JP3615626B2 - Desulfurization agent and method for producing the same - Google Patents
Desulfurization agent and method for producing the same Download PDFInfo
- Publication number
- JP3615626B2 JP3615626B2 JP19211296A JP19211296A JP3615626B2 JP 3615626 B2 JP3615626 B2 JP 3615626B2 JP 19211296 A JP19211296 A JP 19211296A JP 19211296 A JP19211296 A JP 19211296A JP 3615626 B2 JP3615626 B2 JP 3615626B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- iron
- oxide
- binary oxide
- binary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は脱硫剤に関する。更に詳述すると、本発明は、重質油あるいはその蒸留残渣、石炭等をガス化して得られる高温還元性ガスに含まれる硫黄化合物を乾式で吸収除去するための脱硫剤に関する。
【0002】
【従来の技術】
近年、石炭や重質油などを直接ガス化して得られたガスを発電に利用する様々な方法が提案されている。例えば石炭等をガス化したガス(以下、単にガス化ガスという)を燃焼させてガスタービンを駆動すると共に、ガス化工程や燃焼工程で発生する熱を利用して蒸気タービンを駆動する石炭ガス化複合発電がその典型例である。また石炭等のガス化ガスを溶融炭酸塩型燃料電池などの燃料電池によって直接電力に高効率に変換する発電方法も盛んに研究されている。
【0003】
ところで、ガス化ガスには通常数百ないし数千ppmの硫化水素、硫化カルボニル、二硫化炭素などの硫黄化合物が含まれており、公害防止の観点からも、また、ガス化ガスを利用する機器および処理する機器等の劣化防止の観点からも、当該ガス化ガスから脱硫することが要求される。
【0004】
そして、この場合の脱硫には石炭資源などの有効利用の観点から、ガス化ガスの顕熱を有効に利用できる乾式脱硫が望まれる。乾式脱硫の脱硫剤としては金属酸化物が一般的に用いられているが、金属酸化物は硫黄化合物と反応して、すなわち脱硫を行って金属硫化物に転化するので、脱硫剤として発電事業に用いるためには、一度使用したものを簡易な処理で再度脱硫可能な状態に戻せることが必要である。
【0005】
かかる条件を満たす脱硫剤としては、酸化鉄や酸化銅があげられる。酸化鉄は400〜600℃の高温で還元ガス中の硫黄化合物を吸収して硫化鉄(FeS)に転化するが、これを450〜850℃の温度で酸素を含有するガスと接触させれば再び酸化鉄に戻る。この性質を利用することで酸化鉄は繰り返し使用可能な脱硫剤となる。
【0006】
また、酸化銅は400〜800℃の高温で還元ガス中の硫黄化合物を吸収して硫化銅(CuS)に転化するが、これを550〜850℃の温度で酸素を含有するガスと接触させることで再び酸化銅に戻る。この酸化銅は燃焼排ガスのような酸化性のガス中の硫黄化合物を極めて低い濃度にまで低減させる性質を有している。
【0007】
【発明が解決しようとする課題】
しかしながら、酸化鉄は、運転条件にもよるが、ガス化ガス中では硫黄化合物の濃度を30ppm程度までしか低減することができなかった。また、酸化銅は石炭等をガス化した還元性のガス中では還元されて銅単体(Cu)に転化してしまう。銅単体にはガス中の硫黄化合物の濃度を酸化銅ほど低くする性能はなく、石炭等をガス化したガス中においては、運転条件によっても異なるが、硫黄化合物の濃度を10ppm程度までしか低減できなかった。
【0008】
このように、酸化鉄、酸化銅では硫黄化合物の除去限界が高いことから、燃料電池のように微量の硫黄化合物の存在によっても性能が低下する機器に用いるガスの脱硫剤としては実用的でなかった。
【0009】
すなわち、従来の単一の金属酸化物からなる脱硫剤は、還元性のガス中の硫黄化合物を極めて低濃度にまで除去する性能と脱硫後に再生して繰り返し使用する性能を合わせ持つことは難しいという問題を有している。
【0010】
そこで、本発明は、石炭ガス化ガスのような高温還元性ガスを乾式脱硫可能でかつ再生可能な脱硫剤を提供することを目的とする。更には本発明は、石炭等をガス化したガスを燃料電池などの精密な発電機器の燃料として利用するために、硫黄化合物の濃度を数ppmのレベルまで低減可能とする再生可能な脱硫剤を提供することを目的とする。
【0011】
【発明が解決するための手段】
かかる目的を達成するため、本発明は、高温還元性ガス中の硫黄化合物を吸収除去するための脱硫剤において、銅および鉄からなる二元系酸化物を含有するようにしている。二元系酸化物のうちCu/Feの重量比は0.3から1.0の範囲にあることが好ましい。これはCuとFeの元素比率を銅フェライトの元素比率と同程度にすることで、銅−鉄二元系酸化物の主成分を銅フェライトとするためである。
【0012】
ここで、脱硫剤は、銅および鉄からなる二元系酸化物だけで構成しても良いが、少なくとも二元系酸化物を10重量%以上含有すれば脱硫剤として機能する。そこで、銅および鉄からなる二元系酸化物は、10から100重量%の範囲で含有することが好ましい。脱硫剤に含まれる二元系酸化物が10重量%よりも少なければ脱硫剤としての吸収容量が不足する。
【0013】
また、脱硫剤は、請求項3に示すように、更に耐熱性基材を含有し、かつ二元系酸化物を10重量%以上含有することが好ましい。
【0014】
ここで耐熱性基材としては、反応時の脱硫剤温度で化学的安定性を失い壊れないもの、例えば400℃以上好ましくは850℃程度のガスと接しても化学的安定性を損なわない物質例えば酸化物系セラミック、好ましくはシリカ(SiO2 )、チタニア(TiO2 )、アルミナ(Al2O3)、シリカ−アルミナのいずれかを添加することが望ましい。耐熱性基材そのものは脱硫性能を有していないが、その含有によって二元系酸化物を微粒子化させることによって二元系酸化物の比表面積を大きくして脱硫反応を活発にするものと考えられる。脱硫反応は銅−鉄二元系酸化物と高温還元性ガス中の硫黄化合物との反応であることから、固体と気体とが接触するところから反応する。このため、脱硫性能を持つ金属酸化物と高温還元性ガスとが接触する面積(粒子の比表面積)の大小が脱硫性能に影響する。
【0015】
そこで、請求項5に示すように、銅−鉄二元系酸化物の調製時に耐熱性基材を添加すると、銅−鉄二元系酸化物が微粒子状となって耐熱性基材粒子の間あるいは耐熱性基材の細孔中などに分布する。例えば、銅−鉄二元系酸化物の原料である銅の塩と鉄の塩を含む水溶液に適当量のシリカ(SiO2 )、チタニア(TiO2 )、アルミナ(Al2O3)、シリカ−アルミナ等の耐熱性基材を添加した上でアルカリの水溶液を添加混合することが、銅−鉄二元系酸化物の脱硫性能の向上に有効である。これは銅−鉄二元系酸化物の原料である銅元素、鉄元素を金属イオンを含む溶液の段階であらかじめ耐熱性基材と混ぜ合わせることで、製造される銅−鉄二元系酸化物の耐熱性基材への分散性が高まるためである。銅−鉄二元系酸化物が分散して細かい粒子となると、固体と気体とが接触する面積(粒子の比表面積)が大きくなり、その分だけ有効に反応できる。
【0016】
【発明の実施の形態】
以下、本発明を最良の形態に基づいて詳細に説明する。
【0017】
本発明に係る脱硫剤は、銅および鉄の二元系酸化物を含有して成る。この場合、二元系酸化物のうちCu/Feの重量比が0.3から1.0の範囲にあることが望ましい。これはCuとFeの元素比率を銅フェライトの元素比率と同程度にすることで、銅−鉄二元系酸化物の主成分を銅フェライトとするためである。
【0018】
ここで、脱硫剤は銅−鉄二元系酸化物だけで構成することも可能であるが、少なくとも10重量%以上含有すれば脱硫機能を発揮する。そこで、脱硫剤は、10から100重量%の範囲で銅および鉄からなる二元系酸化物が含有してなる。10重量%よりも少なければ脱硫剤としての吸収容量が不足するからである。
【0019】
また、脱硫剤としては上述の二元系酸化物の他に更に耐熱性基材を含有させることが好ましい。この場合、二元系酸化物は100重量%未満で10重量%以上の範囲で脱硫剤に含有されている。二元系酸化物は耐熱性基材の粒子の間に微粒子となって分布し、あるいはポーラスな耐熱性基材の場合にはその細孔中に侵入することによって微粒子化される。この二元系酸化物の微粒子状での耐熱性基材への分布は、二元系酸化物を製造する際に耐熱性基材を添加することによって容易に達成できる。即ち、銅−鉄二元系酸化物の原料である銅元素、鉄元素を金属イオンを含む溶液の段階であらかじめ耐熱性基材と混ぜ合わせることで、耐熱性基材の粒子の間あるいは粒子の細孔の中に銅−鉄二元系酸化物が微粒子となって生成される。ここで、耐熱性基材としては、高温ガスに対して化学的に安定な物質であれば特に限定されるものではないが、酸化物系セラミックの中でもコスト的にあるいは取り扱い上実用的な例えばシリカ(SiO2 )、チタニア(TiO2 )、アルミナ(Al2O3)、シリカ−アルミナのいずれかの使用が好ましい。
【0020】
即ち、本発明の脱硫剤は、単独では還元性のガス中の硫黄化合物を低濃度にまで除去不可能な酸化鉄と酸化銅の両者を原料の段階で混合し、銅−鉄二元系酸化物としたものである。本脱硫剤は銅の塩と鉄の塩を適切な割合で含む水溶液に水酸化ナトリウム、水酸化カリウムなどのアルカリの水溶液を添加混合することで生成する沈殿混合物を洗浄、乾燥、焼成することによって得られる。この場合、銅の塩としては硝酸銅、硫酸銅、塩化銅等の銅化合物が使用可能であり、鉄の塩としては硝酸鉄、硫酸鉄、塩化鉄等の鉄化合物が使用可能である。この銅−鉄二元系酸化物については銅フェライトが主成分であることが、X線回折で確認できた。
【0021】
(再生工程)
銅−鉄二元系酸化物脱硫剤の再生は、酸化鉄や酸化銅の再生と同じである。即ち、銅−鉄二元系酸化物は400℃〜800℃の高温で還元ガス中の硫黄化合物を吸収して銅−鉄系硫化物に転化するが、これを450℃〜850℃の温度で酸素を含有するガスと接触させれば再び銅−鉄二元系酸化物に戻る。
【0022】
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。
【0023】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0024】
(実施例1)
銅−鉄二元系酸化物を以下の方法により製造した。硝酸銅三水和物48gおよび硝酸鉄(III )九水和物162gを水に溶かし全量を800mlとした水溶液を60℃に加温し、そこに水酸化ナトリウム64gを水に溶かし全量を400mlとした水溶液を撹拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕した後、700℃で4時間焼成し、Cu/Feの重量比が0.57である100重量%の銅−鉄二元系酸化物粉末を得た。
【0025】
(実施例2)
また、耐熱性基材としてシリカ(SiO2 )を含む銅−鉄二元系酸化物を以下の方法により製造した。硝酸銅三水和物48gおよび硝酸鉄(III )九水和物162gを水に溶かし全量を700mlとした水溶液にシリカゾルを116g加えた。加えたシリカゾルは得られる粉末中にシリカが33重量%含まれる量である。このようにして得られた混合水溶液を60℃に加温し、そこに水酸化ナトリウム64gを水に溶かし全量を400mlとした水溶液を撹拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕した後700℃で4時間焼成し、シリカを添加した銅−鉄二元系酸化物粉末を得た。得られた粉末は、Cu/Fe重量比が0.57の銅−鉄二元系酸化物を67重量%、シリカを33重量%含んでいる。
【0026】
(比較例1)
脱硫性能を比較するために酸化銅、酸化鉄の粉末を製造した。酸化銅は以下の方法により製造した。硝酸銅三水和物72gを水に溶かし全量を600mlとした水溶液を60℃に加温し、そこに水酸化ナトリウム24gを水に溶かし全量を150mlとした水溶液を撹拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕した後、700℃で4時間焼成し、酸化銅粉末を得た。
【0027】
(比較例2)
酸化鉄は以下の方法により製造した。硝酸鉄(III )九水和物242gを水に溶かし全量を600mlとした水溶液を60℃に加温し、そこに水酸化ナトリウム72gを水に溶かし全量を450mlとした水溶液を撹拌しつつ少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、粉砕した後、700℃で4時間焼成し、酸化鉄粉末を得た。
【0028】
(脱硫性能評価)
以上のようにして得られた銅−鉄二元系酸化物粉末ならびにシリカを添加した銅−鉄二元系酸化物粉末を常圧固定床流通式反応装置にて表1の条件で脱硫性能を評価した。比較として同様の表1の条件で酸化銅および酸化鉄の脱硫性能を評価した。
【0029】
【表1】
【0030】
図1に評価結果を示す。酸化銅および酸化鉄では反応開始後5分以内に反応器出口ガス中の硫黄化合物濃度が上昇し、1ppm以下まで硫黄化合物を除去することはできないことがわかる。一方、銅−鉄二元系酸化物粉末は硫黄化合物を低濃度まで除去することができ、しかも1ppm以下の濃度を約115分維持することがわかる。また、シリカを添加した銅−鉄二元系酸化物粉末はさらに脱硫性能が向上し、1ppm以下の濃度を約170分維持することがわかる。
【0031】
評価試験は試料重量を同一としたので、シリカを添加した銅−鉄二元系酸化物粉末にはシリカが33重量%含まれており、シリカを添加していないものに比較して硫黄分を吸収する金属成分の含有量が少ない。銅−鉄二元系酸化物重量あたりで比較すると、シリカを添加することによって1ppm以下に硫黄化合物を除去する時間が約2.2倍にのびる結果となった。さらにシリカを添加することによって、一酸化炭素を含む高温還元性ガス中の硫黄化合物を除去する際の副反応である炭素析出反応が抑制される効果もあった。
【0032】
(銅−鉄二元系酸化物脱硫剤の再生)
シリカを転化した銅−鉄二元系硫化物を脱硫反応に共した後、酸素1.5容積%、窒素98.5容積%の組成のガスと、650℃で80分反応させた。これにより、脱硫後の試料を再び銅−鉄二元系酸化物に戻すことができた。
【0033】
このように銅および鉄からなる二元系酸化物は石炭ガス化ガスなどの高温還元性ガス中の硫黄化合物を酸化銅あるいは酸化鉄では除去できない低濃度にまで吸収除去することが明らかである。その性能は二元系酸化物に更に耐熱性基材を含有させることによってさらに向上させ得ることも明らかとなった。そして、この二元系酸化物の耐熱性基材の表面への展開は、二元系酸化物の製造時に耐熱性基材を添加することによって容易に達成できた。この優れた脱硫性能は酸化銅または酸化鉄にはなく、銅−鉄系二元系酸化物とすることによって新たに発現したものである。
【0034】
【発明の効果】
以上説明したように本発明の脱硫剤を使用すれば、石炭等をガス化したガスに含まれる硫黄化合物を充分低濃度に低減することが可能となり、しかもその効果は長時間維持される。
【図面の簡単な説明】
【図1】銅−鉄二元系酸化物粉末と比較のための酸化銅、酸化鉄粉末との評価試験における反応器出口ガス中硫黄化合物濃度の時間変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desulfurizing agent. More specifically, the present invention relates to a desulfurization agent for absorbing and removing sulfur compounds contained in a high-temperature reducing gas obtained by gasifying heavy oil or its distillation residue, coal and the like in a dry manner.
[0002]
[Prior art]
In recent years, various methods have been proposed in which gas obtained by directly gasifying coal or heavy oil is used for power generation. For example, coal gasification that drives a gas turbine by using gas generated by gasification of coal (hereinafter simply referred to as gasification gas) to drive the gas turbine and heat generated in the gasification process or combustion process. Combined power generation is a typical example. In addition, a power generation method for converting gasified gas such as coal directly into electric power with a fuel cell such as a molten carbonate fuel cell has been actively studied.
[0003]
By the way, gasified gas usually contains several hundred to several thousand ppm of sulfur compounds such as hydrogen sulfide, carbonyl sulfide, and carbon disulfide, and from the viewpoint of pollution prevention, the equipment using gasified gas is also used. Also from the viewpoint of preventing deterioration of equipment to be treated, it is required to desulfurize from the gasified gas.
[0004]
In this case, dry desulfurization that can effectively use sensible heat of gasification gas is desired from the viewpoint of effective utilization of coal resources and the like. As a desulfurization agent for dry desulfurization, metal oxides are generally used. However, metal oxides react with sulfur compounds, that is, desulfurize and convert to metal sulfides. In order to use it, it is necessary to be able to re-desulfurize what has been used once by a simple process.
[0005]
Examples of the desulfurizing agent satisfying such conditions include iron oxide and copper oxide. Iron oxide absorbs the sulfur compound in the reducing gas at a high temperature of 400 to 600 ° C. and converts it into iron sulfide (FeS). If this is brought into contact with a gas containing oxygen at a temperature of 450 to 850 ° C., it again. Return to iron oxide. By utilizing this property, iron oxide becomes a desulfurizing agent that can be used repeatedly.
[0006]
Copper oxide absorbs sulfur compounds in the reducing gas at a high temperature of 400 to 800 ° C. and converts it into copper sulfide (CuS), which is brought into contact with a gas containing oxygen at a temperature of 550 to 850 ° C. Return to copper oxide again. This copper oxide has a property of reducing sulfur compounds in an oxidizing gas such as combustion exhaust gas to an extremely low concentration.
[0007]
[Problems to be solved by the invention]
However, iron oxide has been able to reduce the concentration of sulfur compounds only to about 30 ppm in the gasification gas, depending on the operating conditions. Further, copper oxide is reduced in a reducing gas obtained by gasifying coal or the like, and converted into simple copper (Cu). Copper alone does not have the ability to lower the concentration of sulfur compounds in the gas as much as copper oxide, and in gas that is gasified from coal, etc., depending on the operating conditions, the concentration of sulfur compounds can only be reduced to about 10 ppm. There wasn't.
[0008]
Thus, since the removal limit of sulfur compounds is high in iron oxide and copper oxide, it is not practical as a gas desulfurization agent used in equipment such as fuel cells whose performance is deteriorated even by the presence of a small amount of sulfur compounds. It was.
[0009]
That is, it is difficult for a conventional desulfurizing agent made of a single metal oxide to have both the ability to remove sulfur compounds in a reducing gas to a very low concentration and the ability to regenerate and repeatedly use after desulfurization. Have a problem.
[0010]
Then, an object of this invention is to provide the desulfurization agent which can dry-desulfurize and regenerate high temperature reducing gas like coal gasification gas. Furthermore, the present invention provides a renewable desulfurizing agent that can reduce the concentration of a sulfur compound to a level of several ppm in order to use a gas obtained by gasifying coal or the like as a fuel for precision power generation equipment such as a fuel cell. The purpose is to provide.
[0011]
[Means for Solving the Invention]
In order to achieve such an object, the present invention contains a binary oxide composed of copper and iron in a desulfurization agent for absorbing and removing sulfur compounds in a high-temperature reducing gas. Of the binary oxides, the weight ratio of Cu / Fe is preferably in the range of 0.3 to 1.0. This is because the main component of the copper-iron binary oxide is copper ferrite by setting the element ratio of Cu and Fe to the same level as that of copper ferrite.
[0012]
Here, the desulfurizing agent may be composed of only a binary oxide composed of copper and iron, but functions as a desulfurizing agent if it contains at least 10 wt% of the binary oxide. Therefore, the binary oxide composed of copper and iron is preferably contained in the range of 10 to 100% by weight. If the binary oxide contained in the desulfurizing agent is less than 10% by weight, the absorption capacity as the desulfurizing agent is insufficient.
[0013]
Further, as shown in claim 3, the desulfurizing agent preferably further contains a heat-resistant substrate and contains 10% by weight or more of the binary oxide.
[0014]
Here, as the heat-resistant substrate, a material that does not lose its chemical stability at the temperature of the desulfurizing agent during the reaction and does not break, for example, a substance that does not impair the chemical stability even when in contact with a gas of 400 ° C. or higher, preferably about 850 ° C. It is desirable to add an oxide ceramic, preferably silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), or silica-alumina. Although the heat-resistant substrate itself does not have desulfurization performance, it is thought that the inclusion of the heat-resistant substrate makes the binary oxide finer to increase the specific surface area of the binary oxide and activate the desulfurization reaction. It is done. Since the desulfurization reaction is a reaction between the copper-iron binary oxide and the sulfur compound in the high-temperature reducing gas, it reacts from where the solid and the gas come into contact. For this reason, the size of the area (specific surface area of the particles) where the metal oxide having desulfurization performance and the high-temperature reducing gas come into contact affects the desulfurization performance.
[0015]
Therefore, as shown in claim 5, when a heat-resistant base material is added at the time of preparation of the copper-iron binary oxide, the copper-iron binary oxide becomes fine particles between the heat-resistant base particles or heat resistant. Distributed in the pores of the conductive substrate. For example, an appropriate amount of silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), silica-alumina in an aqueous solution containing a copper salt and an iron salt, which are raw materials for copper-iron binary oxides It is effective to improve the desulfurization performance of the copper-iron binary oxide by adding an aqueous solution of an alkali after adding a heat-resistant substrate such as the above. This is the heat resistance of the copper-iron binary oxide produced by mixing the copper element, which is the raw material of the copper-iron binary oxide, with the heat resistant substrate in advance in the solution stage containing the metal ions. This is because the dispersibility to the conductive base material is enhanced. When the copper-iron binary oxide is dispersed to form fine particles, the area where the solid and the gas come into contact (the specific surface area of the particles) increases, and the reaction can be effectively performed by that amount.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the best mode.
[0017]
The desulfurizing agent according to the present invention contains a binary oxide of copper and iron. In this case, the Cu / Fe weight ratio in the binary oxide is preferably in the range of 0.3 to 1.0. This is because the main component of the copper-iron binary oxide is copper ferrite by setting the element ratio of Cu and Fe to the same level as that of copper ferrite.
[0018]
Here, the desulfurizing agent can be composed of only a copper-iron binary oxide, but if it contains at least 10% by weight, it exhibits a desulfurization function. Therefore, the desulfurizing agent contains a binary oxide composed of copper and iron in the range of 10 to 100% by weight. This is because if it is less than 10% by weight, the absorption capacity as a desulfurizing agent is insufficient.
[0019]
Further, as the desulfurizing agent, it is preferable to further contain a heat-resistant substrate in addition to the above binary oxide. In this case, the binary oxide is contained in the desulfurizing agent in a range of less than 100 wt% and 10 wt% or more. The binary oxide is distributed as fine particles between particles of the heat-resistant substrate, or in the case of a porous heat-resistant substrate, it is finely divided by entering into the pores. Distribution of the binary oxide to the heat-resistant substrate in the form of fine particles can be easily achieved by adding the heat-resistant substrate when producing the binary oxide. In other words, copper elements and iron elements, which are raw materials for copper-iron binary oxides, are mixed with the heat-resistant substrate in advance at the stage of the solution containing metal ions, so that the fine particles between the particles of the heat-resistant substrate or the fine particles. Copper-iron binary oxides are formed as fine particles in the pores. Here, the heat-resistant substrate is not particularly limited as long as it is a chemically stable substance against a high-temperature gas, but among oxide ceramics, for example, silica that is practical in terms of cost or handling. Use of any one of (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and silica-alumina is preferable.
[0020]
That is, the desulfurizing agent of the present invention is a mixture of both iron oxide and copper oxide, which cannot be removed to a low concentration by a sulfur compound in a reducing gas, at the raw material stage. It is what. This desulfurization agent is obtained by washing, drying, and firing a precipitate mixture formed by adding and mixing an aqueous solution of an alkali such as sodium hydroxide and potassium hydroxide to an aqueous solution containing copper salt and iron salt in an appropriate ratio. can get. In this case, copper compounds such as copper nitrate, copper sulfate and copper chloride can be used as the copper salt, and iron compounds such as iron nitrate, iron sulfate and iron chloride can be used as the iron salt. It was confirmed by X-ray diffraction that the copper-iron binary oxide was mainly composed of copper ferrite.
[0021]
(Regeneration process)
The regeneration of the copper-iron binary oxide desulfurization agent is the same as the regeneration of iron oxide or copper oxide. That is, the copper-iron binary oxide absorbs the sulfur compound in the reducing gas at a high temperature of 400 ° C. to 800 ° C. and converts it into a copper-iron sulfide, which is converted to oxygen at a temperature of 450 ° C. to 850 ° C. If it is made to contact with the gas containing, it will return to a copper-iron binary system oxide again.
[0022]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0024]
Example 1
A copper-iron binary oxide was produced by the following method. An aqueous solution in which 48 g of copper nitrate trihydrate and 162 g of iron nitrate (III) nonahydrate were dissolved in water to make a total amount of 800 ml was heated to 60 ° C., and 64 g of sodium hydroxide was dissolved in water to make a total amount of 400 ml. The aqueous solution was added in small portions with stirring. The produced precipitate was filtered, washed, dried and pulverized, and then calcined at 700 ° C. for 4 hours to obtain a 100 wt% copper-iron binary oxide powder having a Cu / Fe weight ratio of 0.57. .
[0025]
(Example 2)
Moreover, the copper-iron binary type | system | group oxide containing a silica (SiO2) as a heat resistant base material was manufactured with the following method. 116 g of silica sol was added to an aqueous solution in which 48 g of copper nitrate trihydrate and 162 g of iron (III) nitrate nonahydrate were dissolved in water to make a total amount of 700 ml. The added silica sol is an amount in which 33% by weight of silica is contained in the obtained powder. The mixed aqueous solution thus obtained was heated to 60 ° C., and an aqueous solution in which 64 g of sodium hydroxide was dissolved in water to make a total amount of 400 ml was added little by little while stirring. The produced precipitate was filtered, washed, dried and pulverized and then calcined at 700 ° C. for 4 hours to obtain a copper-iron binary oxide powder to which silica was added. The obtained powder contains 67% by weight of a copper-iron binary oxide having a Cu / Fe weight ratio of 0.57 and 33% by weight of silica.
[0026]
(Comparative Example 1)
In order to compare the desulfurization performance, copper oxide and iron oxide powders were produced. Copper oxide was produced by the following method. An aqueous solution in which 72 g of copper nitrate trihydrate was dissolved in water to make a total amount of 600 ml was heated to 60 ° C., and an aqueous solution in which 24 g of sodium hydroxide was dissolved in water to make the
[0027]
(Comparative Example 2)
Iron oxide was produced by the following method. An aqueous solution in which 242 g of iron (III) nitrate nonahydrate was dissolved in water to make a total amount of 600 ml was heated to 60 ° C., and then an aqueous solution in which 72 g of sodium hydroxide was dissolved in water and the total amount was 450 ml was stirred little by little. Added. The produced precipitate was filtered, washed, dried and pulverized and then calcined at 700 ° C. for 4 hours to obtain an iron oxide powder.
[0028]
(Desulfurization performance evaluation)
The desulfurization performance of the copper-iron binary oxide powder obtained as described above and the copper-iron binary oxide powder added with silica was evaluated under the conditions shown in Table 1 in a normal pressure fixed bed flow reactor. . For comparison, the desulfurization performance of copper oxide and iron oxide was evaluated under the same conditions in Table 1.
[0029]
[Table 1]
[0030]
FIG. 1 shows the evaluation results. It can be seen that with copper oxide and iron oxide, the concentration of the sulfur compound in the reactor outlet gas increases within 5 minutes after the start of the reaction, and the sulfur compound cannot be removed to 1 ppm or less. On the other hand, it can be seen that the copper-iron binary oxide powder can remove sulfur compounds to a low concentration and maintain a concentration of 1 ppm or less for about 115 minutes. It can also be seen that the copper-iron binary oxide powder to which silica is added further improves the desulfurization performance and maintains a concentration of 1 ppm or less for about 170 minutes.
[0031]
Since the sample weight was the same in the evaluation test, the copper-iron binary oxide powder to which silica was added contained 33% by weight of silica and absorbed sulfur as compared with the case in which silica was not added. There is little content of metal component to do. When compared with the weight of the copper-iron binary oxide, the time for removing the sulfur compound to 1 ppm or less by adding silica was about 2.2 times. Furthermore, the addition of silica also has the effect of suppressing the carbon precipitation reaction, which is a side reaction when removing sulfur compounds in the high-temperature reducing gas containing carbon monoxide.
[0032]
(Regeneration of copper-iron binary oxide desulfurization agent)
The copper-iron binary sulfide obtained by converting silica was used in the desulfurization reaction, and then reacted with a gas having a composition of 1.5% by volume of oxygen and 98.5% by volume of nitrogen at 650 ° C. for 80 minutes. Thereby, the sample after desulfurization was able to be returned to the copper-iron binary oxide again.
[0033]
Thus, it is clear that the binary oxide composed of copper and iron absorbs and removes sulfur compounds in a high-temperature reducing gas such as coal gasification gas to a low concentration that cannot be removed by copper oxide or iron oxide. It has also been clarified that the performance can be further improved by further including a heat-resistant substrate in the binary oxide. The development of the binary oxide on the surface of the heat-resistant substrate could be easily achieved by adding the heat-resistant substrate during the production of the binary oxide. This excellent desulfurization performance is not found in copper oxide or iron oxide, but is newly developed by using a copper-iron binary oxide.
[0034]
【The invention's effect】
As described above, when the desulfurizing agent of the present invention is used, the sulfur compound contained in the gas obtained by gasifying coal or the like can be reduced to a sufficiently low concentration, and the effect is maintained for a long time.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a change with time of a sulfur compound concentration in a reactor outlet gas in an evaluation test of copper oxide and iron oxide powder for comparison with a copper-iron binary oxide powder.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19211296A JP3615626B2 (en) | 1996-07-22 | 1996-07-22 | Desulfurization agent and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19211296A JP3615626B2 (en) | 1996-07-22 | 1996-07-22 | Desulfurization agent and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1033978A JPH1033978A (en) | 1998-02-10 |
JP3615626B2 true JP3615626B2 (en) | 2005-02-02 |
Family
ID=16285872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19211296A Expired - Fee Related JP3615626B2 (en) | 1996-07-22 | 1996-07-22 | Desulfurization agent and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3615626B2 (en) |
-
1996
- 1996-07-22 JP JP19211296A patent/JP3615626B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1033978A (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3936371A (en) | Method for removing vanadium, nickel, and sulfur from hydrocarbon oils | |
US5714431A (en) | Zinc titanate sorbents | |
US5227351A (en) | Sorbent for use in hot gas desulfurization | |
US5753198A (en) | Hot coal gas desulfurization | |
CA2153748C (en) | Alumina-based catalyst for the treatment of gases containing sulphur compounds, use of these catalysts for the treatment and processes for treatment of the said gases | |
JP3615626B2 (en) | Desulfurization agent and method for producing the same | |
JP4424653B2 (en) | Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method | |
US6129833A (en) | Catalytic cracking with reduced emission of sulfur oxides | |
RU2103058C1 (en) | Catalyst and method for treating gases containing sulfur compounds | |
JP2594337B2 (en) | Desulfurizing agent | |
US5693588A (en) | Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide | |
JP3242514B2 (en) | City gas desulfurization method | |
JP3762795B2 (en) | Desulfurization agent and method for producing the same | |
JP4053678B2 (en) | Desulfurization agent and its regeneration method | |
JPWO2002074883A1 (en) | Desulfurizing agent, method for producing and using the same | |
JP2633886B2 (en) | Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it | |
JP3998218B2 (en) | Carbon deposition control desulfurization agent | |
KR100653046B1 (en) | Method for removal of hydrogen sulfide by reaction of catalyst | |
KR100413379B1 (en) | Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same | |
PT1087831E (en) | Attrition resistant, zinc titanate-containing, reduced sulfur sorbents | |
KR100413378B1 (en) | Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same | |
KR100558971B1 (en) | Reformed Zinc Titanate Sorbent Composition and Method thereof | |
KR100413380B1 (en) | Regenerable manganese-based sorbents(MOA) for removal of hydrogen sulfide and method for preparing the same | |
CN114146711B (en) | Sulfur-resistant halogenated volatile organic catalytic combustion monolithic catalyst and preparation method thereof | |
JP2000202279A (en) | Desulfurizing agent and method for regenerating same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040721 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040728 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041027 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20041101 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20101112 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111112 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121112 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20121112 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |