明によれば、ライナの両側端部のうち片側で熱媒が出入りする構成であるので、例えば熱媒源をライナの熱媒入口の近くに配置した場合、熱媒出口と熱媒源との間の距離が熱媒入口と熱媒源との間の距離とほぼ同じになり、熱媒出口から延びる管路を熱媒源まで引き戻す必要がない。 In the invention according to claim 5 , in the invention according to any one of claims 2 to 4 , the heat medium enters and exits on one side of both end portions of the liner. According to the present invention, since the heating medium on one side of the both side ends of the La Ina is a configuration in and out, for example, the case of arranging the heat medium source close to the heat medium inlet of the liner, the heat medium outlet Netsunakadachigen Is approximately the same as the distance between the heat medium inlet and the heat medium source, and there is no need to pull back the pipe extending from the heat medium outlet to the heat medium source.

請求項6に記載の発明では、請求項5に記載の発明において、前記ガスは前記ライナの両側端部のうち、前記熱媒が出入りする側に対し反対側から出入りする。この発明によれば、ガスがライナの両側端部のうち熱媒が出入りする側に対し反対側から出入りするので、ライナの一方の端部が熱媒用で他方がガス用とすることが可能となり、どちらか一方の端部が熱媒及びガスの間で共用化されずに済んで高圧タンクの構成が簡素化する。 According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the gas enters and exits from the opposite side of the both ends of the liner with respect to the side where the heating medium enters and exits. According to the present invention, the gas enters and exits from the opposite side to the side and out the inner heating medium of both side ends of the liner, that one end of the liner and the other in the heat medium is a gas As a result, either one of the end portions is not shared between the heat medium and the gas, and the configuration of the high-pressure tank is simplified.

請求項7に記載の発明では、請求項2〜請求項6のいずれか一項に記載の発明において、前記熱交換器は熱媒管を複数備えている。この発明によれば、熱媒管を複数備えた熱交換器を用いるので、高圧タンク内の温度抑制効果が高くなる。
請求項8に記載の発明では、請求項1〜請求項7のいずれか一項に記載の高圧タンクの製造方法であって、前記熱交換器を、ロウ付け又は溶接により前記ヘッダ部に接合した後で、前記ヘッダ部を前記ライナ本体又は前記分割体に取付固定する。
In the invention described in claim 7, in the invention described in any one of claims 2 to 6, wherein the heat exchanger comprises a plurality of heat transfer tubes. According to the present invention, since the use of heat exchangers having a plurality of heat transfer tubes, the temperature suppressing effect in the high-pressure tank is increased.
In invention of Claim 8, It is a manufacturing method of the high pressure tank as described in any one of Claims 1-7, Comprising: The said heat exchanger was joined to the said header part by brazing or welding. Later, the header portion is attached and fixed to the liner body or the divided body.

本発明によれば、ライナと熱交換器との間のシール性を確保する上で、ライナの強度を低下し難くできる。   According to the present invention, it is possible to make it difficult to reduce the strength of the liner when ensuring the sealing performance between the liner and the heat exchanger.

(第1の実施形態)
以下、本発明の高圧タンクを水素タンクに具体化した第1の実施形態を図1及び図2に従って説明する。
(First embodiment)
A first embodiment in which the high-pressure tank of the present invention is embodied as a hydrogen tank will be described below with reference to FIGS.

図1は、水素タンク1の模式断面図である。高圧タンクとしての水素タンク1は細長い中空状(筒状)をなし、その内部の収容室2に高圧状態で水素が充填されている。収容室2を高圧にするのは水素の充填量を多くとるためであり、例えば収容室2の圧力を25MPaとした場合には大気中と比較して約250倍の水素が充填可能となる。水素タンク1は両端部のうち水素が出入りする側が先端(図1では右側端部)、その反対側が基端(図1では左側端部)となっている。   FIG. 1 is a schematic cross-sectional view of the hydrogen tank 1. A hydrogen tank 1 as a high-pressure tank has an elongated hollow shape (cylindrical shape), and a storage chamber 2 therein is filled with hydrogen in a high-pressure state. The reason why the storage chamber 2 is set to a high pressure is to increase the filling amount of hydrogen. For example, when the pressure in the storage chamber 2 is 25 MPa, hydrogen can be charged about 250 times as much as in the atmosphere. The hydrogen tank 1 has a distal end (a right end portion in FIG. 1) and a base end (a left end portion in FIG. 1) on the side where hydrogen enters and exits at both ends.

水素タンク1はタンク外形をなす中空状のライナ3と、ライナ3の外周面の略全域を覆う繊維強化プラスチックとしての高強度CFRP4とを備えている。高強度CFRP4は水素タンク1の耐圧性(機械的強度)を確保し、フィラメントワインディング法(FW法)によりライナ3に巻き付けられる。このFW法とはライナ3が回転した状態で、炭素繊維に樹脂(例えば不飽和ポリエステル樹脂、エポキシ樹脂等)を含浸させながらヘリカル巻層とフープ巻層を有するようにライナ3に巻き付け、その樹脂を熱硬化させる製法である。   The hydrogen tank 1 includes a hollow liner 3 that forms the outer shape of the tank, and a high-strength CFRP 4 as a fiber-reinforced plastic that covers substantially the entire outer peripheral surface of the liner 3. The high-strength CFRP 4 ensures the pressure resistance (mechanical strength) of the hydrogen tank 1 and is wound around the liner 3 by the filament winding method (FW method). The FW method is a state in which the liner 3 is rotated, and the resin is wound around the liner 3 so as to have a helical wound layer and a hoop wound layer while impregnating a carbon fiber with a resin (for example, unsaturated polyester resin, epoxy resin). Is a method of thermosetting.

ライナ3は例えばアルミニウム合金を材質とし、水素タンク1の気密性を確保している。ライナ3は基端側が分割式となっており、略筒状のライナ本体としての本体部5と、本体部5の基端側の開口部6を覆う分割体としての蓋部7とを備えている。ライナ3の先端部8には収容室2と外部とを連通する通気路9の先にバルブ10が取り付けられ、このバルブ10のポート切り換えによって水素タンク1の使用状態が水素放出状態と水素充填状態との間で切り換えられる。   The liner 3 is made of, for example, an aluminum alloy, and ensures the airtightness of the hydrogen tank 1. The liner 3 is split on the base end side, and includes a main body portion 5 as a substantially cylindrical liner main body and a lid portion 7 as a split body that covers the opening 6 on the base end side of the main body portion 5. Yes. A valve 10 is attached to the tip 8 of the liner 3 at the tip of a ventilation passage 9 that communicates the storage chamber 2 with the outside. By switching the port of the valve 10, the use state of the hydrogen tank 1 is changed to a hydrogen release state and a hydrogen filling state. Can be switched between.

蓋部7は中央部位に口金部11を有する形状をなし、その口金部11には収容室2と外部とを連通する2つの通路12,13が略平行に並んだ状態で形成されている。蓋部7はその周縁部分で周方向に沿って略等間隔に並んだ複数(例えば8個)のネジ14によって本体部5に固定されている。本体部5と蓋部7との接合部位には収容室2内の気密性を確保するためのシール材15が介装されている。   The lid portion 7 has a shape having a base portion 11 at a central portion, and the base portion 11 is formed with two passages 12 and 13 communicating with the housing chamber 2 and the outside in a state of being arranged substantially in parallel. The lid portion 7 is fixed to the main body portion 5 by a plurality of (for example, eight) screws 14 arranged at substantially equal intervals along the circumferential direction at the peripheral edge portion. A sealing member 15 for securing airtightness in the storage chamber 2 is interposed at a joint portion between the main body portion 5 and the lid portion 7.

ライナ3の収容室2には水素充填時又は水素放出時のタンク内の温度変化を抑制する熱交換ユニット16が収容されている。熱交換ユニット16はライナ3の径方向に沿って並んで複数(この実施形態では3つ)配置された熱媒管17を有する熱交換器18と、熱交換ユニット16の蓋部7への取り付け部分となる取付対象としての略円板形状のヘッダ部19とを備えている。熱媒管17は1本のパイプを折り曲げることで形成された略U字形状をなしており、これら端部がロウ付けや溶接等によってヘッダ部19に固着されている。   The accommodation chamber 2 of the liner 3 accommodates a heat exchange unit 16 that suppresses temperature changes in the tank during hydrogen filling or hydrogen release. The heat exchange unit 16 includes a heat exchanger 18 having a plurality of (three in this embodiment) heat medium tubes 17 arranged along the radial direction of the liner 3, and attachment of the heat exchange unit 16 to the lid portion 7. A substantially disc-shaped header portion 19 is provided as a part to be attached. The heat transfer medium pipe 17 has a substantially U-shape formed by bending one pipe, and these end parts are fixed to the header part 19 by brazing, welding, or the like.

図2は、蓋部7と熱交換ユニット16との組み付けを説明する模式分解図である。蓋部7の薄肉部20にはライナ3の周方向に沿って略等間隔に、ネジ21を挿通するための孔部22が形成されている。ヘッダ部19の蓋部7側の面には、孔部22に対応する位置にネジ穴23が複数形成されている。熱交換ユニット16は蓋部7の内面に凹設された穴部24にヘッダ部19を嵌合し、ネジ21を孔部22に挿通してその段差で頭部を係止し、軸部をネジ穴23に螺着することで蓋部7に固定されている。なお、ネジ21、孔部22及びネジ穴23が係止手段を構成する。   FIG. 2 is a schematic exploded view illustrating assembly of the lid 7 and the heat exchange unit 16. Holes 22 through which screws 21 are inserted are formed in the thin portion 20 of the lid portion 7 at substantially equal intervals along the circumferential direction of the liner 3. A plurality of screw holes 23 are formed on the surface of the header portion 19 on the lid portion 7 side at positions corresponding to the hole portions 22. The heat exchange unit 16 fits the header portion 19 into the hole portion 24 provided in the inner surface of the lid portion 7, inserts the screw 21 into the hole portion 22, and locks the head portion at the level difference. It is fixed to the lid portion 7 by being screwed into the screw hole 23. The screw 21, the hole 22 and the screw hole 23 constitute a locking means.

ところで、水素タンク1は水素充填時に内部温度が上昇し、水素放出時に内部温度が下降するが、この温度変化を抑制するために熱媒管17には冷水又は温水(熱媒)が流れ、この実施形態では水素充填時に冷水が、水素放出時に温水が一方の端部から他方の端部に向かって流れる。このため、各熱媒管17は一方の端部(図1では上側端部)が水経路の上流側端部17aとなり、他方の端部(図1では下側端部)が下流側端部17bとなる。   By the way, the internal temperature of the hydrogen tank 1 rises when hydrogen is charged, and the internal temperature drops when hydrogen is released. To suppress this temperature change, cold water or hot water (heat medium) flows through the heat medium pipe 17. In the embodiment, cold water flows during hydrogen filling and hot water flows from one end to the other end during hydrogen release. Therefore, one end (upper end in FIG. 1) of each heat transfer medium pipe 17 is an upstream end 17a of the water path, and the other end (lower end in FIG. 1) is a downstream end. 17b.

ヘッダ部19には各熱媒管17の上流側端部17aと対応する位置に、上流側端部17aと蓋部7との間を貫通して延びる流路25が複数(この実施形態では3つ)形成されている。これら流路25は略平行に配置され、その流路径が熱媒管17の内径とほぼ同じとなっている。蓋部7の内面には通路12の経よりも大経に設定された凹部26が形成され、この凹部26によって通路12と3つの流路25とが連通されている。   The header portion 19 has a plurality of flow passages 25 extending through the space between the upstream end portion 17a and the lid portion 7 at positions corresponding to the upstream end portions 17a of the heat medium pipes 17 (in this embodiment, 3). One) is formed. These flow paths 25 are arranged substantially in parallel, and the flow path diameter is substantially the same as the inner diameter of the heat transfer medium pipe 17. The inner surface of the lid portion 7 is formed with a recess 26 that is set larger than the passage 12 and the passage 12 communicates with the three flow paths 25.

また、熱媒管17の上流側と同様にして、ヘッダ部19には各熱媒管17の下流側端部17bと対応する位置に、下流側端部17bと蓋部7との間を貫通して延びる流路27が複数(この実施形態では3つ)形成されている。これら流路27も上流側のものと同様に略平行に配置され、その流路径が熱媒管17の内径とほぼ同じである。蓋部7の内面には通路13の径よりも大径に設定された凹部28が形成され、この凹部28によって通路13と3つの流路27とが連通されている。   Similarly to the upstream side of the heat medium pipe 17, the header part 19 penetrates between the downstream end part 17 b and the lid part 7 at a position corresponding to the downstream end part 17 b of each heat medium pipe 17. Thus, a plurality of (in this embodiment, three) flow paths 27 are formed. These flow paths 27 are also arranged substantially parallel to the upstream side, and the flow path diameter is substantially the same as the inner diameter of the heat transfer medium pipe 17. A concave portion 28 having a diameter larger than the diameter of the passage 13 is formed on the inner surface of the lid portion 7, and the passage 13 and the three flow paths 27 are communicated with each other through the concave portion 28.

蓋部7の内面には凹部26,28の各周囲に略円環状の溝部29,30が形成されている。溝部29には上流側水経路の収容室2との間の気密性を確保するシール材31が、溝部30には下流側水経路の収容室2との間の気密性を確保するシール材32が各々取り付けられている。また、ヘッダ部19の外周面には全周に亘って溝部33が形成され、この溝部33には収容室2と熱媒管17の通路との間の気密性を確保するシール材34が取り付けられている。   On the inner surface of the lid portion 7, substantially annular groove portions 29, 30 are formed around the recesses 26, 28. The groove 29 is provided with a sealing material 31 for ensuring airtightness between the upstream water passage and the accommodation chamber 2, and the groove 30 is provided with a sealing material 32 for ensuring airtightness between the downstream water passage and the accommodation chamber 2. Are attached to each. Further, a groove portion 33 is formed on the outer peripheral surface of the header portion 19 over the entire circumference, and a sealing material 34 that secures airtightness between the storage chamber 2 and the passage of the heat medium pipe 17 is attached to the groove portion 33. It has been.

図1に示すように、熱交換ユニット16は基端側が穴部24に嵌合されることで収容室2に収容されている。また、熱媒管17には略円盤状のフィン36がライナ3の軸方向に沿って等間隔に複数固着され、このフィン36によって水素タンク1内の温度変化の抑制効果を高めている。   As shown in FIG. 1, the heat exchange unit 16 is accommodated in the accommodation chamber 2 by fitting the base end side into the hole 24. A plurality of substantially disc-shaped fins 36 are fixed to the heat transfer medium pipe 17 at equal intervals along the axial direction of the liner 3, and the fins 36 enhance the effect of suppressing temperature changes in the hydrogen tank 1.

フィン36の間には粉末状の水素吸蔵合金(MH粉末)がフィン36と接触する状態で収容されている。水素吸蔵合金は水素タンク1内の水素の充填量を多くする機能があり、大気中に比べて数百〜1000倍の水素充填を可能にする。フィン36の径方向端部には全てのフィン36を覆う状態で水素を透過可能なフィルタ37(破線で図示)が取り付けられている。   A powdered hydrogen storage alloy (MH powder) is accommodated between the fins 36 in contact with the fins 36. The hydrogen storage alloy has a function of increasing the filling amount of hydrogen in the hydrogen tank 1, and enables hydrogen filling several hundred to 1000 times that in the atmosphere. A filter 37 (shown by a broken line) capable of transmitting hydrogen in a state of covering all the fins 36 is attached to a radial end portion of the fin 36.

ここで、水素吸蔵合金は水素を吸蔵するときに吸着熱や反応熱を生じて発熱し、水素を放出するときに吸熱する。従って、水素タンク1は水素充填時に水素吸蔵合金の吸着熱又は反応熱による発熱作用や、タンク内へガスを圧縮充填するときに生じる圧縮仕事によって温度上昇し、水素放出時には水素吸蔵合金の吸熱作用によって温度降下するが、熱媒管17に冷水又は温水を流すことでこの温度変化が抑制される。   Here, the hydrogen storage alloy generates heat by generating adsorption heat and reaction heat when storing hydrogen, and absorbs heat when releasing hydrogen. Therefore, the temperature of the hydrogen tank 1 rises due to heat generation due to adsorption heat or reaction heat of the hydrogen storage alloy during hydrogen filling, or compression work generated when compressing and filling the gas into the tank, and heat absorption action of the hydrogen storage alloy during hydrogen release. However, the temperature change is suppressed by flowing cold water or hot water through the heat medium pipe 17.

次に、この実施形態の水素タンク1の作用について説明する。
水素タンク1を製造する一連の工程を説明すると、周りに複数のフィン36が固着された熱媒管17を有し、その外周を覆うフィルタ37に囲まれた内部に水素吸蔵合金が収容された熱交換器18を用意する。そして、熱媒管17の通路とヘッダ部19の流路25,27とが連通した位置決め状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)を、ロウ付け又は溶接によってヘッダ部19に固着して、熱交換器18とヘッダ部19とが一体化された熱交換ユニット16を製造する。
Next, the operation of the hydrogen tank 1 of this embodiment will be described.
A series of processes for manufacturing the hydrogen tank 1 will be described. The heat medium pipe 17 has a plurality of fins 36 fixed around it, and a hydrogen storage alloy is housed inside a filter 37 covering the outer periphery thereof. A heat exchanger 18 is prepared. The end portions (upstream end portion 17a and downstream end portion 17b) of the heat medium tube 17 are brazed in a positioning state in which the passage of the heat medium tube 17 and the flow paths 25 and 27 of the header portion 19 communicate with each other. Or it adheres to the header part 19 by welding, and the heat exchange unit 16 with which the heat exchanger 18 and the header part 19 were integrated is manufactured.

続いて、蓋部7の内面とヘッダ部19との間にシール材31,32,34が介装された状態で、ヘッダ部19を穴部24に嵌合してネジ21によってヘッダ部19を蓋部7に取付固定する。熱交換ユニット16が取り付けられた後、熱交換器18を本体部5の内部に収容した状態で蓋部7をネジ14によって本体部5に固定し、分割式のライナ3を一体化する。そして、このライナ3をFW装置(図示省略)にセットして、熱硬化性樹脂が含浸された炭素繊維をFW法によりライナ3の外周に巻き付け、その後、熱硬化性樹脂を硬化させて高強度CFRP4を形成する。   Subsequently, in a state in which the sealing materials 31, 32, and 34 are interposed between the inner surface of the lid portion 7 and the header portion 19, the header portion 19 is fitted into the hole portion 24 and the header portion 19 is moved by the screw 21. It is attached and fixed to the lid 7. After the heat exchange unit 16 is attached, the lid 7 is fixed to the main body 5 with the screws 14 while the heat exchanger 18 is accommodated in the main body 5, and the split liner 3 is integrated. Then, the liner 3 is set in an FW device (not shown), the carbon fiber impregnated with the thermosetting resin is wound around the outer periphery of the liner 3 by the FW method, and then the thermosetting resin is cured to obtain high strength. CFRP4 is formed.

この実施形態では、流路25,27を有するヘッダ部19に熱媒管17の端部を固着し、蓋部7の通路12,13に位置決めした状態でヘッダ部19をネジ21によって蓋部7に固定することで熱交換ユニット16がライナ3に取り付けられる。ところで、熱交換器18を搭載する場合には熱媒管17を外部に引き出す必要があるが、ライナ3を貫通して熱媒管17を引き出すとその部分をシールするためにロウ付けや溶接等を行う必要があり、ライナ3が高熱処理されるとライナ強度が低下してしまう。しかし、この実施形態の構成を用いればライナ3にロウ付けや溶接等を行う必要がなくなり、シール性を確保しつつライナ3の強度も確保される。   In this embodiment, the end portion of the heat transfer pipe 17 is fixed to the header portion 19 having the flow paths 25 and 27, and the header portion 19 is positioned with the passage 21 and 13 of the lid portion 7 with the screw portion 21. The heat exchange unit 16 is attached to the liner 3 by fixing to the liner 3. By the way, when the heat exchanger 18 is mounted, it is necessary to pull out the heat medium pipe 17 to the outside. However, when the heat medium pipe 17 is pulled out through the liner 3, brazing, welding, or the like is performed to seal the portion. When the liner 3 is subjected to a high heat treatment, the liner strength decreases. However, if the configuration of this embodiment is used, it is not necessary to braze or weld the liner 3, and the strength of the liner 3 is ensured while ensuring sealing performance.

従って、この実施形態では以下のような効果を得ることができる。
(1)ヘッダ部19に熱交換器18の熱媒管17を固着し、ヘッダ部19をネジ21によって蓋部7に取り付けた。従って、熱交換器18をライナ3の内部に設置する構成であっても、シール性確保のためにライナ3にロウ付けや溶接等を行わずに済むので、ライナ強度の低下を抑えることができる。
Therefore, in this embodiment, the following effects can be obtained.
(1) The heat medium pipe 17 of the heat exchanger 18 was fixed to the header part 19, and the header part 19 was attached to the lid part 7 with screws 21. Therefore, even if the heat exchanger 18 is installed inside the liner 3, it is not necessary to braze or weld the liner 3 in order to ensure the sealing performance, and therefore it is possible to suppress a decrease in liner strength. .

(2)口金部11をライナ3の基端側端部に形成し、その口金部11に対応する位置に凹設された穴部24にヘッダ部19を嵌合してネジ21によって固定する。従って、熱媒管17の通路がライナ3の側部から突出する構成とならないので、FW法で高強度CFRP4をライナ3の外周に形成する構成であっても支障が生じない。   (2) The base part 11 is formed at the base end side end part of the liner 3, and the header part 19 is fitted into the hole part 24 provided in a position corresponding to the base part 11 and fixed with the screw 21. Accordingly, since the passage of the heat transfer medium pipe 17 does not protrude from the side portion of the liner 3, there is no problem even if the high strength CFRP 4 is formed on the outer periphery of the liner 3 by the FW method.

(3)ヘッダ部19を用いて熱交換器18をライナ3に取り付ける構成であるので、ヘッダ部19に設ける流路25,27を適宜変更することで、蓋部7の構造を変えることなく様々な種類の熱交換器18を使用することができる。   (3) Since the heat exchanger 18 is attached to the liner 3 using the header portion 19, various changes can be made without changing the structure of the lid portion 7 by appropriately changing the flow paths 25 and 27 provided in the header portion 19. Any kind of heat exchanger 18 can be used.

(4)ライナ3が本体部5と蓋部7とに分かれる分割式であるので、熱交換ユニット16等の内蔵物をライナ3の内部に入れることができる。
(5)ヘッダ部19はネジ21によって蓋部7に固定されるので、簡単な構成でヘッダ部19を蓋部7に固定することができる。
(4) Since the liner 3 is divided into the main body portion 5 and the lid portion 7, built-in items such as the heat exchange unit 16 can be placed inside the liner 3.
(5) Since the header portion 19 is fixed to the lid portion 7 with the screw 21, the header portion 19 can be fixed to the lid portion 7 with a simple configuration.

(6)蓋部7の内面とヘッダ部19との接合面にはシール材31,32,34が介装されているので、熱媒管17の通路とライナ3の収容室2との間の気密性を確保でき、高圧ガスが熱媒管17の通路に漏れ難くなる。   (6) Since the sealing materials 31, 32, and 34 are interposed on the joint surface between the inner surface of the lid portion 7 and the header portion 19, the space between the passage of the heat medium pipe 17 and the storage chamber 2 of the liner 3. Airtightness can be ensured, and high-pressure gas is less likely to leak into the passage of the heat medium pipe 17.

(7)蓋部7に冷水又は温水の出入り口となる通路12,13が形成されているので、ライナ3の片側で冷水又は温水が出入りする。従って、例えば冷水又は温水の供給源が蓋部7側に設置された場合、その供給源と水の入口との間の距離と、供給源と水の出口との間の距離とがほぼ同じになり、水出口から延びる管路(図示省略)を引き戻す必要がない。   (7) Since the passages 12 and 13 serving as the entrance of cold water or hot water are formed in the lid portion 7, cold water or hot water enters and exits on one side of the liner 3. Therefore, for example, when a supply source of cold water or hot water is installed on the lid 7 side, the distance between the supply source and the water inlet is substantially the same as the distance between the supply source and the water outlet. Therefore, there is no need to pull back a pipe line (not shown) extending from the water outlet.

(8)蓋部7が冷水又は温水の出入り口となり、ライナ3の蓋部7に対し反対側の端部が水素ガスの出入り口となる。従って、どちらか一方の端部が水と水素ガスとで共用されると構造が複雑化するが、各々の端部を専用化しているので、この種の問題が生じない。   (8) The lid portion 7 serves as an entrance / exit of cold water or hot water, and the end portion on the opposite side to the lid portion 7 of the liner 3 serves as an entrance / exit for hydrogen gas. Therefore, if one of the ends is shared by water and hydrogen gas, the structure becomes complicated. However, since each end is dedicated, this kind of problem does not occur.

(9)複数の熱媒管17を有する熱交換器18を使用するので、その分だけタンク内部の冷却効果又は加熱効果がよくなり、水素タンク1内の温度抑制効果を高くできる。
(10)熱交換器18とヘッダ部19とはライナ3の軸方向に並んで配置されているので、水素タンク1を径方向にコンパクト化できる。
(9) Since the heat exchanger 18 having the plurality of heat medium tubes 17 is used, the cooling effect or heating effect inside the tank is improved by that amount, and the temperature suppression effect in the hydrogen tank 1 can be enhanced.
(10) Since the heat exchanger 18 and the header portion 19 are arranged side by side in the axial direction of the liner 3, the hydrogen tank 1 can be made compact in the radial direction.

(第2の実施形態)
次に、第2の実施形態を図3に従って説明する。この実施形態は熱媒管17の端部の取付構造が第1の実施形態と異なっており、他の基本的な構成は同じである。従って、同一部分に関しては同一符号を付して詳しい説明を省略し、異なる部分についてのみ説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. This embodiment is different from the first embodiment in the attachment structure of the end of the heat medium pipe 17, and the other basic configuration is the same. Accordingly, the same portions are denoted by the same reference numerals, detailed description thereof is omitted, and only different portions will be described.

図3は、水素タンク1の基端側の部分断面図である。蓋部7の内面にはシール材15に囲まれた部位に凹部38が形成されている。蓋部7の内面には通路12,13と熱媒管17の通路とが連通した状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)がロウ付け又は溶接によって直接固着されている。また、この実施形態の熱交換器18は熱媒管17を1本のみ有した構成となっている。   FIG. 3 is a partial cross-sectional view of the base end side of the hydrogen tank 1. A concave portion 38 is formed on the inner surface of the lid portion 7 at a portion surrounded by the sealing material 15. The ends (upstream end 17a and downstream end 17b) of the heat medium pipe 17 are brazed or welded with the passages 12, 13 and the passage of the heat medium pipe 17 communicating with the inner surface of the lid portion 7. It is fixed directly by. Further, the heat exchanger 18 of this embodiment has a configuration having only one heat medium pipe 17.

この構成においても前記実施形態の(4),(7),(8)と同様な効果が得られる他に、次の効果が得られる。
(11)蓋部7にロウ付けや溶接等で熱媒管17を固着する構成であっても、肉厚な口金部11に固着するので、ライナ3の強度が大幅に低下せずに済む。また、口金部11がライナ3の基端側端部に位置し、その口金部11に対応する位置に熱媒管17が固着されるので、FW法で高強度CFRP4をライナ3に巻き付ける構成であっても支障が生じない。
In this configuration as well, the following effects can be obtained in addition to the same effects as (4), (7), and (8) of the above embodiment.
(11) Even if the heat medium pipe 17 is fixed to the lid portion 7 by brazing, welding, or the like, it is fixed to the thick base portion 11, so that the strength of the liner 3 is not significantly reduced. In addition, since the base 11 is located at the base end side end of the liner 3 and the heat medium pipe 17 is fixed at a position corresponding to the base 11, the high strength CFRP 4 is wound around the liner 3 by the FW method. Even if there is, there will be no trouble.

(第3の実施形態)
次に第3の実施形態を図4(a),(b)に従って説明する。この実施形態では、ライナ3が片側(一端側)で分割されて、本体部5と蓋部7とを備えている点は第1及び第2の実施形態と同じであるが、ヘッダ部が本体部5に固定され、蓋部7に通気路9及びバルブ10が設けられている点が前記第1及び第2の実施形態と大きく異なっている。第1の実施形態と同様な部分は同一符号を付して詳しい説明を省略する。なお、図4(a)は水素タンク1の模式断面図であり、(b)は(a)の部分拡大図である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In this embodiment, the liner 3 is divided on one side (one end side) and is provided with a main body 5 and a lid 7 as in the first and second embodiments, but the header is the main body. The second embodiment is greatly different from the first and second embodiments in that the air passage 9 and the valve 10 are provided in the lid portion 7 and fixed to the lid portion 7. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. 4A is a schematic sectional view of the hydrogen tank 1, and FIG. 4B is a partially enlarged view of FIG.

図4(a)に示すように、蓋部7には、その中心部に収容室2と外部とを連通する通気路9がライナ3の軸線に沿って延びるように形成され、通気路9の端部にはバルブ10が取り付けられている。   As shown in FIG. 4 (a), the lid portion 7 is formed with an air passage 9 communicating with the housing chamber 2 and the outside at the center thereof so as to extend along the axis of the liner 3. A valve 10 is attached to the end.

ライナ3は分割された側と反対側の端部に、熱交換ユニット16のヘッダ部39が固定される開口部40が設けら、開口部40には雌ねじ部41が設けられている。ライナ3の内側には開口部40の端部に沿うように環状の凹部42が形成されている。凹部42にはシール材43を収容する段差部42aが開口部40に面して形成されている。   The liner 3 is provided with an opening 40 to which the header 39 of the heat exchange unit 16 is fixed at the end opposite to the divided side, and the opening 40 is provided with a female screw 41. An annular recess 42 is formed inside the liner 3 along the end of the opening 40. A stepped portion 42 a for accommodating the sealing material 43 is formed in the recess 42 so as to face the opening 40.

ヘッダ部39は金属製(例えば、アルミニウム合金製)で、開口部40に挿通可能な小径部39aと、開口部40より大径の大径部39bとを備え、小径部39aの外周面に雄ねじ部44が形成されている。大径部39bは凹部42の径より小径に、かつ段差部42aより大径に形成されている。そして、雄ねじ部44を利用して、具体的には雄ねじ部44を雌ねじ部41へ螺合することにより、ヘッダ部39がライナ3に固定されている。   The header 39 is made of metal (for example, aluminum alloy) and includes a small-diameter portion 39a that can be inserted into the opening 40 and a large-diameter portion 39b that is larger in diameter than the opening 40. A portion 44 is formed. The large diameter portion 39b is formed to have a diameter smaller than the diameter of the recess 42 and larger than the stepped portion 42a. The header portion 39 is fixed to the liner 3 by using the male screw portion 44 and specifically screwing the male screw portion 44 to the female screw portion 41.

ヘッダ部39には熱媒の通路45,46が形成され、通路45,46と熱媒管17の通路とが連通した状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)がロウ付け又は溶接によって固着されている。小径部39aの先端には、凹部47が複数(例えば2個)形成されている。凹部47は水素タンク1を製造する際、ヘッダ部39をライナ3に螺合させるときに使用する図示しない工具の係止部を係止させるためのものである。   Heater passages 45 and 46 are formed in the header 39, and the ends of the heat medium pipe 17 (the upstream end 17 a and the downstream side) in a state where the passages 45 and 46 and the passage of the heat medium pipe 17 communicate with each other. The end 17b) is fixed by brazing or welding. A plurality of (for example, two) recesses 47 are formed at the tip of the small diameter portion 39a. The recess 47 is for locking a locking portion of a tool (not shown) that is used when the header portion 39 is screwed into the liner 3 when the hydrogen tank 1 is manufactured.

この実施形態の水素タンク1を製造する場合は、熱交換器18を用意して、熱媒管17の通路とヘッダ部39の通路45,46とが連通した位置決め状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)を、ロウ付け又は溶接によってヘッダ部19に固着して、熱交換器18とヘッダ部39とが一体化された熱交換ユニット16を製造する。   In the case of manufacturing the hydrogen tank 1 of this embodiment, the heat exchanger 18 is prepared, and the heat medium pipe 17 is placed in a positioning state in which the passage of the heat medium pipe 17 and the passages 45 and 46 of the header portion 39 communicate with each other. The end portions (upstream end portion 17a and downstream end portion 17b) are fixed to the header portion 19 by brazing or welding to manufacture the heat exchange unit 16 in which the heat exchanger 18 and the header portion 39 are integrated. To do.

続いて、ヘッダ部39の小径部39aの基端にシール材43を嵌合した状態で、小径部39aの先端側を開口部40に挿通するとともに、小径部39aの雄ねじ部44を開口部40の雌ねじ部41に螺合させる。このとき、小径部39aの先端側を開口部40に挿通した状態で、ヘッダ部39を回転させるための工具(図示せず)の係止凸部を凹部47に嵌合させて、工具を介してヘッダ部39を回転させる。その結果、雄ねじ部44が雌ねじ部41に螺合されてヘッダ部39がライナ3に固定される。また、シール材43が凹部42の段差部42aに収容されるとともに、ライナ3と大径部39bとの間で挟持された状態となり、ライナ3とヘッダ部39との間のシールが確保される。   Subsequently, in a state where the sealing material 43 is fitted to the proximal end of the small diameter portion 39a of the header portion 39, the distal end side of the small diameter portion 39a is inserted into the opening portion 40, and the male screw portion 44 of the small diameter portion 39a is inserted into the opening portion 40. The female thread portion 41 is screwed. At this time, in a state where the distal end side of the small diameter portion 39a is inserted into the opening 40, a locking convex portion of a tool (not shown) for rotating the header portion 39 is fitted into the concave portion 47, and the tool is inserted through the tool. The header part 39 is rotated. As a result, the male screw portion 44 is screwed into the female screw portion 41 and the header portion 39 is fixed to the liner 3. Further, the seal material 43 is accommodated in the stepped portion 42 a of the recess 42 and is sandwiched between the liner 3 and the large diameter portion 39 b, and a seal between the liner 3 and the header portion 39 is ensured. .

ライナ3に熱交換ユニット16を取り付けた後、蓋部7をネジ14によって本体部5に固定し、分割式のライナ3を一体化する。そして、このライナ3をFW装置(図示省略)にセットして、熱硬化性樹脂が含浸された炭素繊維をFW法によりライナ3の外周に巻き付け、その後、熱硬化性樹脂を硬化させて高強度CFRP4を形成する。   After the heat exchange unit 16 is attached to the liner 3, the lid portion 7 is fixed to the main body portion 5 with screws 14, and the split liner 3 is integrated. Then, the liner 3 is set in an FW device (not shown), the carbon fiber impregnated with the thermosetting resin is wound around the outer periphery of the liner 3 by the FW method, and then the thermosetting resin is cured to obtain high strength. CFRP4 is formed.

この実施形態においては、第1の実施形態の(4),(7),(8)と同様な効果が得られる他に、次の効果が得られる。
(12)ヘッダ部39が口金部の機能を果たし、雄ねじ部44が雌ねじ部41に螺合されることによりライナ3に固定される。従って、熱媒管17の通路がライナ3の側部から突出する構成とならないので、FW法で高強度CFRP4をライナ3に形成する構成であっても支障が生じない。また、シール材43を1箇所設けるだけで収容室2の気密性を確保することができる。
In this embodiment, in addition to the same effects as (4), (7), and (8) of the first embodiment, the following effects can be obtained.
(12) The header portion 39 functions as a cap portion, and the male screw portion 44 is fixed to the liner 3 by being screwed into the female screw portion 41. Accordingly, since the passage of the heat medium pipe 17 does not protrude from the side of the liner 3, there is no problem even if the high strength CFRP 4 is formed in the liner 3 by the FW method. Moreover, the airtightness of the storage chamber 2 can be ensured by providing only one sealing material 43.

(13)ヘッダ部39に作用する水素タンク1の内圧によりヘッダ部39が開口部40側へ押圧されて、大径部39bによりシール材43がライナ3に確実に圧着される。即ち、ヘッダ部39に作用する水素タンク1の内圧が、ヘッダ部39とライナ3内面との間のシール部のシール性を高めるように作用し、シール性が高められる。   (13) The header part 39 is pressed toward the opening 40 by the internal pressure of the hydrogen tank 1 acting on the header part 39, and the sealing material 43 is securely pressed against the liner 3 by the large diameter part 39b. That is, the internal pressure of the hydrogen tank 1 acting on the header portion 39 acts so as to enhance the sealing performance of the sealing portion between the header portion 39 and the inner surface of the liner 3, and the sealing performance is enhanced.

(14)口金部の機能を果たすヘッダ部39を用いて熱交換器18をライナ3に取り付ける構成であるので、ヘッダ部39に設ける通路45,46を適宜変更することで、蓋部7の構造を変えることなく様々な種類の熱交換器18を使用することができる。   (14) Since the heat exchanger 18 is attached to the liner 3 using the header 39 that functions as a cap, the structure of the lid 7 can be obtained by appropriately changing the passages 45 and 46 provided in the header 39. Various types of heat exchangers 18 can be used without changing.

(15)水素タンク1の製造工程において、ヘッダ部39をライナ3に固定する際、工具を介してヘッダ部39が回転されるため、熱交換器18に無理な力を作用させずに容易に雄ねじ部44を雌ねじ部41に螺合させることができる。   (15) When the header portion 39 is fixed to the liner 3 in the manufacturing process of the hydrogen tank 1, the header portion 39 is rotated via a tool, so that it is easily possible without applying excessive force to the heat exchanger 18. The male screw portion 44 can be screwed into the female screw portion 41.

なお、実施形態は前記に限定されず、例えば、次の態様に変更してもよい。
○ 第1及び第2の実施形態において、ライナ3は片側のみが分割式であることに限定されない。例えば、図5に示すように両側が分割式としてもよく、基端側が蓋部7で、先端側が蓋部48で閉じられる構成としてもよい。
In addition, embodiment is not limited to the above, For example, you may change to the following aspect.
In the first and second embodiments, the liner 3 is not limited to being divided on one side only. For example, as shown in FIG. 5, both sides may be divided, and the base end side may be closed by the lid portion 7 and the distal end side may be closed by the lid portion 48.

○ 第1の実施形態において、蓋部7の通路12(13)と3つの流路25(27)とを連通する凹部26(28)は蓋部7に形成されることに限定されない。例えば、図6に示すようにヘッダ部19に凹部49,49が形成される構成でもよい。   In 1st Embodiment, the recessed part 26 (28) which connects the channel | path 12 (13) of the cover part 7 and the three flow paths 25 (27) is not limited to being formed in the cover part 7. FIG. For example, as shown in FIG. 6, a configuration in which concave portions 49 and 49 are formed in the header portion 19 may be employed.

○ 第1の実施形態において、通路12(13)は凹部26(28)で分岐して3つの流路25(27)に連通する構成に限らず、流路25,27ごとに1本ずつ形成されてもよい。   ○ In the first embodiment, the passage 12 (13) is not limited to the configuration in which the passage 12 (13) branches at the recess 26 (28) and communicates with the three flow paths 25 (27). May be.

○ 第1の実施形態において、係止手段はネジ21に限らず、例えば蓋部7の内面にフック部を、そのフック部が係止可能な段部をヘッダ部19に設け、フック部を段部に係止することでヘッダ部19を蓋部7に取り付ける構成でもよい。   In the first embodiment, the locking means is not limited to the screw 21, for example, a hook portion is provided on the inner surface of the lid portion 7, a step portion that can be locked by the hook portion is provided in the header portion 19, and the hook portion is stepped. The structure which attaches the header part 19 to the cover part 7 by latching to a part may be sufficient.

○ 第1の実施形態のように蓋部7にヘッダ部19を取り付けるとともに蓋部7に形成された通路12を介して熱媒を熱媒管17に導入する構成において、蓋部7を金属製ではなく樹脂製としてもよい。蓋部7が金属製の場合、熱媒で熱を熱交換器18に供給する際に熱媒が蓋部7を通過する間に熱が外部に放出されて熱媒の温度が下がったり、逆に熱媒で冷却する際に熱媒が暖められて熱交換器18における熱交換効率が低下する。しかし、蓋部7を樹脂製とした場合、樹脂が金属に比較して断熱性が高いため、蓋部7を通過する間に熱媒の温度変化が小さくなり、熱交換器18における熱交換効率が高くなる。   In the configuration in which the header portion 19 is attached to the lid portion 7 and the heat medium is introduced into the heat medium pipe 17 through the passage 12 formed in the lid portion 7 as in the first embodiment, the lid portion 7 is made of metal. Instead, it may be made of resin. When the lid portion 7 is made of metal, when heat is supplied to the heat exchanger 18 with the heat medium, heat is released to the outside while the heat medium passes through the lid portion 7, and the temperature of the heat medium is lowered or vice versa. When cooling with the heat medium, the heat medium is warmed and the heat exchange efficiency in the heat exchanger 18 is lowered. However, when the lid portion 7 is made of resin, since the heat insulation is higher than that of metal, the temperature change of the heat medium is reduced while passing through the lid portion 7, and the heat exchange efficiency in the heat exchanger 18 is reduced. Becomes higher.

○ 第1の実施形態において、ネジ21を蓋部7側から挿通してヘッダ部19に螺着してヘッダ部19を蓋部7に取り付ける構成に限らず、ネジ21をヘッダ部19側から挿通して取り付ける構成としてもよい。   In the first embodiment, the screw 21 is inserted from the header portion 19 side, not limited to the configuration in which the screw 21 is inserted from the lid portion 7 side and screwed to the header portion 19 and the header portion 19 is attached to the lid portion 7. It is good also as a structure attached by attaching.

○ 第1の実施形態において、ヘッダ部19は蓋部7に取り付けられることに限らず、例えばヘッダ部19を先端側にして熱交換ユニット16を本体部5に収容し、ヘッダ部19をネジで本体部5の先端側端部に固定することで熱交換ユニット16が本体部5に取り付けられてもよい。   ○ In the first embodiment, the header portion 19 is not limited to being attached to the lid portion 7. For example, the header portion 19 is placed at the front end side, the heat exchange unit 16 is accommodated in the main body portion 5, and the header portion 19 is screwed The heat exchange unit 16 may be attached to the main body 5 by being fixed to the end on the front end side of the main body 5.

○ 第3の実施形態のように雄ねじ部44を利用してヘッダ部39がライナ3に固定される構成において、図7(a)に示すように、ライナ3の先端に軸方向に延びる筒部50を設け、筒部50の部分にも高強度CFRP4を形成してもよい。この場合、水素タンク1の内圧による開口部40の開きを抑制することができる。   In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44 as in the third embodiment, as shown in FIG. 7A, a cylindrical portion that extends in the axial direction at the tip of the liner 3 50 and the high-strength CFRP 4 may be formed on the cylindrical portion 50 as well. In this case, the opening of the opening 40 due to the internal pressure of the hydrogen tank 1 can be suppressed.

〇 第3の実施形態のように雄ねじ部44を利用してヘッダ部39がライナ3に固定される構成において、ヘッダ部39全体を金属製とするのではなく通路45,46の形成される部分を樹脂製としてもよい。例えば、図7(b)に示すように、ヘッダ部39の先端側をざぐって収容部51を形成し、通路45,46の一部(通路45のみ図示)が形成された樹脂製の栓52を収容部51に収容した状態でネジ53により固定する。なお、ヘッダ部39の金属製の部分には、栓52の通路45,46と熱媒管17とを連通させる通路が形成され、収容部51の端面と栓52の端面との間に、通路45,46の接続部からの熱媒の漏れを防止するシール材54が介在されている。この場合、樹脂は金属に比較して断熱性が高いため、ヘッダ部39全体が金属製の場合に比較して、ヘッダ部39を通過する間に熱媒の温度変化が小さくなり、熱交換器18における熱交換効率が高くなる。また、樹脂製とすることでヘッダ部39の軽量化を図ることができる。この構成においても、ライナ3の先端に筒部50を設けてもよい。   In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44 as in the third embodiment, the entire header portion 39 is not made of metal, but the passages 45 and 46 are formed. May be made of resin. For example, as shown in FIG. 7 (b), a resin cap 52 in which the accommodating portion 51 is formed by sweeping the tip end side of the header portion 39 and a part of the passages 45, 46 (only the passage 45 is shown) is formed. Is fixed with screws 53 in a state of being accommodated in the accommodating portion 51. The metal portion of the header 39 is formed with a passage that allows the passages 45 and 46 of the plug 52 to communicate with the heat transfer pipe 17, and the passage is provided between the end surface of the housing portion 51 and the end surface of the plug 52. A sealing material 54 for preventing leakage of the heat medium from the connection portions 45 and 46 is interposed. In this case, since the resin has higher heat insulation than metal, the temperature change of the heat medium is reduced while passing through the header 39 compared to the case where the entire header 39 is made of metal, and the heat exchanger The heat exchange efficiency at 18 is increased. Moreover, weight reduction of the header part 39 can be achieved by using resin. Also in this configuration, the cylindrical portion 50 may be provided at the tip of the liner 3.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成として、ライナ3に形成された雌ねじ部41と螺合させる構成に代えて、ナットを使用してもよい。例えば、図8(a)に示すように、ヘッダ部39の先端部に雄ねじ部44を形成するとともに、雄ねじ部44がライナ3の外部に突出するようにヘッダ部39を形成し、雄ねじ部44にナット55を螺合させて、ヘッダ部39をライナ3に固定する。この場合、水素タンク1の製造工程において、ヘッダ部39をライナ3に固定する際、ヘッダ部39とライナ3とを相対回転させる必要がなく、ナット55を回転させればよく固定作業が簡単になる。   As a configuration for fixing the header portion 39 to the liner 3 using the male screw portion 44, a nut may be used instead of the configuration for screwing with the female screw portion 41 formed on the liner 3. For example, as shown in FIG. 8A, a male screw portion 44 is formed at the tip of the header portion 39, and the header portion 39 is formed so that the male screw portion 44 protrudes outside the liner 3. The nut 55 is screwed to the header 3 to fix the header 39 to the liner 3. In this case, when the header portion 39 is fixed to the liner 3 in the manufacturing process of the hydrogen tank 1, it is not necessary to rotate the header portion 39 and the liner 3 relative to each other. Become.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成として、図8(b)に示すように、ライナ3に形成された雌ねじ部41及びナット55の両者と螺合させる構成としてもよい。この場合、雄ねじ部44をナット55のみあるいは雌ねじ部41のみと螺合する構成に比較して、螺合部の緩みが生じ難くなる。   As a configuration for fixing the header portion 39 to the liner 3 using the male screw portion 44, as shown in FIG. 8B, as a configuration for screwing with both the female screw portion 41 and the nut 55 formed in the liner 3. Also good. In this case, as compared with a configuration in which the male screw portion 44 is screwed with only the nut 55 or only the female screw portion 41, the screwed portion is less likely to be loosened.

〇 ナット55を使用する構成においても、ライナ3の先端に筒部50を設けない構成としてもよい。
〇 ヘッダ部39をライナ3に固定する作業に使用する工具を係止させる凹部47の位置は、ヘッダ部39の先端面に限らず、ライナ3から突出する部分の周面としてもよい。
Even in the configuration using the nut 55, the cylindrical portion 50 may not be provided at the tip of the liner 3.
The position of the concave portion 47 that holds the tool used for the operation of fixing the header portion 39 to the liner 3 is not limited to the tip end surface of the header portion 39 but may be the peripheral surface of the portion protruding from the liner 3.

〇 ヘッダ部39をライナ3に固定する作業に使用する工具を係止させる凹部47をヘッダ部39に設ける代わりに、通路45,46に工具を係止させてヘッダ部39を回転させるようにしてもよい。この場合、凹部47を形成する必要がない。   ○ Instead of providing the header portion 39 with a recess 47 for locking the tool used for fixing the header portion 39 to the liner 3, the header portion 39 is rotated by locking the tool in the passages 45 and 46. Also good. In this case, it is not necessary to form the recess 47.

〇 ヘッダ部39をライナ3に固定する作業において、雄ねじ部44を雌ねじ部41に螺合させる際、ヘッダ部39を回転させる代わりに、ヘッダ部39を固定保持した状態でライナ3を回転させてもよい。ヘッダ部39の固定は、例えば工具を介して行われる。   In the operation of fixing the header portion 39 to the liner 3, when the male screw portion 44 is screwed into the female screw portion 41, instead of rotating the header portion 39, the liner 3 is rotated while the header portion 39 is fixedly held. Also good. The header part 39 is fixed through a tool, for example.

○ 冷水及び温水の出入りは基端側の一端で行われることに限らず、一方の端部で冷水及び温水を取り込み、他方の端部で放出する構成でもよい。
○ 第1の実施形態において、熱交換器18が有する熱媒管17の本数は1本や3本に限らず、例えば2本、4本以上等、その本数は特に限定されない。このとき、ヘッダ部19には熱媒管17の本数に応じた流路25,27が形成される。
O The entry / exit of cold water and hot water is not limited to being performed at one end on the base end side, but may be configured such that cold water and hot water are taken in at one end and discharged at the other end.
In the first embodiment, the number of the heat medium pipes 17 included in the heat exchanger 18 is not limited to one or three, and the number is not particularly limited, for example, two, four or more. At this time, flow paths 25 and 27 corresponding to the number of the heat medium pipes 17 are formed in the header portion 19.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成においても、熱交換器18が有する熱媒管17の本数は1本に限らず、2本以上としてもよい。熱媒管17を2本以上とする場合、ヘッダ部39全体が金属製の場合はヘッダ部39に熱媒管17の本数と同じ数の通路45,46を形成する必要がある。また、ヘッダ部39の一部を樹脂製の栓52とする構成においては、栓52には通路45,46が1本ずつ形成し、金属部側にヘッダ部19の場合と同様な凹部49を形成するとともに凹部49に連通する孔を熱媒管17の本数と同じ数形成する。   In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44, the number of the heat medium pipes 17 included in the heat exchanger 18 is not limited to one and may be two or more. When the number of the heat medium pipes 17 is two or more, it is necessary to form the same number of passages 45 and 46 as the number of the heat medium pipes 17 in the header part 39 when the entire header part 39 is made of metal. Further, in a configuration in which a part of the header portion 39 is a resin plug 52, the plug 52 is formed with passages 45 and 46 one by one, and a concave portion 49 similar to the header portion 19 is formed on the metal portion side. The number of holes that are formed and communicated with the recesses 49 are the same as the number of the heat medium tubes 17.

○ 熱交換器18は冷水又は温水を送ってタンク内部を冷却又は加熱する冷温水式に限らず、例えばタンク内部の熱を金属製のフィンによって外部に伝わらせて放出するフィンアセンブリでもよい。   The heat exchanger 18 is not limited to a cold / hot water type in which cold water or hot water is sent to cool or heat the inside of the tank, but for example, a fin assembly that transfers heat inside the tank to the outside by a metal fin and discharges it.

○ 高圧タンクは水素タンク1に限らず、これ以外に例えば窒素や圧縮天然ガス等の他の流体を貯蔵するタンクとして用いてよい。
○ 熱媒は水に限らず、これ以外の流体を用いてタンク内部の温度抑制を行ってもよい。
The high-pressure tank is not limited to the hydrogen tank 1 and may be used as a tank for storing other fluids such as nitrogen and compressed natural gas.
○ The heating medium is not limited to water, and other fluids may be used to suppress the temperature inside the tank.

前記実施形態から把握できる技術的思想について以下に記載する。
(1)前記熱交換器と前記ヘッダ部とは前記ライナの軸方向に並んで配置されている。
The technical idea that can be grasped from the embodiment will be described below.
(1) are arranged in the axial direction of the liner from the previous SL heat exchanger and the header portion.

(2)前記係止手段は、取付対象に対して螺着される軸部と前記軸部の螺着状態を保持する頭部とを有するネジ手段である。 (2) Before Kigakaritome means is a screw means having a head for holding a shaft portion to be screwed to the mounting target threaded state of the shaft portion.

(3)前記大径部と前記ライナの内面との間にシール材が介装されている。
(4)前記雄ねじ部は前記開口部に設けられた雌ねじ部に螺合されている。
(3) a sealing member is interposed between the front Kitai diameter and the inner surface of the liner.
(4) before Symbol male screw portion is screwed into a female screw portion provided in the opening.

(5)前記雄ねじ部は前記開口部から前記ライナの外側に突出する部分に設けられ、該雄ねじ部に螺合されるナットを介して前記ヘッダ部が前記ライナに固定されている。 (5) pre-Symbol external thread portion provided in a portion projecting outwardly of said liner from said opening, said header portion via a nut screwed to the male screw portion is fixed to the liner.

第1の実施形態の水素タンクの模式断面図。The schematic cross section of the hydrogen tank of a 1st embodiment. 蓋部と熱交換ユニットとの組み付けを説明する模式分解図。The schematic exploded view explaining the assembly | attachment of a cover part and a heat exchange unit. 第2の実施形態の水素タンクの基端側の部分拡大断面図。The partial expanded sectional view of the base end side of the hydrogen tank of 2nd Embodiment. (a)は第3の実施形態の水素タンクの模式断面図、(b)は(a)の部分拡大図。(A) is a schematic cross section of the hydrogen tank of 3rd Embodiment, (b) is the elements on larger scale of (a). 別の実施形態の水素タンクの模式断面図。The schematic cross section of the hydrogen tank of another embodiment. 別の実施形態のヘッダ部の模式断面図。The schematic cross section of the header part of another embodiment. (a),(b)はそれぞれ別の実施形態のヘッダ部の部分模式断面図。(A), (b) is a partial schematic cross section of the header part of another embodiment, respectively. (a),(b)はそれぞれ別の実施形態のヘッダ部の部分模式断面図。(A), (b) is a partial schematic cross section of the header part of another embodiment, respectively.

符号の説明Explanation of symbols

1…高圧タンクとしての水素タンク、3…ライナ、4…繊維強化プラスチックとしての高強度CFRP、5…ライナ本体としての本体部、6,40…開口部、7,48…分割体としての蓋部、11…口金部、12,13,45,46…通路、15,31,32,34,43,54…シール材、17…熱媒管、17a…端部としての上流側端部、17b…端部としての下流側端部、18…機器としての熱交換器、19,39…取付対象を構成するヘッダ部、21…係止手段及を構成するボルト、22…係止手段を構成する孔部、23…係止手段を構成するネジ穴、25,27…流路、39a…小径部、39b…大径部、44…雄ねじ部。   DESCRIPTION OF SYMBOLS 1 ... Hydrogen tank as a high pressure tank, 3 ... Liner, 4 ... High-strength CFRP as a fiber reinforced plastic, 5 ... Main part as a liner main body, 6, 40 ... Opening part, 7, 48 ... Lid part as a division body , 11 ... base part, 12, 13, 45, 46 ... passage, 15, 31, 32, 34, 43, 54 ... sealing material, 17 ... heat transfer pipe, 17a ... upstream end as an end, 17b ... A downstream end as an end, 18 ... a heat exchanger as a device, 19, 39 ... a header part constituting an attachment object, 21 ... a bolt constituting a locking means, 22 ... a hole constituting a locking means 23, screw holes constituting the locking means, 25, 27 ... flow path, 39a ... small diameter part, 39b ... large diameter part, 44 ... male screw part.

Claims (8)

少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクにおいて、
前記熱交換器をヘッダ部に接合し、前記ライナのライナ本体及び分割体のうち一方の内面に前記ヘッダ部を係止手段によって固定することで前記熱交換器が取り付けられており、前記ヘッダ部と、そのヘッダ部が接合される前記ライナ本体又は前記分割体との接合面には、前記ライナの内部と前記熱交換器の熱媒の通路との間の気密性を確保するシール材が介装されている高圧タンク。
At least one side has a split-type hollow liner, a fiber reinforced plastic that covers the outer peripheral surface of the liner, and a heat exchanger accommodated in the liner, and stores the gas under a high pressure inside the liner In the high-pressure tank that
The heat exchanger is attached to the header portion by fixing the header portion to the inner surface of one of the liner body and the divided body of the liner by a locking means, and the header portion is attached. And a sealing material for ensuring airtightness between the inside of the liner and the passage of the heat medium of the heat exchanger is interposed on the joint surface of the liner main body or the divided body to which the header portion is joined. A high-pressure tank that is mounted .
前記ライナは一端側で分割され、分割された側と反対側の端部に前記ヘッダ部が固定される開口部が設けられ、前記ヘッダ部は前記開口部に挿通可能な小径部と、前記開口部より大径の大径部とを備え、前記小径部の外周面に雄ねじ部が形成され、前記雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている請求項1に記載の高圧タンク。   The liner is divided at one end side, and an opening for fixing the header portion is provided at an end opposite to the divided side. The header portion has a small diameter portion that can be inserted into the opening, and the opening. 2. The high pressure according to claim 1, further comprising: a large-diameter portion having a larger diameter than the portion, a male screw portion formed on an outer peripheral surface of the small-diameter portion, and the header portion being fixed to the liner using the male screw portion. tank. 前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であって、
前記ヘッダ部には前記熱媒が流れる流路が形成され、前記流路と前記熱媒管の内部とが連通するように前記熱媒管の端部が前記ヘッダ部に固着されている請求項1又は請求項2に記載の高圧タンク。
The heat exchanger is a device that cools or heats a heat medium supplied from the outside through a heat medium pipe through a passage penetrating the liner,
A flow path through which the heat medium flows is formed in the header part, and an end of the heat medium pipe is fixed to the header part so that the flow path and the inside of the heat medium pipe communicate with each other. The high-pressure tank according to claim 1 or 2.
前記ヘッダ部は前記分割体に取り付けられ、該分割体は樹脂製である請求項3に記載の高圧タンク。 The high-pressure tank according to claim 3 , wherein the header portion is attached to the divided body, and the divided body is made of resin. 前記熱媒は前記ライナの両側端部のうち片側で出入りする請求項2〜請求項4のいずれか一項に記載の高圧タンク。 The high-pressure tank according to any one of claims 2 to 4 , wherein the heat medium enters and exits on one side of both end portions of the liner. 前記ガスは前記ライナの両側端部のうち、前記熱媒が出入りする側に対し反対側から出入りする請求項5に記載の高圧タンク。 The high-pressure tank according to claim 5 , wherein the gas enters and exits from the opposite side of the liner on both sides with respect to the side where the heat medium enters and exits. 前記熱交換器は熱媒管を複数備えている請求項2〜請求項6のいずれか一項に記載の高圧タンク。 A high-pressure tank according to any one of claims 2 to 6 wherein the heat exchanger that has a plurality of heat transfer tubes. 請求項1〜請求項7のいずれか一項に記載の高圧タンクの製造方法であって、It is a manufacturing method of the high pressure tank according to any one of claims 1 to 7,
前記熱交換器を、ロウ付け又は溶接により前記ヘッダ部に接合した後で、前記ヘッダ部を前記ライナ本体又は前記分割体に取付固定する高圧タンクの製造方法。  A method for manufacturing a high-pressure tank, wherein the header is attached and fixed to the liner body or the divided body after the heat exchanger is joined to the header by brazing or welding.
JP2004067893A 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof Expired - Fee Related JP4511851B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004067893A JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof
US10/841,279 US7152665B2 (en) 2003-05-08 2004-05-07 Pressure tank
US11/595,128 US7322398B2 (en) 2003-05-08 2006-11-09 Pressure tank
US11/981,145 US20080066887A1 (en) 2003-05-08 2007-10-30 Pressure tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003130748 2003-05-08
JP2004067893A JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004354039A JP2004354039A (en) 2004-12-16
JP4511851B2 true JP4511851B2 (en) 2010-07-28

Family

ID=34067048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067893A Expired - Fee Related JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4511851B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6224959B2 (en) * 2013-08-28 2017-11-01 Kyb株式会社 Hydrogen storage system
CN108240552B (en) * 2016-12-27 2020-01-10 有研工程技术研究院有限公司 Quick-response hydrogen storage tank and manufacturing method thereof
DE102021128437B3 (en) * 2021-11-02 2023-03-30 Arianegroup Gmbh Spacecraft tank with heat exchanger, spacecraft and method for cooling a tank's contents
CN116164572B (en) * 2023-04-23 2023-07-18 北京星辰新能科技有限公司 Heat exchanger liquid storage tank integrated structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082058U (en) * 1973-11-27 1975-07-15
JPS61244995A (en) * 1985-04-22 1986-10-31 Sanyo Electric Co Ltd Metal hydride container
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH0755385A (en) * 1993-06-28 1995-03-03 Mw Kellogg Co:The High-temperature heat exchanger
JP2002340430A (en) * 2001-05-15 2002-11-27 Japan Steel Works Ltd:The Hydrogen storage alloy container
JP2003090499A (en) * 2001-09-19 2003-03-28 Samtec Kk High pressure tank device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082058U (en) * 1973-11-27 1975-07-15
JPS61244995A (en) * 1985-04-22 1986-10-31 Sanyo Electric Co Ltd Metal hydride container
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH0755385A (en) * 1993-06-28 1995-03-03 Mw Kellogg Co:The High-temperature heat exchanger
JP2002340430A (en) * 2001-05-15 2002-11-27 Japan Steel Works Ltd:The Hydrogen storage alloy container
JP2003090499A (en) * 2001-09-19 2003-03-28 Samtec Kk High pressure tank device

Also Published As

Publication number Publication date
JP2004354039A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7169214B2 (en) High pressure tank
US7322398B2 (en) Pressure tank
US8051977B2 (en) Hydrogen storage tank
EP1803992B1 (en) Hydrogen storage tank and replacement method for on-off valve
JP4167607B2 (en) Hydrogen storage tank
KR20110034519A (en) Sensor port inserted silicon hose and method for manufacturing the same
JP5197756B2 (en) Internal gas warming for high pressure gas storage tanks with metal liners
JP4511851B2 (en) High pressure tank and manufacturing method thereof
JP7393802B2 (en) thermal energy transfer device
JP4219194B2 (en) Pressure vessel
JP4314037B2 (en) High pressure tank
JP4370115B2 (en) Hydrogen storage tank and manufacturing method thereof
JP4575107B2 (en) Pressure vessel
JP6180894B2 (en) Hydrogen storage device
JP4199155B2 (en) Method for supporting built-in object of pressure vessel and pressure vessel
JP2003065437A (en) Pressure vessel
JP2023072536A (en) high pressure tank
JP4675619B2 (en) Pressure vessel
US20230296207A1 (en) Method for assembling gas container and gas container
US20230296208A1 (en) Gas container
US20240318782A1 (en) Pressure container and manufacturing method therefor
JP2004332854A (en) Pressure vessel
CN113898867A (en) Method for producing a compressed gas tank for a motor vehicle
ZA200902427B (en) Hydride container
JP2001324095A (en) Hydrogen filling connecting pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees