JP5595961B2 - Cu-Ni-Si based copper alloy for electronic materials and method for producing the same - Google Patents
Cu-Ni-Si based copper alloy for electronic materials and method for producing the same Download PDFInfo
- Publication number
- JP5595961B2 JP5595961B2 JP2011076566A JP2011076566A JP5595961B2 JP 5595961 B2 JP5595961 B2 JP 5595961B2 JP 2011076566 A JP2011076566 A JP 2011076566A JP 2011076566 A JP2011076566 A JP 2011076566A JP 5595961 B2 JP5595961 B2 JP 5595961B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- copper alloy
- aging
- mass
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は析出硬化型銅合金に関し、とりわけ各種電子部品に用いるのに好適なCu−Ni−Si系銅合金に関する。 The present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si based copper alloy suitable for use in various electronic components.
コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。 Copper alloys for electronic materials used in various electronic parts such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Is done. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.
高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。 From the viewpoint of high strength and high conductivity, the amount of precipitation hardening type copper alloys is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. . In precipitation-hardened copper alloys, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, increasing the strength of the alloy, and at the same time reducing the amount of solid solution elements in copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.
析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu−Ni−Si系銅合金は比較的高い導電性、強度、及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図られる。 Among precipitation hardening copper alloys, Cu-Ni-Si copper alloys, commonly called Corson alloys, are representative copper alloys that have relatively high electrical conductivity, strength, and bending workability, and are currently active in the industry. It is one of the alloys being developed. In this copper alloy, strength and electrical conductivity are improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.
特表2005−532477号公報(特許文献1)には、Cu−Ni−Si−Co系合金の製造工程における各焼鈍を段階的焼鈍プロセスとすることができ、典型的には、段階的焼鈍において、第一工程は、第二工程よりも高い温度であり、段階的焼鈍は、一定温度での焼鈍に比べて、強度と導電性のより良好な組合せをもたらしうることが記載されている。 In Japanese translations of PCT publication No. 2005-532477 (patent document 1), each annealing in the manufacturing process of a Cu-Ni-Si-Co-based alloy can be a staged annealing process, and typically in staged annealing. It is described that the first step is at a higher temperature than the second step, and stepped annealing can result in a better combination of strength and conductivity than annealing at a constant temperature.
特開2006−283059号公報(特許文献2)には、耐力が700N/mm2以上、導電率が35%IACS以上、かつ曲げ加工性にも優れたコルソン(Cu−Ni−Si系)銅合金板を得ることを目的として、銅合金鋳塊に対し、必要に応じて熱間圧延し急冷した後、冷間圧延を行い、連続焼鈍を行って溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400〜600℃×1〜8時間の時効処理を行い、続いて加工率1〜20%の最終冷間圧延後、400〜550℃×30秒以下の短時間焼鈍を行う高強度銅合金板の製造方法が記載されている。 JP 2006-283059 A (Patent Document 2) describes a Corson (Cu—Ni—Si) copper alloy having a yield strength of 700 N / mm 2 or more, an electrical conductivity of 35% IACS or more, and excellent bending workability. For the purpose of obtaining a plate, the copper alloy ingot is hot-rolled and rapidly cooled as necessary, then cold-rolled and continuously annealed to obtain a solution recrystallized structure, and then the processing rate Cold rolling at 20% or less and aging treatment at 400 to 600 ° C. for 1 to 8 hours, followed by short annealing at 400 to 550 ° C. for 30 seconds or less after final cold rolling at a processing rate of 1 to 20% A method for producing a high-strength copper alloy sheet is described.
また、コルソン(Cu−Ni−Si系)銅合金板については強度、導電性、及びばね限界値を向上させるため種々の取り組みが行われている(特許文献3〜特許文献6)。 Moreover, various efforts have been made to improve the strength, conductivity, and spring limit value of the Corson (Cu—Ni—Si based) copper alloy plate (Patent Documents 3 to 6).
このように、従来、強度、導電性及びばね限界値を改善するための努力が払われてきたが、未だ改善の余地は残されている。そこで、本発明は強度、導電性及びばね限界値のバランスを向上させたCu−Ni−Si系合金を提供することを課題の一つとする。また、本発明はそのようなCu−Ni−Si系合金の製造方法を提供することを別の課題の一つとする。 In this way, efforts have been made to improve the strength, conductivity, and spring limit value, but there is still room for improvement. Therefore, an object of the present invention is to provide a Cu—Ni—Si alloy having an improved balance of strength, conductivity, and spring limit value. Another object of the present invention is to provide a method for producing such a Cu—Ni—Si alloy.
本発明者は、上記課題を解決するために、鋭意研究を重ねたところ、溶体化処理後の時効処理を特定の温度及び時間条件で多段時効を3段階で実施すると、強度及び導電性に加えてばね限界値が有意に向上することを発見した。そこで、この原因について調査したところ、X線回折法によって得られる圧延面の結晶方位について、圧延面の{200}Cu面に対し55°(測定条件上、α=35°)の位置関係にある{111}Cu面の回折ピークでのβ角度90°のピーク高さが銅粉末のそれに対して2.5倍以上であるという特異性を有することを見出した。このような回折ピークが得られた理由は不明であるが、第二相粒子の微細な分布状態が影響を与えていると考えられる。 The present inventor conducted extensive research to solve the above problems. As a result, when the aging treatment after the solution treatment was performed in three stages under specific temperature and time conditions, in addition to strength and conductivity, We found that the spring limit value improved significantly. Thus, when the cause was investigated, the crystal orientation of the rolled surface obtained by the X-ray diffraction method was in a positional relationship of 55 ° (α = 35 ° on measurement conditions) with respect to the {200} Cu surface of the rolled surface. It has been found that the peak height at the β angle of 90 ° in the diffraction peak of the {111} Cu surface has a specificity of 2.5 times or more that of the copper powder. The reason why such a diffraction peak was obtained is unknown, but it is considered that the fine distribution state of the second phase particles has an influence.
