Nothing Special   »   [go: up one dir, main page]

JP4424653B2 - Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method - Google Patents

Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method Download PDF

Info

Publication number
JP4424653B2
JP4424653B2 JP2003406395A JP2003406395A JP4424653B2 JP 4424653 B2 JP4424653 B2 JP 4424653B2 JP 2003406395 A JP2003406395 A JP 2003406395A JP 2003406395 A JP2003406395 A JP 2003406395A JP 4424653 B2 JP4424653 B2 JP 4424653B2
Authority
JP
Japan
Prior art keywords
gaseous mercury
mercury
gaseous
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003406395A
Other languages
Japanese (ja)
Other versions
JP2005161255A (en
Inventor
稔夫 中山
信 布川
直希 野田
広幸 秋保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003406395A priority Critical patent/JP4424653B2/en
Publication of JP2005161255A publication Critical patent/JP2005161255A/en
Application granted granted Critical
Publication of JP4424653B2 publication Critical patent/JP4424653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)

Description

本発明はガス状水銀の除去剤その製造方法及びガス状水銀除去方法に関する。さらに詳述すると、本発明は重質油あるいはその残留残液、石炭やバイオマスなどをガス化して得られる高温のガス化ガスや石炭などの燃焼後の排ガスなどの中に含まれるガス状水銀を除去するための除去剤その製造方法及びガス状水銀除去方法に関する。 The present invention relates to a gaseous mercury removing agent , a method for producing the same, and a gaseous mercury removing method . More specifically, the present invention relates to gaseous mercury contained in heavy oil or its residual residue, high-temperature gasification gas obtained by gasifying coal or biomass, exhaust gas after combustion such as coal, etc. The present invention relates to a removing agent for removal, a method for producing the same, and a method for removing gaseous mercury .

石炭を燃焼した排ガスに含まれるガス状の水銀濃度は数μg/mないし数十μg/mに達し、都市ゴミや下水汚泥を燃焼した排ガスではさらに多く数十μg/mないし数百μg/mにも達する場合がある。また、石炭などをガス化したガスをガスタービンや燃料電池での高効率発電に利用する技術、さらにはアルコールやジメチルエーテル等への燃料転換に利用する技術が検討されているが、この石炭などのガス化によって生成するガスにも数μg/mないし数百μg/mのガス状水銀が含まれている。このようなガス状水銀は、具体的には金属水銀(Hg0)と酸化水銀(Hg2+)の二つの化学形態で存在し、例えば石炭等をガス化した還元性のガス中ではほぼ全てが金属水銀(Hg0)となるが、石炭を燃焼した酸化性の排ガス中では金属水銀(Hg0)と酸化水銀(Hg2+)が混在するものと考えられている。 Gaseous mercury concentration in the exhaust gas burning coal reaches several [mu] g / m 3 to several tens of μg / m 3, the number more than the exhaust gas combusted municipal waste and sewage sludge tens [mu] g / m 3 to several hundred In some cases, even μg / m 3 may be reached. In addition, technologies that use coal gasified gas for high-efficiency power generation in gas turbines and fuel cells, and technologies for fuel conversion to alcohol, dimethyl ether, etc. are being studied. Gas produced by gasification also contains gaseous mercury of several μg / m 3 to several hundred μg / m 3 . More specifically, such gaseous mercury exists in two chemical forms, metallic mercury (Hg 0 ) and mercury oxide (Hg 2+ ). There is a metal mercury (Hg 0), is in an oxidizing exhaust gas burned coal are believed metallic mercury (Hg 0) and oxide mercury (Hg 2+) are mixed.

これらガス中に含まれているガス状水銀は、環境保全の観点から、また燃料電池や燃料製造変換触媒の劣化防止の観点から、これらガス中から十分に除去されなければならない。従来、このように石炭などをガス化したガスや燃焼後の排ガスに含まれるガス状水銀を除去するための技術として、ガスの温度をあらかじめ低下させて吸収液で洗浄する湿式除去法が既に実用化されている。   Gaseous mercury contained in these gases must be sufficiently removed from these gases from the viewpoint of environmental conservation and from the viewpoint of preventing deterioration of the fuel cell and the fuel production conversion catalyst. Conventionally, a wet removal method in which the temperature of the gas is lowered in advance and washed with an absorbing solution has already been put into practical use as a technique for removing gaseous mercury contained in gas such as coal gasified or exhaust gas after combustion. It has become.

さらには、活性炭や活性コークス粉末を利用してガス状水銀を除去するというもの、すなわち、廃棄物を焼却した燃焼後の排ガス等に活性炭や活性コークス粉末を吹き込み、ガス状の水銀を吸着・吸収させた後にフィルタで除去するようにした乾式の除去法もある(例えば特許文献1,2,3参照)。   Furthermore, activated carbon and activated coke powder are used to remove gaseous mercury, that is, activated carbon and activated coke powder are blown into exhaust gas after combustion after incineration of waste to absorb and absorb gaseous mercury. There is also a dry removal method in which the filter is removed by a filter (see, for example, Patent Documents 1, 2, and 3).

特開平5−31323号公報JP-A-5-31323 特許第3207019号公報Japanese Patent No. 32007019 特許第2994789号公報Japanese Patent No. 2994789

しかしながら、湿式除去法では、ガス状水銀のうち水溶性の酸化水銀(Hg2+)は吸収液に溶解して除去されるものの、非水溶性である金属水銀(Hg0)は捕捉されにくく、そのまま通過してしまうため、ガス状水銀の十分な除去は困難である。また、湿式除去法では水銀を含む吸収液を処理するための排水処理設備が必要となり、システムが大規模かつ複雑になるという問題がある。特に、石炭などをガス化したガスに適用する場合には、ガス状水銀は金属水銀(Hg0)であるためほとんどが除去できない上に、ガス温度低下に伴うガス中水分の凝縮により潜熱に相当するエネルギーが損失され、さらにガス温度を再度上げる熱交換工程に伴うエネルギーの損失も発生する。そのため、発電プラント、燃料製造プラントにおける熱効率が大幅に低下してしまうこととなり、またガス温度を上げ下げするための大型の熱交換機も必要となる。 However, in the wet removal method, water-soluble mercury oxide (Hg 2+ ) in gaseous mercury is dissolved and removed in the absorption liquid, but water-insoluble metal mercury (Hg 0 ) is difficult to be captured, Since it passes as it is, it is difficult to sufficiently remove gaseous mercury. In addition, the wet removal method requires a wastewater treatment facility for treating the absorption liquid containing mercury, and there is a problem that the system becomes large and complicated. In particular, when applied to gas such as coal gasified, gaseous mercury is metallic mercury (Hg 0 ), so most of it cannot be removed, and it corresponds to latent heat due to condensation of moisture in the gas as the gas temperature decreases. Energy is lost, and there is also a loss of energy associated with the heat exchange process that raises the gas temperature again. Therefore, the thermal efficiency in the power generation plant and the fuel production plant is greatly reduced, and a large heat exchanger for raising and lowering the gas temperature is also required.

また、活性炭や活性コークス粉末などを用いてガス中のガス状水銀を除去する方法については、水銀が物理的に吸着する現象を利用しており、使用温度が高くなるほど除去性能が低下してしまうため、高温域での使用に耐えないという問題がある。すなわち、ガス状の水銀を吸着・吸収して除去する活性炭や活性コークス粉末は、動作温度が低温度でなければ十分な水銀除去性能が発揮できず、特に200℃を上回る高温域ではガス状水銀吸収容量が大幅に低下してしまう。また、このようなガス状水銀吸収容量の低下を量的に補おうとすれば必要な活性炭などの量が非実用的に多量になってしまい解決するには至らない。そのため、活性炭や活性コークス粉末などを用いてガス中のガス状水銀を除去する方法においてもガス温度を下げる必要があり、湿式除去法の場合よりは改善されるものの、熱効率の低下が発生する。   In addition, the method of removing gaseous mercury in gas using activated carbon or activated coke powder uses the phenomenon that mercury is physically adsorbed, and the removal performance decreases as the operating temperature increases. Therefore, there is a problem that it cannot withstand use in a high temperature range. In other words, activated carbon or activated coke powder that removes gaseous mercury by adsorption and absorption cannot exhibit sufficient mercury removal performance unless the operating temperature is low, especially gaseous mercury at high temperatures above 200 ° C. Absorption capacity is greatly reduced. Further, if it is intended to compensate for such a decrease in the gaseous mercury absorption capacity, the amount of necessary activated carbon and the like becomes unpractically large and cannot be solved. Therefore, it is necessary to lower the gas temperature also in the method of removing gaseous mercury in the gas using activated carbon, activated coke powder or the like, and although it is improved as compared with the wet removal method, the thermal efficiency is lowered.

そこで本発明は、150℃以上、場合によっては200℃以上の高温域においても高温のガス化ガスや燃焼排ガス中におけるガス状水銀を十分に吸収して除去することが可能なガス状水銀の除去剤その製造方法及びガス状水銀除去方法を提供することを目的とする。 Therefore, the present invention is a method for removing gaseous mercury that can sufficiently absorb and remove gaseous mercury in high-temperature gasification gas and combustion exhaust gas even in a high temperature range of 150 ° C. or higher, and in some cases, 200 ° C. or higher. It is an object to provide an agent , a method for producing the same, and a method for removing gaseous mercury .

かかる目的を達成するため、本発明者は種々の検討を行った。水銀は融点がマイナス38.8℃で室温では液体であり、尚かつ蒸気圧が高いという性質を有している。化学平衡計算による検討から、空気中で水銀を300〜400℃に加熱すると水銀は酸化されてHgOの形態となり、さらに塩化水素が共存する場合にはHgCl2の形態となることから、酸化雰囲気では酸化水銀(Hg2+)の形態が最も安定であることが判る。一方、石炭などをガス化したガスでは、加熱しても水銀は反応せずに金属水銀(Hg0)のままであることから、還元雰囲気では金属水銀(Hg0)の形態が最も安定であることが判る。また、同様の化学平衡計算による検討から、室温から1000℃の温度領域における水銀と、銅、鉄、亜鉛、スズ、カルシウム、マンガン、ニッケル、銀、鉛などの元素との反応性を求めると、水銀はどの金属元素とも化合物を形成せず、ガス状の水銀として存在することが確認されている。従って、ガス化ガスや燃焼排ガスに含まれるガス状水銀を、銅、鉄、亜鉛、カルシウム、マンガン、ニッケル、銀、鉛などの元素との化学反応により吸収分離することは困難であると考えられた。ところが、その一方で、水銀は多くの金属とアマルガムを作ることが一般的に知られており、特に、タリウム、カドミウム、鉛などの低融点金属は水銀に溶解しやすいことも知見されている。 In order to achieve this object, the present inventor has conducted various studies. Mercury has a melting point of minus 38.8 ° C and is liquid at room temperature and has a high vapor pressure. From a study by chemical equilibrium calculation, when mercury is heated to 300-400 ° C in air, mercury is oxidized to form HgO, and in the presence of hydrogen chloride, HgCl 2 forms. It can be seen that the form of mercury oxide (Hg 2+ ) is the most stable. On the other hand, in the gas coal and gasified, since mercury be heated remains metallic mercury without reacting (Hg 0), is the most stable form of metal mercury (Hg 0) in a reducing atmosphere I understand that. In addition, from the examination by the same chemical equilibrium calculation, when the reactivity of mercury in the temperature range from room temperature to 1000 ° C. and elements such as copper, iron, zinc, tin, calcium, manganese, nickel, silver, lead, etc. is obtained, It has been confirmed that mercury does not form a compound with any metal element and exists as gaseous mercury. Therefore, it is considered difficult to absorb and separate gaseous mercury contained in gasification gas and combustion exhaust gas by chemical reaction with elements such as copper, iron, zinc, calcium, manganese, nickel, silver and lead. It was. On the other hand, it is generally known that mercury forms amalgam with many metals, and it has been found that low melting point metals such as thallium, cadmium and lead are particularly easily dissolved in mercury.

本発明者はこのような特性を考慮しつつ種々の実験的検討を行った結果、ある手法により生成されたガス状水銀除去剤は、上述のような150℃以上場合によっては200℃以上の高温域においても高温のガス化ガスや燃焼排ガス中におけるガス状水銀を十分に吸収し除去することが可能であることを知見するに至った。本発明はかかる知見に基づきなされたものであり、請求項1のガス状水銀除去剤の製造方法は、銅又は亜鉛(以下、金属元素と記載する)を含む溶液から沈殿法により生成された沈殿物を濾過し、洗浄し、乾燥し、さらに150℃〜400℃にいったん加熱することによって得られたガス状水銀吸収物質を含むガス状水銀除去剤を得るというものである。なおここでいう沈殿法とは、溶解している金属を不溶性の沈殿物に変化させる方法、詳述すると、金属がイオン化して溶解している酸性溶液にアルカリを添加することにより不溶性である金属酸化物、金属水酸化物あるいは金属硝酸塩の沈殿物を生成する方法を意味する。 As a result of various experimental studies taking into consideration such characteristics, the present inventor has found that the gaseous mercury removing agent produced by a certain technique has a high temperature of 150 ° C. or higher as described above and sometimes 200 ° C. or higher. It has been found that it is possible to sufficiently absorb and remove gaseous mercury in high-temperature gasification gas and combustion exhaust gas even in the region. The present invention has been made on the basis of such findings, and the method for producing a gaseous mercury removing agent according to claim 1 is a precipitation produced by a precipitation method from a solution containing copper or zinc (hereinafter referred to as a metal element). The product is filtered, washed, dried, and further heated once at 150 ° C. to 400 ° C. to obtain a gaseous mercury removing agent containing a gaseous mercury absorbing material. The precipitation method here is a method of changing a dissolved metal into an insoluble precipitate, more specifically, a metal that is insoluble by adding alkali to an acidic solution in which the metal is ionized and dissolved. It means a method for producing a precipitate of oxide, metal hydroxide or metal nitrate.

請求項2記載の発明は、請求項1記載のガス状水銀除去剤の製造方法において、金属元素を含む溶液から沈殿法により沈殿物を生成する際に当該溶液を攪拌することによって均質かつ微細な沈殿物を生成させるというものである。   The invention according to claim 2 is the method for producing a gaseous mercury removing agent according to claim 1, wherein the solution is stirred and homogeneous when the precipitate is produced from the solution containing the metal element by the precipitation method. A precipitate is formed.

請求項3記載の発明は、請求項1記載のガス状水銀除去剤の製造方法において、金属元素を含む溶液に予め耐熱性基材を混合しておくことによって、ガス状水銀の吸収物質を当該耐熱性基材上に極微細に分散担持するというものである。ここで適用可能な耐熱性基材の具体例としては、例えば酸化珪素、シリカゾル、酸化アルミニウム、活性アルミナ、アルミナゾル、酸化チタン等がある。また、請求項4記載の発明は、請求項1〜3の何れか1つに記載のガス状水銀除去剤の製造方法において、銅又は亜鉛を含む溶液に鉄がさらに含まれるというものである。 According to a third aspect of the present invention, there is provided the method for producing a gaseous mercury removing agent according to the first aspect, wherein a heat-resistant substrate is mixed in advance with a solution containing a metal element, whereby the gaseous mercury absorbing substance is treated as described above. It is a very finely dispersed and supported on a heat resistant substrate. Specific examples of the heat-resistant substrate applicable here include silicon oxide, silica sol, aluminum oxide, activated alumina, alumina sol, and titanium oxide. Moreover, invention of Claim 4 is a manufacturing method of the gaseous mercury removal agent as described in any one of Claims 1-3. WHEREIN: Iron is further contained in the solution containing copper or zinc.

求項5記載のガス状水銀除去剤は、金属元素を含む溶液から沈殿法により生成された沈殿物を濾過し、洗浄し、乾燥し、さらに150℃〜400℃にいったん加熱することによって得られるガス状水銀吸収物質を含み、ガス状水銀を除去することを可能としているものである。また、請求項6記載の発明は、請求項5記載のガス状水銀除去剤を用いるガス状水銀除去方法である。 Gaseous mercury removal agent Motomeko 5 described, obtained by the precipitate produced by precipitation from a solution containing a metal element is filtered, washed, dried and further once heated to 0.99 ° C. to 400 ° C. It is possible to remove gaseous mercury by containing gaseous mercury absorbing material. The invention described in claim 6 is a method for removing gaseous mercury using the gaseous mercury removing agent described in claim 5.

請求項1記載の発明によると、本発明に特有の製法により、ガス化ガスあるいは燃焼排ガスといった高温ガス中におけるガス状水銀を吸収することが可能なガス状水銀除去剤を製造することができる。しかもこのガス状水銀除去剤は100℃未満の低温域は勿論のこと、100℃以上の温度域においてガス状水銀吸収が可能であり、プラントにおいてガス温度を大幅に下げることなくガス状水銀を吸収し、除去することができる。したがって、プラントの熱効率が大幅に低下するのを回避しつつ高温ガス中に含まれるガス状水銀を吸収し、除去することが可能となる。しかも、この製法により製造されるガス状水銀除去剤は150℃以上の高温域、場合によっては200℃以上のさらなる高温域においてもガス中のガス状水銀を有効に吸収して除去することが可能であり、従来は困難であった高温域におけるガス状水銀除去を可能とする。 According to the first aspect of the present invention, a gaseous mercury removing agent capable of absorbing gaseous mercury in a high-temperature gas such as gasification gas or combustion exhaust gas can be produced by the production method unique to the present invention. Moreover, this gaseous mercury remover can absorb gaseous mercury not only in the low temperature range of less than 100 ° C but also in the temperature range of 100 ° C or higher. Can be absorbed and removed. Therefore, gaseous mercury contained in the high-temperature gas can be absorbed and removed while avoiding a significant decrease in the thermal efficiency of the plant. Moreover, the gaseous mercury remover produced by this process can effectively absorb and remove gaseous mercury in gases at high temperatures of 150 ° C or higher, and in some cases even higher temperatures of 200 ° C or higher. Therefore, it is possible to remove gaseous mercury in a high temperature range, which has been difficult in the past.

請求項2記載の発明によると、金属元素を含む溶液から沈殿法により沈殿物を生成する際に溶液を攪拌することによって、中和反応が均質に進み、また生成物が微細になるため、沈殿、乾燥、前処理等を経て得られるガス状水銀吸収物質の表面積がより大きなものとなる。このため、除去剤が発揮する吸収能が増し、ガス状水銀除去性能が向上する。   According to the second aspect of the present invention, when the precipitate is produced from the solution containing the metal element by the precipitation method, the solution is stirred, so that the neutralization reaction proceeds homogeneously and the product becomes fine. The surface area of the gaseous mercury-absorbing material obtained through drying, pretreatment, etc. becomes larger. For this reason, the absorptive capacity exhibited by the removing agent is increased, and the gaseous mercury removing performance is improved.

請求項3記載の発明によると、金属元素を含む溶液から沈殿法により沈殿物を生成するに際し、溶液に耐熱性基材を予め混合しておくことによって、ガス状水銀吸収物質が耐熱性基材上に高度に分散担持される。この耐熱性基材はそれ自身としてガス状水銀の除去性能を有していないものの、本発明の製造方法によって製造されるガス状水銀除去剤中において当該ガス状水銀除去剤の表面積を広大化させるという担体としての機能を発現する。このため、ガス状水銀除去剤が発揮する吸収能が増大し、ガス状水銀を除去する性能が向上する。   According to the third aspect of the present invention, when the precipitate is produced from the solution containing the metal element by the precipitation method, the gaseous mercury-absorbing substance is converted into the heat-resistant substrate by previously mixing the heat-resistant substrate with the solution. Highly dispersed and supported on the top. Although this heat-resistant substrate itself does not have the ability to remove gaseous mercury, the surface area of the gaseous mercury removing agent is increased in the gaseous mercury removing agent produced by the production method of the present invention. The function as a carrier is expressed. For this reason, the absorption capacity which a gaseous mercury removing agent exhibits increases and the performance which removes gaseous mercury improves.

請求項記載の発明によると、特有の製法(プロセス)を経ることにより、ガス化ガスあるいは燃焼排ガスといった高温ガス中におけるガス状水銀を吸収することが可能なガス状水銀除去剤が得られる。しかもこのガス状水銀除去剤は100℃未満の低温域は勿論のこと、100℃以上の高温域においてガス状水銀を吸収することが可能であり、プラントにおいてガス温度を大幅に下げることなくガス状水銀を除去することができる。したがって、プラントの熱効率が大幅に低下するのを回避しつつ高温ガス中に含まれるガス状水銀を除去することが可能となる。しかも、この製法により製造されるガス状水銀除去剤は150℃以上の高温域、場合によっては200℃以上のさらなる高温域においてもガス中のガス状水銀を有効に吸収し、除去することが可能であり、従来は困難であった高温域でも使用可能なガス状水銀除去剤が得られる。 According to the fifth aspect of the present invention, a gaseous mercury removing agent capable of absorbing gaseous mercury in a high-temperature gas such as gasification gas or combustion exhaust gas is obtained through a specific manufacturing method (process). Moreover, this gaseous mercury remover can absorb gaseous mercury not only in the low temperature range of less than 100 ° C but also in the high temperature range of 100 ° C or higher. Mercury can be removed. Therefore, it is possible to remove gaseous mercury contained in the high-temperature gas while avoiding a significant decrease in the thermal efficiency of the plant. In addition, the gaseous mercury remover produced by this process can effectively absorb and remove gaseous mercury in gases at high temperatures of 150 ° C or higher, and in some cases even higher temperatures of 200 ° C or higher. Thus, it is possible to obtain a gaseous mercury removing agent that can be used even in a high temperature range, which has been difficult in the past.

以下、本発明の構成について説明する(図1等参照)。本発明にかかるガス状水銀の除去剤は、銅又は亜鉛の化合物、具体的には銅又は亜鉛の硝酸塩、塩化物、水酸化物などの溶液から沈殿法により生成する沈殿物を濾過し、洗浄し、乾燥し、さらに150℃〜400℃にいったん加熱することによって得られるガス状水銀吸収物質を含むものである。このようにして得られるガス状水銀吸収物質は主に金属酸化物の形態をとり、100℃未満の低温域は勿論のこと、100℃以上、場合によっては200℃以上の高温域においてもガス中のガス状水銀の除去能を十分に発揮することを特徴としている。ガス状水銀の除去剤は、上記のガス状水銀吸収物質のみで構成されても良いが、耐熱性基材と組み合わせることもできる。耐熱性基材は、それ自体はガス状水銀除去性能を有していないが、ガス状水銀吸収物質である金属酸化物を高度に分散担持させて水銀除去性能を向上させる担体として機能する。ガス状水銀除去剤におけるガス状水銀吸収物質の含有量は、金属酸化物のみで構成されている場合には100重量%、それらと耐熱性基材とで構成されている場合には100重量%未満となるのはいうまでもないが、十分な除去能を発揮するという点では少なくとも10重量%であることが好ましい。また、ここで対象となるガスは、重質油あるいはその残留残液、石炭やバイオマスなどをガス化して得られるガス化ガス、およびそれら燃料を燃焼した排ガス、さらには都市ゴミや下水汚泥などの廃棄物を焼却した排ガスなどといったガス状水銀を含んでいる高温ガスであり、これらガス中に含まれるガス状水銀が除去対象となる。 Hereinafter, the configuration of the present invention will be described (see FIG. 1 and the like). Remover gaseous mercury according to the present invention, compounds of copper or zinc, in particular of copper or zinc nitrate, chloride, sediment that generates by precipitation from a solution of such a hydroxide is filtered It contains a gaseous mercury-absorbing substance obtained by washing, drying, and once heating to 150 to 400 ° C. The gaseous mercury-absorbing material thus obtained mainly takes the form of a metal oxide and is in the gas not only in a low temperature range of less than 100 ° C. but also in a high temperature range of 100 ° C. or higher and sometimes 200 ° C. or higher. It is characterized by fully exhibiting its ability to remove gaseous mercury. The gaseous mercury removing agent may be composed of only the above-described gaseous mercury absorbing material, but may be combined with a heat resistant substrate. The heat-resistant substrate itself does not have a gaseous mercury removing performance, but functions as a carrier for improving the mercury removing performance by highly dispersing and supporting a metal oxide that is a gaseous mercury absorbing material. The content of the gaseous mercury-absorbing substance in the gaseous mercury removing agent is 100% by weight when composed of only metal oxides, and 100% by weight when composed of these and a heat-resistant substrate. Needless to say, the amount is preferably at least 10% by weight in terms of exhibiting sufficient removal ability. The target gas is heavy oil or its residual residue, gasification gas obtained by gasifying coal or biomass, exhaust gas that burns those fuels, city waste, sewage sludge, etc. It is a high-temperature gas containing gaseous mercury such as exhaust gas from incineration of waste, and gaseous mercury contained in these gases is to be removed.

ちなみに、沈殿法により生成する銅又は亜鉛を含む沈殿物を空気中にて500℃以上の高温で焼成処理した場合には、ガス状水銀を除去する性能が低いことが知見されている。これに対して本実施形態では、ガス状水銀の除去剤を製造する最終段階で、400℃以下の温度域で焼成処理することによって、重質油あるいはその残留残液、石炭やバイオマスなどをガス化して得られる高温ガス化ガス、およびそれらを燃焼した排ガス中に含まれるガス状水銀を除去する性能を発現させるようにしている。
Incidentally, it has been found that when a precipitate containing copper or zinc produced by a precipitation method is baked in air at a high temperature of 500 ° C. or higher, the performance of removing gaseous mercury is low. In contrast, in the present embodiment, in the final stage of producing the gaseous mercury remover, heavy oil or its residual liquid, coal, biomass, etc. are gasified by firing treatment at a temperature range of 400 ° C. or lower. The performance of removing gaseous mercury contained in the high-temperature gasification gas obtained by gasification and the exhaust gas which burned them is developed.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

本発明に係る高温のガス化ガスおよび燃焼排ガスに含有されているガス状水銀の除去剤を沈殿法により製造した。その実施例として、銅を含む除去剤、銅と鉄と酸化珪素を含む除去剤、銅と酸化珪素を含む除去剤、亜鉛と鉄を含む除去剤をそれぞれ製造したので以下に記す(図1、図2参照)。なお、この図1はガス状水銀除去剤の温度と反応後の金属水銀濃度の関係を示しているものであり、このうち、点線で記した反応器入口の金属水銀濃度とプロット点との差に相当する水銀が除去されたことを意味する。   The gaseous mercury removing agent contained in the high-temperature gasification gas and combustion exhaust gas according to the present invention was produced by a precipitation method. As an example, a remover containing copper, a remover containing copper, iron and silicon oxide, a remover containing copper and silicon oxide, and a remover containing zinc and iron were produced, respectively. (See FIG. 2). FIG. 1 shows the relationship between the temperature of the gaseous mercury removing agent and the metal mercury concentration after the reaction. Among these, the difference between the metal mercury concentration at the reactor inlet indicated by the dotted line and the plotted point is shown. This means that the mercury equivalent to was removed.

まず、実施例1として、銅を含むガス状水銀の除去剤を以下の方法により製造した。硝酸銅3水和物242gを水に溶かし、全量を1000mlとした水溶液を60℃に加温し、この水溶液中に水酸化ナトリウム80gを水に溶かして全量を500mlとした水溶液を攪拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕し、銅を含有する粉末を得た。これを、窒素気流中で150℃の温度域で焼成処理してガス状水銀除去剤とした。   First, as Example 1, a gaseous mercury removing agent containing copper was produced by the following method. An aqueous solution in which 242 g of copper nitrate trihydrate is dissolved in water and the total amount is 1000 ml is heated to 60 ° C., and a small amount of the aqueous solution in which 80 g of sodium hydroxide is dissolved in water and the total amount is 500 ml is stirred. Added in increments. The produced precipitate was filtered, washed, dried and pulverized to obtain a powder containing copper. This was calcined in a nitrogen stream at a temperature of 150 ° C. to obtain a gaseous mercury removing agent.

次に、実施例2として銅と鉄と酸化珪素を含むガス状水銀の除去剤を以下の方法により製造した。硝酸銅3水和物81gおよび硝酸鉄(III)9水和物269gを水に溶かし全量を1000mlとした水溶液にシリカゾルを194g加えた。加えたシリカゾルは、水溶液中における銅・鉄と珪素のモル比((Cu+Fe)/Si)が1.5となる量である。混合水溶液を60℃に加温し、そこに水酸化ナトリウム107gを水に溶かし全量を670mlとした水溶液を攪拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕し、銅と鉄と珪素を含有する粉末を得た。これを、窒素気流中で150℃の温度で焼成処理してガス状水銀除去剤とした。このガス状水銀除去剤に占めるガス状水銀吸収物質(CuFe2O4)の含有量は67重量%となった。 Next, as Example 2, a gaseous mercury removing agent containing copper, iron and silicon oxide was produced by the following method. 194 g of silica sol was added to an aqueous solution in which 81 g of copper nitrate trihydrate and 269 g of iron (III) nitrate nonahydrate were dissolved in water to make a total volume of 1000 ml. The added silica sol is in such an amount that the molar ratio of copper, iron and silicon ((Cu + Fe) / Si) in the aqueous solution is 1.5. The mixed aqueous solution was heated to 60 ° C., and an aqueous solution in which 107 g of sodium hydroxide was dissolved in water to make a total amount of 670 ml was added little by little while stirring. The produced precipitate was filtered, washed, dried and pulverized to obtain a powder containing copper, iron and silicon. This was calcined in a nitrogen stream at a temperature of 150 ° C. to obtain a gaseous mercury removing agent. The content of gaseous mercury absorbing material (CuFe 2 O 4 ) in the gaseous mercury removing agent was 67% by weight.

また、実施例3として銅と酸化珪素を含むガス状水銀の除去剤を以下の方法により製造した。硝酸銅3水和物242gを水に溶かし、全量を1000mlとした水溶液にシリカゾルを194g加えた。加えたシリカゾルは、水溶液中における銅と珪素のモル比(Cu/Si)が1.5となる量である。混合水溶液を60℃に加温し、そこに水酸化ナトリウム80gを水に溶かし全量を500mlとした水溶液を攪拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕し、銅と珪素を含有する粉末を得た。これを、窒素気流中で150℃の温度で焼成処理してガス状水銀除去剤とした。このガス状水銀除去剤に占めるガス状水銀吸収物質(CuO)の含有量は66重量%となった。   Further, as Example 3, a gaseous mercury removing agent containing copper and silicon oxide was produced by the following method. 194 g of silica sol was added to an aqueous solution in which 242 g of copper nitrate trihydrate was dissolved in water and the total amount was 1000 ml. The added silica sol is such that the molar ratio of copper to silicon (Cu / Si) in the aqueous solution is 1.5. The mixed aqueous solution was heated to 60 ° C., and an aqueous solution in which 80 g of sodium hydroxide was dissolved in water to make the total amount 500 ml was added little by little while stirring. The generated precipitate was filtered, washed, dried, and pulverized to obtain a powder containing copper and silicon. This was calcined in a nitrogen stream at a temperature of 150 ° C. to obtain a gaseous mercury removing agent. The content of gaseous mercury absorbing material (CuO) in the gaseous mercury removing agent was 66% by weight.

さらに、実施例4として亜鉛と鉄を含むガス状水銀の除去剤を以下の方法により製造した。硝酸亜鉛6水和物99gおよび硝酸鉄(III)9水和物269gを水に溶かし全量を1000mlとした。この水溶液を60℃に加温し、そこにアンモニア水133gを水に溶かし全量を500mlとした水溶液を攪拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕し、亜鉛と鉄を含有する粉末を得た。これを、窒素気流中で150℃の温度で焼成処理してガス状水銀除去剤とした。   Further, as Example 4, a gaseous mercury removing agent containing zinc and iron was produced by the following method. 99 g of zinc nitrate hexahydrate and 269 g of iron (III) nitrate nonahydrate were dissolved in water to make a total volume of 1000 ml. This aqueous solution was heated to 60 ° C., and an aqueous solution in which 133 g of ammonia water was dissolved in water to make the total amount 500 ml was added little by little while stirring. The generated precipitate was filtered, washed, dried and pulverized to obtain a powder containing zinc and iron. This was calcined in a nitrogen stream at a temperature of 150 ° C. to obtain a gaseous mercury removing agent.

上述の実施例で得られたガス状水銀除去剤について、窒素ガス中に含まれるガス状の金属水銀(Hg0)の除去性能を評価した(図1参照)。また、ガス状水銀除去剤との比較のため、比較例1として市販の活性炭(和光純薬工業株式会社)、比較例2として市販のガス状水銀吸着剤(味の素ファインテクノ株式会社、MA−G型)についても、窒素ガス中に含まれるガス状の金属水銀(Hg0)の除去性能を評価した。図の縦軸に示される金属水銀濃度は除去剤(あるいは吸着剤)を通過した後のガス中に含まれる金属水銀濃度を表し、この値が少ないほど除去能(吸着能)に優れるという結果になる。比較例1(市販の活性炭)および比較例2(市販のガス状水銀吸着剤)の両者は温度が高くなると除去性能が低下し、例えば性能の高い比較例2(図中の□)でも150℃以上では完全にはガス状水銀を除去できないことが示されている。これに対し、本発明に係る方法で製造した除去剤(実施例1〜4)は、より高温域、例えば220℃程度の温度条件でもガス状水銀を除去できることがわかった。その中でも実施例3の銅と珪素を組み合わせたCu/Si系除去剤(図中の●)は265℃の条件でも水銀をほぼ全て吸収除去しており、高温条件で使用するという観点では最も性能が高いことがわかった。このCu/Si系除去剤が実施例1のCu系除去剤(図中の◆)よりも性能が高いのは、製造の工程で耐熱性基材(この実施例ではシリカゾル)を加えることによって水銀吸収物質である銅が高分散化し、その表面積が増えてガス状水銀と接触しやすくなった結果、除去剤としてより適切な形状になったためと考えられる。また実施例2のCu/Fe/Si系除去剤(図中の■)、実施例4のZn/Fe系除去剤(図中の▲)に関しても、図1に示すとおり高温度状況下において優れたガス状水銀除去性能を発揮することが確認された。なお、試験後の除去剤に含まれる水銀を定量したところ、その含有量は試験時に除去された水銀とほぼ同量であり、ガス状水銀除去剤がガス中の水銀を吸収し固定化していることが確認された。 For gas-phase mercury removing agent obtained in the above example were evaluated performance of removing gaseous metallic mercury contained in the nitrogen gas (Hg 0) (see FIG. 1). In addition, for comparison with a gaseous mercury removing agent, a commercially available activated carbon (Wako Pure Chemical Industries, Ltd.) as Comparative Example 1 and a commercially available gaseous mercury adsorbent (Ajinomoto Fine Techno Co., MA-G) as Comparative Example 2. Type) was also evaluated for its ability to remove gaseous metallic mercury (Hg 0 ) contained in nitrogen gas. The metal mercury concentration shown on the vertical axis of the figure represents the concentration of metal mercury contained in the gas after passing through the removal agent (or adsorbent). The smaller this value, the better the removal ability (adsorption ability). Become. In both Comparative Example 1 (commercial activated carbon) and Comparative Example 2 (commercial gaseous mercury adsorbent), the removal performance declines as the temperature increases. For example, Comparative Example 2 (□ in the figure) with high performance is 150 ° C. This shows that gaseous mercury cannot be completely removed. On the other hand, it was found that the remover (Examples 1 to 4) produced by the method according to the present invention can remove gaseous mercury even in a higher temperature range, for example, about 220 ° C. Among them, the Cu / Si-based removal agent (● in the figure) combining copper and silicon in Example 3 absorbs and removes almost all of the mercury even at 265 ° C, and is the most performant in terms of use under high temperature conditions. Was found to be expensive. This Cu / Si-based remover has higher performance than the Cu-based remover of Example 1 (♦ in the figure) because mercury is added by adding a heat-resistant substrate (silica sol in this example) in the manufacturing process. This is probably because copper, which is an absorbent material, was highly dispersed, and its surface area increased to facilitate contact with gaseous mercury, resulting in a more appropriate shape as a removal agent. Also, the Cu / Fe / Si-based remover of Example 2 (■ in the figure) and the Zn / Fe-type remover of Example 4 (▲ in the figure) are excellent under high temperature conditions as shown in FIG. It was confirmed that the mercury removal performance was excellent. In addition, when the mercury contained in the removal agent after the test was quantified, the content was almost the same as the mercury removed during the test, and the gaseous mercury removal agent absorbed and immobilized the mercury in the gas. It was confirmed.

上記の実施例1〜4ではガス状水銀の除去剤を沈殿法で製造する最終段階において窒素ガスの流通下で150℃の温度にて焼成処理を実施しているが、この前処理方法に関して、Cu/Si系除去剤を用いて比較を行った(図2参照)。本実施例ではこの前処理を行わず、銅と珪素の沈殿物を濾過したものをそのまま除去性能の評価に使用した。この沈殿物(ガス状水銀除去剤)は、100℃以下の低温条件でガス状水銀の除去ができなかった(図中の◆の低温側参照)。すなわち、製造で得られた沈殿物自体によっては水銀を十分に除去することができないことが確認された。これは、沈殿物の化学形態がCu2(NO3)(OH)3であり、この物質のガス状水銀の除去性能が低いためと考えられる。その一方で、この除去剤の温度を150℃以上にするとガス状水銀の除去性能が発現した(図2参照)。この操作(150℃以上まで昇温すること)は実施例1〜4の窒素中での前処理と同じであり、沈殿法で得られた沈殿物を窒素気流中で昇温することによって水銀を除去できる形態に変化することが確認された。一方、沈殿法で得られた沈殿物を空気中500℃で焼成処理したものでは、十分なガス状水銀の除去性能を有していないことも確認された(図中の■)。これは除去剤に含まれる金属化合物の化学形態はいずれも酸化銅(CuO)と同じであるものの、高温での焼成処理により粒子の焼結が進み、ガス状水銀との接触性が低下することによって除去性能が低下したためである。すなわち、除去剤の焼成処理は除去剤を使用する温度程度での実施が望ましく、具体的には400℃以下で実施することが望ましい。なお、ガス状水銀除去剤は、沈殿法で製造する最終段階において150℃の温度にて焼成処理さえすれば、あとはその温度を維持したまま高温ガス中においてガス状水銀除去剤として用いることもできるし、あるいは焼成処理後いったん室温まで温度低下した後に高温ガス中においてガス状水銀除去剤として用いることもできる。 In the above Examples 1 to 4, the final stage of producing the gaseous mercury removing agent by the precipitation method is carried out at a temperature of 150 ° C. under the flow of nitrogen gas. Comparison was made using a Cu / Si-based remover (see FIG. 2). In this example, this pretreatment was not performed, and the filtered copper and silicon precipitate was used as it was for the evaluation of the removal performance. This precipitate (gaseous mercury removal agent) was not able to remove gaseous mercury under low temperature conditions of 100 ° C or less (see the low temperature side of ◆ in the figure). That is, it was confirmed that mercury could not be sufficiently removed by the precipitate itself obtained in the production. This is presumably because the chemical form of the precipitate is Cu 2 (NO 3 ) (OH) 3 and the gaseous mercury removal performance of this substance is low. On the other hand, when the temperature of the removal agent was set to 150 ° C. or higher, the removal performance of gaseous mercury was expressed (see FIG. 2). This operation (heating up to 150 ° C. or higher) is the same as the pretreatment in nitrogen in Examples 1 to 4, and the mercury obtained by raising the temperature of the precipitate obtained by the precipitation method in a nitrogen stream. It was confirmed that it changed to a form that can be removed. On the other hand, it was also confirmed that the precipitate obtained by the precipitation method was calcined at 500 ° C. in the air and did not have sufficient gaseous mercury removal performance (■ in the figure). This is because the chemical form of the metal compound contained in the removal agent is the same as that of copper oxide (CuO), but sintering of the particles progresses due to high-temperature firing treatment, and the contact with gaseous mercury decreases. This is because the removal performance deteriorated due to the above. That is, the removal agent is preferably fired at about the temperature at which the removal agent is used, specifically at 400 ° C. or less. In addition, the gaseous mercury removing agent can be used as a gaseous mercury removing agent in a high temperature gas while maintaining the temperature as long as it is fired at a temperature of 150 ° C. in the final stage of production by the precipitation method. Alternatively, it can be used as a gaseous mercury removing agent in a high-temperature gas after the temperature is lowered to room temperature once after the baking treatment.

上述した実施例では窒素ガス中に含まれるガス状の金属水銀(Hg0)の除去性能を評価したが、実際に使用される局面では多くのガス成分が混在していることが一般的である。例えば、石炭等をガス化したガスは一酸化炭素、二酸化炭素、水素および水蒸気を含む還元性のガスであるため、ガス状水銀除去剤は還元性雰囲気下でも使用可能でなければならない。そこで、Cu/Si系除去剤について、石炭ガスを模擬したガス(一酸化炭素20%、二酸化炭素5%、水素8%、水蒸気4%、窒素63%)に対するガス状水銀の除去性能を評価した(図3参照)。その結果、Cu/Si系除去剤は、窒素ガス中におけるガス状水銀の除去性能(図中の●)と同様、250℃の条件においてもガス状水銀をほぼ全て除去できることが判明した(図中の■)。すなわち、この除去剤は還元性ガス中においても適用できることが確認され、石炭等をガス化したガスをガスタービンや燃料電池等での高効率発電に利用する技術、さらにはアルコールやジメチルエーテル等への燃料転換に利用する技術において、ガス化ガスを使用する前段階で不純物として混在するガス状水銀を除去できることが確認された。 In the above-described embodiments, the removal performance of gaseous metallic mercury (Hg 0 ) contained in nitrogen gas was evaluated, but it is general that many gas components are mixed in the actual use situation. . For example, since the gas obtained by gasifying coal or the like is a reducing gas containing carbon monoxide, carbon dioxide, hydrogen and water vapor, the gaseous mercury removing agent must be usable even in a reducing atmosphere. Therefore, for the Cu / Si-based remover, the removal performance of gaseous mercury was evaluated for a gas that simulates coal gas (carbon monoxide 20%, carbon dioxide 5%, hydrogen 8%, water vapor 4%, nitrogen 63%). (See FIG. 3). As a result, it was found that the Cu / Si-based removal agent can remove almost all gaseous mercury even under the condition of 250 ° C, as well as the removal performance of gaseous mercury in nitrogen gas (● in the figure). ■). In other words, it has been confirmed that this remover can be applied in reducing gas, and technology that utilizes gas obtained by gasifying coal or the like for high-efficiency power generation in gas turbines, fuel cells, etc., and further to alcohol, dimethyl ether, etc. In the technology used for fuel conversion, it was confirmed that gaseous mercury mixed as an impurity can be removed before the gasification gas is used.

一方、石炭等を燃焼したガスは酸素、二酸化炭素および水蒸気を含む酸化性のガスであるため、ガス状水銀除去剤は酸化性雰囲気下でも使用可能でなければならない。そこで、Cu/Si系除去剤について、200℃の温度条件でガスに含まれる酸素濃度を変化させた酸化性ガスに対するガス状水銀の除去性能を評価した(図4参照)。その結果、Cu/Si系除去剤は、酸素濃度0〜10%の条件でもガスに含まれるガス状水銀をほぼ全て除去できることが判明した。すなわち、この除去剤は酸化性ガス中においても適用できることが確認され、石炭等を燃焼させた排ガスに不純物として混在するガス状水銀を除去できることが確認された。   On the other hand, since the gas which burned coal etc. is oxidizing gas containing oxygen, a carbon dioxide, and water vapor | steam, the gaseous mercury removal agent must be usable also in oxidizing atmosphere. Therefore, the removal performance of gaseous mercury with respect to an oxidizing gas in which the oxygen concentration contained in the gas was changed under a temperature condition of 200 ° C. was evaluated for the Cu / Si-based removal agent (see FIG. 4). As a result, it was found that the Cu / Si-based remover can remove almost all gaseous mercury contained in the gas even under the condition of oxygen concentration of 0 to 10%. That is, it was confirmed that this removal agent can be applied even in oxidizing gas, and it was confirmed that gaseous mercury mixed as an impurity in exhaust gas obtained by burning coal or the like can be removed.

また、ガス状の水銀は、金属水銀(Hg0)と酸化水銀(Hg2+)の二つの化学形態で存在する。例えば石炭等を燃焼した酸化性のガス中では金属水銀(Hg0)と酸化水銀(Hg2+)が混在するものと考えられるため、ガス状水銀除去剤としてはその両方を除去することが望まれる。そこで、Cu/Si系除去剤について、金属水銀(Hg0)と酸化水銀(Hg2+)の両方を含むガスに対するガス状水銀の除去性能を評価した(図5参照)。その結果、この除去剤は260℃を超える温度条件でも水銀をほとんど除去できることが判明した。すなわち、この除去剤は水銀の化学形態にかかわらずガスから除去できることが確認された。 Gaseous mercury exists in two chemical forms, metallic mercury (Hg 0 ) and mercury oxide (Hg 2+ ). For example, it is considered that metallic mercury (Hg 0 ) and mercury oxide (Hg 2+ ) are mixed in an oxidizing gas combusted with coal, etc., so it is desirable to remove both of them as a gaseous mercury removing agent. It is. Therefore, the removal performance of gaseous mercury for a gas containing both metallic mercury (Hg 0 ) and mercury oxide (Hg 2+ ) was evaluated for the Cu / Si-based removal agent (see FIG. 5). As a result, it was found that this remover can almost remove mercury even at a temperature exceeding 260 ° C. That is, it was confirmed that this remover can be removed from the gas regardless of the chemical form of mercury.

ガス状水銀除去剤による除去反応後のガス状水銀濃度とそのときの温度との関係を、本発明のガス状水銀除去剤の実施例と比較例とのそれぞれについて示すグラフである。It is a graph which shows the relationship between the gaseous mercury density | concentration after the removal reaction by a gaseous mercury removing agent, and the temperature at that time about each of the Example of the gaseous mercury removing agent of this invention, and a comparative example. Cu/Si系除去剤に関し、前処理方法を異ならせた場合についてのガス状水銀濃度とそのときの温度との関係を示すグラフである。It is a graph which shows the relationship between the gaseous mercury density | concentration at the time of changing the pre-processing method regarding the Cu / Si type removal agent, and the temperature at that time. Cu/Si系除去剤に関し、還元性ガス中という条件でのガス状水銀濃度とそのときの温度との関係を示すグラフである。It is a graph which shows the relationship between the gaseous mercury density | concentration on the conditions that it is in reducing gas, and the temperature at that time regarding a Cu / Si type removal agent. Cu/Si系除去剤に関し、酸化性ガス中という条件で酸素濃度を変化させた場合についてのガス状水銀濃度とそのときの温度との関係を示すグラフである。It is a graph which shows the relationship between the gaseous mercury density | concentration at the time of changing oxygen concentration on the conditions that it is in oxidizing gas, and the temperature at that time regarding a Cu / Si type removal agent. Cu/Si系除去剤に関し、金属水銀(Hg0)と酸化水銀(Hg2+)を共に含む条件でのガス状水銀濃度とそのときの温度との関係を示すグラフである。Relates Cu / Si-based removers are graphs showing the relationship between the metal mercury (Hg 0) and gaseous mercury concentration in both including conditions mercury oxide (Hg 2+) and the temperature at that time.

Claims (6)

銅又は亜鉛を含む溶液から沈殿法により生成された沈殿物を濾過し、洗浄し、乾燥し、さらに150℃〜400℃にいったん加熱することによって得られたガス状水銀吸収物質を含むガス状水銀除去剤を得ることを特徴とするガス状水銀除去剤の製造方法。 Gaseous mercury containing gaseous mercury-absorbing material obtained by filtering, washing, drying, and further heating once to a temperature of 150 ° C. to 400 ° C. from a solution containing copper or zinc method for producing a gaseous mercury removal agent characterized by obtaining a clearing agent. 銅又は亜鉛を含む溶液から沈殿法により沈殿物を生成する際に当該溶液を攪拌することによって均質かつ微細な沈殿物を生成させることを特徴とする請求項1記載のガス状水銀除去剤の製造方法。 The method for producing a gaseous mercury removing agent according to claim 1, wherein a homogeneous and fine precipitate is produced by stirring the solution when producing a precipitate by a precipitation method from a solution containing copper or zinc. Method. 銅又は亜鉛を含む溶液に予め耐熱性基材を混合しておくことによって、前記ガス状水銀の吸収物質を当該耐熱性基材上に極微細に分散担持することを特徴とする請求項1記載のガス状水銀除去剤の製造方法。 By previously mixing the heat resistant substrate in a solution containing copper or zinc, according to claim 1, wherein the absorbing material of the gaseous mercury, characterized in that very finely dispersed and supported on the heat-resistant substrate Method for producing gaseous mercury removal agent. 銅又は亜鉛を含む溶液には鉄がさらに含まれることを特徴とする請求項1〜3いずれか1つに記載のガス状水銀除去剤の製造方法。 The method for producing a gaseous mercury removing agent according to any one of claims 1 to 3 , wherein the solution containing copper or zinc further contains iron . 銅又は亜鉛を含む溶液から沈殿法により生成された沈殿物を濾過し、洗浄し、乾燥し、さらに150℃〜400℃にいったん加熱することによって得られるガス状水銀吸収物質を含むことを特徴とするガス状水銀の除去剤。 It is characterized by containing a gaseous mercury absorbing material obtained by filtering, washing, drying and further heating once to a temperature of 150 ° C. to 400 ° C. from a solution containing copper or zinc. Remover gaseous mercury. 銅又は亜鉛を含む溶液から沈殿法により生成された沈殿物を濾過し、洗浄し、乾燥して得られる生成物を、150℃〜400℃にいったん加熱してからガス状水銀を含むガス化ガスあるいは燃焼排ガス中の当該ガス状水銀を除去することを特徴とするガス状水銀除去方法。 A gasified gas containing gaseous mercury is obtained by heating a product obtained by filtering, washing and drying a precipitate produced by a precipitation method from a solution containing copper or zinc to 150 ° C. to 400 ° C. Or the gaseous mercury removal method characterized by removing the said gaseous mercury in combustion exhaust gas.
JP2003406395A 2003-12-04 2003-12-04 Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method Expired - Lifetime JP4424653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406395A JP4424653B2 (en) 2003-12-04 2003-12-04 Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406395A JP4424653B2 (en) 2003-12-04 2003-12-04 Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method

Publications (2)

Publication Number Publication Date
JP2005161255A JP2005161255A (en) 2005-06-23
JP4424653B2 true JP4424653B2 (en) 2010-03-03

Family

ID=34728782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406395A Expired - Lifetime JP4424653B2 (en) 2003-12-04 2003-12-04 Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method

Country Status (1)

Country Link
JP (1) JP4424653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540577B2 (en) 2013-09-11 2017-01-10 Mitsubishi Hitachi Power Systems, Ltd. Mercury removal system, gasification system, gasification combined power generation system and mercury removal method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777133B2 (en) * 2006-04-28 2011-09-21 財団法人電力中央研究所 Mercury removal apparatus and method
JP5301113B2 (en) * 2007-05-24 2013-09-25 一般財団法人電力中央研究所 Reusing copper-based absorbent
JP4775858B2 (en) * 2007-07-18 2011-09-21 財団法人電力中央研究所 Method for regenerating copper-based absorbent and method for removing mercury from source gas
JP5088794B2 (en) * 2008-05-09 2012-12-05 一般財団法人電力中央研究所 Mercury removal equipment
JP5129900B2 (en) * 2008-08-26 2013-01-30 クラリアント触媒株式会社 Absorbent for impurities consisting of mercury, arsenic and sulfur and method for removing the same
JP2010235915A (en) * 2009-03-09 2010-10-21 Central Res Inst Of Electric Power Ind Gas refining facilities and power generation system
JP2012071226A (en) * 2010-09-27 2012-04-12 Central Res Inst Of Electric Power Ind Gas treatment facility with mercury removing function
CN114602285B (en) * 2022-02-08 2023-01-13 浙江红狮环保股份有限公司 Method for removing lead compound in flue gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540577B2 (en) 2013-09-11 2017-01-10 Mitsubishi Hitachi Power Systems, Ltd. Mercury removal system, gasification system, gasification combined power generation system and mercury removal method

Also Published As

Publication number Publication date
JP2005161255A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
CN102630186B (en) The process for purification of CO transformation catalyst, CO transformationreation device and coal gasification gas
JP4424653B2 (en) Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method
JP7445925B2 (en) combustion system
JP5404774B2 (en) CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
Wu et al. High-temperature H2S removal from IGCC coarse gas
WO2020179075A1 (en) Combustion system
JP5107830B2 (en) Smoke treatment method
JP2004066009A (en) Carbon material and equipment for treating flue gas
JPWO2010131358A1 (en) CO shift catalyst, method for producing the same, and CO shift reaction apparatus using the CO shift catalyst
Yazdanbakhsh et al. Cu–Cr–O Functionalized ETS-2 Nanoparticles for Hot Gas Desulfurization
JP5003887B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
WO1995033560A1 (en) Catalyst for the deep oxidation of organic compounds and carbon monoxide
Tseng et al. High-temperature cleaning for chlorine-containing coal gas by supported manganese oxide sorbent
JP5186699B2 (en) Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst
CN113841009A (en) Combustion system
CN115178234B (en) Composite hierarchical pore catalytic-adsorption material and preparation method thereof
JP3998218B2 (en) Carbon deposition control desulfurization agent
JP2008238057A (en) Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it
KR100375331B1 (en) Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same
KR100413379B1 (en) Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same
RU2750801C1 (en) Deep oxidation catalyst and method for catalytic combustion of sludge from municipal wastewater treatment plants
JP4730998B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
WO2020179077A1 (en) Combustion system
JP3615626B2 (en) Desulfurization agent and method for producing the same
CN118602422A (en) Treatment method and system for flue gas generated by burning sludge-doped biomass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060328

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

R150 Certificate of patent or registration of utility model

Ref document number: 4424653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term