Nothing Special   »   [go: up one dir, main page]

JP4436110B2 - Optical measuring apparatus and optical measuring method for specific binding substance using the same - Google Patents

Optical measuring apparatus and optical measuring method for specific binding substance using the same Download PDF

Info

Publication number
JP4436110B2
JP4436110B2 JP2003378660A JP2003378660A JP4436110B2 JP 4436110 B2 JP4436110 B2 JP 4436110B2 JP 2003378660 A JP2003378660 A JP 2003378660A JP 2003378660 A JP2003378660 A JP 2003378660A JP 4436110 B2 JP4436110 B2 JP 4436110B2
Authority
JP
Japan
Prior art keywords
specific binding
light
substance
waveguide
binding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003378660A
Other languages
Japanese (ja)
Other versions
JP2005140683A (en
Inventor
徹哉 石井
弘嗣 判谷
一喜 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003378660A priority Critical patent/JP4436110B2/en
Publication of JP2005140683A publication Critical patent/JP2005140683A/en
Application granted granted Critical
Publication of JP4436110B2 publication Critical patent/JP4436110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、光学的測定装置及びそれを用いた特異的結合物の光学的測定方法に関し、詳
細には、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと被測定物質を
結合させ、該被測定物質と第1の特異的結合メンバーと結合させた特異的結合物を導波路
の表面に固定し、導波路の光線入射側縁面に光線を照射し、入射された励起光線により発
生したエバネッセント波成分により、蛍光標識又は光散乱標識によって変換又は散乱され
た蛍光又は散乱光を測定して特異的結合物を測定し、ひいては流体試料中の被測定物質を
測定する光学的測定装置及光学的測定方法に関する。
The present invention relates to an optical measuring apparatus and a method for optically measuring a specific binding substance using the same, and more specifically, a second specific binding member to which a fluorescent label or a light scattering label is bound and a substance to be measured. The specific binding substance bound to the target substance and the first specific binding member is fixed to the surface of the waveguide, the light incident side edge surface of the waveguide is irradiated with light, and the excited excitation Optical that measures the specific binding substance by measuring the fluorescence or scattered light converted or scattered by the fluorescent label or light scattering label by the evanescent wave component generated by the light beam, and thus the measurement substance in the fluid sample The present invention relates to a measuring apparatus and an optical measuring method.

従来から、光源からの光線を光導波路を通して全反射させながら伝播させ、抗原抗体反
応により光導波路の表面近傍に拘束された蛍光物質をエバネッセント波成分により励起し
、これにより生じる蛍光の強度を測定することにより間接的に免疫反応の程度を測定する
蛍光免疫測定装置の研究が行われている。
Conventionally, the light from the light source is propagated while totally reflecting through the optical waveguide, and the fluorescent substance constrained near the surface of the optical waveguide by the antigen-antibody reaction is excited by the evanescent wave component, and the intensity of the resulting fluorescence is measured. Therefore, studies on fluorescent immunoassay devices that indirectly measure the degree of immune reaction have been conducted.

測定感度、測定精度の優れた蛍光免疫測定装置として、導入された励起光を全反射させ
ながら伝播させる光導波路の表面において抗原抗体反応を行なわせ、さらに蛍光物質で標
識された物質を反応させ、上記励起光のエバネッセント波成分により励起される蛍光物質
が発する蛍光を光導波路に導入し、全反射させながら伝播させ、光導波路から出射される
蛍光に基づいて免疫反応の程度を測定する蛍光免疫測定装置において、650nm近傍に
吸収のピークがある蛍光物質を用い、635nm近傍の波長の光を励起光として採用した
ことを特徴とする蛍光免疫測定装置が提案されている(例えば、特許文献1参照。)。
特開平7−63756号公報
As a fluorescence immunoassay device with excellent measurement sensitivity and measurement accuracy, the antigen-antibody reaction is carried out on the surface of the optical waveguide that propagates while totally reflecting the introduced excitation light, and further a substance labeled with a fluorescent substance is reacted. Fluorescence immunoassay that measures the degree of immune reaction based on the fluorescence emitted from the optical waveguide by introducing the fluorescence emitted by the fluorescent material excited by the evanescent wave component of the excitation light into the optical waveguide and propagating it while totally reflecting it. A fluorescence immunoassay device characterized in that a fluorescent material having an absorption peak near 650 nm is used as the device and light having a wavelength near 635 nm is used as excitation light has been proposed (see, for example, Patent Document 1). ).
JP-A-7-63756

しかしながら、上記の蛍光免疫測定装置においては、照射する光線は特定波長のレーザ
光線を特定の角度(導波路内で全反射する角度)で照射しなければならず、白熱電球、キ
セノンランプ等の普通の光源を使用することができないので、装置が大型化し、コストが
高く且つ測定が困難であった。
However, in the above-described fluorescence immunoassay apparatus, the light to be irradiated has to be irradiated with a laser beam having a specific wavelength at a specific angle (an angle at which the light is totally reflected in the waveguide), and an ordinary incandescent lamp, xenon lamp, etc. Since the light source cannot be used, the apparatus becomes large, the cost is high, and the measurement is difficult.

又、従来は、高感度、高精度の分析を行おうとするとB/F分離が必要であったが、B
/F分離の工程は煩雑な処理が必要であるため、高速で短時間で分析を行うことが出来な
かった
In the past, B / F separation was required to perform high-sensitivity and high-precision analysis.
Since the / F separation process requires complicated processing, analysis could not be performed at high speed in a short time.

本発明の目的は、上記欠点に鑑み、任意の光源を使用して導波路の光入射側縁面に光線
を照射し、全反射しない励起光線を導波路内で減衰消滅させ、全反射する励起光線のみを
導波路内を反応部まで伝播させ、この励起光線により反応部において発生したエバネッセ
ント波成分により、蛍光標識又は光散乱標識によって変換又は散乱された蛍光又は散乱光
を受光素子で測定することにより、特異的結合物をB/F分離を行わず、高速で感度及び
精度よく測定しうる光学的測定装置及びそれを用いた特異的結合物の光学的測定方法を提
供することにある。
In view of the above-described drawbacks, the object of the present invention is to use an arbitrary light source to irradiate a light incident side edge surface of a waveguide with light rays, to attenuate and extinguish excitation light rays that are not totally reflected in the waveguide, and to totally reflect light. Only the light is propagated through the waveguide to the reaction part, and the fluorescence or scattered light converted or scattered by the fluorescent label or the light scattering label by the evanescent wave component generated in the reaction part by the excitation light is measured by the light receiving element. Accordingly, an object of the present invention is to provide an optical measuring apparatus capable of measuring a specific binding substance at high speed and with high sensitivity and accuracy without performing B / F separation, and an optical measurement method for a specific binding substance using the same.

請求項1記載の光学的測定装置は、流体試料中の特異的結合物を光学的に測定する装置
であって、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと結合した被
測定物質と、特異的に結合して前記特異的結合物を構成しうる第1の特異的結合メンバー
が、一表面に固定されている反応部と、光線入射側縁面を有する透明な導波路(A)の他
表面に透明な中間層(B)及び光吸収層(C)が順次積層されており、導波路(A)の屈
折率をnw 、中間層(B)の屈折率をnm 、流体試料の屈折率をns とすると、各屈折率
が下記式(1)を満足することを特徴とする。
w >nm ≧ns ・・・(1)
The optical measurement apparatus according to claim 1 is an apparatus for optically measuring a specific binding substance in a fluid sample, which is bound to a second specific binding member to which a fluorescent label or a light scattering label is bound. The first specific binding member that can specifically bind to the substance to be measured to form the specific binding substance has a reaction part fixed on one surface and a transparent guide having a light incident side edge surface. A transparent intermediate layer (B) and a light absorption layer (C) are sequentially laminated on the other surface of the waveguide (A). The refractive index of the waveguide (A) is n w and the refractive index of the intermediate layer (B) is Where n m and the refractive index of the fluid sample are n s , each refractive index satisfies the following formula (1).
n w > n m ≧ n s (1)

上記導波路(A)は、一側面が光線入射側縁面となされ、光源から光線入射側縁面に入
射された励起光線が全反射しながら一表面に形成されている反応部まで伝播するのである
から、光学的に透明な材料からなるフィルム、シート状物又は板状体である。
In the waveguide (A), one side surface is a light incident side edge surface, and the excitation light incident on the light incident side edge surface from the light source propagates to the reaction part formed on one surface while being totally reflected. Therefore, it is a film, sheet or plate made of an optically transparent material.

上記光学的に透明な材料としては、例えば、ガラス、石英、アクリル系樹脂、フッ素樹
脂、ポリカーボネート樹脂、芳香族ポリエステル樹脂、ポリアリレート樹脂、エポキシ樹
脂、シリコン樹脂、ポリスチレン系樹脂、ポリイミド樹脂及びそのフッ素化物等が挙げら
れ、ガラス、石英、アクリル系樹脂、ポリカーボネート樹脂及びポリスチレン系樹脂が好
ましい。
Examples of the optically transparent material include glass, quartz, acrylic resin, fluorine resin, polycarbonate resin, aromatic polyester resin, polyarylate resin, epoxy resin, silicon resin, polystyrene resin, polyimide resin, and fluorine thereof. In particular, glass, quartz, acrylic resin, polycarbonate resin, and polystyrene resin are preferable.

上記アクリル系樹脂としては、例えば、ポリメチルメタアクリレート(屈折率=1.4
90)、ポリベンジルメタクリレート(屈折率=1.568)、ポリフェニルメタクリレ
ート(屈折率=1.571)、ポリ1−フェニルエチルメタクリレート(屈折率=1.5
49)、ポリシクロヘキシルメタクリレート(屈折率=1.507)、メチルメタアクリ
レート−ベンジルメタクリレート共重合体、メチルメタアクリレート−フェニルメタクリ
レート共重合体、メチルメタアクリレート−1,1,2−トリフルオロエチルメタクリレ
ート共重合体、メチルメタアクリレート−スチレン共重合体等が挙げられる。
Examples of the acrylic resin include polymethyl methacrylate (refractive index = 1.4
90), polybenzyl methacrylate (refractive index = 1.568), polyphenyl methacrylate (refractive index = 1.571), poly 1-phenylethyl methacrylate (refractive index = 1.5).
49), polycyclohexyl methacrylate (refractive index = 1.507), methyl methacrylate-benzyl methacrylate copolymer, methyl methacrylate-phenyl methacrylate copolymer, methyl methacrylate-1,1,2-trifluoroethyl methacrylate Examples thereof include a polymer and a methyl methacrylate-styrene copolymer.

導波路(A)の屈折率nw は流体試料の屈折率ns より大きくなければならず、流体試
料が水溶液の場合、水の屈折率は1.33であるから、nw >1.33であり、好ましく
は、nw >1.49である。
The refractive index n w of the waveguide (A) must be greater than the refractive index n s of the fluid sample, and when the fluid sample is an aqueous solution, the refractive index of water is 1.33, so n w > 1.33. And preferably n w > 1.49.

導波路(A)の厚みは、一般に5μm〜2mmが好ましく、より好ましくは0.1〜1
mmである。光源の大きさは導波路の厚みと同等程度が好ましく、光源が導波路より大き
い場合は、レンズ等によって導波路の厚みと同等程度に集光して用いても良い。
The thickness of the waveguide (A) is generally preferably 5 μm to 2 mm, more preferably 0.1 to 1.
mm. The size of the light source is preferably about the same as the thickness of the waveguide. When the light source is larger than the waveguide, the light source may be condensed to the same thickness as the waveguide by a lens or the like.

上記反応部には、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと結
合した被測定物質と、特異的に結合して前記特異的結合物を構成しうる第1の特異的結合
メンバーが固定されている。
The reaction part has a first specific substance that can specifically bind to a substance to be measured bound to a second specific binding member to which a fluorescent label or a light scattering label is bound to form the specific bound substance. Static binding member is fixed.

上記第1の特異的結合メンバーは、測定すべき被測定物質により異なるが、例えば、酵
素、微生物、抗原、抗体、抗体断片、レクチン、レセプター、イオノフォア、プロトンポ
ンプ、生体膜、人工生体素子、DNAの分子、RNAの分子、タンパク質、糖鎖、糖タン
パク質、メタロプロティンよりなる群から選ばれた1 種もしくはこれらの混合物等が挙げ
られる。
The first specific binding member varies depending on the substance to be measured. For example, an enzyme, a microorganism, an antigen, an antibody, an antibody fragment, a lectin, a receptor, an ionophore, a proton pump, a biological membrane, an artificial biological element, DNA , One molecule selected from the group consisting of RNA molecules, proteins, sugar chains, glycoproteins, metalloproteins, or a mixture thereof.

上記第1の特異的結合メンバーを反応部に固定する方法は、従来公知の任意の方法が採
用されてよく、例えば、反応部表面に上記第1の特異的結合メンバーと共有結合しうる反
応基を有する合成樹脂の層を被覆し、上記第1の特異的結合メンバーと共有結合させる方
法、タンパク質等の上記第1の特異的結合メンバーが吸着しうる化合物層を反応部表面に
被覆し、上記第1の特異的結合メンバーを吸着させる方法等が挙げられる。
As a method for fixing the first specific binding member to the reaction part, any conventionally known method may be employed. For example, a reactive group capable of covalently binding to the first specific binding member on the reaction part surface. Covering the reaction part surface with a compound layer that can be adsorbed by the first specific binding member such as protein, and the like. Examples include a method of adsorbing the first specific binding member.

上記蛍光標識は、光線の照射を受けた際に光線を変換することにより蛍光を発生する物
質であり、例えば、光線の照射を受けた際に蛍光を発生する化合物、この蛍光を発生する
化合物を含有する合成樹脂粒子等が挙げられる。
The fluorescent label is a substance that generates fluorescence by converting light when irradiated with light. For example, a compound that generates fluorescence when irradiated with light, a compound that generates fluorescence. Examples thereof include synthetic resin particles.

上記蛍光を発生する化合物としては、例えば、フルオレインイソチオシアネート、フル
オレセイン、フルオレセインN−ヒドロキシスクシンイミドエステル、6−(((4−(
4,4−ジフルオロ−5−(2−チエニル)4−4−ボラ−3a,4a−ジアザ−5−イ
ンダセン−3−イル)フェノキシ)アセチル)アミノ)ヘキサン酸、スクシンイミジルエ
ステル、4−アセトアミド−4’−イソシアナトスチルベン−2,2’−ジスルホン酸、
7−アミノ−4−メチルクマリン、7-アミノ-4- トリメチルクマリン、N−(4−アニリ
ノ−1−ナフチル)マレイミド、ダンシルクロライド、4’6−ジアミジノ−2−フェニ
ルインドール、5−(4,6−ジクロトリアジン−2−イル)アミノフルオレセイン、4
,4’−ジイソチオシアナトスチルベン−2,2’−ジスルホン酸、エオシンイソチオシ
アネート、エリトロシンB、フルオレサミン、フルオレセイン−5(6)−カルボキシア
ミドカプロン酸N−ヒドロキシスクシンイミドエステル、5−イソチオシアネート(is
othiosyanante)ジアセテート、4−メチルウンベリフェロン、o−フタル
ジアルデヒド、QFITC、ローダミンBイソチオシアネート、硫酸ローダミン101酸
クロライド、テトラメチルローダミンイソチオシアネート、2’,7’−ジフルオロフル
オレセイン、シアニン系色素、ローダミン、希土類金属錯体等が挙げられ、発光寿命の長
い希土類金属錯体が好適に使用される。
Examples of the compound generating fluorescence include fluorin isothiocyanate, fluorescein, fluorescein N-hydroxysuccinimide ester, 6-(((4- (
4,4-difluoro-5- (2-thienyl) -4--4-bora-3a, 4a-diaza-5-indacene-3-yl) phenoxy) acetyl) amino) hexanoic acid, succinimidyl ester, 4-acetamide -4'-isocyanatostilbene-2,2'-disulfonic acid,
7-amino-4-methylcoumarin, 7-amino-4-trimethylcoumarin, N- (4-anilino-1-naphthyl) maleimide, dansyl chloride, 4′6-diamidino-2-phenylindole, 5- (4 6-dichlorotriazin-2-yl) aminofluorescein, 4
, 4'-Diisothiocyanatostilbene-2,2'-disulfonic acid, eosin isothiocyanate, erythrosin B, fluoresamine, fluorescein-5 (6) -carboxyamidocaproic acid N-hydroxysuccinimide ester, 5-isothiocyanate (is
othioscanante) diacetate, 4-methylumbelliferone, o-phthaldialdehyde, QFITC, rhodamine B isothiocyanate, rhodamine 101 acid chloride, tetramethylrhodamine isothiocyanate, 2 ′, 7′-difluorofluorescein, cyanine dye, Examples thereof include rhodamine and rare earth metal complexes, and rare earth metal complexes having a long emission lifetime are preferably used.

上記希土類金属錯体を構成する希土類金属としては、例えば、スカンジウム、イットリ
ウム、及び、ランタン、セリウム、プラセオジウム、ネオジム、プロメチウム、サマリウ
ム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウ
ム、ツリウム、イッテルビウム、ルテチウム等のランタノイド族金属等が挙げられ、サマ
リウム、ユウロピウム、テルビウム及びジスプロシウムが好適に使用される。
Examples of the rare earth metal constituting the rare earth metal complex include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and the like. And samarium, europium, terbium and dysprosium are preferably used.

上記希土類金属と共に希土類金属錯体を構成するリガンドとしては、希土類金属と反応
して蛍光を発生する希土類金属錯体を構成しうるものであれば、特に限定されず、例えば
、エチレンジアミン四酢酸類、4,7−ビス−(クロロスルフォフェニル)−1,10−
フェナントロリン−2,9−ジカルボキシリックアシッド、4,4’−ビス−1”,1”
,1”,2”,2”,3”,3”−ヘプタフルオロ−4”,6”−ヘキサンジオン−6”
−イル)−クロロスルホ−o−テルフェニル、ヘキサフルオロアセチルアセトン、トリフ
ェニルホスフィンオキシド、ジフェニルスルホキシド、1,10−フェナントロリン等が
挙げられる。
The ligand constituting the rare earth metal complex together with the rare earth metal is not particularly limited as long as it can constitute a rare earth metal complex that reacts with the rare earth metal to generate fluorescence. For example, ethylenediaminetetraacetic acid, 4, 7-bis- (chlorosulfophenyl) -1,10-
Phenanthroline-2,9-dicarboxylic acid, 4,4′-bis-1 ″, 1 ″
, 1 ", 2", 2 ", 3", 3 "-heptafluoro-4", 6 "-hexanedione-6"
-Yl) -chlorosulfo-o-terphenyl, hexafluoroacetylacetone, triphenylphosphine oxide, diphenyl sulfoxide, 1,10-phenanthroline and the like.

上記蛍光を発生する化合物を含有する合成樹脂粒子は、蛍光を発生する化合物を流体試
料に溶解した場合に比較し、発生する蛍光の強度が流体試料中の共存物質によって低下さ
れることが少ないので好ましい。
Synthetic resin particles containing a compound that generates fluorescence are less likely to be reduced by coexisting substances in the fluid sample compared to when the compound that generates fluorescence is dissolved in the fluid sample. preferable.

上記蛍光を発生する化合物を合成樹脂粒子に含有させる方法は従来公知の任意の方法が
採用されてよく、例えば、蛍光を発生する化合物の存在下で重合性モノマーを乳化重合、
懸濁重合等の重合方法で重合する方法が挙げられる。
Any conventional method may be employed as a method for causing the synthetic resin particles to contain the compound that generates fluorescence. For example, emulsion polymerization of a polymerizable monomer in the presence of a compound that generates fluorescence,
Examples thereof include a polymerization method by a polymerization method such as suspension polymerization.

上記重合性モノマーとしては、例えば、スチレン、α−メチルスチレン、o−ビニルト
ルエン、m−ビニルトルエン、p−ビニルトルエン等の芳香族ビニル化合物;メチル(メ
タ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、
i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メ
タ)アクリレート、n−ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)ア
クリレート、シクロヘキシル(メタ)アクリレート等のアクリレート類;(メタ)アクリ
ロニトリル、シアン化ビニリデン等のシアン化ビニル化合物;塩化ビニル、塩化ビニリデ
ン、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン等のハロゲン化ビニル化
合物;酢酸ビニル、プロピオン酸ビニル等のビニルエステルなどが挙げられる。
Examples of the polymerizable monomer include aromatic vinyl compounds such as styrene, α-methylstyrene, o-vinyltoluene, m-vinyltoluene, and p-vinyltoluene; methyl (meth) acrylate, ethyl (meth) acrylate, n -Propyl (meth) acrylate,
acrylates such as i-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate; Vinyl cyanide compounds such as (meth) acrylonitrile and vinylidene cyanide; vinyl halide compounds such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and tetrafluoroethylene; vinyl esters such as vinyl acetate and vinyl propionate Is mentioned.

上記重合性モノマーは、これらの重合性モノマーを重合する際に一般に共重合されてい
る単官能性モノマーや多官能性モノマーが共重合されてよく、単官能性モノマーとしては
、例えば、(メタ)アクリル酸、無水マレイン酸、グリシジルアクリレート等が挙げられ
、多官能性モノマーとしては、例えば、ジビニルベンゼン、(ポリ)エチレングリコール
ジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリ
メチロールプロパントリ(メタ)アクリレート等が挙げられる。
The polymerizable monomer may be a copolymer of a monofunctional monomer or a polyfunctional monomer that is generally copolymerized when these polymerizable monomers are polymerized. Examples of the monofunctional monomer include (meth) Acrylic acid, maleic anhydride, glycidyl acrylate and the like can be mentioned. Examples of the polyfunctional monomer include divinylbenzene, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and trimethylol. Examples thereof include propane tri (meth) acrylate.

上記合成樹脂粒子中の蛍光を発生する化合物の含有量は、少なくなると蛍光の発生量が
少なくなり測定感度が低下し、多くなると蛍光を発生する化合物を溶解しているのと同様
になるので、合成樹脂粒子中5〜80重量%が好ましく、より好ましくは15〜60重量
%である。
Since the content of the compound that generates fluorescence in the synthetic resin particles decreases, the amount of generated fluorescence decreases and the measurement sensitivity decreases. 5-80 weight% is preferable in a synthetic resin particle, More preferably, it is 15-60 weight%.

上記合成樹脂粒子は大きくなるとさはなるべく小さいのが好ましく、10μm以下が好
ましく、より好ましくは20nm〜500nmであり、更に好ましくは30nm〜200
nmである。
The synthetic resin particles are preferably as small as possible, preferably 10 μm or less, more preferably 20 nm to 500 nm, and even more preferably 30 nm to 200 nm.
nm.

このような粒子径の小さい合成樹脂粒子を合成するには、重合性モノマーの微小液滴を
作製し重合すればよく、例えば、重合性モノマーと乳化剤、分散剤、重合開始剤等の必要
成分との混合液をホモジナイザー、マイクロミキサー、マイクロチャンネル等に供給して
微小液滴を作製し常法に従って重合すればよい。
In order to synthesize such synthetic resin particles having a small particle diameter, it is only necessary to prepare and polymerize a fine droplet of a polymerizable monomer. For example, the polymerizable monomer and necessary components such as an emulsifier, a dispersant, and a polymerization initiator The mixed solution may be supplied to a homogenizer, a micromixer, a microchannel or the like to produce fine droplets and polymerized according to a conventional method.

上記光散乱標識は、光線の照射を受けた際に光線を散乱しうる化合物又は微粒子であり
、例えば、金,銀など金属のコロイド微粒子凝集体、CdS、CdSeなどのカルコゲナ
イト微粒子、ポリスチレン樹脂、ポリカーボネート樹脂、ポリ(メタ)アクリル樹脂など
のポリマー微粒子、シリカゲル、アルミナ、酸化チタンなどの無機酸化物微粒子、これら
の2種以上の組合せによるコアシェル微粒子等が挙げられる。又、上記ポリマー微粒子及
び無機酸化物微粒子は、染色されていてもよいし、蛍光分子や金属ナノ粒子が分散されて
いてもよい。
The light scattering label is a compound or fine particles that can scatter light when irradiated with light, for example, colloidal fine particles of metal such as gold and silver, chalcogenite fine particles such as CdS and CdSe, polystyrene resin, polycarbonate Examples thereof include polymer fine particles such as resin and poly (meth) acrylic resin, inorganic oxide fine particles such as silica gel, alumina and titanium oxide, and core-shell fine particles formed by a combination of two or more of these. The polymer fine particles and inorganic oxide fine particles may be dyed, or fluorescent molecules or metal nanoparticles may be dispersed.

上記光散乱標識粒子の大きさは、特に限定されるものではないが、一般に10nm〜1
0μmであり、好ましくは50nm〜500nmであり、更に好ましくは70〜200n
mである。
The size of the light scattering label particles is not particularly limited, but is generally 10 nm to 1 nm.
0 μm, preferably 50 nm to 500 nm, more preferably 70 to 200 n.
m.

上記第2の特異的結合メンバーは、測定すべき被測定物質に特異的に結合しうるもので
あり、第1の特異的結合メンバーと第2の特異的結合メンバーの間に被測定物質をサンド
ウィッチすることができるものである。
The second specific binding member is capable of specifically binding to the analyte to be measured, and the analyte is sandwiched between the first specific binding member and the second specific binding member. Is something that can be done.

従って、第2の特異的結合メンバーとしては、被測定物質及び第1の特異的結合メンバ
ーに対応して異なるが、例えば、酵素、微生物、抗原、抗体、抗体断片、レクチン、レセ
プター、イオノフォア、プロトンポンプ、生体膜、人工生体素子、DNAの分子、RNA
の分子、タンパク質、糖鎖、糖タンパク質、メタロプロティンよりなる群から選ばれた1
種もしくはこれらの混合物等が挙げられる。
Accordingly, the second specific binding member differs depending on the substance to be measured and the first specific binding member, but for example, an enzyme, a microorganism, an antigen, an antibody, an antibody fragment, a lectin, a receptor, an ionophore, a proton Pumps, biological membranes, artificial biological elements, DNA molecules, RNA
1 selected from the group consisting of molecules, proteins, sugar chains, glycoproteins, and metalloproteins
Seeds or a mixture thereof.

従って、免疫測定方法の場合には、被測定物質が抗体又は抗原であり、第1の特異的結
合メンバーと第2の特異的結合メンバーとしては、それに特異的に反応する抗原又は抗体
が使用される。
Therefore, in the case of an immunoassay method, the substance to be measured is an antibody or an antigen, and an antigen or an antibody that reacts specifically with the first specific binding member and the second specific binding member is used. The

光源から光線入射側縁面に入射された励起光線が導波路(A)内を全反射しながら一表
面に形成されている反応部まで伝播する間に全反射しない励起光線を減衰消滅するのであ
るから、励起光線は反応部に伝播するまでに導波路(A)内でなるべく多く反射するのが
好ましい。
While the excitation light beam incident on the light incident side edge surface from the light source propagates to the reaction part formed on one surface while totally reflecting inside the waveguide (A), the excitation light beam that is not totally reflected attenuates and disappears. Therefore, it is preferable that the excitation light is reflected as much as possible in the waveguide (A) before propagating to the reaction part.

従って、上記反応部から光線入射側縁面までの距離は、励起光線が導波路(A)内を全
反射して伝播する1往復の距離の2倍以上であることが好ましく、より好ましくは20倍
以上である。
Therefore, the distance from the reaction part to the light incident side edge surface is preferably at least twice the distance of one round trip in which the excitation light propagates through the waveguide (A) with total reflection, and more preferably 20 It is more than double.

上記透明な中間層(B)は、導波路(A)の他表面に積層され、導波路(A)を伝播し
てくる励起光線のうち全反射しない励起光線が入光する層であるから、透明で屈折率nm
が下記式(1)を満足する必要がある。
w >nm ≧ns ・・・(1)
Since the transparent intermediate layer (B) is a layer that is laminated on the other surface of the waveguide (A) and receives excitation light that does not totally reflect among excitation light propagating through the waveguide (A), Transparent and refractive index nm
Needs to satisfy the following formula (1).
n w > n m ≧ n s (1)

即ち、中間層(B)の屈折率nm が、導波路(A)の屈折率nw より大きくなると、導
波路(A)に導入された励起光線の全てが導波路(A)内を全反射せず、中間層(B)に
入射するようになり、又、流体試料の屈折率ns が導波路(A)の屈折率nw より大きく
なると、反応部において励起光線が流体試料に漏れ出し、漏れ出した励起光線により流体
試料中の浮遊蛍光標識又は光散乱標識が変換又は散乱され、蛍光又は散乱光が発生するか
らである。
That is, when the refractive index n m of the intermediate layer (B) is larger than the refractive index n w of the waveguide (A), all of the excitation light rays introduced into the waveguide (A) pass through the waveguide (A). When the refractive index n s of the fluid sample becomes larger than the refractive index n w of the waveguide (A) without being reflected, the excitation light beam leaks into the fluid sample. This is because the floating fluorescent label or the light scattering label in the fluid sample is converted or scattered by the emitted and leaked excitation light, and fluorescence or scattered light is generated.

更に、流体試料の屈折率ns が中間層(B)の屈折率nm より大きくなると、導波路(
A)と中間層(B)との間では全反射しているけれども、導波路(A)と流体試料との間
では全反射せず、導波路(A)から流体試料に漏れ出す励起光線が存在することになり、
漏れ出した励起光線により流体試料中の浮遊蛍光標識又は光散乱標識が変換又は散乱され
、蛍光又は散乱光が発生するからである。
Furthermore, if the refractive index n s of the fluid sample is greater than the refractive index n m of the intermediate layer (B), a waveguide (
Although it is totally reflected between A) and the intermediate layer (B), it is not totally reflected between the waveguide (A) and the fluid sample, and excitation light leaking from the waveguide (A) to the fluid sample is not reflected. Will exist,
This is because the floating fluorescent label or light scattering label in the fluid sample is converted or scattered by the leaked excitation light, and fluorescence or scattered light is generated.

上記透明な中間層(B)を構成する材料としては、フッ素化エポキシ系樹脂、フッ素化
アクリル系樹脂、水等が挙げられ、流体試料の屈折率ns と中間層(B)の屈折率nm
同一であると、流体試料が供給された反応部において、導波路(A)内で全反射しない光
線が全て中間層(B)に吸収できるので流体試料の屈折率ns とほぼ同一の屈折率を有す
る物質が好ましく、流体試料の屈折率ns の10%以内の屈折率を有する物質が好ましい
Examples of the material constituting the transparent intermediate layer (B) include a fluorinated epoxy resin, a fluorinated acrylic resin, and water. The refractive index n s of the fluid sample and the refractive index n of the intermediate layer (B) are included. When m is the same, in the reaction part to which the fluid sample is supplied, all light rays that are not totally reflected in the waveguide (A) can be absorbed by the intermediate layer (B), so that the refractive index n s of the fluid sample is almost the same. preferably a substance having a refractive index, a substance having a refractive index of within 10% of the refractive index n s of the fluid sample is preferred.

中間層(B)の厚みは特に限定されるものではないが、薄くなると水等の液体を導入し
にくくなり、厚くなると導波路(A)と光吸収層(C)との積層が困難になるので、0.
6〜1000μmが好ましい。
The thickness of the intermediate layer (B) is not particularly limited. However, when the thickness is reduced, it becomes difficult to introduce a liquid such as water, and when the thickness is increased, it is difficult to stack the waveguide (A) and the light absorption layer (C). So 0.
6-1000 micrometers is preferable.

上記光吸収層(C)は、中間層(B)に入光してきた励起光線を吸光する層であり、吸
光することにより、導波路(A)内の全反射しない励起光線が減衰消滅されるのであれば
よく、例えば、表面あるいは内部全体に着色された、特に、カーボン等の黒色の顔料で着
色された金属あるいは合成樹脂の層が好ましい。
The light absorption layer (C) is a layer that absorbs the excitation light that has entered the intermediate layer (B). By absorbing the light, the non-total reflection excitation light in the waveguide (A) is attenuated and extinguished. For example, a layer of metal or synthetic resin colored with a black pigment such as carbon, which is colored on the entire surface or inside, is preferable.

上記合成樹脂としては、例えば、オレフィン系樹脂、塩化ビニル系樹脂、ポリスチレン
系樹脂、アクリル系樹脂、ABS樹脂、フッ素系樹脂、ポリカーボネート系樹脂、ポリエ
ステル系樹脂、ポリアリレート系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリイミド系
樹脂等の熱可塑性樹脂、熱硬化性樹脂及び光硬化性樹脂が挙げられる。
Examples of the synthetic resin include olefin resin, vinyl chloride resin, polystyrene resin, acrylic resin, ABS resin, fluorine resin, polycarbonate resin, polyester resin, polyarylate resin, epoxy resin, silicon Thermoplastic resins such as epoxy resins and polyimide resins, thermosetting resins, and photocurable resins.

着色は、上記合成樹脂に着色剤を練りこんでもよいし、合成樹脂層の表面に着色剤層を
積層してもよく、該着色剤としては、例えば、アゾ系、フタロシアニン系、スレン系、染
料レーキ系等の有機系着色剤;カーボンブラック、酸化物系、クロム酸モリブデン系、硫
化物・セレン化物系、フェロシアン化物等の無機系着色剤が挙げられ、カーボンブラック
が好ましい。
For coloring, a colorant may be kneaded into the synthetic resin, or a colorant layer may be laminated on the surface of the synthetic resin layer. Examples of the colorant include azo, phthalocyanine, selenium, and dyes. Organic colorants such as lakes; inorganic colorants such as carbon black, oxides, molybdenum chromates, sulfides / selenides, ferrocyanides, etc., and carbon black is preferred.

請求項6記載の特異的結合物の光学的測定方法は、蛍光標識又は光散乱標識が結合され
た第2の特異的結合メンバーと、被測定物質を含む流体試料を、請求項1〜5項のいずれ
か1項記載の光学的測定装置の反応部に供給し、被測定物質を介して、蛍光標識又は光散
乱標識が結合された第2の特異的結合メンバーと、反応部に固定された第1の特異的結合
メンバーとを結合させ、特異的結合物を形成した後、光線入射側縁面に光線を照射し、入
射された励起光線を導波路(A)内を全反射して反応部まで伝播させ、この励起光線によ
り反応部において発生したエバネッセント波成分により、蛍光標識又は光散乱標識によっ
て変換又は散乱された蛍光又は散乱光を受光素子で測定することを特徴とする。
The method for optically measuring a specific binding substance according to claim 6, wherein the fluid sample containing the substance to be measured and the second specific binding member to which the fluorescent label or the light scattering label is bound, and the substance to be measured are used. The second specific binding member to which a fluorescent label or a light scattering label is bound, and the second specific binding member, which is supplied to the reaction part of the optical measurement device according to any one of the above, and is immobilized on the reaction part via the substance to be measured After binding the first specific binding member to form a specific binding substance, the light incident side edge surface is irradiated with light, and the incident excitation light is totally reflected in the waveguide (A) and reacted. And the fluorescence or scattered light converted or scattered by the fluorescent label or the light scattering label by the evanescent wave component generated in the reaction section by the excitation light is measured by the light receiving element.

次に、請求項6記載の特異的結合物の光学的測定方法を図面を参照して説明する。図1
は、光学的測定装置をもちいて特異的結合物の光学的測定方法の1例を示す模式図であり
、図2は、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと、被測定物
質被測定物質と、第1の特異的結合メンバーが結合した特異的結合物が反応部表面に固定
されている状態を示す模式図である。
Next, a method for optically measuring the specific binding substance according to claim 6 will be described with reference to the drawings. FIG.
FIG. 2 is a schematic diagram showing an example of an optical measurement method of a specific binding substance using an optical measurement device, and FIG. 2 shows a second specific binding member to which a fluorescent label or a light scattering label is bound; FIG. 3 is a schematic diagram showing a state in which a substance to be measured and a specific binding substance to which a substance to be measured and a first specific binding member are bound are immobilized on the reaction surface.

図中1は光学的測定装置であり、光線入射側縁面11を有する透明な導波路(A)と透
明な中間層(B)及び光吸収層(C)が積層されて形成されている。導波路(A)の光線
入射側縁面11と対向面付近の一表面12に第1の特異的結合メンバー5が固定された反
応部13が形成されている。15はスペーサーであり、導波路(A)の他表面14の端部
と光吸収層(C)の端部を接着し、水16が注入されて中間層(B)が形成されている。
In the figure, reference numeral 1 denotes an optical measuring device, which is formed by laminating a transparent waveguide (A) having a light incident side edge surface 11, a transparent intermediate layer (B), and a light absorption layer (C). A reaction portion 13 in which the first specific binding member 5 is fixed is formed on the light incident side edge surface 11 of the waveguide (A) and the one surface 12 near the opposing surface. Reference numeral 15 denotes a spacer, which bonds the end of the other surface 14 of the waveguide (A) and the end of the light absorption layer (C), and injects water 16 to form an intermediate layer (B).

上記特異的結合物の光学的測定方法において、最初の工程は、蛍光標識又は光散乱標識
が結合された第2の特異的結合メンバーと、被測定物質を含む流体試料を、請求項1〜5
項のいずれか1項記載の光学的測定装置の反応部に供給し、被測定物質を介して、蛍光標
識又は光散乱標識が結合された第2の特異的結合メンバーと、反応部に固定された第1の
特異的結合メンバーとを結合させ、特異的結合物を形成する工程である。
In the method for optically measuring a specific binding substance, the first step is to provide a fluid sample containing a substance to be measured and a second specific binding member to which a fluorescent label or a light scattering label is bound.
The second specific binding member to which a fluorescent label or a light scattering label is bound is supplied to the reaction part of the optical measurement device according to any one of the items, and is fixed to the reaction part via the substance to be measured. And binding a first specific binding member to form a specific binding product.

即ち、流体試料2に含まれる被測定物質6よりも多量の、蛍光標識又は光散乱標識8が
結合された第2の特異的結合メンバー7と、被測定物質6を含む流体試料を反応部13に
供給すると、被測定物質6は、蛍光標識又は光散乱標識8が結合された第2の特異的結合
メンバー7と特異的に結合するとともに、反応部13に固定された第1の特異的結合メン
バー5とも特異的に結合し、蛍光標識又は光散乱標識8が結合された第2の特異的結合メ
ンバー7と被測定物質6と第1の特異的結合メンバー5が結合した特異的結合物9が形成
される。
That is, a larger amount of the second specific binding member 7 to which the fluorescent label or the light scattering label 8 is bound than the substance to be measured 6 contained in the fluid sample 2 and the fluid sample containing the substance to be measured 6 are reacted with the reaction unit 13. , The substance 6 to be measured specifically binds to the second specific binding member 7 to which the fluorescent label or the light scattering label 8 is bound, and the first specific binding immobilized on the reaction unit 13 The second specific binding member 7 to which the member 5 is specifically bound and the fluorescent label or the light scattering label 8 is bound, the specific substance 9 to which the analyte 6 and the first specific binding member 5 are bound. Is formed.

そして、第1の特異的結合メンバー5は反応部13に固定されているので、特異的結合
物9は反応部13に固定されている。又、過剰の蛍光標識又は光散乱標識8が結合された
第2の特異的結合メンバー7は流体試料2中に浮遊している。
Since the first specific binding member 5 is fixed to the reaction part 13, the specific binding substance 9 is fixed to the reaction part 13. In addition, the second specific binding member 7 to which the excess fluorescent label or light scattering label 8 is bound is suspended in the fluid sample 2.

次に、光源3から光線入射側縁面11に励起光線を照射し、導波路(A)内を全反射し
ながら伝播し、反応部13に到達した励起光線により反応部13表面に形成されたエバネ
ッセント波成分により、反応部13に固定された特異的結合物9中の蛍光標識又は光散乱
標識8によって変換又は散乱された蛍光又は散乱光を受光素子4で測定する。尚、31は
スリットであり、光源3からの励起光線が光線入射側縁面11だけに照射されるように設
置されている。
Next, the light incident side edge surface 11 is irradiated with excitation light from the light source 3, propagated while being totally reflected in the waveguide (A), and formed on the surface of the reaction portion 13 by the excitation light reaching the reaction portion 13. The light receiving element 4 measures fluorescence or scattered light converted or scattered by the fluorescent label or light scattering label 8 in the specific binding substance 9 fixed to the reaction unit 13 by the evanescent wave component. In addition, 31 is a slit and is installed so that the excitation light from the light source 3 may be irradiated only to the light incident side edge surface 11.

即ち、光源3から矢印Dのように光線入射側縁面11に光線を照射すると、浅い角度を
有する励起光線は、光線Eで示したように、導波路(A)を全反射しながら伝播し、反応
部13に到達する。反応部13に到達した励起光線は、反応部13表面にエバネッセント
場を形成し、反応部13表面に形成されたエバネッセント波成分により、反応部13に固
定された特異的結合物9中の蛍光標識又は光散乱標識8によって変換又は散乱された蛍光
又は散乱光が発生する。
That is, when the light incident side edge surface 11 is irradiated with light from the light source 3 as indicated by the arrow D, the excitation light having a shallow angle propagates while totally reflecting the waveguide (A) as indicated by the light E. The reaction unit 13 is reached. The excitation light that has reached the reaction unit 13 forms an evanescent field on the surface of the reaction unit 13, and the fluorescent label in the specific binding substance 9 fixed to the reaction unit 13 by the evanescent wave component formed on the surface of the reaction unit 13. Alternatively, fluorescent light or scattered light converted or scattered by the light scattering label 8 is generated.

この場合、流体試料2中の浮遊している蛍光標識又は光散乱標識8は、反応部13表面
から離れており、エバネッセント波成分は届かないので蛍光又は散乱光は発生しない。
In this case, the floating fluorescent label or light scattering label 8 in the fluid sample 2 is away from the surface of the reaction portion 13 and the evanescent wave component does not reach, so that no fluorescence or scattered light is generated.

従って、反応部13で発生した蛍光又は散乱光Gを受光素子4で受光し、電気的処理に
より測定することにより特異的結合物9を測定することができる。又、出光した光線を蛍
光又は散乱光を選択的に透過するフィルターを介して受光してもよい。
Therefore, the specific binding substance 9 can be measured by receiving the fluorescence or scattered light G generated in the reaction unit 13 with the light receiving element 4 and measuring it by electrical processing. The emitted light may be received through a filter that selectively transmits fluorescence or scattered light.

一方、深い角度を有する励起光線は、光線Fで示したように、導波路(A)を通り、導
波路(A)の他表面14から中間層(B)に入射し、光吸収層(C)で一部吸収されると
共に一部反射される。反射された光線Fは、再度導波路(A)に入射し、導波路(A)の
一表面12で反射され導波路(A)の他表面14から中間層(B)に入射し、光吸収層(
C)で一部吸収されると共に一部反射される。光線Fは、上記反射及び光吸収が繰り返さ
れ、減衰して消滅してしまう。
On the other hand, the excitation light having a deep angle passes through the waveguide (A) and enters the intermediate layer (B) from the other surface 14 of the waveguide (A) as shown by the light F, and the light absorption layer (C ) Is partially absorbed and partially reflected. The reflected light beam F enters the waveguide (A) again, is reflected by one surface 12 of the waveguide (A), enters the intermediate layer (B) from the other surface 14 of the waveguide (A), and absorbs light. layer(
C) is partially absorbed and partially reflected. The light F is repeatedly reflected and absorbed, and attenuates and disappears.

上記光源としては、公知の任意の光源が使用可能であり、例えば、レーザー、発光ダイ
オード、フラッシュランプ、アーク灯、白熱電球、蛍光灯、キセノンランプ、水銀灯等が
挙げられ、光線も任意の光線が使用可能であり、例えば、可視光線、紫外線、赤外線等が
挙げられる。
As the light source, any known light source can be used, and examples thereof include lasers, light emitting diodes, flash lamps, arc lamps, incandescent lamps, fluorescent lamps, xenon lamps, mercury lamps, and the like. Usable, for example, visible light, ultraviolet light, infrared light, and the like.

上記受光素子としては、光線を感知しうる任意の計測装置が使用可能であるが、一般に
フォトダイオード、CMOSカメラ、CCDカメラが好適に使用される。
As the light receiving element, any measuring device capable of sensing light can be used. In general, a photodiode, a CMOS camera, and a CCD camera are preferably used.

本発明の光学的測定装置及びそれを用いた特異的結合物の光学的測定方法の構成は上述
の通りであるから、任意の光源を使用して容易に照射することができ、導波路内を全反射
しない励起光線は導波路を伝播する際に減衰消滅され反応部まで到達せず、導波路内を全
反射する励起光線だけが反応部に到達するので、導波路に固定された特異的結合物に存在
する蛍光標識又は光分散標識によって変換又は散乱された蛍光又は分散光しか発生せず、
特異的結合物をB/F分離を行わず、高速で、感度及び精度よく測定することができる。
Since the configuration of the optical measurement apparatus of the present invention and the optical measurement method of a specific binding substance using the same is as described above, it can be easily irradiated using an arbitrary light source, and the inside of the waveguide can be irradiated. The non-totally reflected excitation light is attenuated and extinguished when propagating through the waveguide, and does not reach the reaction part. Only the excitation light that totally reflects inside the waveguide reaches the reaction part. Only fluorescent or dispersed light that is converted or scattered by fluorescent or light-dispersive labels present in the object is generated,
Specific binding substances can be measured at high speed, with high sensitivity and accuracy, without B / F separation.

又、導波路(A)の光線入射側縁面に入射する励起光線の入射角は浅い方が好ましく、
導波路を薄くすることができ、光学的測定装置は薄肉化が可能であり、測定する光線は明
るくなり測定感度が優れている。従って、流体試料中の被測定物質を感度及び精度よく測
定することができる。
Further, it is preferable that the incident angle of the excitation light incident on the light incident side edge surface of the waveguide (A) is shallower,
The waveguide can be thinned, the optical measuring device can be thinned, and the light beam to be measured becomes bright and the measurement sensitivity is excellent. Therefore, the substance to be measured in the fluid sample can be measured with high sensitivity and accuracy.

以下、本発明の実施例を説明するが、本発明は下記の例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
ヒトヘモグロビンに対するモノクロール抗体とヒトグリコヘモグロビンA1cに対する
モノクロール抗体の作製
ヒトヘモグロビンとヒトグリコヘモグロビンA1cをフロイントコンプリートアジュバ
ントに充分に分散させた溶液(20μg/ml)100μlをBalb/cマウスに2週
間置きに4回免疫した。
Example 1
Monoclonal antibody against human hemoglobin and human glycohemoglobin A1c
Preparation of Monoclonal Antibody Balb / c mice were immunized 4 times every 2 weeks with 100 μl of a solution (20 μg / ml) in which human hemoglobin and human glycohemoglobin A1c were sufficiently dispersed in Freund's complete adjuvant.

免疫終了の2週間後に、免疫されたBalb/cマウスの脾臓を摘出し、106個の脾
細胞を得た。得られた脾細胞をミエローマ細胞とPEG(ポリエチレングリコール)の存
在下で融合させ培養した。増殖した細胞の上澄みを採取しELISA法により各抗体の有
無を調査した。
Two weeks after the end of immunization, the spleen of the immunized Balb / c mouse was excised and 106 splenocytes were obtained. The obtained splenocytes were fused and cultured in the presence of myeloma cells and PEG (polyethylene glycol). The supernatant of the proliferated cells was collected and examined for the presence or absence of each antibody by ELISA.

各抗体が陽性の細胞を限界希釈法により試験し、各抗体を産生している細胞を確認した
。この細胞を大量に培養し、Balb/cマウス腹腔に注射し、2週間後から3日おきに
腹水を採取してヒトヘモグロビンに対するモノクロール抗体とヒトグリコヘモグロビンA
1cに対するモノクロール抗体を得た。
Cells positive for each antibody were tested by the limiting dilution method, and cells producing each antibody were confirmed. These cells are cultured in large quantities, injected into the peritoneal cavity of Balb / c mice, and ascites is collected every 3 days from 2 weeks, and a monoclonal antibody against human hemoglobin and human glycohemoglobin A are collected.
Monoclonal antibody against 1c was obtained.

蛍光合成樹脂粒子の作製
ガラス製重合器に、水80重量部とドデシルスルホン酸ナトリウム1.5重量部を供給
し、攪拌してドデシルスルホン酸ナトリウムを溶解した後、スチレン20重量部、希土類
金属錯体(ユウロピウムに配位したヘキサフルオロアセチルアセトン・ トリオクチルフ
ォスフィンオキシド配位子錯体)4重量部及びアゾビスイソブチロニトリル0,15重量
部を供給し、冷却しながらホモジナイザーで高速分散し、乳化液を得た。
Preparation of fluorescent synthetic resin particles 80 parts by weight of water and 1.5 parts by weight of sodium dodecyl sulfonate are supplied to a glass polymerizer and stirred to dissolve sodium dodecyl sulfonate, and then 20 parts by weight of styrene, rare earth metal complex (Hexafluoroacetylacetone / trioctylphosphine oxide ligand complex coordinated to europium) 4 parts by weight and azobisisobutyronitrile 0,15 parts by weight are supplied and dispersed at high speed with a homogenizer while cooling to obtain an emulsion. Got.

得られた乳化液をホモジナイザーで高速分散しながら、窒素置換し、温水で80℃まで
昇温し、80℃で8時間重合して、体積平均粒子径が120nmの蛍光合成樹脂粒子を得
た。
The obtained emulsion was purged with nitrogen while being dispersed at high speed with a homogenizer, heated to 80 ° C. with warm water, and polymerized at 80 ° C. for 8 hours to obtain fluorescent synthetic resin particles having a volume average particle diameter of 120 nm.

抗ヒトグリコヘモグロビンA1c抗体吸着蛍光合成樹脂粒子の作製
0.05Mグリシン緩衝液(pH8.6)に抗ヒトグリコヘモグロビンA1c抗体を溶
解し、濃度が1mg/mlの抗体溶液を得た。
Preparation of anti-human glycohemoglobin A1c antibody-adsorbing fluorescent synthetic resin particles Anti-human glycohemoglobin A1c antibody was dissolved in 0.05 M glycine buffer (pH 8.6) to obtain an antibody solution having a concentration of 1 mg / ml.

上記の得られた蛍光合成樹脂粒子を0.05Mグリシン緩衝液(pH8.6)で3回洗
浄した後、蛍光合成樹脂粒子濃度が1.0重量%になるように0.05Mグリシン緩衝液
(pH8.6)に分散し、得られた分散液1mlに対し、得られた抗体溶液0.5mlを
添加し、35℃で1時間攪拌混合した。
The obtained fluorescent synthetic resin particles were washed three times with 0.05 M glycine buffer (pH 8.6), and then 0.05 M glycine buffer (so that the fluorescent synthetic resin particle concentration was 1.0% by weight ( 0.5 ml of the obtained antibody solution was added to 1 ml of the resulting dispersion, and the mixture was stirred and mixed at 35 ° C. for 1 hour.

次に、牛血清アルブミンの1.0重量%リン酸食塩緩衝液(pH7.2)を1ml添加
し、常温で1時間攪拌混合した後、遠心分離(15000rpm、1時間)し、リン酸食
塩緩衝液(pH7.2)で洗浄した。この遠心分離及び洗浄を3回行った後、得られた抗
ヒトグリコヘモグロビンA1c抗体吸着蛍光合成樹脂粒子に2mlのリン酸食塩緩衝液(
pH7.2)を添加し、超音波ホジナイザーで攪拌し、抗ヒトグリコヘモグロビンA1c
抗体吸着蛍光合成樹脂粒子の分散リン酸食塩緩衝液を得た。
Next, 1 ml of bovine serum albumin 1.0 wt% phosphate buffer solution (pH 7.2) was added, stirred and mixed at room temperature for 1 hour, centrifuged (15000 rpm, 1 hour), and phosphate buffer solution. Washed with liquid (pH 7.2). After performing this centrifugation and washing three times, 2 ml of a phosphate buffer solution (into the obtained anti-human glycohemoglobin A1c antibody-adsorbed fluorescent synthetic resin particles (
pH 7.2) was added, and the mixture was stirred with an ultrasonic homogenizer, and anti-human glycohemoglobin A1c was added.
A dispersed phosphate buffer solution of antibody-adsorbed fluorescent synthetic resin particles was obtained.

反応部の作製
導波路(A)として、長さ10mm、幅1mm、厚さ100μmの透明ポリメチルメタ
クリレートシートを使用し、ポリメチルメタクリレートシート(導波路(A))の反応部
13の位置を蒸留水で洗浄した後、ヒトヘモグロビンに対するモノクロール抗体及びヒト
グリコヘモグロビンA1cに対するモノクロール抗体を、濃度が1mg/mlになるよう
に0.1Mトリス塩酸緩衝液(pH9.0)に溶解した緩衝液を、注射針で反応部13表
面に供給し、30℃で1時間静置した。
Production of reaction part As a waveguide (A), a transparent polymethyl methacrylate sheet having a length of 10 mm, a width of 1 mm and a thickness of 100 μm is used, and the position of the reaction part 13 of the polymethyl methacrylate sheet (waveguide (A)) is distilled. After washing with water, a buffer solution in which a monoclonal antibody against human hemoglobin and a monoclonal antibody against human glycohemoglobin A1c were dissolved in 0.1 M Tris-HCl buffer (pH 9.0) to a concentration of 1 mg / ml was prepared. The mixture was supplied to the surface of the reaction part 13 with an injection needle and allowed to stand at 30 ° C. for 1 hour.

次に、0.1Mトリス塩酸緩衝液(pH9.0)で洗浄した後、牛血清アルブミンの1
.0重量%リン酸食塩緩衝液(pH7.2)を供給し、30℃で1時間静置することによ
り、上記モノクロール抗体で被覆されていない反応部13表面を被覆した。
Next, after washing with 0.1 M Tris-HCl buffer (pH 9.0), 1 of bovine serum albumin
. A 0 wt% phosphate buffer solution (pH 7.2) was supplied and allowed to stand at 30 ° C. for 1 hour to coat the surface of the reaction part 13 that was not covered with the above monoclonal antibody.

次いで、再度、0.1Mトリス塩酸緩衝液(pH9.0)で洗浄した後、0.1Mトリ
ス塩酸緩衝液(pH9.0)で被覆してポリメチルメタクリレートシート(導波路(A)
)上に反応部13を形成した。
Next, after washing again with 0.1 M Tris-HCl buffer (pH 9.0), it was covered with 0.1 M Tris-HCl buffer (pH 9.0) and coated with a polymethyl methacrylate sheet (waveguide (A)
) The reaction part 13 was formed on the top.

光学的測定装置の作製
導波路(A)として、上記反応部13が作製された透明ポリメチルメタクリレートシー
トを使用し、光吸収層(C)としてABS樹脂とカーボンブラックよりなる、長さ10m
m、幅3mm、厚さ100μmの黒色ABS樹脂系シートを使用した。
A transparent polymethyl methacrylate sheet on which the reaction part 13 is produced is used as a waveguide (A) for producing an optical measuring device, and a light absorption layer (C) is made of ABS resin and carbon black and has a length of 10 m.
A black ABS resin sheet having a width of 3 mm, a width of 3 mm, and a thickness of 100 μm was used.

図1に示したように、厚さ0.3mmの黒色ABS樹脂系シート(光吸収層(C))の
一面の周囲に厚さ0.5mmの黒色ABS樹脂系シートよりなるスペーサー15を貼付し
、その上にポリメチルメタクリレートシート(導波路(A))を貼付し、両者によって形
成された空間に注射器で水16を注入して中間層(B)を形成して光学的測定装置を作製
した。
As shown in FIG. 1, a spacer 15 made of a black ABS resin sheet having a thickness of 0.5 mm is attached around one surface of a black ABS resin sheet having a thickness of 0.3 mm (light absorption layer (C)). Then, a polymethylmethacrylate sheet (waveguide (A)) was pasted on it, and water 16 was injected into the space formed by both with a syringe to form an intermediate layer (B) to produce an optical measuring device. .

測定用血液試料の作製
被験者の血液を採取後、直ちに全血1ml当りフッ化ナトリウム(血液抗凝固剤)10
mg添加し、次いで、血液3μlを溶血試薬を添加し150倍に希釈して、希釈血液試料
を得た。
Preparation of blood sample for measurement Immediately after collecting the blood of a subject, sodium fluoride (blood anticoagulant) 10 per ml of whole blood
mg was added, and then 3 μl of blood was diluted 150-fold by adding a hemolysis reagent to obtain a diluted blood sample.

尚、溶血試薬は、ポリオキシエチレン(10)オクチルフェニルエーテル(Pharm
aceutical Inc社製、商品名「TritonX−100」)を0.1重量%
と除去試薬としてテトラポリリン酸0.1重量%を溶解してなる0.05Mリン酸緩衝液
(pH6.0)を使用した。
The hemolysis reagent was polyoxyethylene (10) octylphenyl ether (Pharm).
0.1% by weight of manufactured by Inc., Inc., trade name "TritonX-100")
A 0.05 M phosphate buffer (pH 6.0) obtained by dissolving 0.1% by weight of tetrapolyphosphate was used as a removal reagent.

得られた血液試料をA1c専用測定装置(液体クロマトグラフィ、京都第一科学社製、
商品名「Hi−AutoA1cHA−8121」に供給し、ヒトグリコヘモグロビンA1
c濃度を測定し、その結果に基づいて、血液試料に、更に、上記溶血試薬を添加しヒトグ
リコヘモグロビンA1c濃度3%、5%、10%及び12%の測定用血液試料を作製した
The obtained blood sample was measured using an A1c dedicated measuring device (liquid chromatography, manufactured by Kyoto Daiichi Kagakusha,
Supplied to the trade name “Hi-AutoA1cHA-8121” and human glycohemoglobin A1
c concentration was measured, and based on the result, the hemolysis reagent was further added to the blood sample to prepare blood samples for measurement having human glycohemoglobin A1c concentrations of 3%, 5%, 10% and 12%.

測定
得られた測定用血液試料に、過剰の抗ヒトグリコヘモグロビンA1c抗体吸着蛍光合成
樹脂粒子の分散リン酸食塩緩衝液を供給、混合した後、5分間静置し、得られた混合液5
0mlを光学的測定装置の反応部13に供給した。
Measurement To the obtained blood sample for measurement, an excessive anti-human glycohemoglobin A1c antibody-adsorbed fluorescent synthetic resin particle-dispersed phosphate buffer solution was mixed, and then allowed to stand for 5 minutes.
0 ml was supplied to the reaction unit 13 of the optical measuring device.

光源3としてフィラメント径が1mmのキセノンランプを使用して0.1J/Flas
hの光線を2000回/秒の間隔で1000回照射し、受光素子4としてフォトダイオー
ドを使用し、反応部2から出光してきた波長650nm付近の光線の強度を測定した。
Using a xenon lamp with a filament diameter of 1 mm as the light source 3, 0.1 J / Flas
The light of h was irradiated 1000 times at an interval of 2000 times / second, a photodiode was used as the light receiving element 4, and the intensity of light having a wavelength of about 650 nm emitted from the reaction unit 2 was measured.

得られた光線強度とヒトグリコヘモグロビンA1c濃度をグラフにプロットしたところ
直線のグラフが得られ、上記光学的測定装置でヒトグリコヘモグロビンA1c濃度を測定
することができることが分かった。
When the obtained light intensity and the human glycohemoglobin A1c concentration were plotted on a graph, a linear graph was obtained, and it was found that the human glycohemoglobin A1c concentration can be measured with the above optical measuring device.

光学的測定装置をもちいて特異的結合物の光学的測定方法の1例を示す模式図である。It is a schematic diagram which shows an example of the optical measuring method of a specific binding material using an optical measuring device. 蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと、被測定物質と、第1の特異的結合メンバーが結合した特異的結合物が反応部表面に固定されている状態を示す模式図である。A state in which the second specific binding member to which the fluorescent label or the light scattering label is bound, the substance to be measured, and the specific binding substance to which the first specific binding member is bound are immobilized on the reaction surface. It is a schematic diagram.

符号の説明Explanation of symbols

1 光学的測定装置
A 導波路
B 中間層
C 光吸収層
2 流体試料
3 光源
4 受光素子
5 第1の特異的結合メンバー
6 被測定物質
7 第2の特異的結合メンバー
8 蛍光標識又は光散乱標識
9 特異的結合物
11 光線入射側縁面
13 反応部
DESCRIPTION OF SYMBOLS 1 Optical measuring apparatus A Waveguide B Intermediate | middle layer C Light absorption layer 2 Fluid sample 3 Light source 4 Light receiving element 5 1st specific binding member 6 Measured substance 7 2nd specific binding member 8 Fluorescence label or light-scattering label 9 Specific binding substance 11 Light incident side edge surface 13 Reaction part

Claims (9)

流体試料中の特異的結合物を光学的に測定する装置であって、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと結合した被測定物質と、特異的に結合して前記特異的結合物を構成しうる第1の特異的結合メンバーが固定されている反応部を一表面に有し、かつ、一側面に光線入射側縁面を有する透明な導波路(A)、導波路(A)の他表面に透明な中間層(B)及び光吸収層(C)が順次積層されており、導波路(A)の屈折率をnw 、中間層(B)の屈折率をnm 、流体試料の屈折率をns とすると、各屈折率が下記式(1)を満足することを特徴とする光学的測定装置。
w >nm ≧ns ・・・(1)
An apparatus for optically measuring a specific binding substance in a fluid sample, which specifically binds to a substance to be measured bound to a second specific binding member to which a fluorescent label or a light scattering label is bound. having a reaction zone in which the first specific binding member capable of constituting the specific binding substance is fixed on the one surface, and a transparent waveguide having a light incident side edge face on one side (a) A transparent intermediate layer (B) and a light absorption layer (C) are sequentially laminated on the other surface of the waveguide (A), the refractive index of the waveguide (A) is n w , and the refractive index of the intermediate layer (B) An optical measurement apparatus characterized in that each refractive index satisfies the following formula (1), where n m is the refractive index and n s is the refractive index of the fluid sample.
n w > n m ≧ n s (1)
導波路(A)が、ガラス、石英、アクリル系樹脂、ポリカーボネート樹脂及びポリスチ
レン系樹脂よりなる群から選ばれた材料よりなることを特徴とする請求項1記載の光学的
測定装置。
The optical measuring device according to claim 1, wherein the waveguide (A) is made of a material selected from the group consisting of glass, quartz, acrylic resin, polycarbonate resin, and polystyrene resin.
中間層(B)が、流体試料の屈折率をns とほぼ同一の屈折率を有する物質であること
を特徴とする請求項1又は2記載の光学的測定装置。
Intermediate layer (B) is an optical measuring apparatus according to claim 1 or 2, wherein the refractive index of the fluid sample is a substance having substantially the same refractive index as n s.
光吸収層(C)が、黒色の層であることを特徴とする請求項1、2又は3記載の光学的
測定装置。
4. The optical measuring device according to claim 1, wherein the light absorbing layer (C) is a black layer.
導波路(A)の光線入射側縁面から反応部までの距離が、入射された励起光線が導波路
(A)内を全反射して伝播する1往復の距離の2倍以上であることを特徴とする請求項1
〜4のいずれか1項記載の光学的測定装置。
The distance from the light incident side edge surface of the waveguide (A) to the reaction part is at least twice the one-way distance in which the incident excitation light beam is totally reflected and propagates in the waveguide (A). Claim 1 characterized
The optical measuring device of any one of -4.
蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと、被測定物質を含む
流体試料を、請求項1〜5項のいずれか1項記載の光学的測定装置の反応部に供給し、被
測定物質を介して、蛍光標識又は光散乱標識が結合された第2の特異的結合メンバーと、
反応部に固定された第1の特異的結合メンバーとを結合させ、特異的結合物を形成した後
、光線入射側縁面に光線を照射し、入射された励起光線を導波路(A)内を全反射して反
応部まで伝播させ、この励起光線により反応部において発生したエバネッセント波成分に
より、蛍光標識又は光散乱標識によって変換又は散乱された蛍光又は散乱光を受光素子で
測定することを特徴とする特異的結合物の光学的測定方法。
6. A fluid sample containing a second specific binding member to which a fluorescent label or a light scattering label is bound and a substance to be measured is supplied to the reaction part of the optical measuring device according to any one of claims 1 to 5. A second specific binding member to which a fluorescent label or a light scattering label is bound via a substance to be measured;
The first specific binding member fixed to the reaction part is combined with the first specific binding member to form a specific binding substance, and then the light incident side edge surface is irradiated with light, and the incident excitation light is guided into the waveguide (A). The fluorescent light or the scattered light converted or scattered by the fluorescent label or the light scattering label by the evanescent wave component generated in the reaction part by the excitation light is measured by the light receiving element. And a method for optically measuring a specific binding substance.
被測定物質が抗体又は抗原であり、第1の特異的結合メンバーと第2の特異的結合メン
バーはそれに特異的に結合する抗原又は抗体であることを特徴とする請求項6記載の特異
的結合物の光学的測定方法。
7. The specific binding according to claim 6, wherein the substance to be measured is an antibody or an antigen, and the first specific binding member and the second specific binding member are an antigen or an antibody that specifically binds thereto. Optical measurement method for objects.
蛍光標識が、希土類金属錯体であることを特徴とする請求項6又は7記載の特異的結合
物の光学的測定方法。
The method for optically measuring a specific binding substance according to claim 6 or 7, wherein the fluorescent label is a rare earth metal complex.
蛍光標識が、蛍光を発生する化合物を含有する合成樹脂粒子であることを特徴とする請
求項6、7又は8記載の特異的結合物の光学的測定方法。
9. The method for optically measuring a specific binding product according to claim 6, 7 or 8, wherein the fluorescent label is a synthetic resin particle containing a compound that generates fluorescence.
JP2003378660A 2003-11-07 2003-11-07 Optical measuring apparatus and optical measuring method for specific binding substance using the same Expired - Lifetime JP4436110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378660A JP4436110B2 (en) 2003-11-07 2003-11-07 Optical measuring apparatus and optical measuring method for specific binding substance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378660A JP4436110B2 (en) 2003-11-07 2003-11-07 Optical measuring apparatus and optical measuring method for specific binding substance using the same

Publications (2)

Publication Number Publication Date
JP2005140683A JP2005140683A (en) 2005-06-02
JP4436110B2 true JP4436110B2 (en) 2010-03-24

Family

ID=34688970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378660A Expired - Lifetime JP4436110B2 (en) 2003-11-07 2003-11-07 Optical measuring apparatus and optical measuring method for specific binding substance using the same

Country Status (1)

Country Link
JP (1) JP4436110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230050909A (en) * 2021-10-08 2023-04-17 한국과학기술연구원 High resolution fluorescence imaging device and method for manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883398B2 (en) * 2006-09-06 2012-02-22 独立行政法人産業技術総合研究所 Background light reduction method and member for evanescent wave excitation fluorescence observation
JP2008157923A (en) * 2006-12-01 2008-07-10 Canon Inc Chemically sensing device and method
JP5129534B2 (en) * 2007-09-26 2013-01-30 富士フイルム株式会社 Optical biosensor kit
EP4053546A1 (en) 2007-12-06 2022-09-07 Genalyte, Inc. Device and method for performing label-free monitoring of processes.
US9846126B2 (en) 2008-10-27 2017-12-19 Genalyte, Inc. Biosensors based on optical probing and sensing
EP2389576A1 (en) * 2009-01-21 2011-11-30 Eppendorf Ag Detection and/or quantification method of target molecules on a solid support
JP5669087B2 (en) 2010-09-28 2015-02-12 国立大学法人九州工業大学 Fluorescence measurement method and fluorescence measurement apparatus
EP3733866B1 (en) 2010-11-05 2023-11-15 Genalyte, Inc. Optical analyte detection systems and methods of use
DE112013001115T5 (en) * 2012-02-23 2014-11-06 National University Corporation Shimane University Microchannel chip
WO2014143637A1 (en) 2013-03-15 2014-09-18 The Board Of Trustees Of The University Of Illinois Methods and compositions for enhancing immunoassays
CN109765178B (en) * 2018-05-30 2020-04-21 京东方科技集团股份有限公司 Microfluidic device, driving method and microfluidic detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230050909A (en) * 2021-10-08 2023-04-17 한국과학기술연구원 High resolution fluorescence imaging device and method for manufacturing the same
KR102624827B1 (en) 2021-10-08 2024-01-15 한국과학기술연구원 High resolution fluorescence imaging device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2005140683A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
CN106233124B (en) Assay unit, reader unit and diagnostic device
CN106959370B (en) A kind of biological sensor and detection method based on coupling grating
JP4436110B2 (en) Optical measuring apparatus and optical measuring method for specific binding substance using the same
US5340715A (en) Multiple surface evanescent wave sensor with a reference
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
US7738107B2 (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
JP6606509B2 (en) Bioassay system and method for detecting analyte in body fluid
EP0519622A2 (en) Evanescent wave sensor shell and apparatus
JP5652393B2 (en) Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
US20120088230A1 (en) System And Method For Cell Analysis
JP2009511896A (en) All-polymer optical waveguide sensor
JP2969177B2 (en) Analysis method
JPH04501612A (en) Optical analysis methods, devices for use therein, and assay methods
JP4436109B2 (en) Optical measuring apparatus and optical measuring method for specific binding substance using the same
JP2001521167A (en) Apparatus and method for performing fluorescent immunoassay
JP5810195B1 (en) Ultraviolet-excited fluorescent particles, detection method using the same, image display method, image display screen, and image display apparatus
US20120322166A1 (en) Fluorescence detecting apparatus, sample cell for detecting fluorescence, and fluorescence detecting method
JP2005156527A (en) Optical measurement device and optical measurement method of specific binder using it
US20140030821A1 (en) Localized plasmon enhancing fluorescence particles, localized plasmon enhanced fluorescence detecting carrier, localized plasmon enhanced fluorescence detecting apparatus, and fluorescence detecting method
JP2004125748A (en) Sensor
JP6913966B2 (en) Sensor chip, target substance detection device and target substance detection method
JP2012032282A (en) Plasmon excitation sensor chip and plasmon excitation sensor using the same and method for detecting analyte
JP5541003B2 (en) Plasmon excitation sensor chip and assay method using the same
JPS62123358A (en) Optical fiber type immune sensor
JP2011169609A (en) Assay method using plasmon excitation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R151 Written notification of patent or utility model registration

Ref document number: 4436110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

EXPY Cancellation because of completion of term