上記の知見を基礎として完成した本発明は一側面において、Ni:1.0〜4.0質量%、Si:0.2〜1.0質量%を含有し、残部がCu及び不可避不純物からなる電子材料用銅合金であって、圧延面を基準としたX線回折極点図測定により得られる結果で、α=35°におけるβ走査による{200}Cu面に対する{111}Cu面の回折ピーク強度のうち、β角度90°のピーク高さが標準銅粉末のそれに対して2.5倍以上である銅合金である。 The present invention completed on the basis of the above knowledge includes, in one aspect, Ni: 1.0 to 4.0 mass%, Si: 0.2 to 1.0 mass%, with the balance being Cu and inevitable impurities. Diffraction peak intensity of {111} Cu surface with respect to {200} Cu surface by β scanning at α = 35 ° as a result of X-ray diffraction pole figure measurement based on rolled surface, which is a copper alloy for electronic materials Among them, a copper alloy having a peak height at a β angle of 90 ° is 2.5 times or more that of standard copper powder.
本発明に係る銅合金は更に別の一実施形態において、Siの質量濃度に対するNiの質量濃度の比i/Siが3.5≦Ni/Si≦5.5を満たす。 In yet another embodiment of the copper alloy according to the present invention, the ratio i / Si of the mass concentration of Ni to the mass concentration of Si satisfies 3.5 ≦ Ni / Si ≦ 5.5.
本発明に係る銅合金は更に別の一実施形態において、更にCr、Mg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する。 In yet another embodiment, the copper alloy according to the present invention is further selected from the group consisting of Cr, Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag. At least one kind is contained in a maximum of 2.0% by mass in total.
本発明は別の一側面において、
−上記何れかに記載の組成をもつ銅合金のインゴットを溶解鋳造する工程1と、
−900℃以上1000℃以下で1時間以上加熱後に熱間圧延を行う工程2と、
−冷間圧延工程3と、
−700℃以上900℃以下で溶体化処理を行い、400℃までの平均冷却速度を毎秒10℃以上として冷却する工程4と、
−材料温度を400〜500℃として1〜12時間加熱する一段目と、次いで、材料温度を350〜450℃として1〜12時間加熱する二段目と、次いで、材料温度を260〜340℃として4〜30時間加熱する三段目を有し、一段目から二段目までの冷却速度及び二段目から三段目までの冷却速度はそれぞれ0.1〜8℃/分とし、一段目と二段目の温度差を20〜60℃とし、二段目と三段目の温度差を20〜180℃として多段時効する第一の時効処理工程5と、
−冷間圧延工程6と、
−100℃以上350℃未満で1〜48時間行う第二の時効処理工程7と、
を順に行うことを含む上記銅合金の製造方法である。
In another aspect of the present invention,
-Step 1 of melting and casting an ingot of a copper alloy having any of the above compositions;
Step 2 of performing hot rolling after heating at −900 ° C. or higher and 1000 ° C. or lower for 1 hour or longer,
-Cold rolling process 3;
Step 4 of performing solution treatment at −700 ° C. or more and 900 ° C. or less, and cooling at an average cooling rate up to 400 ° C. at 10 ° C. or more per second;
-The first stage of heating at a material temperature of 400-500 ° C for 1-12 hours, the second stage of heating at a material temperature of 350-450 ° C for 1-12 hours, and then the material temperature of 260-340 ° C It has a third stage that is heated for 4 to 30 hours, and the cooling rate from the first stage to the second stage and the cooling rate from the second stage to the third stage are 0.1 to 8 ° C./min. A first aging treatment step 5 in which the second stage temperature difference is set to 20 to 60 ° C., and the second stage and third stage temperature difference is set to 20 to 180 ° C. to perform multi-stage aging;
-Cold rolling process 6;
A second aging treatment step 7 carried out at -100 ° C or higher and lower than 350 ° C for 1 to 48 hours;
It is a manufacturing method of the said copper alloy including performing these in order.
本発明は更に別の一側面において、本発明に係る銅合金からなる伸銅品である。 In yet another aspect, the present invention is a copper drawn product made of the copper alloy according to the present invention.
本発明は更に別の一側面において、本発明に係る銅合金を備えた電子部品である。 In still another aspect, the present invention is an electronic component including the copper alloy according to the present invention.
本発明によって、強度、導電性、ばね限界値が共に優れた電子材料用のCu−Ni−Si系合金が提供される。 The present invention provides a Cu—Ni—Si based alloy for electronic materials that is excellent in strength, conductivity, and spring limit value.
Ni、及びSiの添加量
Ni、及びSiは、適当な熱処理を施すことにより金属間化合物を形成し、導電率を劣化させずに高強度化が図れる。
Ni、及びSiの添加量がそれぞれNi:1.0質量%未満、Si:0.2質量%未満では所望の強度が得られず、逆に、Ni:4.0質量%超、Si:1.0質量%超では高強度化は図れるが導電率が著しく低下し、更には熱間加工性が劣化する。よってNi及びSiの添加量はNi:1.0〜4.0質量%、Si:0.2〜1.0質量%とした。Ni及びSiの添加量は好ましくは、Ni:1.5〜3.0質量%、Si:0.3〜0.8質量%である。
Addition amounts of Ni and Si Ni and Si form an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity.
If the addition amounts of Ni and Si are less than Ni: 1.0% by mass and Si: less than 0.2% by mass, the desired strength cannot be obtained. Conversely, Ni: more than 4.0% by mass, Si: 1 If it exceeds 0.0 mass%, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Ni and Si were set to Ni: 1.0 to 4.0% by mass and Si: 0.2 to 1.0% by mass. The addition amounts of Ni and Si are preferably Ni: 1.5 to 3.0% by mass and Si: 0.3 to 0.8% by mass.
また、Siの質量濃度に対してNiとの質量濃度の比Ni/Siが低すぎる、すなわち、Niに対してSiの比率が高過ぎると、固溶Siにより導電率が低下したり、焼鈍工程において材料表層にSiO2の酸化皮膜を形成して半田付け性が劣化したりする。一方、Siに対するNiの割合が高くすぎると、シリサイド形成に必要なSiが不足して高い強度が得られにくい。
そのため、合金組成中のNi/Si比は3.5≦Ni/Si≦5.5の範囲に制御することが好ましく、4.0≦Ni/Si≦5.0の範囲に制御することがより好ましい。
Moreover, if the ratio Ni / Si of the mass concentration with Ni with respect to the mass concentration of Si is too low, that is, if the ratio of Si with respect to Ni is too high, the solute Si may decrease the conductivity or the annealing process. In this case, an oxide film of SiO 2 is formed on the material surface layer and solderability is deteriorated. On the other hand, if the ratio of Ni to Si is too high, Si required for silicide formation is insufficient and high strength is difficult to obtain.
Therefore, the Ni / Si ratio in the alloy composition is preferably controlled in the range of 3.5 ≦ Ni / Si ≦ 5.5, and more preferably in the range of 4.0 ≦ Ni / Si ≦ 5.0. preferable.
Crの添加量
Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子またはSiとの化合物を生成する。通常のCu−Ni−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%、とりわけ2.0質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、本発明に係るCu−Ni−Si系合金には、Crを最大で2.0質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03〜0.5質量%、より好ましくは0.09〜0.3質量%添加するのがよい。
The added amount Cr of Cr preferentially precipitates at the grain boundaries in the cooling process during melt casting, so that the grain boundaries can be strengthened, cracks during hot working are less likely to occur, and yield reduction can be suppressed. That is, Cr that has precipitated at the grain boundaries during melt casting is re-dissolved by solution treatment or the like, but during subsequent aging precipitation, precipitated particles having a bcc structure mainly composed of Cr or a compound with Si are generated. In a normal Cu—Ni—Si based alloy, Si that does not contribute to aging precipitation suppresses the increase in conductivity while being dissolved in the matrix, but the silicide forming element Cr is not added. By adding and further depositing silicide, the amount of dissolved Si can be reduced, and the conductivity can be increased without impairing the strength. However, if the Cr concentration exceeds 0.5% by mass, especially 2.0% by mass, coarse second-phase particles are easily formed, which impairs product characteristics. Therefore, Cr can be added up to 2.0% by mass to the Cu—Ni—Si based alloy according to the present invention. However, since the effect is small if it is less than 0.03 mass%, it is preferable to add 0.03-0.5 mass%, more preferably 0.09-0.3 mass%.
Mg、Mn、Ag及びPの添加量
Mg、Mn、Ag及びPは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、Mn、Ag及びPの濃度の総計が0.5質量%、とりわけ2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si系合金には、Mg、Mn、Ag及びPから選択される1種又は2種以上を総計で最大2.0質量%、好ましくは最大1.5質量%添加することができる。但し、0.01質量%未満ではその効果が小さいので、好ましくは総計で0.01〜1.0質量%、より好ましくは総計で0.04〜0.5質量%添加するのがよい。
Addition amounts of Mg, Mn, Ag and P Mg, Mn, Ag and P improve the product properties such as strength and stress relaxation characteristics without adding a small amount of addition by adding a small amount. The effect of addition is exhibited mainly by solid solution in the matrix phase, but further effects can be exhibited by inclusion in the second phase particles. However, if the total concentration of Mg, Mn, Ag, and P exceeds 0.5% by mass, particularly 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in the Cu—Ni—Si based alloy according to the present invention, one or two or more selected from Mg, Mn, Ag and P in total is a maximum of 2.0 mass%, preferably a maximum of 1.5 mass. % Can be added. However, since the effect is small if it is less than 0.01% by mass, it is preferable to add 0.01 to 1.0% by mass in total, more preferably 0.04 to 0.5% by mass in total.
Sn及びZnの添加量
Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si系合金には、Sn及びZnから選択される1種又は2種を総計で最大2.0質量%添加することができる。但し、0.05質量%未満ではその効果が小さいので、好ましくは総計で0.05〜2.0質量%、より好ましくは総計で0.5〜1.0質量%添加するのがよい。
Even in the addition amounts Sn and Zn of Sn and Zn, the addition of a small amount improves product properties such as strength, stress relaxation properties, and plating properties without impairing electrical conductivity. The effect of addition is exhibited mainly by solid solution in the matrix. However, if the total amount of Sn and Zn exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, one or two selected from Sn and Zn can be added to the Cu—Ni—Si based alloy according to the present invention in a maximum of 2.0 mass% in total. However, since the effect is small if it is less than 0.05% by mass, it is preferable to add 0.05 to 2.0% by mass in total, and more preferably 0.5 to 1.0% by mass in total.
As、Sb、Be、B、Ti、Zr、Al及びFeの添加量
As、Sb、Be、B、Ti、Zr、Al及びFeにおいても、要求される製品特性に応じて、添加量を調整することで、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有され、若しくは新たな組成の第二相粒子を形成することで一層の効果を発揮させることもできる。しかしながら、これらの元素の総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si系合金には、As、Sb、Be、B、Ti、Zr、Al及びFeから選択される1種又は2種以上を総計で最大2.0質量%添加することができる。但し、0.001質量%未満ではその効果が小さいので、好ましくは総計で0.001〜2.0質量%、より好ましくは総計で0.05〜1.0質量%添加するのがよい。
Addition amounts of As, Sb, Be, B, Ti, Zr, Al, and Fe As, Sb, Be, B, Ti, Zr, Al, and Fe are also adjusted according to required product characteristics. This improves product properties such as conductivity, strength, stress relaxation properties, and plating properties. The effect of addition is exhibited mainly by solid solution in the parent phase, but it can also be exhibited by forming the second phase particles having a new composition or contained in the second phase particles. However, if the total amount of these elements exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in the Cu—Ni—Si based alloy according to the present invention, a total of one or more selected from As, Sb, Be, B, Ti, Zr, Al and Fe is up to 2.0 mass% in total. Can be added. However, since the effect is small if it is less than 0.001% by mass, it is preferable to add 0.001-2.0% by mass in total, more preferably 0.05-1.0% by mass in total.
上記したCr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeの添加量が合計で2.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は2.0質量%以下とし、より好ましくは1.5質量%以下とする。 Manufacturability is liable to be impaired when the total amount of Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al, and Fe exceeds 2.0% by mass. Therefore, preferably the total of these is 2.0% by mass or less, more preferably 1.5% by mass or less.
結晶方位
本発明に係る銅合金は、圧延面を基準としたX線回折極点図測定により得られる結果で、α=35°におけるβ走査による{200}Cu面に対する{111}Cu面の回折ピーク強度のうち、β角度90°のピーク高さの標準銅粉末のそれに対する比率(以下、「β角度90°のピーク高さ比率」という。)が2.5倍以上である。{111}Cu面の回折ピークでのβ角度90°のピーク高さを制御することによってばね限界値が向上する理由は必ずしも明らかではなく、あくまでも推定であるが、1回目の時効処理を3段時効にすることで、1段目及び2段目で析出した第2相粒子の成長及び3段目で析出した第2相粒子により、次工程の圧延で加工歪が蓄積されやすくなり、蓄積した加工歪を駆動力として、第2の時効処理で集合組織が発達すると考えられる。
β角度90°のピーク高さ比率は好ましくは2.8倍以上であり、より好ましくは3.0倍以上である。純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
Crystal orientation The copper alloy according to the present invention is a result obtained by X-ray diffraction pole figure measurement based on the rolled surface, and the diffraction peak of the {111} Cu surface relative to the {200} Cu surface by β scanning at α = 35 ° Among the intensities, the ratio of the peak height at the β angle of 90 ° to that of the standard copper powder (hereinafter referred to as “peak height ratio at the β angle of 90 °”) is 2.5 times or more. The reason why the spring limit value is improved by controlling the peak height at the β angle of 90 ° at the diffraction peak of the {111} Cu surface is not necessarily clear and is only an estimate, but the first aging treatment is performed in three stages. By aging, the growth of the second phase particles precipitated in the first stage and the second stage and the second phase particles precipitated in the third stage make it easy to accumulate work strains in the next rolling process and accumulate them. It is considered that the texture develops by the second aging treatment using the processing strain as a driving force.
The peak height ratio at a β angle of 90 ° is preferably 2.8 times or more, more preferably 3.0 times or more. The pure copper standard powder is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).
{111}Cu面の回折ピークでのβ角度90°のピーク高さは、以下の手順で測定する。ある1つの回折面{hkl}Cuに着目して、着目した{hkl}Cu面の2θ値に対し(検出器の走査角2θを固定し)、α軸走査をステップで行い、角α値に対して試料をβ軸走査(0〜360°まで面内回転(自転))させる測定方法を極点図測定という。なお、本発明のXRD極点図測定では、試料面に垂直方向をα=90°と定義し、測定の基準とする。また、極点図測定は、反射法(α:−15°〜90°)で測定とする。本発明では、α=35°のβ角度に対する強度をプロットして、β=85°〜95°の範囲で最も高い強度を90°のピーク値として読み取る。 The peak height at the β angle of 90 ° at the diffraction peak of the {111} Cu plane is measured by the following procedure. Focusing on a certain diffractive surface {hkl} Cu, with respect to the 2θ value of the focused {hkl} Cu surface (fixing the scanning angle 2θ of the detector), α-axis scanning is performed in steps to obtain the angle α value. On the other hand, a measurement method in which the sample is scanned on the β axis (in-plane rotation (rotation) from 0 to 360 °) is called pole figure measurement. In the XRD pole figure measurement of the present invention, the direction perpendicular to the sample surface is defined as α = 90 °, which is used as a measurement reference. In addition, the pole figure measurement is performed by a reflection method (α: −15 ° to 90 °). In the present invention, the intensity with respect to the β angle of α = 35 ° is plotted, and the highest intensity in the range of β = 85 ° to 95 ° is read as the peak value of 90 °.
製造方法
コルソン系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、約700〜約900℃の高温で加熱して、第二相粒子をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約350〜約550℃の温度範囲で1時間以上加熱し、溶体化処理で固溶させた第二相粒子をナノメートルオーダーの微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。
上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。
Manufacturing Method In a general manufacturing process of a Corson copper alloy, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, etc., and a molten metal having a desired composition is obtained. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 700 to about 900 ° C., so that the second phase particles are dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, the second phase particles heated in a temperature range of about 350 to about 550 ° C. for 1 hour or more and solid-dissolved by the solution treatment are precipitated as fine particles of nanometer order. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. Moreover, when performing cold rolling after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.
Between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.
本発明に係る銅合金においても上記の製造プロセスを経るが、最終的に得られる銅合金の特性が本発明で規定するような範囲となるためには、熱間圧延、溶体化処理および時効処理条件を厳密に制御して行なうことが重要である。 The copper alloy according to the present invention also undergoes the manufacturing process described above, but in order for the properties of the finally obtained copper alloy to be in the range specified by the present invention, hot rolling, solution treatment and aging treatment are performed. It is important that the conditions are strictly controlled.
まず、鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成するため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要がある。900℃〜1000℃で1時間以上保持後に熱間圧延を行えば母相中に固溶することができる。また、熱間圧延終了後は速やかに冷却することが望ましい。 First, coarse crystallized products are inevitably generated during the solidification process during casting, and coarse precipitates are inevitably generated during the cooling process, so it is necessary to dissolve these second-phase particles in the matrix during the subsequent steps. There is. If hot rolling is performed after holding at 900 ° C. to 1000 ° C. for 1 hour or longer, it can be dissolved in the matrix. Moreover, it is desirable to cool rapidly after completion | finish of hot rolling.
溶体化処理では、溶解鋳造時の晶出粒子や、熱延後の析出粒子を固溶させ、溶体化処理以降の時効硬化能を高めることが目的である。このとき、溶体化処理時の保持温度と時間、および保持後の冷却速度が重要となる。保持時間が一定の場合には、保持温度を高くすると、溶解鋳造時の晶出粒子や、熱延後の析出粒子を固溶させることが可能となる。 The purpose of the solution treatment is to increase the age-hardening ability after the solution treatment by solidifying the crystallized particles at the time of dissolution casting and the precipitated particles after hot rolling. At this time, the holding temperature and time during the solution treatment and the cooling rate after holding are important. In the case where the holding time is constant, if the holding temperature is increased, the crystallized particles at the time of melting and casting and the precipitated particles after hot rolling can be dissolved.
溶体化処理後の冷却速度は速いほど冷却中の析出を抑制できる。冷却速度が遅すぎる場合には、冷却中に第二相粒子が粗大化して、第二相粒子中のNi、Si含有量が増加するため、溶体化処理で十分な固溶を行えず、時効硬化能が低減する。よって、溶体化処理後の冷却は急冷却とするのが好ましい。具体的には、700℃〜900℃で溶体化処理後、平均冷却速度を毎秒10℃以上、好ましくは15℃以上、より好ましくは毎秒20℃以上として400℃まで冷却するのが効果的である。上限は特に規定しないが、設備の仕様上毎秒100℃以下となる。ここでの、“平均冷却速度”は溶体化温度から400℃までの冷却時間を計測し、“(溶体化温度−400)(℃)/冷却時間(秒)”によって算出した値(℃/秒)をいう。 The faster the cooling rate after solution treatment, the more the precipitation during cooling can be suppressed. If the cooling rate is too slow, the second phase particles become coarse during cooling and the Ni and Si contents in the second phase particles increase, so that sufficient solution cannot be achieved by solution treatment, and aging is not possible. Curing ability is reduced. Therefore, the cooling after the solution treatment is preferably rapid cooling. Specifically, after solution treatment at 700 ° C. to 900 ° C., it is effective to cool to 400 ° C. at an average cooling rate of 10 ° C. or more, preferably 15 ° C. or more, more preferably 20 ° C. or more per second. . The upper limit is not particularly defined, but is 100 ° C. or less per second due to equipment specifications. Here, the “average cooling rate” is a value (° C./second) obtained by measuring the cooling time from the solution temperature to 400 ° C. and calculating “(solution temperature−400) (° C.) / Cooling time (second)”. ).
本発明に係るCu−Ni−Si系合金を製造する上では、溶体化処理後に軽度の時効処理を2段階に分けて行ない、2回の時効処理の間に冷間圧延を行うことが有効である。これにより、析出物の粗大化が抑制され、良好な第二相粒子の分布状態を得ることができる。そして、これが最終的には本発明に係る銅合金特有の結晶方位につながると考えられる。 In producing the Cu—Ni—Si based alloy according to the present invention, it is effective to perform a mild aging treatment in two stages after the solution treatment and perform cold rolling between the two aging treatments. is there. Thereby, coarsening of the precipitate is suppressed, and a good distribution state of the second phase particles can be obtained. This is considered to ultimately lead to the crystal orientation unique to the copper alloy according to the present invention.
しかしながら、本発明者は溶体化処理直後の第1の時効処理を次の特定条件で3段時効すると、ばね限界値が顕著に向上することを見出した。多段時効を行うことで強度及び導電性のバランスが向上するとした文献はあったものの、多段時効の段数、温度、時間、冷却速度を厳密に制御することでばね限界値までが顕著に向上するとは驚きであった。本発明者の実験によれば、1段時効や2段時効ではこのような効果を得ることはできなかったし、第2の時効処理のみを3段時効しても十分な効果は得られなかった。 However, the present inventor has found that the spring limit value is remarkably improved when the first aging treatment immediately after the solution treatment is aged in three stages under the following specific conditions. Although there was literature that improved the balance between strength and conductivity by performing multi-stage aging, it is said that by strictly controlling the number of stages, temperature, time, and cooling rate of multi-stage aging, the spring limit value is significantly improved. It was a surprise. According to the inventor's experiment, such an effect could not be obtained by one-stage aging or two-stage aging, and sufficient effects could not be obtained even if only the second aging treatment was aged three stages. It was.
理論によって本発明が制限されることを意図しないが、3段時効を採用することによってばね限界値が顕著に向上した理由は次の通りと考えられる。1回目の時効処理を3段時効にすることで、1段目及び2段目で析出した第2相粒子の成長及び3段目での第2相粒子の析出により、次工程の圧延で集合組織が発達しにくくなると考えられる。 Although it is not intended that the present invention be limited by theory, the reason why the spring limit value is remarkably improved by adopting the three-stage aging is considered as follows. By setting the first aging treatment to three-stage aging, the second-phase particles precipitated in the first and second stages grow and the second-phase particles precipitate in the third stage. It is thought that the organization becomes difficult to develop.
3段時効では、まず、材料温度を400〜500℃として1〜12時間加熱する、一段目では第二相粒子の核生成及び成長による強度・導電率を高めるのが目的である。 In the three-stage aging, the material temperature is first set to 400 to 500 ° C. and heated for 1 to 12 hours. In the first stage, the purpose is to increase the strength and conductivity by nucleation and growth of the second phase particles.
一段目における材料温度が400℃未満であったり、加熱時間が1時間未満であったりすると、第二相粒子の体積分率が小さく、所望の強度、導電率が得られにくい。一方、材料温度が500℃超になるまで加熱した場合や、加熱時間が12時間を超えた場合には、第二相粒子の体積分率は大きくなるが、粗大化してしまい強度が低下する傾向が強くなる。 If the material temperature in the first stage is less than 400 ° C. or the heating time is less than 1 hour, the volume fraction of the second phase particles is small, and it is difficult to obtain desired strength and conductivity. On the other hand, when it is heated until the material temperature exceeds 500 ° C. or when the heating time exceeds 12 hours, the volume fraction of the second phase particles increases, but it tends to coarsen and the strength decreases. Becomes stronger.
一段目の終了後、冷却速度を0.1〜8℃/分として、二段目の時効温度に移行する。ここでの冷却速度は、(一段目時効温度−二段目時効温度)(℃)/(一段目時効温度から二段目時効温度に到達するまでの冷却時間(分))で測定される。 After completion of the first stage, the cooling rate is set to 0.1 to 8 ° C./min, and the aging temperature of the second stage is shifted. The cooling rate here is measured by ((first stage aging temperature−second stage aging temperature) (° C.) / (Cooling time (minutes) from first stage aging temperature to reaching second stage aging temperature).
次いで、材料温度を350〜450℃として1〜12時間加熱する。二段目では一段目で析出した第二相粒子を強度に寄与する範囲で成長させることにより導電率を高めるためと、二段目で新たに第二相粒子を析出させる(一段目で析出した第二相粒子より小さい)ことで強度、導電率を高めるためが目的である。 Subsequently, it heats for 1 to 12 hours by setting material temperature as 350-450 degreeC. In the second stage, the second phase particles precipitated in the first stage are grown in a range that contributes to strength, and the second phase particles are newly precipitated in the second stage (deposited in the first stage). The purpose is to increase strength and electrical conductivity by being smaller than the second phase particles.
二段目における材料温度が350℃未満であったり、加熱時間が1時間未満であったりすると一段目で析出した第二相粒子が成長できないため、導電率を高めにくく、また二段目で新たに第二相粒子を析出させることができないため、強度、導電率を高めることができない。一方、材料温度が450℃超になるまで加熱した場合や、加熱時間が12時間を超えた場合一段目で析出した第二相粒子が成長しすぎて粗大化していまい、強度が低下してしまう。 If the material temperature in the second stage is less than 350 ° C. or if the heating time is less than 1 hour, the second phase particles precipitated in the first stage cannot grow, making it difficult to increase the conductivity, and in the second stage Since the second phase particles cannot be precipitated, the strength and conductivity cannot be increased. On the other hand, when heated until the material temperature exceeds 450 ° C., or when the heating time exceeds 12 hours, the second phase particles precipitated in the first stage grow too much and become coarse, and the strength decreases. .
一段目と二段目の温度差は、小さすぎると一段目で析出した第二相粒子が粗大化して強度低下を招く一方で、大きすぎると一段目で析出した第二相粒子がほとんど成長せず導電率を高めることができない。また、二段目で第二相粒子が析出しにくくなるので、強度及び導電率をたかめることができない。そのため、一段目と二段目の温度差は20〜60℃とすべきである。 If the temperature difference between the first stage and the second stage is too small, the second phase particles precipitated in the first stage become coarse and cause a decrease in strength, while if too large, the second phase particles precipitated in the first stage almost grow. Therefore, the conductivity cannot be increased. Moreover, since it becomes difficult to precipitate the second phase particles in the second stage, the strength and conductivity cannot be increased. Therefore, the temperature difference between the first stage and the second stage should be 20 to 60 ° C.
二段目の終了後は、先と同様の理由から、冷却速度を0.1〜8℃/分として、三段目の時効温度に移行する。ここでの冷却速度は、(二段目時効温度−三段目時効温度)(℃)/(二段目時効温度から三段目時効温度に到達するまでの冷却時間(分))で測定される。 After completion of the second stage, for the same reason as described above, the cooling rate is set to 0.1 to 8 ° C./min and the aging temperature of the third stage is shifted to. The cooling rate here is measured by (second stage aging temperature−third stage aging temperature) (° C.) / (Cooling time from second stage aging temperature to third stage aging temperature (minutes)). The
次いで、材料温度を260〜340℃として4〜30時間加熱する。三段目では一段目と二段目で析出した第二相粒子を少し成長させるためと、新たに第二相粒子を生成させることが目的である。 Subsequently, it heats for 4 to 30 hours by setting material temperature as 260-340 degreeC. The purpose of the third stage is to slightly grow the second phase particles precipitated in the first and second stages and to newly generate second phase particles.
三段目における材料温度が260℃未満であったり、加熱時間が4時間未満であったりすると、一段目と二段目で析出した第二相粒子を成長させることができず、また、新たに第二相粒子を生成させることができないため、所望の強度、導電率及びばね限界値が得られにくい。一方、材料温度が340℃超になるまで加熱した場合や、加熱時間が30時間を超えた場合には一段目と二段目で析出した第二相粒子が成長しすぎて粗大化してしまうため、所望の強度及びばね限界値が得られにくい。 If the material temperature in the third stage is less than 260 ° C. or the heating time is less than 4 hours, the second phase particles precipitated in the first and second stages cannot be grown. Since the second phase particles cannot be generated, it is difficult to obtain desired strength, conductivity, and spring limit value. On the other hand, when heated until the material temperature exceeds 340 ° C. or when the heating time exceeds 30 hours, the second phase particles precipitated in the first and second stages grow too much and become coarse. It is difficult to obtain desired strength and spring limit value.
二段目と三段目の温度差は、小さすぎると一段目、二段目で析出した第二相粒子が粗大化して強度及びばね限界値の低下を招く一方で、大きすぎると一段目、二段目で析出した第二相粒子がほとんど成長せず導電率を高めることができない。また、3段目で第二相粒子が析出しにくくなるので、強度、ばね限界値及び導電率を高めることができない。そのため、二段目と三段目の温度差は、20〜180℃とすべきである。 If the temperature difference between the second stage and the third stage is too small, the second phase particles precipitated in the first stage and the second stage are coarsened, leading to a decrease in strength and spring limit value. The second phase particles precipitated in the second stage hardly grow and the electrical conductivity cannot be increased. In addition, since the second phase particles are difficult to precipitate in the third stage, the strength, spring limit value, and conductivity cannot be increased. Therefore, the temperature difference between the second stage and the third stage should be 20 to 180 ° C.
一つの段における時効処理では、第2相粒子の分布が変化してしまうことから、温度は一定とするのが原則であるが、設定温度に対して±5℃程度の変動があっても差し支えない。そこで、各ステップは温度の振れ幅が10℃以内で行う。 In the aging treatment in one stage, since the distribution of the second phase particles changes, the temperature should be constant in principle. However, there may be a fluctuation of about ± 5 ° C with respect to the set temperature. Absent. Therefore, each step is performed within a temperature fluctuation range of 10 ° C. or less.
第1の時効処理後には冷間圧延を行う。この冷間圧延では第1の時効処理での不十分な時効硬化を加工硬化により補うことができる。このときの加工度は所望の強度レベルに到達するために10〜80%、好ましくは20〜60%である。ただし、ばね限界値が低下する。 Cold rolling is performed after the first aging treatment. In this cold rolling, insufficient age hardening in the first aging treatment can be supplemented by work hardening. The degree of processing at this time is 10 to 80%, preferably 20 to 60% in order to reach a desired strength level. However, the spring limit value decreases.
冷間圧延後は、第2の時効処理でばね限界値と導電率を高めることが重要である。第2の時効温度を高く設定すると、ばね限界値と導電率は上昇するが、温度条件が高すぎた場合には、すでに析出している粒子が粗大化して、過時効状態となり、強度が低下する。よって第2の時効処理では、導電率とばね限界値の回復を図るために通常行われている条件よりも低い温度で長時間保持することに留意する。析出速度の抑制と転位の再配列の効果を共に高めるためである。第2の時効処理の条件の一例を挙げると、100℃以上350℃未満の温度範囲で1〜48時間であり、より好ましくは200℃以上300℃以下の温度範囲で1〜12時間である。 After cold rolling, it is important to increase the spring limit and conductivity in the second aging treatment. If the second aging temperature is set high, the spring limit value and the conductivity increase, but if the temperature condition is too high, the particles that have already precipitated become coarse and become over-aged, reducing the strength. To do. Therefore, it should be noted that the second aging treatment is held for a long period of time at a temperature lower than the conditions normally performed in order to restore the conductivity and the spring limit value. This is because both the suppression of the precipitation rate and the effect of rearrangement of dislocations are enhanced. An example of the conditions for the second aging treatment is 1 to 48 hours in a temperature range of 100 ° C. or more and less than 350 ° C., and more preferably 1 to 12 hours in a temperature range of 200 ° C. or more and 300 ° C. or less.
第2の時効処理直後は不活性ガス雰囲気中で時効処理を行った場合であっても表面が僅かに酸化しており、半田濡れ性が悪い。そこで、半田濡れ性が要求される場合には、酸洗及び/又は研磨を行うことができる。 Immediately after the second aging treatment, even when the aging treatment is performed in an inert gas atmosphere, the surface is slightly oxidized and the solder wettability is poor. Therefore, when solder wettability is required, pickling and / or polishing can be performed.
本発明のCu−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu−Ni−Si系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。 The Cu—Ni—Si based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and the Cu—Ni—Si based copper alloy according to the present invention is a lead. It can be used for electronic parts such as frames, connectors, pins, terminals, relays, switches, and foil materials for secondary batteries.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
第1の時効条件が合金特性に与える影響
表1に記載の各添加元素を含有し、残部が銅及び不純物からなる銅合金を、高周波溶解炉で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で3時間加熱後、板厚10mmまで熱間圧延し、熱間圧延終了後は速やかに冷却した。次いで、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.115mmの板とした。次に、700℃以上900℃以下で溶体化処理を120秒行い、その後冷却した。なお、溶体化温度は添加元素の濃度が高い場合は高めに設定した。溶体化温度から400℃までの平均冷却速度を20℃/sとして水冷した。その後は空気中に放置して冷却した。次いで、不活性雰囲気中、表1に記載の各条件で第一の時効処理を施した。各段における材料温度は表1に記載された設定温度±3℃以内に維持した。その後、0.08mmまで冷間圧延し、最後に、不活性雰囲気中、300℃で3時間かけて第二の時効処理をして、各試験片を製造した。
Effect of first aging condition on alloy characteristics A copper alloy containing each additive element shown in Table 1 and the balance consisting of copper and impurities is melted at 1300 ° C. in a high-frequency melting furnace, and an ingot having a thickness of 30 mm Cast into. Next, this ingot was heated at 1000 ° C. for 3 hours, and then hot-rolled to a plate thickness of 10 mm, and cooled rapidly after the hot rolling was completed. Next, the surface was chamfered to a thickness of 9 mm to remove the scale, and then a plate having a thickness of 0.115 mm was formed by cold rolling. Next, solution treatment was performed at 700 ° C. or higher and 900 ° C. or lower for 120 seconds, and then cooled. The solution temperature was set higher when the concentration of the additive element was high. Water cooling was performed with an average cooling rate from the solution temperature to 400 ° C. at 20 ° C./s. Thereafter, it was allowed to cool in the air. Next, the first aging treatment was performed under the conditions described in Table 1 in an inert atmosphere. The material temperature in each stage was maintained within the set temperature ± 3 ° C. described in Table 1. Thereafter, it was cold-rolled to 0.08 mm, and finally subjected to a second aging treatment at 300 ° C. for 3 hours in an inert atmosphere to produce each test piece.
このようにして得られた各試験片につき、合金特性を以下のようにして測定した。 With respect to each test piece thus obtained, the alloy characteristics were measured as follows.
強度についてはJIS Z2241に準拠して圧延平行方向の引っ張り試験を行って0.2%耐力(YS:MPa)を測定した。 Regarding the strength, a tensile test in the rolling parallel direction was performed in accordance with JIS Z2241, and a 0.2% yield strength (YS: MPa) was measured.
導電率(EC;%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。 The conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge.
ばね限界値は、JIS H3130に準拠して、繰り返し式たわみ試験を実施し、永久歪が残留する曲げモーメントから表面最大応力を測定した。 As for the spring limit value, in accordance with JIS H3130, a repetitive deflection test was performed, and the surface maximum stress was measured from the bending moment in which permanent strain remained.
β角度90°のピーク高さ比率については、先述した測定方法により、リガク社製型式RINT−2500VのX線回折装置を使用して求めた。 The peak height ratio at a β angle of 90 ° was determined by using the X-ray diffractometer of model RINT-2500V manufactured by Rigaku Corporation according to the measurement method described above.
曲げ加工性については、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験として、W字型の金型を用いて試料板厚と曲げ半径の比が2となる条件で90°曲げ加工を行った。続いて、曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合を実用上問題ないと判断して○(良好)とし、クラックが認められた場合を×(不良)とした。 Regarding bending workability, as a W-bending test of Badway (the bending axis is the same direction as the rolling direction), a 90-degree bending process is performed using a W-shaped mold and the ratio of the sample plate thickness to the bending radius is 2. Went. Subsequently, the surface of the bent portion was observed with an optical microscope, and when no crack was observed, it was judged that there was no problem in practical use.
各試験片の試験結果を表2に示す。 The test results of each test piece are shown in Table 2.
実施例No.1〜46は、β角度90°のピーク高さ比率が2.5以上であり、強度、導電性及びばね限界値のバランスに優れていることが分かる。
比較例No.8、比較例No.19〜23、比較例No.25〜35は第一の時効を二段時効で行った例である。
比較例No.7は第一の時効を一段時効で行った例である。
比較例No.2、9は3段目の時効時間が短かった例である。
比較例No.4は3段目の時効温度が低かった例である。
比較例No.13は3段目の時効温度が高かった例である。
比較例No.12は3段目の時効時間が長かった例である。
比較例No.1は1段目の時効温度が低かった例である。
比較例No.3は1段目と2段目の温度差が大きかった例である。
比較例No.5は1段目の時効時間が短かった例である。
比較例No.6は2段目の時効時間が短かった例である。
比較例No.10は2段目の時効時間が長かった例である。
比較例No.11は1段目の時効時間が長かった例である。
比較例No.14は2段目の温度が高かった例である。
比較例No.15は1段目及び2段目の温度が高かった例である。
比較例No.16は2段目から3段目の冷却が遅かった例である。
比較例No.17は1段目から2段目の冷却が遅かった例である。
比較例No.18はNi濃度が低かった例である。
比較例No.24はNi濃度及びSi濃度が高かった例である。
比較例は何れもβ角度90°のピーク高さ比率が2.5未満であり、実施例に比べて強度、導電性及びばね限界値のバランスに劣っていることが分かる。
Example No. Nos. 1 to 46 have a peak height ratio of β angle 90 ° of 2.5 or more, indicating that the balance of strength, conductivity and spring limit value is excellent.
Comparative Example No. 8, Comparative Example No. 19-23, Comparative Example No. 25 to 35 are examples in which the first aging was performed by two-stage aging.
Comparative Example No. 7 is an example in which the first aging is performed by one-step aging.
Comparative Example No. 2 and 9 are examples in which the aging time of the third stage was short.
Comparative Example No. 4 is an example in which the aging temperature in the third stage was low.
Comparative Example No. 13 is an example in which the aging temperature in the third stage was high.
Comparative Example No. 12 is an example in which the aging time of the third stage is long.
Comparative Example No. 1 is an example in which the aging temperature in the first stage was low.
Comparative Example No. 3 is an example in which the temperature difference between the first and second stages is large.
Comparative Example No. 5 is an example in which the first stage aging time was short.
Comparative Example No. 6 is an example in which the second stage aging time was short.
Comparative Example No. 10 is an example in which the aging time of the second stage is long.
Comparative Example No. 11 is an example in which the aging time of the first stage was long.
Comparative Example No. 14 is an example in which the temperature of the second stage was high.
Comparative Example No. 15 is an example in which the temperature of the first and second stages was high.
Comparative Example No. 16 is an example in which the cooling from the second stage to the third stage was slow.
Comparative Example No. 17 is an example in which the cooling from the first stage to the second stage was slow.
Comparative Example No. 18 is an example in which the Ni concentration was low.
Comparative Example No. 24 is an example in which the Ni concentration and the Si concentration were high.
In all of the comparative examples, the peak height ratio at the β angle of 90 ° is less than 2.5, and it can be seen that the balance of strength, conductivity, and spring limit value is inferior to the examples.
Claims (5)
−900℃以上1000℃以下で1時間以上加熱後に熱間圧延を行う工程2と
−冷間圧延工程3と、
−700℃以上900℃以下で溶体化処理を行い、400℃までの平均冷却速度を毎秒10℃以上として冷却する工程4と、
−材料温度を400〜500℃として1〜12時間加熱する一段目と、次いで、材料温度を350〜450℃として1〜12時間加熱する二段目と、次いで、材料温度を260〜340℃として4〜30時間加熱する三段目を有し、一段目から二段目までの冷却速度及び二段目から三段目までの冷却速度はそれぞれ0.1〜8℃/分とし、一段目と二段目の温度差を20〜60℃とし、二段目と三段目の温度差を20〜180℃として多段時効する第一の時効処理工程5と、
−冷間圧延工程6と、
−100℃以上350℃未満で1〜48時間行う第二の時効処理工程7と、
を順に行うことを含む銅合金の製造方法。 -Melting and casting a copper alloy ingot having the composition according to claim 1 or 2 ;
Step 2 of performing hot rolling after heating at −900 ° C. or higher and 1000 ° C. or lower for 1 hour or longer;
Step 4 of performing solution treatment at −700 ° C. or more and 900 ° C. or less, and cooling at an average cooling rate up to 400 ° C. at 10 ° C. or more per second;
-The first stage of heating at a material temperature of 400-500 ° C for 1-12 hours, the second stage of heating at a material temperature of 350-450 ° C for 1-12 hours, and then the material temperature of 260-340 ° C It has a third stage that is heated for 4 to 30 hours, and the cooling rate from the first stage to the second stage and the cooling rate from the second stage to the third stage are 0.1 to 8 ° C./min. A first aging treatment step 5 in which the second stage temperature difference is set to 20 to 60 ° C., and the second stage and third stage temperature difference is set to 20 to 180 ° C. to perform multi-stage aging;
-Cold rolling process 6;
A second aging treatment step 7 carried out at -100 ° C or higher and lower than 350 ° C for 1 to 48 hours;
The manufacturing method of the copper alloy including performing sequentially.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011076566A JP5595961B2 (en) | 2011-03-30 | 2011-03-30 | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011076566A JP5595961B2 (en) | 2011-03-30 | 2011-03-30 | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012211350A JP2012211350A (en) | 2012-11-01 |
JP5595961B2 true JP5595961B2 (en) | 2014-09-24 |
Family
ID=47265543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011076566A Active JP5595961B2 (en) | 2011-03-30 | 2011-03-30 | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5595961B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07258808A (en) * | 1994-03-22 | 1995-10-09 | Nikko Kinzoku Kk | Production of high-strength and high-conductivity copper alloy material for electronic equipment |
JP4009981B2 (en) * | 1999-11-29 | 2007-11-21 | Dowaホールディングス株式会社 | Copper-based alloy plate with excellent press workability |
JP4408275B2 (en) * | 2005-09-29 | 2010-02-03 | 日鉱金属株式会社 | Cu-Ni-Si alloy with excellent strength and bending workability |
WO2007148712A1 (en) * | 2006-06-23 | 2007-12-27 | Ngk Insulators, Ltd. | Copper-based rolled alloy and method for producing the same |
JP4677505B1 (en) * | 2010-03-31 | 2011-04-27 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
JP5451674B2 (en) * | 2011-03-28 | 2014-03-26 | Jx日鉱日石金属株式会社 | Cu-Si-Co based copper alloy for electronic materials and method for producing the same |
-
2011
- 2011-03-30 JP JP2011076566A patent/JP5595961B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012211350A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4677505B1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5451674B2 (en) | Cu-Si-Co based copper alloy for electronic materials and method for producing the same | |
JP4937815B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4596490B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5441876B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP4809602B2 (en) | Copper alloy | |
JP4799701B1 (en) | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
TWI429764B (en) | Cu-Co-Si alloy for electronic materials | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP6730784B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP5524901B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP5595961B2 (en) | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same | |
JP2017071811A (en) | Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT | |
JP5623960B2 (en) | Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same | |
JP2012229469A (en) | Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP4679040B2 (en) | Copper alloy for electronic materials | |
TWI391952B (en) | Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5595961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |