JP4561522B2 - Sub-chamber internal combustion engine - Google Patents
Sub-chamber internal combustion engine Download PDFInfo
- Publication number
- JP4561522B2 JP4561522B2 JP2005225086A JP2005225086A JP4561522B2 JP 4561522 B2 JP4561522 B2 JP 4561522B2 JP 2005225086 A JP2005225086 A JP 2005225086A JP 2005225086 A JP2005225086 A JP 2005225086A JP 4561522 B2 JP4561522 B2 JP 4561522B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- sub
- nozzle hole
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
本発明は、燃焼室が主室および副室から成り、副室から主室へ向けて火炎ジェットを噴出して主室内の燃焼を行う副室式内燃機関に関する。 The present invention relates to a sub-chamber internal combustion engine in which a combustion chamber includes a main chamber and a sub chamber, and a flame jet is ejected from the sub chamber toward the main chamber to perform combustion in the main chamber.
従来の副室式内燃機関として、特許文献1がある。特許文献1に記載の発明では、副室(副燃焼室)と主室(主燃焼室)とを連通する連通路を複数放射状に配置し、副室における燃焼によって生じたトーチ状の火炎ジェットを、各々の連通路の噴口から主室へ向けてシリンダ軸を中心とした放射状に噴出させている。これにより、主室内の火炎伝播距離の短縮によって安定した希薄燃焼を行っている。
しかしながら、特許文献1においては、各々の連通路の噴口について、シリンダ軸方向を基準とした火炎ジェット噴出角度(噴口指向角度)について、明確な記載はない。このため、燃焼室形状によっては、火炎伝播距離の短縮が十分にできないという問題点があった。
本発明は、以上のような従来の問題点に鑑みてなされたものであり、燃焼室形状に応じた火炎ジェット噴出方向(噴口指向方向)の最適化によって火炎伝播距離を短縮し、安定した希薄燃焼によって熱効率を向上させた副室式内燃機関の構造を提供することを目的とする。
However, in patent document 1, there is no clear description about the flame jet ejection angle (the nozzle orientation angle) with respect to the cylinder axis direction for the nozzle holes of each communication passage. For this reason, there is a problem that the flame propagation distance cannot be sufficiently shortened depending on the shape of the combustion chamber.
The present invention has been made in view of the conventional problems as described above, and by reducing the flame propagation distance by optimizing the direction of jetting the flame jet (injection direction) according to the shape of the combustion chamber, the stable dilution An object of the present invention is to provide a structure of a sub-chamber internal combustion engine whose thermal efficiency is improved by combustion.
このため本発明は、主燃焼室の上部からピストンに向かって燃料を噴射する燃料噴射弁と、圧縮上死点直前で上記燃料噴射弁から噴射された燃料を受け止めるようにピストン冠面の略中心に設けられたボウルと、主燃焼室より容積が小さくシリンダヘッド側の中心部に配置される副室と、副室と主燃焼室との境界にあってガス交換が可能な噴口と、副室内の混合気に点火する点火栓と、を備え、副室内での着火により前記噴口から主燃焼室内にトーチ状の火炎を噴出させて主燃焼室内の混合気を燃焼させるとともに、低負荷側では成層燃焼を行いかつ高負荷側では均質燃焼を行う副室式内燃機関において、
前記噴口として、シリンダ軸に対し異なる角度で開口する第1の噴口と第2の噴口とをそれぞれ1つ以上備え、
前記第1の噴口は、その中心軸線が、ピストンの圧縮上死点近傍において、ピストン冠面に衝突せずにシリンダボア内壁面を指向するように設けられ、前記第2の噴口は、その中心軸線が、ピストンの圧縮上死点近傍において、ピストン冠面の前記ボウルの底面外周部を指向するように設けられることを特徴とする。
For this reason, the present invention provides a fuel injection valve that injects fuel from the upper part of the main combustion chamber toward the piston, and a substantially center of the piston crown so as to receive the fuel injected from the fuel injection valve immediately before the compression top dead center. A sub-chamber that is smaller in volume than the main combustion chamber and disposed in the center of the cylinder head, a nozzle that is located at the boundary between the sub-chamber and the main combustion chamber, and that can exchange gas, and a sub-chamber mixture and a spark plug for igniting a, together with the combustion of air-fuel mixture in the main combustion chamber by ejecting torch-like flame into the main combustion chamber from the injection port by ignition in auxiliary combustion chamber, in the low load side stratification In the sub-chamber internal combustion engine that performs combustion and performs homogeneous combustion on the high load side ,
As the nozzle hole, and a first injection port and the second injection port opening at different angles with respect to the cylinder axis their respective one or more,
The first nozzle hole is provided such that its central axis is directed to the inner wall surface of the cylinder bore without colliding with the piston crown surface in the vicinity of the compression top dead center of the piston, and the second nozzle hole has its central axis line However, in the vicinity of the compression top dead center of the piston, it is provided so as to face the outer peripheral portion of the bottom surface of the bowl on the piston crown surface.
以上の構成によって、燃焼室形状に応じて、前記第1の噴口および前記第2の噴口それぞれの指向方向を最適化すると、火炎伝播距離をより短縮できる。これにより、希薄燃焼はより安定し、熱効率をさらに向上させることができる。 With the above configuration, the flame propagation distance can be further shortened by optimizing the directivity directions of the first nozzle hole and the second nozzle hole according to the shape of the combustion chamber. Thereby, lean combustion becomes more stable and the thermal efficiency can be further improved.
以下に、本発明における第1実施形態について説明する。
なお、「上」および「下」とは、シリンダ軸方向について、シリンダヘッド側を「上」、ピストン側を「下」とした方向を意味する。
まず、燃焼室22は、主室2(主燃焼室)、および主室2の中心部上方に設けられた副室4から成る。
主室2は、図1に示すように、シリンダヘッド24と、シリンダブロック26と、ピストン10とによって形成され、その上方または下方から見た断面は大略円形であり、吸気ポート28、排気ポート30とそれぞれ連通している。
副室4は、主室2より容積は小さく、シリンダヘッド24側の略中心部において大略上下方向に延びた円筒状であり、大略半球の球面上に主室2へ向けて突出した副室境界壁6によって主室2と仕切られている。
噴口6a,6bは、円形もしくは楕円形の断面形状をした孔で、副室境界壁6を貫通し、主室2と副室4との間のガス交換を可能としている。
吸気弁32および排気弁34は、カム36,38の駆動によって、吸気ポート28、排気ポート30を開閉する。
燃料噴射弁40は、燃焼室22上部において副室4と近接して配設され、筒内(主室2内)へ直接燃料を噴射する。
ボウル10bは、ピストン10の冠面10aの中心付近に対して略円形状かつ凹状に形成され、燃料噴射弁40から大略下方に向けてピストン10の圧縮上死点の直前に噴射された燃料を受け止め、混合気を成層化する。
点火栓12は、副室4の上部に配置され、副室4内の混合気に火花点火を行う。
上記構成の圧縮行程では、主室2から副室4へ向けて、噴口6a,6bを通じて混合気が流入する。一方、燃焼膨張行程では、副室4内の燃焼に伴い、副室4から主室2へ向けて、噴口6a,6bを通じて、それぞれトーチ状の火炎ジェット8a,8b(図2参照)が、噴口6a,6bそれぞれの指向方向(噴口6a,6bそれぞれの中心軸線が主室2へ向けて延びた方向、という意味)へ噴出し、主室2内の混合気を燃焼させる。
次に、噴口6a,6bおよび火炎ジェット8a,8bについて、詳細に説明する。なお、「噴口群」と記した場合は、複数の噴口の集合体を指し、「火炎ジェット群」と記した場合は、複数の火炎ジェットの集合体を指す。
噴口6a,6bそれぞれの指向方向は、シリンダ軸42に対して互いに異なる角度であり、噴口6aは、燃焼室周壁18(シリンダボア)の方向を指向し、冠面10aと衝突せず、一方、噴口6bは、ボウル10bの底面外周部10c付近を指向している(図2参照)。このため、火炎ジェット8aは燃焼室周壁18へ向けて、火炎ジェット8bは底面外周部10cへ向けて、噴出する。
噴口6a,6bそれぞれの配置は、図3のType1に示すように、噴口群6aは円14の円周上であり、噴口群6bは円16の円周上であり、各円周上に6個ずつ略等間隔の配置となっている。円14および円16は、それぞれ副室中心軸(副室4の円筒中心軸)を中心に形成されているが、円14は円16より大径であり、燃焼室外方に噴口群6aが、燃焼室内方に噴口群6bが配置されている(図3のType1参照)。
仮に、噴口群6a,6bを同一円周上に形成した場合、噴口間距離が小さくなり、以下のような懸念が生ずる。まず、副室境界壁6は低強度となり、副室4内の燃焼によって副室4内が圧力上昇すると副室境界壁6は損壊し、あるいは、副室境界壁6の熱移動経路が狭まり、放熱を妨げる。しかし、上記懸念は、円14,16による構成によって解消される。なお、円14,16の半径値の差や、円14,16の円周上の噴口間隔は、隣り合う噴口が過度に接近しないように設定するとよい。
噴口6a,6bは、それぞれ、前記副室中心軸回り(おおよそシリンダ軸回り)にわたって交互の順列で同数(6個ずつ)配置されている(図3参照)。つまり、前記副室中心軸の指向方向(おおよそシリンダ軸42の指向方向)から見て、前記副室中心軸回りを一周する間に、副室境界壁中心6c(副室境界壁6と前記副室中心軸との交点)から噴口6aへ向けて延びる直線と、副室境界壁中心6cから噴口6bへ向けて延びる直線とが、交互に出現する。
前記副室中心軸の指向方向から見た場合、副室境界壁中心6cから各噴口へ向けて延びる直線上には、他の噴口(噴口6aか噴口6bは問わない)を配置しないのがよい。同時に、噴口6aの指向方向は、副室境界壁中心6cから当該噴口6aへ向かう方向と一致し、噴口6bの指向方向は、副室境界壁中心6cから当該噴口6bへ向かう方向と一致させるとよい。これにより、シリンダ軸方向に見て(燃焼室上方または下方から見て)、火炎ジェット群8a,8bは、主室2内で互いに重ならないように分散して噴出する。したがって、火炎ジェット群8bが、主室2内における火炎ジェット群8aから比較的遠い領域の火炎伝播を補充し、シリンダ軸42回りにわたって、大略一様に満遍なく火炎伝播距離を短縮できる。
また、スキッシュエリアを備えるペントルーフ型燃焼室などでは、シリンダ軸方向に見たときに、噴口6aの指向方向(火炎ジェット群8aの噴出方向)は、燃焼室円周方向について、吸気−排気方向(吸気ポート28から排気ポート30へ吸気または排気が進行する方向)に対して所定角度だけ傾斜させるとよい(図4参照)。ここで、前記「所定角度」とは、火炎ジェット群8aが前記スキッシュエリアを避けて噴出できる角度である。前記スキッシュエリアは、燃焼室22上部のうち吸気ポートおよび排気ポートそれぞれに寄った領域であり、燃焼室22内の他の領域と比べて上下高さが相対的に小さくなっている。このため、前記スキッシュエリアへ向けて噴出した火炎ジェット8aは、その進行が堰き止められる懸念がある。そこで、上記構成によって、火炎ジェット群8aが前記スキッシュエリアを避けて噴出するようにし、火炎ジェット群8aの有効到達距離を増大させ、火炎伝播距離をより確実に短縮させるとよい。
噴口群6aから燃焼室周壁18までの距離が、噴口群6bから冠面10aまでの距離と比べて大きい場合、噴口径が小さいほど火炎ジェットの噴出長さが大きいと考えられるため、噴口群6aを噴口群6bと比べて小径にし、火炎ジェットの長さを調整するとよい。過小な噴出長さの火炎ジェットでは、その未到達領域に未燃焼燃料が残存する懸念があり、一方、過剰な噴出長さの火炎ジェットでは、これが燃焼室内壁に衝突し、冷却損失が増大する懸念があるが、上記構成における調整により、上記懸念を解消できる。
そのほか、本実施形態の燃焼形態は、所定の機関負荷以下では図5(A)に示すような成層燃焼とし、所定の機関負荷以上では図5(B)に示すような均質燃焼へ切り替えるとよい。成層燃焼では、ボウル10b内およびその上空に混合気が形成され、該混合気へ火炎ジェット群8bを噴出し、希薄空燃比下でも急速かつ安定した燃焼が可能である。ここで、火炎ジェット群8aの同時噴出によって燃焼室周壁方向へ燃料の一部が輸送されるが、この燃料は微量なうえ、火炎ジェット群8aによって燃焼可能なため、実質的に火炎ジェット群8aによる弊害はない。
従来の副室式内燃機関では、火炎ジェットにより大幅な希薄限界拡大をし、かつ、高負荷運転条件においても燃焼速度増大によってノッキング開始以前に燃焼を完結することでトルク向上を図っている。
また、特許文献1では、噴口(連通路)を、副室から主室へ向けてその断面積が増加するように形成し、火炎ジェットを主室内で扇状に広がるように噴出させ、主室内における火炎ジェットの局所的な偏在を防止し、火炎伝播距離を短縮させている。
しかし、それでもなお、燃焼室周壁およびピストン冠面の構造上、シリンダ軸に対する噴口指向角度の大きさによって、噴口から燃焼室内壁までの噴口指向方向距離が異なり、噴口指向角度が1つに特定されると、必ずしも火炎伝播距離を十分に短縮できない。
さらに、低い機関負荷の希薄燃焼では、成層混合気の形成が望ましく、ペントルーフ型の燃焼室とするほか、ピストン冠面にボウルを形成すると、燃焼室は単純な形状ではなくなる。したがって、ボウル上空の火炎伝播距離の短縮のため、ボウルに対する火炎ジェット指向およびその方向の最適化が望まれる。
そこで、ピストン冠面にボウルを形成する場合、ボウルを適切に指向した噴口を設け、ボウル上空の成層混合気に対する有効な火炎伝播を可能とし、これを確実に燃焼させるとよい。これにより、燃焼室円周方向のみならず、シリンダ軸に対する指向角度(火炎ジェット噴出角度)について、燃焼室中央付近も含めた燃焼室全体に渡って火炎伝播距離の短縮が可能となる。また、複雑な燃焼室構造に対しては、最適な指向方向を割り出して、噴口を設ければよい。
以下、本発明における第2実施形態について説明する。
本実施形態と第1実施形態との相違点は、噴口群6aの噴口数(6個)を、噴口群6bの噴口数(4個)と比べて多くしたことである(図6,7参照)。これは、主室2はボウル10bよりも大径であり、燃焼室全体で火炎伝播距離を短縮するためには、火炎ジェット群8aは火炎ジェット群8bと比べてより広い領域へ火炎伝播を行う必要があるためである。特に、圧縮行程で主室2から副室4へ入る燃料量(火炎ジェットの総運動量)のほか火炎ジェット8a,8bの噴出長さが、噴口6a,6bの断面積に依存する場合、噴口6a,6bの断面積を変更したくなければ、噴口数の調整を行ってもよい。また、噴口数(すべての噴口の断面積の合計)に制限がある場合、噴口6bが噴口6aと比べて大径(大きな断面積)であれば、噴口6aの数よりも噴口6bの数を少なくすると効果的である。
以下、本発明における第3実施形態について説明する。
本実施形態と第1実施形態との相違点は、噴口群6a,6bの配置を相互に交換したことで、噴口群6bが燃焼室外方の円14の円周上に配置され、噴口群6aが燃焼室内方の円16の円周上に配置されたことである(図3のType2参照)。
鋳造によってシリンダヘッド24内に副室4を形成した後で、燃焼室22上面と略平行な噴口6aを加工する場合、シリンダヘッド24と噴口6aとが接近し、加工が困難となる懸念があるが、このような場合は本実施形態への変更が有効である。
あるいは、第1実施形態において、燃焼室22上面と略平行な噴口6aをより容易に加工したい場合、シリンダヘッド24と副室4とを独立に製造し、噴口6a,6bの加工後、副室4をシリンダヘッド24に対して螺合等により取り付けてもよい。
Below, 1st Embodiment in this invention is described.
“Up” and “down” mean directions in which the cylinder head side is “up” and the piston side is “down” in the cylinder axis direction.
First, the combustion chamber 22 includes a main chamber 2 (main combustion chamber) and a sub chamber 4 provided above the central portion of the main chamber 2.
As shown in FIG. 1, the main chamber 2 is formed by a cylinder head 24, a cylinder block 26, and a piston 10, and a cross section viewed from above or below is substantially circular, and an intake port 28 and an exhaust port 30. And communicate with each other.
The sub chamber 4 has a smaller volume than the main chamber 2 and has a cylindrical shape extending substantially in the vertical direction at a substantially central portion on the cylinder head 24 side. The sub chamber boundary projects toward the main chamber 2 on a spherical surface of a substantially hemisphere. It is separated from the main room 2 by a wall 6.
The nozzle holes 6 a and 6 b are holes having a circular or elliptical cross-sectional shape, penetrate the sub chamber boundary wall 6, and allow gas exchange between the main chamber 2 and the sub chamber 4.
The intake valve 32 and the exhaust valve 34 open and close the intake port 28 and the exhaust port 30 by driving cams 36 and 38.
The fuel injection valve 40 is disposed in the vicinity of the sub chamber 4 in the upper part of the combustion chamber 22 and directly injects fuel into the cylinder (in the main chamber 2).
The bowl 10b is formed in a substantially circular and concave shape with respect to the vicinity of the center of the crown surface 10a of the piston 10, and the fuel injected from the fuel injection valve 40 substantially downward is immediately before the compression top dead center of the piston 10. Receiving and stratifying the mixture.
The spark plug 12 is disposed in the upper part of the sub chamber 4 and performs spark ignition on the air-fuel mixture in the sub chamber 4.
In the compression stroke having the above configuration, the air-fuel mixture flows from the main chamber 2 toward the sub chamber 4 through the nozzles 6a and 6b. On the other hand, in the combustion expansion stroke, the torch-like flame jets 8a and 8b (see FIG. 2) are respectively supplied from the sub chamber 4 to the main chamber 2 through the nozzle holes 6a and 6b along with the combustion in the sub chamber 4. 6a and 6b are ejected in the directing directions (meaning that the central axes of the nozzle holes 6a and 6b extend toward the main chamber 2), and the air-fuel mixture in the main chamber 2 is combusted.
Next, the nozzle holes 6a and 6b and the flame jets 8a and 8b will be described in detail. In addition, when it describes as "a nozzle group", it points out the aggregate | assembly of a some nozzle hole, and when it writes as "a flame jet group", it points out the aggregate | assembly of a some flame jet.
The directivity directions of the nozzle holes 6a and 6b are different from each other with respect to the cylinder shaft 42. The nozzle holes 6a are directed in the direction of the combustion chamber peripheral wall 18 (cylinder bore) and do not collide with the crown surface 10a. 6b is directed to the vicinity of the bottom surface outer peripheral portion 10c of the bowl 10b (see FIG. 2). For this reason, the flame jet 8a is ejected toward the combustion chamber peripheral wall 18, and the flame jet 8b is ejected toward the bottom surface outer peripheral portion 10c.
As shown in Type 1 of FIG. 3, the nozzle holes 6a and 6b are arranged on the circumference of the circle 14, the nozzle group 6b is on the circumference of the circle 16, and 6 on each circumference. They are arranged at approximately equal intervals. The circle 14 and the circle 16 are respectively formed around the sub chamber central axis (the cylinder central axis of the sub chamber 4), but the circle 14 has a larger diameter than the circle 16, and the nozzle group 6a is formed outside the combustion chamber. A nozzle hole group 6b is disposed inside the combustion chamber (see Type 1 in FIG. 3).
If the nozzle hole groups 6a and 6b are formed on the same circumference, the distance between the nozzle holes becomes small, and the following concerns arise. First, the sub chamber boundary wall 6 has low strength, and when the pressure in the sub chamber 4 increases due to combustion in the sub chamber 4, the sub chamber boundary wall 6 is damaged, or the heat transfer path of the sub chamber boundary wall 6 is narrowed, Prevents heat dissipation. However, the above concerns are eliminated by the configuration of the circles 14 and 16. The difference in the radius values of the circles 14 and 16 and the interval between the nozzle holes on the circumference of the circles 14 and 16 may be set so that adjacent nozzle holes do not approach too much.
The same number (six) of nozzle holes 6a and 6b are arranged in alternating permutation around the sub-chamber central axis (approximately the cylinder axis) (see FIG. 3). That is, when viewed from the direction of the sub chamber central axis (approximately the direction of the cylinder shaft 42), the sub chamber boundary wall center 6c (the sub chamber boundary wall 6 and the sub chamber boundary wall 6 and the sub chamber boundary wall 6) travels around the sub chamber central axis. A straight line extending from the center of the chamber central axis) toward the nozzle hole 6a and a straight line extending from the sub-chamber boundary wall center 6c toward the nozzle hole 6b appear alternately.
When viewed from the orientation direction of the sub-chamber center axis, it is preferable that no other nozzle (no matter whether the nozzle 6a or the nozzle 6b) is arranged on a straight line extending from the sub-chamber boundary wall center 6c toward each nozzle. . At the same time, the directing direction of the nozzle hole 6a coincides with the direction from the sub-chamber boundary wall center 6c toward the nozzle hole 6a, and the directing direction of the nozzle hole 6b matches with the direction from the sub-chamber boundary wall center 6c toward the nozzle hole 6b. Good. Thereby, the flame jet groups 8a and 8b are dispersed and ejected in the main chamber 2 so as not to overlap each other when viewed in the cylinder axial direction (viewed from above or below the combustion chamber). Therefore, the flame jet group 8b supplements flame propagation in a region relatively far from the flame jet group 8a in the main chamber 2, and the flame propagation distance can be shortened almost uniformly over the cylinder axis 42.
Further, in a pent roof type combustion chamber having a squish area or the like, when viewed in the cylinder axial direction, the directing direction of the injection port 6a (the ejection direction of the flame jet group 8a) is the intake-exhaust direction ( It is preferable to incline by a predetermined angle with respect to the direction in which intake or exhaust proceeds from the intake port 28 to the exhaust port 30 (see FIG. 4). Here, the “predetermined angle” is an angle at which the flame jet group 8a can be ejected while avoiding the squish area. The squish area is an area close to the intake port and the exhaust port in the upper part of the combustion chamber 22, and the vertical height is relatively smaller than the other areas in the combustion chamber 22. For this reason, there is a concern that the progress of the flame jet 8a spouted toward the squish area is blocked. Therefore, with the above-described configuration, it is preferable that the flame jet group 8a ejects while avoiding the squish area, the effective reach distance of the flame jet group 8a is increased, and the flame propagation distance is more reliably shortened.
When the distance from the nozzle group 6a to the combustion chamber peripheral wall 18 is larger than the distance from the nozzle group 6b to the crown surface 10a, the smaller the nozzle diameter, the longer the jet length of the flame jet, so the nozzle group 6a. Is smaller than the nozzle hole group 6b, and the length of the flame jet may be adjusted. In the case of a flame jet with an excessive jet length, there is a concern that unburned fuel may remain in the unreached region. On the other hand, with an jet jet with an excessive jet length, this collides with the combustion chamber wall, resulting in an increase in cooling loss. Although there is a concern, the above-mentioned concern can be solved by adjustment in the above configuration.
In addition, the combustion mode of the present embodiment may be stratified combustion as shown in FIG. 5 (A) below a predetermined engine load, and switched to homogeneous combustion as shown in FIG. 5 (B) above a predetermined engine load. . In stratified combustion, an air-fuel mixture is formed in and above the bowl 10b, and the flame jet group 8b is ejected into the air-fuel mixture, enabling rapid and stable combustion even under a lean air-fuel ratio. Here, a part of the fuel is transported in the direction of the peripheral wall of the combustion chamber by the simultaneous jetting of the flame jet group 8a. However, since this fuel is very small and can be burned by the flame jet group 8a, the flame jet group 8a substantially There is no harmful effect.
In the conventional sub-chamber internal combustion engine, the flame limit is greatly increased by the flame jet, and even under high load operation conditions, the combustion is completed before the start of knocking by increasing the combustion speed, thereby improving the torque.
Moreover, in patent document 1, a nozzle hole (communication passage) is formed so that the cross-sectional area may increase toward a main chamber from a sub chamber, and a flame jet is ejected so that it may spread in fan shape in a main chamber, The local uneven distribution of the flame jet is prevented, and the flame propagation distance is shortened.
However, due to the structure of the combustion chamber peripheral wall and the piston crown surface, the injection hole directivity distance from the injection hole to the combustion chamber wall varies depending on the size of the injection hole directivity angle with respect to the cylinder axis, and the single injection nozzle directivity angle is specified. Then, the flame propagation distance cannot be shortened sufficiently.
Further, in lean combustion with a low engine load, formation of a stratified mixture is desirable, and if a pent roof type combustion chamber is formed and a bowl is formed on the piston crown surface, the combustion chamber is not a simple shape. Therefore, in order to shorten the flame propagation distance over the bowl, it is desired to optimize the flame jet direction and its direction with respect to the bowl.
Therefore, when a bowl is formed on the piston crown surface, it is preferable to provide a nozzle that is oriented appropriately for the bowl to enable effective flame propagation to the stratified mixture above the bowl, and to reliably burn it. This makes it possible to shorten the flame propagation distance not only in the circumferential direction of the combustion chamber but also in the entire combustion chamber including the vicinity of the center of the combustion chamber with respect to the directivity angle (flame jet ejection angle) with respect to the cylinder axis. Further, for a complicated combustion chamber structure, an optimal directivity direction may be determined and a nozzle hole may be provided.
Hereinafter, a second embodiment of the present invention will be described.
The difference between this embodiment and 1st Embodiment is having increased the number of nozzle holes (6 pieces) of the nozzle group 6a compared with the number of nozzle holes (4 pieces) of the nozzle group 6b (refer FIG. 6, 7). ). This is because the main chamber 2 has a larger diameter than the bowl 10b, and the flame jet group 8a propagates the flame to a wider area than the flame jet group 8b in order to shorten the flame propagation distance in the entire combustion chamber. This is necessary. In particular, when the amount of fuel entering the sub chamber 4 from the main chamber 2 in the compression stroke (the total momentum of the flame jet) and the ejection length of the flame jets 8a and 8b depend on the cross-sectional area of the nozzles 6a and 6b, the nozzle 6a If the cross-sectional area of 6b is not desired to be changed, the number of nozzles may be adjusted. Further, when the number of nozzle holes (total of the sectional areas of all nozzle holes) is limited, if the nozzle hole 6b has a larger diameter (larger cross-sectional area) than the nozzle hole 6a, the number of nozzle holes 6b is set to be larger than the number of nozzle holes 6a. Reducing it is effective.
Hereinafter, a third embodiment of the present invention will be described.
The difference between the present embodiment and the first embodiment is that the arrangement of the nozzle groups 6a and 6b is exchanged, so that the nozzle group 6b is arranged on the circumference of the circle 14 outside the combustion chamber, and the nozzle group 6a. Is arranged on the circumference of the circle 16 inside the combustion chamber (see Type 2 in FIG. 3).
When the sub-chamber 4 is formed in the cylinder head 24 by casting and then the injection hole 6a substantially parallel to the upper surface of the combustion chamber 22 is processed, there is a concern that the cylinder head 24 and the injection hole 6a approach and the processing becomes difficult. However, in such a case, the change to this embodiment is effective.
Alternatively, in the first embodiment, when the nozzle 6a substantially parallel to the upper surface of the combustion chamber 22 is to be processed more easily, the cylinder head 24 and the sub chamber 4 are manufactured independently, and after processing the nozzles 6a and 6b, the sub chamber 4 may be attached to the cylinder head 24 by screwing or the like.
本発明は、上述の実施形態に限られず、以下のような構成でもよい。
まず、副室4内に直接的にガスまたは液体燃料を供給する燃料噴射弁または混合気供給用のバルブを設け、副室4内に微量の燃料を噴射し、副室4内と主室2内との混合気形成、混合気濃度を積極的に異ならせる(副室4内を主室2内と比べてリッチとする)構成でもよい。
また、燃料噴射弁40の配置位置は、燃焼室上部に限られず、燃焼室側部としてもよい。あるいは、吸気ポート28の経路途中に燃料噴射弁40を配置し、負荷の大きさに関わらず均質燃焼としてもよい。
さらに、噴口6a,6bの数は、少なくともそれぞれ1個ずつでよく、複数の場合でも、上記実施例で開示した数には限られない。
また、円14,16の各円周上において噴口6a,6bが混在する形態も、本発明に含まれる。
The present invention is not limited to the above-described embodiment, and may be configured as follows.
First, a fuel injection valve or a gas mixture supply valve for supplying gas or liquid fuel directly in the sub chamber 4 is provided, and a small amount of fuel is injected into the sub chamber 4 so that the sub chamber 4 and the main chamber 2 are injected. It is also possible to adopt a configuration in which the air-fuel mixture formation and the air-fuel mixture concentration are positively different (the sub chamber 4 is richer than the main chamber 2).
Further, the arrangement position of the fuel injection valve 40 is not limited to the upper portion of the combustion chamber, and may be the side portion of the combustion chamber. Alternatively, the fuel injection valve 40 may be arranged in the course of the intake port 28 and homogeneous combustion may be performed regardless of the magnitude of the load.
Further, the number of the nozzle holes 6a and 6b may be at least one each, and even if there are a plurality of nozzle holes 6a and 6b, the number is not limited to the number disclosed in the above embodiment.
Further, a form in which the nozzle holes 6a and 6b are mixed on the circumferences of the circles 14 and 16 is also included in the present invention.
さらに、噴口のシリンダ軸42に対する指向角度の種類数は、噴口6a,6bの2種類に限られず、合計3種類以上あってもよい。これは、特に冠面10aの形状(ボウルの構造など)に応じて設定するとよい。 Further, the number of types of directivity angles of the nozzle holes with respect to the cylinder shaft 42 is not limited to the two types of nozzle holes 6a and 6b, but may be three or more in total. This is particularly preferably set according to the shape of the crown surface 10a (such as the bowl structure).
2 主室(主燃焼室)
4 副室
6 副室境界壁(副室と主燃焼室との境界)
6a 噴口(第1の噴口)
6b 噴口(第2の噴口)
10 ピストン
10a 冠面
10b ボウル
10c 底面外周部
12 点火栓
14 円
16 円
18 燃焼室周壁(シリンダボア)
22 燃焼室
24 シリンダヘッド
42 シリンダ軸
2 Main room (main combustion chamber)
4 Sub chamber 6 Sub chamber boundary wall (Boundary between sub chamber and main combustion chamber)
6a nozzle (first nozzle)
6b nozzle (second nozzle)
DESCRIPTION OF SYMBOLS 10 Piston 10a Crown surface 10b Bowl 10c Bottom outer peripheral part 12 Spark plug 14 yen 16 yen 18 Combustion chamber peripheral wall (cylinder bore)
22 Combustion chamber 24 Cylinder head 42 Cylinder shaft
Claims (9)
前記噴口として、シリンダ軸に対し異なる角度で開口する第1の噴口と第2の噴口とをそれぞれ1つ以上備え、
前記第1の噴口は、その中心軸線が、ピストンの圧縮上死点近傍において、ピストン冠面に衝突せずにシリンダボア内壁面を指向するように設けられ、前記第2の噴口は、その中心軸線が、ピストンの圧縮上死点近傍において、ピストン冠面の前記ボウルの底面外周部を指向するように設けられることを特徴とする副室式内燃機関。 A fuel injection valve for injecting fuel from the upper part of the main combustion chamber toward the piston, and a bowl provided substantially at the center of the piston crown so as to receive the fuel injected from the fuel injection valve immediately before the compression top dead center; Igniting the sub-chamber which is smaller in volume than the main combustion chamber and arranged in the center of the cylinder head side, the nozzle at the boundary between the sub-chamber and the main combustion chamber and capable of gas exchange, and the air-fuel mixture in the sub-chamber An ignition plug, and by igniting in the sub chamber, a torch-like flame is ejected from the nozzle into the main combustion chamber to burn the air-fuel mixture in the main combustion chamber, and stratified combustion is performed on the low load side and high load In the sub-chamber internal combustion engine that performs homogeneous combustion on the side ,
As the nozzle hole, and a first injection port and the second injection port opening at different angles with respect to the cylinder axis their respective one or more,
The first nozzle hole is provided such that its central axis is directed to the inner wall surface of the cylinder bore without colliding with the piston crown surface in the vicinity of the compression top dead center of the piston, and the second nozzle hole has its central axis line However, in the vicinity of the compression top dead center of the piston , the sub-chamber internal combustion engine is provided so as to face the outer peripheral portion of the bottom surface of the bowl on the piston crown surface .
前記第1の噴口および前記第2の噴口は、副室境界壁中心から他の噴口へ向けて延びる直線から離れて配置され、
前記第1の噴口の指向方向は、前記副室境界壁中心から該第1の噴口へ向かう方向と大略一致し、
前記第2の噴口の指向方向は、前記副室境界壁中心から該第2の噴口へ向かう方向と大略一致することを特徴とする請求項1〜請求項8のいずれか1つに記載の副室式内燃機関。 When viewed in the cylinder axis direction,
The first nozzle hole and the second nozzle hole are disposed away from a straight line extending from the sub-chamber boundary wall center toward another nozzle hole,
The directivity direction of the first nozzle hole substantially coincides with the direction from the center of the sub-chamber boundary wall toward the first nozzle hole,
The sub-direction according to any one of claims 1 to 8 , wherein a directivity direction of the second nozzle hole substantially coincides with a direction from the center of the sub-chamber boundary wall toward the second nozzle hole. Chamber internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005225086A JP4561522B2 (en) | 2005-08-03 | 2005-08-03 | Sub-chamber internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005225086A JP4561522B2 (en) | 2005-08-03 | 2005-08-03 | Sub-chamber internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007040174A JP2007040174A (en) | 2007-02-15 |
JP4561522B2 true JP4561522B2 (en) | 2010-10-13 |
Family
ID=37798395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005225086A Expired - Fee Related JP4561522B2 (en) | 2005-08-03 | 2005-08-03 | Sub-chamber internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4561522B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020196203A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Auxiliary chamber type internal combustion engine |
WO2020196204A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Auxiliary-chamber-type internal combustion engine |
JPWO2020196207A1 (en) * | 2019-03-27 | 2021-12-23 | 三菱自動車工業株式会社 | Sub-chamber internal combustion engine |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5122367B2 (en) * | 2008-05-09 | 2013-01-16 | 大阪瓦斯株式会社 | Engine and spark plug for engine |
JP5085419B2 (en) * | 2008-05-09 | 2012-11-28 | 大阪瓦斯株式会社 | Engine and spark plug for engine |
JP5451490B2 (en) | 2010-03-31 | 2014-03-26 | 株式会社デンソー | Spark plug and engine |
JP5537323B2 (en) * | 2010-08-05 | 2014-07-02 | 大阪瓦斯株式会社 | engine |
JP5585300B2 (en) * | 2010-08-24 | 2014-09-10 | 株式会社豊田自動織機 | Sub-chamber gas engine |
JP5319824B2 (en) * | 2012-05-18 | 2013-10-16 | 大阪瓦斯株式会社 | Engine and spark plug for engine |
JP5319823B2 (en) * | 2012-05-18 | 2013-10-16 | 大阪瓦斯株式会社 | Engine and spark plug for engine |
EP2700796B1 (en) * | 2012-08-22 | 2016-08-10 | Caterpillar Motoren GmbH & Co. KG | Pre-combustion chamber of an internal combustion engine and method of operating the same |
JP6303290B2 (en) * | 2013-05-14 | 2018-04-04 | 日産自動車株式会社 | Direct injection diesel engine |
EP3359789A4 (en) * | 2015-10-08 | 2019-03-20 | Cummins, Inc. | Pre-chamber assembly |
JP6796471B2 (en) * | 2016-12-08 | 2020-12-09 | 三菱重工エンジン&ターボチャージャ株式会社 | Sub-chamber gas engine |
JP2019031961A (en) * | 2017-08-09 | 2019-02-28 | トヨタ自動車株式会社 | Internal combustion engine |
JP7183692B2 (en) * | 2018-01-23 | 2022-12-06 | 株式会社リコー | Ignition device and internal combustion engine |
DE102019209574A1 (en) | 2018-07-03 | 2020-01-09 | Ngk Spark Plug Co., Ltd. | spark plug |
US10666023B2 (en) | 2018-07-03 | 2020-05-26 | Ngk Spark Plug Co., Ltd. | Spark plug |
CN113586227A (en) * | 2021-08-25 | 2021-11-02 | 中国第一汽车股份有限公司 | Combustion chamber structure of gasoline engine and gasoline engine |
CN115823581B (en) * | 2023-01-09 | 2023-09-22 | 江苏大学 | Injector of torch igniter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4985405U (en) * | 1972-11-17 | 1974-07-24 | ||
JPS54106419U (en) * | 1978-01-13 | 1979-07-26 | ||
JPS5672254A (en) * | 1979-11-19 | 1981-06-16 | Mitsubishi Heavy Ind Ltd | Fuel injection valve |
JPS5672255A (en) * | 1979-11-19 | 1981-06-16 | Mitsubishi Heavy Ind Ltd | Fuel injection valve |
JP2001227344A (en) * | 2000-02-14 | 2001-08-24 | Mitsubishi Heavy Ind Ltd | Nozzle hole structure of torch ignition-type gas engine |
JP2001263069A (en) * | 2000-03-22 | 2001-09-26 | Osaka Gas Co Ltd | Torch ignition type engine |
-
2005
- 2005-08-03 JP JP2005225086A patent/JP4561522B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4985405U (en) * | 1972-11-17 | 1974-07-24 | ||
JPS54106419U (en) * | 1978-01-13 | 1979-07-26 | ||
JPS5672254A (en) * | 1979-11-19 | 1981-06-16 | Mitsubishi Heavy Ind Ltd | Fuel injection valve |
JPS5672255A (en) * | 1979-11-19 | 1981-06-16 | Mitsubishi Heavy Ind Ltd | Fuel injection valve |
JP2001227344A (en) * | 2000-02-14 | 2001-08-24 | Mitsubishi Heavy Ind Ltd | Nozzle hole structure of torch ignition-type gas engine |
JP2001263069A (en) * | 2000-03-22 | 2001-09-26 | Osaka Gas Co Ltd | Torch ignition type engine |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020196203A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Auxiliary chamber type internal combustion engine |
JPWO2020196203A1 (en) * | 2019-03-27 | 2020-10-01 | ||
WO2020196204A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Auxiliary-chamber-type internal combustion engine |
JPWO2020196207A1 (en) * | 2019-03-27 | 2021-12-23 | 三菱自動車工業株式会社 | Sub-chamber internal combustion engine |
JP7226527B2 (en) | 2019-03-27 | 2023-02-21 | 三菱自動車工業株式会社 | pre-chamber internal combustion engine |
US11708786B2 (en) | 2019-03-27 | 2023-07-25 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Auxiliary chamber type internal combustion engine |
JP7327466B2 (en) | 2019-03-27 | 2023-08-16 | 三菱自動車工業株式会社 | pre-chamber internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2007040174A (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4561522B2 (en) | Sub-chamber internal combustion engine | |
JP5946831B2 (en) | Fuel injection spray pattern for opposed piston engine | |
JP4280928B2 (en) | Direct injection spark ignition internal combustion engine | |
JP4722129B2 (en) | In-cylinder injection spark ignition internal combustion engine | |
JP2008121429A (en) | Cylinder direct injection type internal combustion engine | |
JP4541846B2 (en) | In-cylinder injection engine | |
JP5641169B1 (en) | Direct injection diesel engine | |
CN102444520A (en) | Direct injection internal combustion engine with injection nozzle | |
JP2010001830A (en) | Cylinder direct injection type spark ignition internal combustion engine | |
JP6508239B2 (en) | Spark-ignition type internal combustion engine | |
JP5115267B2 (en) | In-cylinder direct injection spark ignition internal combustion engine | |
JP7143935B2 (en) | pre-chamber internal combustion engine | |
JP2005155624A (en) | Fuel injection system | |
JP2009215973A (en) | Internal combustion engine with divided combustion chamber | |
JP6515941B2 (en) | Spark-ignition type internal combustion engine | |
JP7143934B2 (en) | pre-chamber internal combustion engine | |
JP6187452B2 (en) | Combustion chamber structure of direct injection engine | |
JP7226527B2 (en) | pre-chamber internal combustion engine | |
JP7397664B2 (en) | Internal combustion engine with auxiliary combustion chamber | |
JP5120002B2 (en) | In-cylinder direct injection spark ignition internal combustion engine | |
WO2024201932A1 (en) | Internal combustion engine with auxiliary combustion chamber | |
JP7327466B2 (en) | pre-chamber internal combustion engine | |
JP2007138780A (en) | Auxiliary chamber type internal combustion engine | |
WO2021161554A1 (en) | Auxiliary chamber-type engine | |
WO2020196683A1 (en) | Auxiliary chamber-type internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080325 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080325 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080331 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100719 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4561522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |