Nothing Special   »   [go: up one dir, main page]

JP2004354039A - High-pressure tank - Google Patents

High-pressure tank Download PDF

Info

Publication number
JP2004354039A
JP2004354039A JP2004067893A JP2004067893A JP2004354039A JP 2004354039 A JP2004354039 A JP 2004354039A JP 2004067893 A JP2004067893 A JP 2004067893A JP 2004067893 A JP2004067893 A JP 2004067893A JP 2004354039 A JP2004354039 A JP 2004354039A
Authority
JP
Japan
Prior art keywords
liner
heat medium
header
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067893A
Other languages
Japanese (ja)
Other versions
JP4511851B2 (en
Inventor
Takashi Fuji
敬司 藤
Hideto Kubo
秀人 久保
Katsuyoshi Fujita
勝義 藤田
Akiko Kumano
明子 熊野
Masahiko Kanehara
雅彦 金原
Daigoro Mori
大五郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2004067893A priority Critical patent/JP4511851B2/en
Priority to US10/841,279 priority patent/US7152665B2/en
Publication of JP2004354039A publication Critical patent/JP2004354039A/en
Priority to US11/595,128 priority patent/US7322398B2/en
Priority to US11/981,145 priority patent/US20080066887A1/en
Application granted granted Critical
Publication of JP4511851B2 publication Critical patent/JP4511851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-pressure tank hardly causing a reduction in strength of a liner to ensure the sealing property between the liner and a heat exchanger. <P>SOLUTION: A hydrogen tank 1 comprises a heat exchange unit 16 for inhibiting an internal temperature change. The heat exchange unit 16 comprises a heat exchanger 18 having a plurality of heat medium tubes 17, and a header part 19 to which the ends of the heat medium tubes 17 are fixed by brazing or welding. The heat exchange unit 16 is mounted on the liner 3 by fitting the header part 19 to a hole part 24, and fixing the header part 19 to a lid part 7 by a screw 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、中空状のライナとライナの外周面を覆う繊維強化プラスチックとを備え、ライナの内部を高圧にしてガスを貯蔵する高圧タンクに関する。   The present invention relates to a high-pressure tank that includes a hollow liner and a fiber-reinforced plastic that covers an outer peripheral surface of the liner, and stores gas at a high pressure inside the liner.

近年、地球温暖化を抑制する意識が高まり、特に車両から排出される二酸化炭素の低減を目的として燃料電池電気自動車や水素エンジン自動車等の開発が盛んである。燃料電池電気自動車では水素と酸素とを電気化学的に反応させて電力を起こし、その電気をモータに供給して駆動力を発生させる。この種の水素供給源としては水素が充填された高圧タンクが用いられ、その高圧タンクの一例が特許文献1等に開示されている。この高圧タンク(圧力容器)は金属又は樹脂製のライナを備え、その外周は耐圧性を確保するために被覆材で被覆されている。
特表2000−504810号(第6−42頁、第2図)
In recent years, awareness of suppressing global warming has increased, and in particular, development of fuel cell electric vehicles, hydrogen engine vehicles, and the like has been actively conducted for the purpose of reducing carbon dioxide emitted from vehicles. In a fuel cell electric vehicle, hydrogen and oxygen are electrochemically reacted to generate electric power, and the electric power is supplied to a motor to generate a driving force. As this kind of hydrogen supply source, a high-pressure tank filled with hydrogen is used, and an example of the high-pressure tank is disclosed in Patent Document 1 and the like. This high-pressure tank (pressure vessel) includes a liner made of metal or resin, and its outer periphery is coated with a coating material to ensure pressure resistance.
Japanese Translation of PCT International Publication No. 2000-504810 (page 6-42, FIG. 2)

ところで、高圧タンクはガスを充填する際に、圧縮仕事によるガスの温度上昇に伴い内圧も上昇する。しかし、伝熱が悪いCFRP(Carbon Fiber Reinforced Plastics)を被覆材として用いた場合には、高圧タンクの耐圧性がよくなるものの内部で発生した熱が外部に放熱され難く、タンク内部の温度上昇によってガスの充填量が規定量より少なくなる問題が生じる。また、高圧ガスのガス充填時間をなるべく短くしたい要望があるが、急速にガス充填を行うとその分だけ温度上昇が顕著になり、ガス充填量に支障を来す。   By the way, when a high-pressure tank is filled with a gas, the internal pressure increases with an increase in the temperature of the gas due to compression work. However, when CFRP (Carbon Fiber Reinforced Plastics), which has poor heat transfer, is used as the coating material, the pressure generated in the high pressure tank is improved, but the heat generated inside is difficult to radiate to the outside. There is a problem in that the filling amount of is less than the specified amount. In addition, there is a demand to shorten the gas filling time of the high-pressure gas as much as possible. However, if the gas filling is performed rapidly, the temperature rise becomes remarkable and the gas filling amount is hindered.

また、高圧タンクは充填できるガス量を増やすために、タンク内部に吸蔵材を配置する場合がある。吸蔵材はガス分子と接触したときに吸着熱や反応熱が生じるので、吸蔵材を内蔵する場合はガスの圧縮熱に加え、吸着熱や反応熱を除去する必要がある。このため、高圧ガスを規定量で、かつ急速に充填するためには内部ガスを冷却しながら行う必要があり、この冷却方法としては高圧タンクに熱交換器を取り付ける方法がある。   Further, in order to increase the amount of gas that can be filled in the high-pressure tank, an occlusion material may be arranged inside the tank in some cases. The occluding material generates heat of adsorption or heat of reaction when it comes into contact with gas molecules. Therefore, when the occluding material is incorporated, it is necessary to remove the heat of adsorption and the heat of reaction in addition to the heat of compression of the gas. For this reason, it is necessary to cool the internal gas in order to rapidly fill the high-pressure gas with a specified amount, and as a cooling method, there is a method of attaching a heat exchanger to the high-pressure tank.

この熱交換器はタンク内外に亘って通された熱媒管を備え、その熱媒管を介して外部から冷水を取り込んでガスの温度上昇を抑え、熱交換により温まった温水を外部へ放出する。熱交換器を高圧タンクに設置する場合、例えばライナの側部でライナを貫通させて熱媒管を外部へ引き出す必要があるが、その貫通部分でライナと熱媒管との間のシール性を確保する必要がある。そのシール確保としてはろう付けや接着等があるが、この場合にはライナの強度(疲労強度)が低下し、耐久性が悪くなる問題が生じていた。   This heat exchanger includes a heat medium pipe that passes through the inside and outside of the tank, takes in cold water from outside through the heat medium pipe, suppresses a temperature rise of the gas, and discharges hot water warmed by heat exchange to the outside. . When the heat exchanger is installed in a high-pressure tank, for example, it is necessary to penetrate the liner at the side of the liner and draw out the heat medium pipe to the outside. Need to secure. The sealing can be achieved by brazing, bonding, or the like. However, in this case, the strength (fatigue strength) of the liner is reduced, and there is a problem that the durability is deteriorated.

本発明は前記の問題点に鑑みてなされたものであって、その目的は、ライナと熱交換器との間のシール性を確保する上で、ライナの強度を低下し難くできる高圧タンクを提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a high-pressure tank in which the strength of the liner can be hardly reduced in securing the sealing performance between the liner and the heat exchanger. Is to do.

上記問題点を解決するために、請求項1に記載の発明は、少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクである。前記熱交換器をヘッダ部に接合し、前記ライナのライナ本体及び分割体のうち一方の内面に前記ヘッダ部を係止手段によって固定することで前記熱交換器が取り付けられている。   In order to solve the above-mentioned problems, the invention according to claim 1 includes a hollow liner that is divided at least on one side, a fiber-reinforced plastic that covers an outer peripheral surface of the liner, and is housed inside the liner. A high-pressure tank that includes a heat exchanger and stores gas at a high pressure inside the liner. The heat exchanger is attached by joining the heat exchanger to a header portion and fixing the header portion to one of inner surfaces of the liner main body and the divided body of the liner by locking means.

この発明によれば、熱交換器をヘッダ部に接合し、そのヘッダ部を係止手段によってライナ本体及び分割体のうち一方の内面に固定することで熱交換器がライナに取り付けられる。ところで、熱交換器をライナに取り付ける場合、ロウ付けや溶接等を用いるとライナの強度が低下してしまうが、この構成では熱交換器をヘッダ部に接合し、それをライナに対して取り付ける構成であるので、ロウ付けや溶接等を用いずに済み、ライナ強度の低下が殆ど生じない。   According to the present invention, the heat exchanger is attached to the liner by joining the heat exchanger to the header and fixing the header to one of the inner surfaces of the liner main body and the divided body by the locking means. By the way, when the heat exchanger is attached to the liner, the strength of the liner is reduced if brazing or welding is used, but in this configuration, the heat exchanger is joined to the header, and it is attached to the liner. Therefore, it is not necessary to use brazing, welding, or the like, and the liner strength hardly decreases.

請求項2に記載の発明では、請求項1に記載の発明において、前記ライナは一端側で分割され、分割された側と反対側の端部に前記ヘッダ部が固定される開口部が設けられている。前記ヘッダ部は前記開口部に挿通可能な小径部と、前記開口部より大径の大径部とを備え、前記小径部の外周面に雄ねじ部が形成され、前記雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている。   In the invention described in claim 2, in the invention described in claim 1, the liner is divided at one end side, and an opening for fixing the header portion is provided at an end opposite to the divided side. ing. The header portion includes a small-diameter portion that can be inserted into the opening portion, and a large-diameter portion having a larger diameter than the opening portion.A male screw portion is formed on an outer peripheral surface of the small-diameter portion, and the male screw portion is used. A header is fixed to the liner.

この発明によれば、ヘッダ部は小径部と大径部とを備え、ライナの分割された側と反対側に設けられた開口部に小径部が挿通され、小径部の外周面に形成された雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている。従って、ヘッダ部に作用する内圧がヘッダ部とライナ内面との間のシール部のシール性を高めるように作用し、シール性が高められる。   According to the present invention, the header portion has the small diameter portion and the large diameter portion, the small diameter portion is inserted into the opening provided on the side opposite to the divided side of the liner, and formed on the outer peripheral surface of the small diameter portion. The header part is fixed to the liner using a male screw part. Therefore, the internal pressure acting on the header portion acts to enhance the sealing performance of the sealing portion between the header portion and the inner surface of the liner, and the sealing performance is enhanced.

請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であって、前記ヘッダ部には前記熱媒が流れる流路が形成され、前記流路と前記熱媒管の内部とが連通するように前記熱媒管の端部が前記ヘッダ部に固着されている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the heat exchanger includes a heat medium pipe through which a heat medium supplied from the outside passes through the liner. Is a device that performs cooling or heating by flowing through the heat medium pipe, and the heat medium pipe is formed in the header portion so that the heat medium flows therethrough, and the flow path and the inside of the heat medium pipe communicate with each other. Is fixed to the header portion.

この発明によれば、請求項1又は請求項2に記載の発明の作用に加え、外部からの熱媒を熱媒管に流して冷却又は加熱を行う熱交換器を用いた場合、熱媒管の通路をライナ内部から外部へ引き出す必要がある。その引き出し部分のシール確保のためにロウ付けや溶接等を用いるとライナ強度の低下を招く。しかし、この発明の構成を用いればライナにロウ付けや溶接等を行わずに熱媒管の通路を外部に引き出せることになり、ライナ強度の低下が殆ど生じない。   According to this invention, in addition to the operation of the invention described in claim 1 or 2, in the case where a heat exchanger for cooling or heating by flowing an external heat medium through the heat medium pipe is used, Must be drawn from the inside of the liner to the outside. If brazing, welding, or the like is used to secure the seal of the drawn portion, the liner strength is reduced. However, if the configuration of the present invention is used, the passage of the heat medium pipe can be drawn out without performing brazing, welding, or the like on the liner, and the liner strength hardly decreases.

請求項4に記載の発明では、請求項3に記載の発明において、前記ライナの内面と前記ヘッダ部との接合面には、前記ライナの内部と前記熱媒管の通路との間の気密性を確保するシール材が介装されている。この発明によれば、請求項3に記載の発明の作用に加え、ライナの内面とヘッダ部との接合面にはシール材が介装されているので、ライナ内部の高圧ガスが熱媒の流れる熱媒管の通路側に漏れ難くなる。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the airtightness between the inside of the liner and the passage of the heat medium pipe is provided on a joint surface between the inner surface of the liner and the header portion. Sealing material is interposed. According to this invention, in addition to the effect of the third aspect of the invention, since the sealing material is interposed on the joint surface between the inner surface of the liner and the header portion, the high-pressure gas inside the liner flows through the heat medium. It becomes difficult to leak to the passage side of the heat medium pipe.

請求項5に記載の発明では、請求項3又は請求項4に記載の発明において、前記ヘッダ部は前記分割体に取り付けられ、該分割体は樹脂製である。この発明では、ヘッダ部が取り付けられる分割体を介して熱媒が熱媒管の通路に出入りする。分割体が金属製の場合、分割体を介して熱媒の熱が外部に放射されたり、逆に熱媒が外部の熱で暖められたりし易くなる。しかし、分割体が樹脂製のため、金属製の場合に比較して断熱性が高く、熱媒が分割体を通過する間における熱媒の温度変化が抑制されて、熱交換器による熱交換が効率良く行われるようになる。   According to a fifth aspect of the present invention, in the third or fourth aspect of the invention, the header portion is attached to the divided body, and the divided body is made of resin. According to the present invention, the heat medium enters and exits the passage of the heat medium pipe through the divided body to which the header portion is attached. When the divided body is made of metal, the heat of the heat medium is easily radiated to the outside through the divided body, and conversely, the heat medium is easily heated by the external heat. However, since the divided body is made of resin, the heat insulating property is higher than that of the case where the divided body is made of metal. It will be performed efficiently.

請求項6に記載の発明は、少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクである。前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であり、前記ライナは分割式とすることでライナ本体と蓋部とを有する構成であって、前記蓋部の口金部の内面に前記熱媒管の端部を接合することで前記熱交換器が取り付けられている。   The invention according to claim 6, further comprising: a hollow liner having at least one side divided, a fiber-reinforced plastic covering an outer peripheral surface of the liner, and a heat exchanger housed inside the liner. Is a high-pressure tank for storing gas at a high pressure inside. The heat exchanger is a device that performs cooling or heating by flowing a heat medium supplied from the outside through a heat medium pipe through a passage provided through the liner, and the liner is a split type. The heat exchanger has a liner main body and a lid, and the heat exchanger is attached to an inner surface of a base of the lid by joining an end of the heat medium pipe.

この発明によれば、熱交換器の端部を蓋部の口金部の内面に接合することで熱交換器がライナに取り付けられる。ところで、熱交換器をライナに取り付ける場合、ロウ付けや溶接等を用いるとライナの強度が低下してしまう。しかし、この構成では熱媒管をライナに直接接合しているものの、ライナの中で肉厚が厚い口金部に熱媒管を接合する構成であるので、ライナ強度に影響が出難く、熱媒管をライナに接合する構成であってもライナ強度の低下が抑えられる。   According to the present invention, the heat exchanger is attached to the liner by joining the end of the heat exchanger to the inner surface of the base of the lid. By the way, when attaching a heat exchanger to a liner, if brazing, welding, etc. are used, the strength of a liner will fall. However, in this configuration, although the heat medium pipe is directly joined to the liner, since the heat medium pipe is joined to the thick base in the liner, the liner strength is not easily affected, and the heat medium pipe is hardly affected. Even when the pipe is joined to the liner, a decrease in the liner strength can be suppressed.

請求項7に記載の発明では、請求項2〜請求項6のいずれか一項に記載の発明において、前記熱媒は前記ライナの両側端部のうち片側で出入りする。この発明によれば、請求項2〜請求項6のいずれか一項に記載の発明の作用に加え、ライナの両側端部のうち片側で熱媒が出入りする構成であるので、例えば熱媒源をライナの熱媒入口の近くに配置した場合、熱媒出口と熱媒源との間の距離が熱媒入口と熱媒源との間の距離とほぼ同じになり、熱媒出口から延びる管路を熱媒源まで引き戻す必要がない。   In the invention described in claim 7, in the invention described in any one of claims 2 to 6, the heat medium enters and exits on one side of both end portions of the liner. According to this invention, in addition to the effect of the invention described in any one of claims 2 to 6, the heat medium enters and exits on one side of both side ends of the liner, so that, for example, a heat medium source Is arranged near the heat medium inlet of the liner, the distance between the heat medium outlet and the heat medium source is substantially the same as the distance between the heat medium inlet and the heat medium source, and the tube extending from the heat medium outlet There is no need to return the path to the heat medium source.

請求項8に記載の発明では、請求項7に記載の発明において、前記ガスは前記ライナの両側端部のうち、前記熱媒が出入りする側に対し反対側から出入りする。この発明によれば、請求項7に記載の発明の作用に加え、ガスがライナの両側端部のうち熱媒が出入りする側に対し反対側から出入りするので、ライナの一方の端部が熱媒用で他方がガス用とすることが可能となり、どちらか一方の端部が熱媒及びガスの間で共用化されずに済んで高圧タンクの構成が簡素化する。   In the invention described in claim 8, in the invention described in claim 7, the gas enters and exits from a side opposite to a side where the heat medium enters and exits from both ends of the liner. According to this invention, in addition to the effect of the invention described in claim 7, gas flows in and out of the both ends of the liner from the side opposite to the side where the heat medium enters and exits, so that one end of the liner is heated. The medium can be used for the gas and the other can be used for the gas, and one end does not need to be shared between the heat medium and the gas, and the configuration of the high-pressure tank is simplified.

請求項9に記載の発明では、請求項2〜請求項8のいずれか一項に記載の発明において、前記熱交換器は前記熱媒管を複数備えている。この発明によれば、請求項2〜請求項8のいずれか一項に記載の発明の作用に加え、熱媒管を複数備えた熱交換器を用いるので、高圧タンク内の温度抑制効果が高くなる。   According to a ninth aspect of the present invention, in the invention according to any one of the second to eighth aspects, the heat exchanger includes a plurality of the heat medium tubes. According to this invention, in addition to the operation of the invention described in any one of claims 2 to 8, a heat exchanger having a plurality of heat medium tubes is used, so that the effect of suppressing the temperature in the high-pressure tank is high. Become.

本発明によれば、ライナと熱交換器との間のシール性を確保する上で、ライナの強度を低下し難くできる。   ADVANTAGE OF THE INVENTION According to this invention, in ensuring the sealing performance between a liner and a heat exchanger, the intensity | strength of a liner can be hard to fall.

(第1の実施形態)
以下、本発明の高圧タンクを水素タンクに具体化した第1の実施形態を図1及び図2に従って説明する。
(1st Embodiment)
Hereinafter, a first embodiment in which the high-pressure tank of the present invention is embodied as a hydrogen tank will be described with reference to FIGS.

図1は、水素タンク1の模式断面図である。高圧タンクとしての水素タンク1は細長い中空状(筒状)をなし、その内部の収容室2に高圧状態で水素が充填されている。収容室2を高圧にするのは水素の充填量を多くとるためであり、例えば収容室2の圧力を25MPaとした場合には大気中と比較して約250倍の水素が充填可能となる。水素タンク1は両端部のうち水素が出入りする側が先端(図1では右側端部)、その反対側が基端(図1では左側端部)となっている。   FIG. 1 is a schematic sectional view of the hydrogen tank 1. The hydrogen tank 1 as a high-pressure tank has an elongated hollow (cylindrical) shape, and a storage chamber 2 therein is filled with hydrogen under high pressure. The reason why the pressure of the storage chamber 2 is set to be high is to increase the filling amount of hydrogen. For example, when the pressure of the storage chamber 2 is set to 25 MPa, hydrogen can be charged about 250 times as much as in the atmosphere. The hydrogen tank 1 has a tip (the right end in FIG. 1) at which hydrogen enters and exits from both ends, and a base end (the left end in FIG. 1) on the opposite side.

水素タンク1はタンク外形をなす中空状のライナ3と、ライナ3の外周面の略全域を覆う繊維強化プラスチックとしての高強度CFRP4とを備えている。高強度CFRP4は水素タンク1の耐圧性(機械的強度)を確保し、フィラメントワインディング法(FW法)によりライナ3に巻き付けられる。このFW法とはライナ3が回転した状態で、炭素繊維に樹脂(例えば不飽和ポリエステル樹脂、エポキシ樹脂等)を含浸させながらヘリカル巻層とフープ巻層を有するようにライナ3に巻き付け、その樹脂を熱硬化させる製法である。   The hydrogen tank 1 includes a hollow liner 3 having an outer shape of the tank, and a high-strength CFRP 4 as a fiber-reinforced plastic covering substantially the entire outer peripheral surface of the liner 3. The high-strength CFRP 4 secures the pressure resistance (mechanical strength) of the hydrogen tank 1 and is wound around the liner 3 by a filament winding method (FW method). In the FW method, while the liner 3 is rotated, the carbon fiber is wound around the liner 3 so as to have a helical winding layer and a hoop winding layer while impregnating the carbon fiber with a resin (for example, an unsaturated polyester resin or an epoxy resin). Is a method of heat curing.

ライナ3は例えばアルミニウム合金を材質とし、水素タンク1の気密性を確保している。ライナ3は基端側が分割式となっており、略筒状のライナ本体としての本体部5と、本体部5の基端側の開口部6を覆う分割体としての蓋部7とを備えている。ライナ3の先端部8には収容室2と外部とを連通する通気路9の先にバルブ10が取り付けられ、このバルブ10のポート切り換えによって水素タンク1の使用状態が水素放出状態と水素充填状態との間で切り換えられる。   The liner 3 is made of, for example, an aluminum alloy to ensure the airtightness of the hydrogen tank 1. The liner 3 is of a split type on the base end side, and includes a main body 5 as a substantially cylindrical liner main body, and a lid 7 as a split body that covers an opening 6 on the base end side of the main body 5. I have. A valve 10 is attached to the end 8 of the liner 3 at the end of an air passage 9 that communicates the storage chamber 2 with the outside. Can be switched between

蓋部7は中央部位に口金部11を有する形状をなし、その口金部11には収容室2と外部とを連通する2つの通路12,13が略平行に並んだ状態で形成されている。蓋部7はその周縁部分で周方向に沿って略等間隔に並んだ複数(例えば8個)のネジ14によって本体部5に固定されている。本体部5と蓋部7との接合部位には収容室2内の気密性を確保するためのシール材15が介装されている。   The lid 7 has a shape having a base portion 11 at a central portion, and the base portion 11 is formed in a state where two passages 12 and 13 communicating the housing chamber 2 and the outside are arranged substantially in parallel. The lid 7 is fixed to the main body 5 by a plurality (for example, eight) of screws 14 arranged at substantially equal intervals along the circumferential direction at the peripheral portion thereof. A sealing material 15 for ensuring airtightness in the storage chamber 2 is interposed at a joint portion between the main body 5 and the lid 7.

ライナ3の収容室2には水素充填時又は水素放出時のタンク内の温度変化を抑制する熱交換ユニット16が収容されている。熱交換ユニット16はライナ3の径方向に沿って並んで複数(この実施形態では3つ)配置された熱媒管17を有する熱交換器18と、熱交換ユニット16の蓋部7への取り付け部分となる取付対象としての略円板形状のヘッダ部19とを備えている。熱媒管17は1本のパイプを折り曲げることで形成された略U字形状をなしており、これら端部がロウ付けや溶接等によってヘッダ部19に固着されている。   The storage chamber 2 of the liner 3 houses a heat exchange unit 16 that suppresses a temperature change in the tank when filling or releasing hydrogen. The heat exchange unit 16 includes a heat exchanger 18 having a plurality of (three in this embodiment) heat medium pipes 17 arranged along the radial direction of the liner 3, and attachment of the heat exchange unit 16 to the lid 7. A substantially disk-shaped header portion 19 is provided as an attachment target serving as a portion. The heat medium pipe 17 has a substantially U shape formed by bending a single pipe, and these ends are fixed to the header 19 by brazing, welding, or the like.

図2は、蓋部7と熱交換ユニット16との組み付けを説明する模式分解図である。蓋部7の薄肉部20にはライナ3の周方向に沿って略等間隔に、ネジ21を挿通するための孔部22が形成されている。ヘッダ部19の蓋部7側の面には、孔部22に対応する位置にネジ穴23が複数形成されている。熱交換ユニット16は蓋部7の内面に凹設された穴部24にヘッダ部19を嵌合し、ネジ21を孔部22に挿通してその段差で頭部を係止し、軸部をネジ穴23に螺着することで蓋部7に固定されている。なお、ネジ21、孔部22及びネジ穴23が係止手段を構成する。   FIG. 2 is a schematic exploded view for explaining the assembly of the lid 7 and the heat exchange unit 16. Holes 22 for inserting screws 21 are formed in the thin portion 20 of the lid 7 at substantially equal intervals along the circumferential direction of the liner 3. A plurality of screw holes 23 are formed on the surface of the header 19 on the side of the lid 7 at positions corresponding to the holes 22. The heat exchange unit 16 fits the header 19 into a hole 24 formed in the inner surface of the lid 7, inserts a screw 21 into the hole 22, locks the head at the step, and fixes the shaft. It is fixed to the lid 7 by screwing it into the screw hole 23. The screw 21, the hole 22, and the screw hole 23 constitute a locking means.

ところで、水素タンク1は水素充填時に内部温度が上昇し、水素放出時に内部温度が下降するが、この温度変化を抑制するために熱媒管17には冷水又は温水(熱媒)が流れ、この実施形態では水素充填時に冷水が、水素放出時に温水が一方の端部から他方の端部に向かって流れる。このため、各熱媒管17は一方の端部(図1では上側端部)が水経路の上流側端部17aとなり、他方の端部(図1では下側端部)が下流側端部17bとなる。   By the way, the internal temperature of the hydrogen tank 1 rises at the time of filling with hydrogen, and the internal temperature falls at the time of releasing hydrogen. To suppress this temperature change, cold water or hot water (heat medium) flows through the heat medium pipe 17. In the embodiment, cold water flows when filling with hydrogen, and warm water flows from one end to the other when releasing hydrogen. For this reason, one end (upper end in FIG. 1) of each heat medium pipe 17 is the upstream end 17a of the water path, and the other end (lower end in FIG. 1) is the downstream end. 17b.

ヘッダ部19には各熱媒管17の上流側端部17aと対応する位置に、上流側端部17aと蓋部7との間を貫通して延びる流路25が複数(この実施形態では3つ)形成されている。これら流路25は略平行に配置され、その流路径が熱媒管17の内径とほぼ同じとなっている。蓋部7の内面には通路12の経よりも大経に設定された凹部26が形成され、この凹部26によって通路12と3つの流路25とが連通されている。   In the header portion 19, at a position corresponding to the upstream end portion 17a of each heat medium pipe 17, a plurality of flow passages 25 extending through the space between the upstream end portion 17a and the lid portion 7 (in this embodiment, three channels 3). One) is formed. These flow paths 25 are arranged substantially in parallel, and the diameter of the flow paths is substantially the same as the inner diameter of the heat medium pipe 17. The inner surface of the lid 7 is formed with a concave portion 26 which is set to have a greater diameter than that of the passage 12. The concave portion 26 connects the passage 12 and the three flow paths 25.

また、熱媒管17の上流側と同様にして、ヘッダ部19には各熱媒管17の下流側端部17bと対応する位置に、下流側端部17bと蓋部7との間を貫通して延びる流路27が複数(この実施形態では3つ)形成されている。これら流路27も上流側のものと同様に略平行に配置され、その流路径が熱媒管17の内径とほぼ同じである。蓋部7の内面には通路13の径よりも大径に設定された凹部28が形成され、この凹部28によって通路13と3つの流路27とが連通されている。   Further, similarly to the upstream side of the heat medium pipe 17, the header portion 19 penetrates between the downstream end 17b and the lid 7 at a position corresponding to the downstream end 17b of each heat medium pipe 17. (Three in this embodiment) are formed. These flow paths 27 are also arranged substantially in parallel, similarly to the upstream flow path, and the diameter of the flow path is substantially the same as the inner diameter of the heat medium pipe 17. A concave portion 28 having a diameter larger than that of the passage 13 is formed on the inner surface of the lid portion 7, and the concave portion 28 connects the passage 13 and the three flow paths 27.

蓋部7の内面には凹部26,28の各周囲に略円環状の溝部29,30が形成されている。溝部29には上流側水経路の収容室2との間の気密性を確保するシール材31が、溝部30には下流側水経路の収容室2との間の気密性を確保するシール材32が各々取り付けられている。また、ヘッダ部19の外周面には全周に亘って溝部33が形成され、この溝部33には収容室2と熱媒管17の通路との間の気密性を確保するシール材34が取り付けられている。   On the inner surface of the lid 7, substantially annular grooves 29, 30 are formed around the recesses 26, 28, respectively. The groove 29 is provided with a sealing material 31 for ensuring airtightness with the accommodation chamber 2 of the upstream water path, and the groove 30 is provided with a sealing material 32 for ensuring airtightness with the accommodation chamber 2 of the downstream water path. Are attached. A groove 33 is formed all around the outer peripheral surface of the header portion 19, and a sealing member 34 for ensuring airtightness between the housing chamber 2 and the passage of the heat medium pipe 17 is attached to the groove 33. Have been.

図1に示すように、熱交換ユニット16は基端側が穴部24に嵌合されることで収容室2に収容されている。また、熱媒管17には略円盤状のフィン36がライナ3の軸方向に沿って等間隔に複数固着され、このフィン36によって水素タンク1内の温度変化の抑制効果を高めている。   As shown in FIG. 1, the heat exchange unit 16 is housed in the housing chamber 2 by fitting the base end side into the hole 24. A plurality of substantially disk-shaped fins 36 are fixed to the heat medium pipe 17 at equal intervals along the axial direction of the liner 3, and the fins 36 enhance the effect of suppressing a temperature change in the hydrogen tank 1.

フィン36の間には粉末状の水素吸蔵合金(MH粉末)がフィン36と接触する状態で収容されている。水素吸蔵合金は水素タンク1内の水素の充填量を多くする機能があり、大気中に比べて数百〜1000倍の水素充填を可能にする。フィン36の径方向端部には全てのフィン36を覆う状態で水素を透過可能なフィルタ37(破線で図示)が取り付けられている。   A powdery hydrogen storage alloy (MH powder) is accommodated between the fins 36 so as to be in contact with the fins 36. The hydrogen storage alloy has a function of increasing the amount of hydrogen charged in the hydrogen tank 1, and enables hydrogen to be charged several hundred to 1000 times as much as in the atmosphere. At the radial end of the fin 36, a filter 37 (shown by a broken line) permeable to hydrogen is attached so as to cover all the fins 36.

ここで、水素吸蔵合金は水素を吸蔵するときに吸着熱や反応熱を生じて発熱し、水素を放出するときに吸熱する。従って、水素タンク1は水素充填時に水素吸蔵合金の吸着熱又は反応熱による発熱作用や、タンク内へガスを圧縮充填するときに生じる圧縮仕事によって温度上昇し、水素放出時には水素吸蔵合金の吸熱作用によって温度降下するが、熱媒管17に冷水又は温水を流すことでこの温度変化が抑制される。   Here, the hydrogen storage alloy generates heat by absorbing heat or reaction heat when storing hydrogen, and absorbs heat when releasing hydrogen. Therefore, the temperature of the hydrogen tank 1 rises due to the heat generated by the heat of adsorption or heat of reaction of the hydrogen storage alloy at the time of filling with hydrogen and the compression work generated at the time of compressing and filling the gas into the tank. However, the temperature change is suppressed by flowing cold water or hot water through the heat medium pipe 17.

次に、この実施形態の水素タンク1の作用について説明する。
水素タンク1を製造する一連の工程を説明すると、周りに複数のフィン36が固着された熱媒管17を有し、その外周を覆うフィルタ37に囲まれた内部に水素吸蔵合金が収容された熱交換器18を用意する。そして、熱媒管17の通路とヘッダ部19の流路25,27とが連通した位置決め状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)を、ロウ付け又は溶接によってヘッダ部19に固着して、熱交換器18とヘッダ部19とが一体化された熱交換ユニット16を製造する。
Next, the operation of the hydrogen tank 1 of this embodiment will be described.
A series of processes for manufacturing the hydrogen tank 1 will be described. The hydrogen storage alloy is housed inside a heat medium pipe 17 around which a plurality of fins 36 are fixed and surrounded by a filter 37 covering the outer periphery thereof. A heat exchanger 18 is prepared. Then, in a positioning state where the passage of the heat medium pipe 17 and the flow paths 25 and 27 of the header section 19 are in communication with each other, the ends (the upstream end 17a and the downstream end 17b) of the heat medium pipe 17 are brazed. Alternatively, the heat exchanger unit 16 in which the heat exchanger 18 and the header unit 19 are integrated with each other is fixed to the header unit 19 by welding.

続いて、蓋部7の内面とヘッダ部19との間にシール材31,32,34が介装された状態で、ヘッダ部19を穴部24に嵌合してネジ21によってヘッダ部19を蓋部7に取付固定する。熱交換ユニット16が取り付けられた後、熱交換器18を本体部5の内部に収容した状態で蓋部7をネジ14によって本体部5に固定し、分割式のライナ3を一体化する。そして、このライナ3をFW装置(図示省略)にセットして、熱硬化性樹脂が含浸された炭素繊維をFW法によりライナ3の外周に巻き付け、その後、熱硬化性樹脂を硬化させて高強度CFRP4を形成する。   Subsequently, with the sealing members 31, 32, 34 interposed between the inner surface of the lid 7 and the header 19, the header 19 is fitted into the hole 24, and the header 19 is screwed with the screw 21. Attach and fix to the lid 7. After the heat exchange unit 16 is attached, the lid 7 is fixed to the main body 5 with the screws 14 while the heat exchanger 18 is housed inside the main body 5, and the split liner 3 is integrated. Then, the liner 3 is set in a FW device (not shown), and the carbon fiber impregnated with the thermosetting resin is wound around the outer periphery of the liner 3 by the FW method. Form CFRP4.

この実施形態では、流路25,27を有するヘッダ部19に熱媒管17の端部を固着し、蓋部7の通路12,13に位置決めした状態でヘッダ部19をネジ21によって蓋部7に固定することで熱交換ユニット16がライナ3に取り付けられる。ところで、熱交換器18を搭載する場合には熱媒管17を外部に引き出す必要があるが、ライナ3を貫通して熱媒管17を引き出すとその部分をシールするためにロウ付けや溶接等を行う必要があり、ライナ3が高熱処理されるとライナ強度が低下してしまう。しかし、この実施形態の構成を用いればライナ3にロウ付けや溶接等を行う必要がなくなり、シール性を確保しつつライナ3の強度も確保される。   In this embodiment, the end portion of the heat medium pipe 17 is fixed to the header portion 19 having the flow paths 25 and 27, and the header portion 19 is positioned in the passages 12 and 13 of the lid portion 7, and the header portion 19 is screwed to the lid portion 7. , The heat exchange unit 16 is attached to the liner 3. By the way, when the heat exchanger 18 is mounted, it is necessary to draw the heat medium pipe 17 to the outside. However, when the heat medium pipe 17 is drawn through the liner 3, brazing, welding, or the like is performed to seal the portion. When the liner 3 is subjected to high heat treatment, the liner strength is reduced. However, if the configuration of this embodiment is used, there is no need to perform brazing, welding, or the like on the liner 3, and the strength of the liner 3 is ensured while ensuring the sealing performance.

従って、この実施形態では以下のような効果を得ることができる。
(1)ヘッダ部19に熱交換器18の熱媒管17を固着し、ヘッダ部19をネジ21によって蓋部7に取り付けた。従って、熱交換器18をライナ3の内部に設置する構成であっても、シール性確保のためにライナ3にロウ付けや溶接等を行わずに済むので、ライナ強度の低下を抑えることができる。
Therefore, in this embodiment, the following effects can be obtained.
(1) The heat medium pipe 17 of the heat exchanger 18 was fixed to the header 19, and the header 19 was attached to the lid 7 with the screw 21. Therefore, even in the configuration in which the heat exchanger 18 is installed inside the liner 3, the liner 3 does not need to be brazed or welded in order to ensure the sealing performance, so that a decrease in the liner strength can be suppressed. .

(2)口金部11をライナ3の基端側端部に形成し、その口金部11に対応する位置に凹設された穴部24にヘッダ部19を嵌合してネジ21によって固定する。従って、熱媒管17の通路がライナ3の側部から突出する構成とならないので、FW法で高強度CFRP4をライナ3の外周に形成する構成であっても支障が生じない。   (2) The base part 11 is formed at the base end of the liner 3, and the header part 19 is fitted into a hole 24 that is recessed at a position corresponding to the base part 11, and is fixed with screws 21. Accordingly, since the passage of the heat medium pipe 17 does not protrude from the side of the liner 3, there is no problem even if the high strength CFRP 4 is formed on the outer periphery of the liner 3 by the FW method.

(3)ヘッダ部19を用いて熱交換器18をライナ3に取り付ける構成であるので、ヘッダ部19に設ける流路25,27を適宜変更することで、蓋部7の構造を変えることなく様々な種類の熱交換器18を使用することができる。   (3) Since the heat exchanger 18 is attached to the liner 3 using the header portion 19, the flow paths 25 and 27 provided in the header portion 19 are appropriately changed, so that the structure of the lid portion 7 is not changed. Any type of heat exchanger 18 can be used.

(4)ライナ3が本体部5と蓋部7とに分かれる分割式であるので、熱交換ユニット16等の内蔵物をライナ3の内部に入れることができる。
(5)ヘッダ部19はネジ21によって蓋部7に固定されるので、簡単な構成でヘッダ部19を蓋部7に固定することができる。
(4) Since the liner 3 is of a split type in which the liner 3 is divided into the main body 5 and the lid 7, the internal components such as the heat exchange unit 16 and the like can be put inside the liner 3.
(5) Since the header portion 19 is fixed to the lid portion 7 by the screw 21, the header portion 19 can be fixed to the lid portion 7 with a simple configuration.

(6)蓋部7の内面とヘッダ部19との接合面にはシール材31,32,34が介装されているので、熱媒管17の通路とライナ3の収容室2との間の気密性を確保でき、高圧ガスが熱媒管17の通路に漏れ難くなる。   (6) Since the sealing members 31, 32, and 34 are interposed on the joint surface between the inner surface of the lid portion 7 and the header portion 19, the space between the passage of the heat medium pipe 17 and the storage chamber 2 of the liner 3 is provided. Airtightness can be secured, and high-pressure gas hardly leaks into the passage of the heat medium pipe 17.

(7)蓋部7に冷水又は温水の出入り口となる通路12,13が形成されているので、ライナ3の片側で冷水又は温水が出入りする。従って、例えば冷水又は温水の供給源が蓋部7側に設置された場合、その供給源と水の入口との間の距離と、供給源と水の出口との間の距離とがほぼ同じになり、水出口から延びる管路(図示省略)を引き戻す必要がない。   (7) Since the passages 12 and 13 serving as the inlet and outlet of the cold water or hot water are formed in the lid portion 7, the cold water or the hot water flows in / from one side of the liner 3. Therefore, for example, when a cold or hot water supply source is provided on the lid 7 side, the distance between the supply source and the water inlet is substantially the same as the distance between the supply source and the water outlet. Thus, there is no need to pull back a pipe (not shown) extending from the water outlet.

(8)蓋部7が冷水又は温水の出入り口となり、ライナ3の蓋部7に対し反対側の端部が水素ガスの出入り口となる。従って、どちらか一方の端部が水と水素ガスとで共用されると構造が複雑化するが、各々の端部を専用化しているので、この種の問題が生じない。   (8) The lid 7 serves as an inlet / outlet for cold water or hot water, and the end of the liner 3 on the opposite side to the lid 7 serves as an inlet / outlet for hydrogen gas. Therefore, if one of the ends is shared by water and hydrogen gas, the structure becomes complicated. However, since each end is dedicated, this kind of problem does not occur.

(9)複数の熱媒管17を有する熱交換器18を使用するので、その分だけタンク内部の冷却効果又は加熱効果がよくなり、水素タンク1内の温度抑制効果を高くできる。
(10)熱交換器18とヘッダ部19とはライナ3の軸方向に並んで配置されているので、水素タンク1を径方向にコンパクト化できる。
(9) Since the heat exchanger 18 having the plurality of heat medium tubes 17 is used, the cooling effect or the heating effect inside the tank is improved by that much, and the temperature suppressing effect inside the hydrogen tank 1 can be increased.
(10) Since the heat exchanger 18 and the header 19 are arranged side by side in the axial direction of the liner 3, the hydrogen tank 1 can be made compact in the radial direction.

(第2の実施形態)
次に、第2の実施形態を図3に従って説明する。この実施形態は熱媒管17の端部の取付構造が第1の実施形態と異なっており、他の基本的な構成は同じである。従って、同一部分に関しては同一符号を付して詳しい説明を省略し、異なる部分についてのみ説明する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. This embodiment is different from the first embodiment in the mounting structure of the end portion of the heat medium pipe 17, and the other basic configuration is the same. Therefore, the same portions are denoted by the same reference numerals, detailed description thereof will be omitted, and only different portions will be described.

図3は、水素タンク1の基端側の部分断面図である。蓋部7の内面にはシール材15に囲まれた部位に凹部38が形成されている。蓋部7の内面には通路12,13と熱媒管17の通路とが連通した状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)がロウ付け又は溶接によって直接固着されている。また、この実施形態の熱交換器18は熱媒管17を1本のみ有した構成となっている。   FIG. 3 is a partial cross-sectional view of the base end side of the hydrogen tank 1. A concave portion 38 is formed on the inner surface of the lid 7 at a portion surrounded by the sealing material 15. The ends (upstream end 17a and downstream end 17b) of the heat medium pipe 17 are brazed or welded in a state where the paths 12, 13 and the path of the heat medium pipe 17 communicate with the inner surface of the lid 7. Directly attached by Further, the heat exchanger 18 of this embodiment has a configuration having only one heat medium pipe 17.

この構成においても前記実施形態の(4),(7),(8)と同様な効果が得られる他に、次の効果が得られる。
(11)蓋部7にロウ付けや溶接等で熱媒管17を固着する構成であっても、肉厚な口金部11に固着するので、ライナ3の強度が大幅に低下せずに済む。また、口金部11がライナ3の基端側端部に位置し、その口金部11に対応する位置に熱媒管17が固着されるので、FW法で高強度CFRP4をライナ3に巻き付ける構成であっても支障が生じない。
Also in this configuration, the following effects are obtained in addition to the effects similar to the effects (4), (7), and (8) of the above-described embodiment.
(11) Even if the heat medium pipe 17 is fixed to the lid 7 by brazing or welding, it is fixed to the thick base 11, so that the strength of the liner 3 does not significantly decrease. In addition, since the base 11 is located at the base end of the liner 3 and the heat medium pipe 17 is fixed at a position corresponding to the base 11, the high-strength CFRP 4 is wound around the liner 3 by the FW method. Even if there is no problem.

(第3の実施形態)
次に第3の実施形態を図4(a),(b)に従って説明する。この実施形態では、ライナ3が片側(一端側)で分割されて、本体部5と蓋部7とを備えている点は第1及び第2の実施形態と同じであるが、ヘッダ部が本体部5に固定され、蓋部7に通気路9及びバルブ10が設けられている点が前記第1及び第2の実施形態と大きく異なっている。第1の実施形態と同様な部分は同一符号を付して詳しい説明を省略する。なお、図4(a)は水素タンク1の模式断面図であり、(b)は(a)の部分拡大図である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. This embodiment is the same as the first and second embodiments in that the liner 3 is divided on one side (one end side) and includes a main body 5 and a lid 7, but the header is different from the main body. This embodiment is largely different from the first and second embodiments in that a cover 7 is provided with an air passage 9 and a valve 10 in the lid 5. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. 4A is a schematic sectional view of the hydrogen tank 1, and FIG. 4B is a partially enlarged view of FIG.

図4(a)に示すように、蓋部7には、その中心部に収容室2と外部とを連通する通気路9がライナ3の軸線に沿って延びるように形成され、通気路9の端部にはバルブ10が取り付けられている。   As shown in FIG. 4A, the lid 7 is formed at the center thereof with a ventilation path 9 communicating the housing chamber 2 with the outside so as to extend along the axis of the liner 3. A valve 10 is attached to the end.

ライナ3は分割された側と反対側の端部に、熱交換ユニット16のヘッダ部39が固定される開口部40が設けら、開口部40には雌ねじ部41が設けられている。ライナ3の内側には開口部40の端部に沿うように環状の凹部42が形成されている。凹部42にはシール材43を収容する段差部42aが開口部40に面して形成されている。   The liner 3 has an opening 40 at the end opposite to the divided side to which the header 39 of the heat exchange unit 16 is fixed, and the opening 40 has a female screw 41. An annular recess 42 is formed inside the liner 3 along the end of the opening 40. A recess 42 a for accommodating the sealing material 43 is formed in the recess 42 so as to face the opening 40.

ヘッダ部39は金属製(例えば、アルミニウム合金製)で、開口部40に挿通可能な小径部39aと、開口部40より大径の大径部39bとを備え、小径部39aの外周面に雄ねじ部44が形成されている。大径部39bは凹部42の径より小径に、かつ段差部42aより大径に形成されている。そして、雄ねじ部44を利用して、具体的には雄ねじ部44を雌ねじ部41へ螺合することにより、ヘッダ部39がライナ3に固定されている。   The header portion 39 is made of metal (for example, made of an aluminum alloy) and includes a small-diameter portion 39a that can be inserted into the opening portion 40 and a large-diameter portion 39b larger in diameter than the opening portion 40. A portion 44 is formed. The large diameter portion 39b is formed smaller in diameter than the recess 42 and larger in diameter than the step portion 42a. The header portion 39 is fixed to the liner 3 by using the male screw portion 44 and specifically screwing the male screw portion 44 to the female screw portion 41.

ヘッダ部39には熱媒の通路45,46が形成され、通路45,46と熱媒管17の通路とが連通した状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)がロウ付け又は溶接によって固着されている。小径部39aの先端には、凹部47が複数(例えば2個)形成されている。凹部47は水素タンク1を製造する際、ヘッダ部39をライナ3に螺合させるときに使用する図示しない工具の係止部を係止させるためのものである。   Passages 45 and 46 for the heat medium are formed in the header portion 39, and the ends of the heat medium pipe 17 (the upstream end 17 a and the downstream end 17 a) are formed in a state where the passages 45 and 46 communicate with the passage of the heat medium pipe 17. The end 17b) is fixed by brazing or welding. A plurality of (for example, two) concave portions 47 are formed at the tip of the small diameter portion 39a. The concave portion 47 is for locking a locking portion of a tool (not shown) used when screwing the header portion 39 to the liner 3 when manufacturing the hydrogen tank 1.

この実施形態の水素タンク1を製造する場合は、熱交換器18を用意して、熱媒管17の通路とヘッダ部39の通路45,46とが連通した位置決め状態で、熱媒管17の端部(上流側端部17a及び下流側端部17b)を、ロウ付け又は溶接によってヘッダ部19に固着して、熱交換器18とヘッダ部39とが一体化された熱交換ユニット16を製造する。   When manufacturing the hydrogen tank 1 of this embodiment, the heat exchanger 18 is prepared and the heat medium pipe 17 is positioned in a state where the path of the heat medium pipe 17 and the paths 45 and 46 of the header portion 39 communicate with each other. The ends (upstream end 17a and downstream end 17b) are fixed to the header 19 by brazing or welding to manufacture the heat exchange unit 16 in which the heat exchanger 18 and the header 39 are integrated. I do.

続いて、ヘッダ部39の小径部39aの基端にシール材43を嵌合した状態で、小径部39aの先端側を開口部40に挿通するとともに、小径部39aの雄ねじ部44を開口部40の雌ねじ部41に螺合させる。このとき、小径部39aの先端側を開口部40に挿通した状態で、ヘッダ部39を回転させるための工具(図示せず)の係止凸部を凹部47に嵌合させて、工具を介してヘッダ部39を回転させる。その結果、雄ねじ部44が雌ねじ部41に螺合されてヘッダ部39がライナ3に固定される。また、シール材43が凹部42の段差部42aに収容されるとともに、ライナ3と大径部39bとの間で挟持された状態となり、ライナ3とヘッダ部39との間のシールが確保される。   Subsequently, with the sealing material 43 fitted to the base end of the small diameter portion 39a of the header portion 39, the distal end side of the small diameter portion 39a is inserted into the opening 40, and the male screw portion 44 of the small diameter portion 39a is inserted into the opening 40. Screwed into the female screw portion 41. At this time, with the distal end side of the small-diameter portion 39a inserted into the opening 40, a locking projection of a tool (not shown) for rotating the header portion 39 is fitted into the recess 47, and through the tool. To rotate the header section 39. As a result, the male screw portion 44 is screwed into the female screw portion 41, and the header portion 39 is fixed to the liner 3. In addition, the sealing material 43 is accommodated in the step portion 42a of the concave portion 42 and is sandwiched between the liner 3 and the large-diameter portion 39b, so that the seal between the liner 3 and the header portion 39 is secured. .

ライナ3に熱交換ユニット16を取り付けた後、蓋部7をネジ14によって本体部5に固定し、分割式のライナ3を一体化する。そして、このライナ3をFW装置(図示省略)にセットして、熱硬化性樹脂が含浸された炭素繊維をFW法によりライナ3の外周に巻き付け、その後、熱硬化性樹脂を硬化させて高強度CFRP4を形成する。   After attaching the heat exchange unit 16 to the liner 3, the lid 7 is fixed to the main body 5 with screws 14, and the split liner 3 is integrated. Then, the liner 3 is set in a FW device (not shown), and the carbon fiber impregnated with the thermosetting resin is wound around the outer periphery of the liner 3 by the FW method. Form CFRP4.

この実施形態においては、第1の実施形態の(4),(7),(8)と同様な効果が得られる他に、次の効果が得られる。
(12)ヘッダ部39が口金部の機能を果たし、雄ねじ部44が雌ねじ部41に螺合されることによりライナ3に固定される。従って、熱媒管17の通路がライナ3の側部から突出する構成とならないので、FW法で高強度CFRP4をライナ3に形成する構成であっても支障が生じない。また、シール材43を1箇所設けるだけで収容室2の気密性を確保することができる。
In this embodiment, the following effects are obtained in addition to the effects similar to (4), (7), and (8) of the first embodiment.
(12) The header 39 functions as a base, and the male screw 44 is screwed into the female screw 41 to be fixed to the liner 3. Accordingly, since the passage of the heat medium pipe 17 does not protrude from the side of the liner 3, no problem occurs even if the high strength CFRP 4 is formed in the liner 3 by the FW method. Further, the airtightness of the storage chamber 2 can be ensured only by providing the sealing material 43 at one place.

(13)ヘッダ部39に作用する水素タンク1の内圧によりヘッダ部39が開口部40側へ押圧されて、大径部39bによりシール材43がライナ3に確実に圧着される。即ち、ヘッダ部39に作用する水素タンク1の内圧が、ヘッダ部39とライナ3内面との間のシール部のシール性を高めるように作用し、シール性が高められる。   (13) The header 39 is pressed toward the opening 40 by the internal pressure of the hydrogen tank 1 acting on the header 39, and the sealing member 43 is securely pressed against the liner 3 by the large diameter portion 39b. That is, the internal pressure of the hydrogen tank 1 acting on the header portion 39 acts to enhance the sealing performance of the sealing portion between the header portion 39 and the inner surface of the liner 3, and the sealing performance is enhanced.

(14)口金部の機能を果たすヘッダ部39を用いて熱交換器18をライナ3に取り付ける構成であるので、ヘッダ部39に設ける通路45,46を適宜変更することで、蓋部7の構造を変えることなく様々な種類の熱交換器18を使用することができる。   (14) Since the heat exchanger 18 is attached to the liner 3 by using the header portion 39 that functions as a base, the passages 45 and 46 provided in the header portion 39 are appropriately changed so that the structure of the lid portion 7 is formed. Various types of heat exchangers 18 can be used without changing the heat exchanger 18.

(15)水素タンク1の製造工程において、ヘッダ部39をライナ3に固定する際、工具を介してヘッダ部39が回転されるため、熱交換器18に無理な力を作用させずに容易に雄ねじ部44を雌ねじ部41に螺合させることができる。   (15) In fixing the header section 39 to the liner 3 in the manufacturing process of the hydrogen tank 1, the header section 39 is rotated via a tool, so that the heat exchanger 18 can be easily applied without exerting an excessive force. The male screw part 44 can be screwed with the female screw part 41.

なお、実施形態は前記に限定されず、例えば、次の態様に変更してもよい。
○ 第1及び第2の実施形態において、ライナ3は片側のみが分割式であることに限定されない。例えば、図5に示すように両側が分割式としてもよく、基端側が蓋部7で、先端側が蓋部48で閉じられる構成としてもよい。
The embodiment is not limited to the above, and for example, may be changed to the following mode.
In the first and second embodiments, the liner 3 is not limited to the one-side split type. For example, as shown in FIG. 5, both sides may be of a split type, and the base end may be closed by the lid 7 and the distal end may be closed by the lid 48.

○ 第1の実施形態において、蓋部7の通路12(13)と3つの流路25(27)とを連通する凹部26(28)は蓋部7に形成されることに限定されない。例えば、図6に示すようにヘッダ部19に凹部49,49が形成される構成でもよい。   In the first embodiment, the concave portion 26 (28) communicating the passage 12 (13) of the lid 7 and the three flow paths 25 (27) is not limited to being formed in the lid 7. For example, as shown in FIG. 6, a configuration in which concave portions 49, 49 are formed in the header portion 19 may be employed.

○ 第1の実施形態において、通路12(13)は凹部26(28)で分岐して3つの流路25(27)に連通する構成に限らず、流路25,27ごとに1本ずつ形成されてもよい。   In the first embodiment, the passage 12 (13) is not limited to the configuration in which the passage 12 (13) is branched at the concave portion 26 (28) and communicates with the three flow passages 25 (27). May be done.

○ 第1の実施形態において、係止手段はネジ21に限らず、例えば蓋部7の内面にフック部を、そのフック部が係止可能な段部をヘッダ部19に設け、フック部を段部に係止することでヘッダ部19を蓋部7に取り付ける構成でもよい。   In the first embodiment, the locking means is not limited to the screw 21. For example, a hook portion is provided on the inner surface of the lid portion 7, a step portion capable of locking the hook portion is provided in the header portion 19, and the hook portion is The header portion 19 may be attached to the lid portion 7 by being locked to the portion.

○ 第1の実施形態のように蓋部7にヘッダ部19を取り付けるとともに蓋部7に形成された通路12を介して熱媒を熱媒管17に導入する構成において、蓋部7を金属製ではなく樹脂製としてもよい。蓋部7が金属製の場合、熱媒で熱を熱交換器18に供給する際に熱媒が蓋部7を通過する間に熱が外部に放出されて熱媒の温度が下がったり、逆に熱媒で冷却する際に熱媒が暖められて熱交換器18における熱交換効率が低下する。しかし、蓋部7を樹脂製とした場合、樹脂が金属に比較して断熱性が高いため、蓋部7を通過する間に熱媒の温度変化が小さくなり、熱交換器18における熱交換効率が高くなる。   In the configuration in which the header 19 is attached to the cover 7 and the heat medium is introduced into the heat medium pipe 17 through the passage 12 formed in the cover 7 as in the first embodiment, the cover 7 is made of metal. Instead, it may be made of resin. When the cover 7 is made of metal, when the heat medium is supplied to the heat exchanger 18 by the heat medium, the heat is released to the outside while the heat medium passes through the cover 7 to lower the temperature of the heat medium, or vice versa. When cooling with the heat medium, the heat medium is warmed, and the heat exchange efficiency in the heat exchanger 18 decreases. However, when the lid 7 is made of resin, since the resin has higher heat insulating properties than metal, the temperature change of the heat medium during passing through the lid 7 is small, and the heat exchange efficiency in the heat exchanger 18 is small. Will be higher.

○ 第1の実施形態において、ネジ21を蓋部7側から挿通してヘッダ部19に螺着してヘッダ部19を蓋部7に取り付ける構成に限らず、ネジ21をヘッダ部19側から挿通して取り付ける構成としてもよい。   In the first embodiment, the screw 21 is inserted from the header portion 19 side without being limited to the configuration in which the screw 21 is inserted from the lid portion 7 side and screwed to the header portion 19 to attach the header portion 19 to the lid portion 7. It is good also as a structure attached.

○ 第1の実施形態において、ヘッダ部19は蓋部7に取り付けられることに限らず、例えばヘッダ部19を先端側にして熱交換ユニット16を本体部5に収容し、ヘッダ部19をネジで本体部5の先端側端部に固定することで熱交換ユニット16が本体部5に取り付けられてもよい。   In the first embodiment, the header section 19 is not limited to being attached to the lid section 7. For example, the heat exchange unit 16 is housed in the main body section 5 with the header section 19 at the front end side, and the header section 19 is screwed. The heat exchange unit 16 may be attached to the main body 5 by fixing the heat exchange unit 16 to the distal end of the main body 5.

○ 第3の実施形態のように雄ねじ部44を利用してヘッダ部39がライナ3に固定される構成において、図7(a)に示すように、ライナ3の先端に軸方向に延びる筒部50を設け、筒部50の部分にも高強度CFRP4を形成してもよい。この場合、水素タンク1の内圧による開口部40の開きを抑制することができる。   In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44 as in the third embodiment, a cylindrical portion extending in the axial direction at the tip of the liner 3 as shown in FIG. The high-strength CFRP4 may be formed in the cylindrical portion 50. In this case, the opening of the opening 40 due to the internal pressure of the hydrogen tank 1 can be suppressed.

〇 第3の実施形態のように雄ねじ部44を利用してヘッダ部39がライナ3に固定される構成において、ヘッダ部39全体を金属製とするのではなく通路45,46の形成される部分を樹脂製としてもよい。例えば、図7(b)に示すように、ヘッダ部39の先端側をざぐって収容部51を形成し、通路45,46の一部(通路45のみ図示)が形成された樹脂製の栓52を収容部51に収容した状態でネジ53により固定する。なお、ヘッダ部39の金属製の部分には、栓52の通路45,46と熱媒管17とを連通させる通路が形成され、収容部51の端面と栓52の端面との間に、通路45,46の接続部からの熱媒の漏れを防止するシール材54が介在されている。この場合、樹脂は金属に比較して断熱性が高いため、ヘッダ部39全体が金属製の場合に比較して、ヘッダ部39を通過する間に熱媒の温度変化が小さくなり、熱交換器18における熱交換効率が高くなる。また、樹脂製とすることでヘッダ部39の軽量化を図ることができる。この構成においても、ライナ3の先端に筒部50を設けてもよい。   に お い て In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44 as in the third embodiment, the entirety of the header portion 39 is not made of metal, but the portions where the passages 45 and 46 are formed. May be made of resin. For example, as shown in FIG. 7B, a housing part 51 is formed by striking the distal end side of the header part 39, and a resin stopper 52 in which a part of the passages 45 and 46 (only the passage 45 is shown) is formed. Is fixed by screws 53 in a state of being stored in the storage section 51. In the metal portion of the header portion 39, a passage for communicating the passages 45 and 46 of the plug 52 with the heat medium pipe 17 is formed, and a passage is provided between the end surface of the housing portion 51 and the end surface of the stopper 52. A seal member 54 for preventing the heat medium from leaking from the connection portions 45 and 46 is interposed. In this case, since the resin has a higher heat insulating property than the metal, the temperature change of the heat medium during the passage through the header portion 39 is smaller than that in the case where the entire header portion 39 is made of metal, and the heat exchanger The heat exchange efficiency at 18 increases. In addition, the weight of the header portion 39 can be reduced by using resin. Also in this configuration, the tubular portion 50 may be provided at the tip of the liner 3.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成として、ライナ3に形成された雌ねじ部41と螺合させる構成に代えて、ナットを使用してもよい。例えば、図8(a)に示すように、ヘッダ部39の先端部に雄ねじ部44を形成するとともに、雄ねじ部44がライナ3の外部に突出するようにヘッダ部39を形成し、雄ねじ部44にナット55を螺合させて、ヘッダ部39をライナ3に固定する。この場合、水素タンク1の製造工程において、ヘッダ部39をライナ3に固定する際、ヘッダ部39とライナ3とを相対回転させる必要がなく、ナット55を回転させればよく固定作業が簡単になる。   As a configuration for fixing the header portion 39 to the liner 3 using the male screw portion 44, a nut may be used instead of the configuration for screwing with the female screw portion 41 formed on the liner 3. For example, as shown in FIG. 8A, a male thread 44 is formed at the tip of the header 39, and the header 39 is formed such that the male thread 44 projects outside the liner 3. Then, a nut 55 is screwed in to fix the header portion 39 to the liner 3. In this case, when the header portion 39 is fixed to the liner 3 in the manufacturing process of the hydrogen tank 1, it is not necessary to rotate the header portion 39 and the liner 3 relatively, and the nut 55 may be rotated and the fixing operation is simplified. Become.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成として、図8(b)に示すように、ライナ3に形成された雌ねじ部41及びナット55の両者と螺合させる構成としてもよい。この場合、雄ねじ部44をナット55のみあるいは雌ねじ部41のみと螺合する構成に比較して、螺合部の緩みが生じ難くなる。   As shown in FIG. 8B, the header 39 is fixed to the liner 3 using the male screw 44, and the header 39 is screwed to both the female screw 41 and the nut 55 formed on the liner 3. Is also good. In this case, loosening of the threaded portion is less likely to occur than in a configuration in which the male screw portion 44 is screwed only with the nut 55 or only with the female screw portion 41.

〇 ナット55を使用する構成においても、ライナ3の先端に筒部50を設けない構成としてもよい。
〇 ヘッダ部39をライナ3に固定する作業に使用する工具を係止させる凹部47の位置は、ヘッダ部39の先端面に限らず、ライナ3から突出する部分の周面としてもよい。
に お い て Also in the configuration using the nut 55, the configuration may be such that the cylindrical portion 50 is not provided at the tip of the liner 3.
The position of the concave portion 47 for locking the tool used for fixing the header portion 39 to the liner 3 is not limited to the distal end surface of the header portion 39, but may be the peripheral surface of a portion protruding from the liner 3.

〇 ヘッダ部39をライナ3に固定する作業に使用する工具を係止させる凹部47をヘッダ部39に設ける代わりに、通路45,46に工具を係止させてヘッダ部39を回転させるようにしてもよい。この場合、凹部47を形成する必要がない。   代 わ り Instead of providing a recess 47 in the header portion 39 for locking a tool used for fixing the header portion 39 to the liner 3, the tool is locked in the passages 45 and 46 to rotate the header portion 39. Is also good. In this case, there is no need to form the recess 47.

〇 ヘッダ部39をライナ3に固定する作業において、雄ねじ部44を雌ねじ部41に螺合させる際、ヘッダ部39を回転させる代わりに、ヘッダ部39を固定保持した状態でライナ3を回転させてもよい。ヘッダ部39の固定は、例えば工具を介して行われる。   作業 In fixing the header portion 39 to the liner 3, when the male screw portion 44 is screwed into the female screw portion 41, instead of rotating the header portion 39, the liner 3 is rotated while the header portion 39 is fixed and held. Is also good. The fixing of the header portion 39 is performed, for example, via a tool.

○ 冷水及び温水の出入りは基端側の一端で行われることに限らず、一方の端部で冷水及び温水を取り込み、他方の端部で放出する構成でもよい。
○ 第1の実施形態において、熱交換器18が有する熱媒管17の本数は1本や3本に限らず、例えば2本、4本以上等、その本数は特に限定されない。このとき、ヘッダ部19には熱媒管17の本数に応じた流路25,27が形成される。
The cold water and the hot water are not limited to entering and exiting at one end on the base end side, but may be configured such that cold water and hot water are taken in at one end and discharged at the other end.
In the first embodiment, the number of the heat medium tubes 17 included in the heat exchanger 18 is not limited to one or three, and is not particularly limited, for example, two or four or more. At this time, flow paths 25 and 27 corresponding to the number of heat medium tubes 17 are formed in the header portion 19.

〇 雄ねじ部44を利用してヘッダ部39をライナ3に固定する構成においても、熱交換器18が有する熱媒管17の本数は1本に限らず、2本以上としてもよい。熱媒管17を2本以上とする場合、ヘッダ部39全体が金属製の場合はヘッダ部39に熱媒管17の本数と同じ数の通路45,46を形成する必要がある。また、ヘッダ部39の一部を樹脂製の栓52とする構成においては、栓52には通路45,46が1本ずつ形成し、金属部側にヘッダ部19の場合と同様な凹部49を形成するとともに凹部49に連通する孔を熱媒管17の本数と同じ数形成する。   In the configuration in which the header portion 39 is fixed to the liner 3 using the male screw portion 44, the number of the heat medium tubes 17 included in the heat exchanger 18 is not limited to one and may be two or more. When the number of heat medium tubes 17 is two or more, if the entire header portion 39 is made of metal, it is necessary to form passages 45 and 46 in the header portion 39 in the same number as the number of heat medium tubes 17. In a configuration in which a part of the header portion 39 is formed of a resin stopper 52, the stopper 52 is formed with one passage 45, 46, and a recess 49 similar to that of the header portion 19 is formed on the metal portion side. The number of holes that are formed and communicate with the concave portions 49 is the same as the number of the heat medium tubes 17.

○ 熱交換器18は冷水又は温水を送ってタンク内部を冷却又は加熱する冷温水式に限らず、例えばタンク内部の熱を金属製のフィンによって外部に伝わらせて放出するフィンアセンブリでもよい。   The heat exchanger 18 is not limited to the cold / hot water type in which cold or hot water is sent to cool or heat the inside of the tank, but may be, for example, a fin assembly in which the heat inside the tank is transmitted to the outside by metal fins and released.

○ 高圧タンクは水素タンク1に限らず、これ以外に例えば窒素や圧縮天然ガス等の他の流体を貯蔵するタンクとして用いてよい。
○ 熱媒は水に限らず、これ以外の流体を用いてタンク内部の温度抑制を行ってもよい。
The high-pressure tank is not limited to the hydrogen tank 1 and may be used as a tank for storing other fluids such as nitrogen and compressed natural gas.
The heat medium is not limited to water, and the temperature inside the tank may be suppressed by using other fluids.

前記実施形態から把握できる技術的思想について以下に記載する。
(1)請求項1〜請求項5及び請求項7〜請求項9において、前記熱交換器と前記ヘッダ部とは前記ライナの軸方向に並んで配置されている。
The technical idea that can be grasped from the embodiment will be described below.
(1) In the first to fifth and seventh to ninth aspects, the heat exchanger and the header are arranged side by side in the axial direction of the liner.

(2)請求項1、請求項3〜請求項5及び請求項7〜請求項9において、前記係止手段は、取付対象に対して螺着される軸部と前記軸部の螺着状態を保持する頭部とを有するネジ手段である。   (2) In claim 1, claim 3 to claim 5 and claim 7 to claim 9, the locking means is configured to change a screwed state of the shaft portion to be screwed to the mounting object and the shaft portion. And screw means having a head for holding.

(3)請求項2に記載の発明において、前記大径部と前記ライナの内面との間にシール材が介装されている。
(4)請求項2に記載の発明において、前記雄ねじ部は前記開口部に設けられた雌ねじ部に螺合されている。
(3) In the invention described in claim 2, a sealing material is interposed between the large-diameter portion and the inner surface of the liner.
(4) In the invention described in claim 2, the male screw portion is screwed to a female screw portion provided in the opening.

(5)請求項2に記載の発明において、前記雄ねじ部は前記開口部から前記ライナの外側に突出する部分に設けられ、該雄ねじ部に螺合されるナットを介して前記ヘッダ部が前記ライナに固定されている。   (5) In the invention according to claim 2, the male screw portion is provided at a portion protruding outside the liner from the opening, and the header portion is connected to the liner via a nut screwed into the male screw portion. Fixed to.

第1の実施形態の水素タンクの模式断面図。FIG. 2 is a schematic cross-sectional view of the hydrogen tank according to the first embodiment. 蓋部と熱交換ユニットとの組み付けを説明する模式分解図。FIG. 4 is a schematic exploded view illustrating the assembly of the lid and the heat exchange unit. 第2の実施形態の水素タンクの基端側の部分拡大断面図。FIG. 9 is a partially enlarged cross-sectional view of a base end side of a hydrogen tank according to a second embodiment. (a)は第3の実施形態の水素タンクの模式断面図、(b)は(a)の部分拡大図。(A) is a schematic sectional view of a hydrogen tank of a third embodiment, and (b) is a partially enlarged view of (a). 別の実施形態の水素タンクの模式断面図。FIG. 7 is a schematic cross-sectional view of a hydrogen tank according to another embodiment. 別の実施形態のヘッダ部の模式断面図。FIG. 7 is a schematic cross-sectional view of a header section according to another embodiment. (a),(b)はそれぞれ別の実施形態のヘッダ部の部分模式断面図。(A), (b) is a partial schematic cross section of the header part of another embodiment, respectively. (a),(b)はそれぞれ別の実施形態のヘッダ部の部分模式断面図。(A), (b) is a partial schematic cross section of the header part of another embodiment, respectively.

符号の説明Explanation of reference numerals

1…高圧タンクとしての水素タンク、3…ライナ、4…繊維強化プラスチックとしての高強度CFRP、5…ライナ本体としての本体部、6,40…開口部、7,48…分割体としての蓋部、11…口金部、12,13,45,46…通路、15,31,32,34,43,54…シール材、17…熱媒管、17a…端部としての上流側端部、17b…端部としての下流側端部、18…機器としての熱交換器、19,39…取付対象を構成するヘッダ部、21…係止手段及を構成するボルト、22…係止手段を構成する孔部、23…係止手段を構成するネジ穴、25,27…流路、39a…小径部、39b…大径部、44…雄ねじ部。   DESCRIPTION OF SYMBOLS 1 ... Hydrogen tank as a high pressure tank, 3 ... Liner, 4 ... High-strength CFRP as fiber reinforced plastic, 5 ... Body part as a liner main body, 6, 40 ... Opening, 7, 48 ... Lid part as a division body , 11 ... base part, 12, 13, 45, 46 ... passage, 15, 31, 32, 34, 43, 54 ... sealing material, 17 ... heat transfer tube, 17a ... upstream end as end, 17b ... Downstream end as end, 18 heat exchanger as equipment, 19, 39 ... header part to be attached, 21 ... bolts to form locking means, 22 ... holes to form locking means Reference numerals 23, screw holes constituting locking means, 25, 27 flow paths, 39a small diameter parts, 39b large diameter parts, 44 male screw parts.

Claims (9)

少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクにおいて、
前記熱交換器をヘッダ部に接合し、前記ライナのライナ本体及び分割体のうち一方の内面に前記ヘッダ部を係止手段によって固定することで前記熱交換器が取り付けられている高圧タンク。
At least one side has a split liner hollow liner, a fiber-reinforced plastic covering the outer peripheral surface of the liner, and a heat exchanger housed inside the liner, and stores gas at a high pressure inside the liner. High pressure tank
A high-pressure tank to which the heat exchanger is attached by joining the heat exchanger to a header portion and fixing the header portion to one of inner surfaces of a liner body and a divided body of the liner by a locking means.
前記ライナは一端側で分割され、分割された側と反対側の端部に前記ヘッダ部が固定される開口部が設けられ、前記ヘッダ部は前記開口部に挿通可能な小径部と、前記開口部より大径の大径部とを備え、前記小径部の外周面に雄ねじ部が形成され、前記雄ねじ部を利用して前記ヘッダ部が前記ライナに固定されている請求項1に記載の高圧タンク。   The liner is divided at one end, and an opening is provided at an end opposite to the divided side, to which the header is fixed.The header is a small-diameter part that can be inserted into the opening, and the opening is The high-pressure part according to claim 1, further comprising a large-diameter part having a diameter larger than that of the small-diameter part, a male screw part is formed on an outer peripheral surface of the small-diameter part, and the header part is fixed to the liner using the male screw part. tank. 前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であって、
前記ヘッダ部には前記熱媒が流れる流路が形成され、前記流路と前記熱媒管の内部とが連通するように前記熱媒管の端部が前記ヘッダ部に固着されている請求項1又は請求項2に記載の高圧タンク。
The heat exchanger is a device that performs cooling or heating by flowing a heat medium supplied from the outside through a heat medium pipe through a passage provided through the liner,
A flow path through which the heat medium flows is formed in the header part, and an end of the heat medium pipe is fixed to the header part so that the flow path communicates with the inside of the heat medium pipe. The high-pressure tank according to claim 1 or 2.
前記ライナの内面と前記ヘッダ部との接合面には、前記ライナの内部と前記熱媒管の通路との間の気密性を確保するシール材が介装されている請求項3に記載の高圧タンク。   4. The high pressure according to claim 3, wherein a sealing material for ensuring airtightness between the inside of the liner and the passage of the heat medium pipe is interposed at a joint surface between the inner surface of the liner and the header portion. 5. tank. 前記ヘッダ部は前記分割体に取り付けられ、該分割体は樹脂製である請求項3又は請求項4に記載の高圧タンク。   The high-pressure tank according to claim 3, wherein the header portion is attached to the divided body, and the divided body is made of resin. 少なくとも片側が分割式の中空状のライナと、前記ライナの外周面を覆う繊維強化プラスチックと、前記ライナの内部に収容された熱交換器とを備え、前記ライナの内部を高圧にしてガスを貯蔵する高圧タンクにおいて、
前記熱交換器は、外部から供給された熱媒が前記ライナに貫設された通路を介して熱媒管を流れることで冷却又は加熱を行う機器であり、前記ライナは分割式とすることでライナ本体と蓋部とを有する構成であって、
前記蓋部の口金部の内面に前記熱媒管の端部を接合することで前記熱交換器が取り付けられている高圧タンク。
At least one side has a split liner hollow liner, a fiber-reinforced plastic covering the outer peripheral surface of the liner, and a heat exchanger housed inside the liner, and stores gas at a high pressure inside the liner. High pressure tank
The heat exchanger is a device that performs cooling or heating by flowing a heat medium supplied from the outside through a heat medium pipe through a passage provided through the liner, and the liner is a split type. A configuration having a liner body and a lid,
A high-pressure tank to which the heat exchanger is attached by joining an end of the heat medium pipe to an inner surface of a base of the lid.
前記熱媒は前記ライナの両側端部のうち片側で出入りする請求項2〜請求項6のいずれか一項に記載の高圧タンク。   The high-pressure tank according to any one of claims 2 to 6, wherein the heat medium enters and exits on one side of both side ends of the liner. 前記ガスは前記ライナの両側端部のうち、前記熱媒が出入りする側に対し反対側から出入りする請求項7に記載の高圧タンク。   The high-pressure tank according to claim 7, wherein the gas enters and exits from a side opposite to a side where the heat medium enters and exits from both side ends of the liner. 前記熱交換器は前記熱媒管を複数備えている請求項2〜請求項8のいずれか一項に記載の高圧タンク。   The high-pressure tank according to any one of claims 2 to 8, wherein the heat exchanger includes a plurality of the heat medium tubes.
JP2004067893A 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof Expired - Fee Related JP4511851B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004067893A JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof
US10/841,279 US7152665B2 (en) 2003-05-08 2004-05-07 Pressure tank
US11/595,128 US7322398B2 (en) 2003-05-08 2006-11-09 Pressure tank
US11/981,145 US20080066887A1 (en) 2003-05-08 2007-10-30 Pressure tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003130748 2003-05-08
JP2004067893A JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004354039A true JP2004354039A (en) 2004-12-16
JP4511851B2 JP4511851B2 (en) 2010-07-28

Family

ID=34067048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067893A Expired - Fee Related JP4511851B2 (en) 2003-05-08 2004-03-10 High pressure tank and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4511851B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045370A (en) * 2013-08-28 2015-03-12 カヤバ工業株式会社 Hydrogen storage system
CN108240552A (en) * 2016-12-27 2018-07-03 北京有色金属研究总院 A kind of fast-response hydrogen container and preparation method thereof
JP2023068654A (en) * 2021-11-02 2023-05-17 アリアーネグループ ゲーエムベーハー Spacecraft tank with heat exchanger, spacecraft, and method for cooling contents of tank
CN116164572A (en) * 2023-04-23 2023-05-26 北京星辰新能科技有限公司 Heat exchanger liquid storage tank integrated structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082058U (en) * 1973-11-27 1975-07-15
JPS61244995A (en) * 1985-04-22 1986-10-31 Sanyo Electric Co Ltd Metal hydride container
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH0755385A (en) * 1993-06-28 1995-03-03 Mw Kellogg Co:The High-temperature heat exchanger
JP2002340430A (en) * 2001-05-15 2002-11-27 Japan Steel Works Ltd:The Hydrogen storage alloy container
JP2003090499A (en) * 2001-09-19 2003-03-28 Samtec Kk High pressure tank device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082058U (en) * 1973-11-27 1975-07-15
JPS61244995A (en) * 1985-04-22 1986-10-31 Sanyo Electric Co Ltd Metal hydride container
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH0755385A (en) * 1993-06-28 1995-03-03 Mw Kellogg Co:The High-temperature heat exchanger
JP2002340430A (en) * 2001-05-15 2002-11-27 Japan Steel Works Ltd:The Hydrogen storage alloy container
JP2003090499A (en) * 2001-09-19 2003-03-28 Samtec Kk High pressure tank device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045370A (en) * 2013-08-28 2015-03-12 カヤバ工業株式会社 Hydrogen storage system
CN108240552A (en) * 2016-12-27 2018-07-03 北京有色金属研究总院 A kind of fast-response hydrogen container and preparation method thereof
CN108240552B (en) * 2016-12-27 2020-01-10 有研工程技术研究院有限公司 Quick-response hydrogen storage tank and manufacturing method thereof
JP2023068654A (en) * 2021-11-02 2023-05-17 アリアーネグループ ゲーエムベーハー Spacecraft tank with heat exchanger, spacecraft, and method for cooling contents of tank
JP7509350B2 (en) 2021-11-02 2024-07-02 アリアーネグループ ゲーエムベーハー Spacecraft tank having heat exchanger, spacecraft and method for cooling tank contents - Patents.com
CN116164572A (en) * 2023-04-23 2023-05-26 北京星辰新能科技有限公司 Heat exchanger liquid storage tank integrated structure
CN116164572B (en) * 2023-04-23 2023-07-18 北京星辰新能科技有限公司 Heat exchanger liquid storage tank integrated structure

Also Published As

Publication number Publication date
JP4511851B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US7169214B2 (en) High pressure tank
US7322398B2 (en) Pressure tank
US8051977B2 (en) Hydrogen storage tank
KR20040084683A (en) Gas storage tank and its manufacturing method
JP2008281105A (en) Hydrogen gas storage device
JP2005240983A (en) Hydrogen storage tank
KR20110034519A (en) Sensor port inserted silicon hose and method for manufacturing the same
CN106151869B (en) Solid-state high-pressure mixed hydrogen storage device
JP5197756B2 (en) Internal gas warming for high pressure gas storage tanks with metal liners
JP7393802B2 (en) thermal energy transfer device
JP4511851B2 (en) High pressure tank and manufacturing method thereof
JP4219194B2 (en) Pressure vessel
JP4314037B2 (en) High pressure tank
JP4167521B2 (en) Gas storage tank and manufacturing method thereof
JP4370115B2 (en) Hydrogen storage tank and manufacturing method thereof
JP2009092160A (en) Fuel gas tank
JP2003065437A (en) Pressure vessel
JP2004176949A (en) Heat exchanger
JP2008075695A (en) Hose joint, and its manufacturing method
JP4199155B2 (en) Method for supporting built-in object of pressure vessel and pressure vessel
JP4675619B2 (en) Pressure vessel
US20220009343A1 (en) Motor vehicle compressed gas tank
JP2023072536A (en) high pressure tank
US20230296207A1 (en) Method for assembling gas container and gas container
JP2006112483A (en) Pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees