Nothing Special   »   [go: up one dir, main page]

JP4498964B2 - Turbine blade and turbine equipment using the same - Google Patents

Turbine blade and turbine equipment using the same Download PDF

Info

Publication number
JP4498964B2
JP4498964B2 JP2005099991A JP2005099991A JP4498964B2 JP 4498964 B2 JP4498964 B2 JP 4498964B2 JP 2005099991 A JP2005099991 A JP 2005099991A JP 2005099991 A JP2005099991 A JP 2005099991A JP 4498964 B2 JP4498964 B2 JP 4498964B2
Authority
JP
Japan
Prior art keywords
turbine
blade
groove
disk
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005099991A
Other languages
Japanese (ja)
Other versions
JP2006275032A (en
Inventor
穣 山下
清 名村
英治 齊藤
洋二 天日
秀夫 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005099991A priority Critical patent/JP4498964B2/en
Publication of JP2006275032A publication Critical patent/JP2006275032A/en
Application granted granted Critical
Publication of JP4498964B2 publication Critical patent/JP4498964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、ガスタービンや蒸気タービン等に使用するタービン動翼及びこれを用いたタービン設備に関する。   The present invention relates to a turbine rotor blade used for a gas turbine, a steam turbine, and the like, and a turbine facility using the same.

ガスタービンや蒸気タービンに用いられるタービン動翼においては、信頼性の高い翼を提供するために、隣接翼同士を連結する方策がある。その隣接翼同士を連結する方策として、翼プロフィル部の先端に翼回転方向に延びる連結カバー(インテグラルカバー)の対向部を、タービン回転軸方向に対して傾斜させ、この傾斜した対向部を有する翼を、回転方向(周方向)に押し付けて組み立てることで隣接翼のインテグラルカバーを強く連結したものがある。また、翼のタービン回転軸への組付け時に生じる翼回りの回転変位を排除するために、雄ダフテール(翼根部)の下端に回転防止キーを設けているものがある。(例えば、特許文献1参照。)。   In turbine rotor blades used in gas turbines and steam turbines, there is a method of connecting adjacent blades in order to provide highly reliable blades. As a measure for connecting the adjacent blades, the opposed portion of the connecting cover (integral cover) extending in the blade rotation direction at the tip of the blade profile portion is inclined with respect to the turbine rotation axis direction, and this inclined opposed portion is provided. There is a type in which the integral cover of the adjacent wing is strongly connected by pressing and assembling the wing in the rotational direction (circumferential direction). In addition, in order to eliminate the rotational displacement around the blade that occurs when the blade is attached to the turbine rotation shaft, there is a type in which a rotation prevention key is provided at the lower end of the male duff tail (blade root). (For example, refer to Patent Document 1).

特開2004−257385号公報。JP 2004-257385A.

上述した隣接翼同士を連結する方策は、組立て時、挿入されたタービン動翼をタービン軸方向側からタービンディスクに押し込むことでねじり変形しようとする翼プロフィル部の弾性復元力によって相隣接するインテグラルカバー同士が接触し拘束されるように構成するもので、例えば、プリツイスト連結構造と称しているが、この種の隣接翼同士を連結する方策では、翼の組み立て後に、すべてのタービン動翼は、相隣接するインテグラルカバー同士が接触し拘束され、翼はねじり変形すると同時に、翼付け根部および翼根部には、前記のねじり変形に伴って半径方向外周側から見てその径方向軸線回りの回転力を受ける。この回転力の発生により、互いに係合している翼根部とディスク溝にも作用するが、この翼根部とディスク溝との係合部は、タービン回転軸方向からみて、ディスク溝の径方向内向きに広がっている面と接触し、翼根部とディスク溝との係合部には、内側斜め方向の力が作用する。   The above-mentioned measures for connecting adjacent blades to each other are as follows. The cover is configured so that the covers are in contact with each other and restrained.For example, a pre-twisted connection structure is used. The adjacent integral covers come into contact with each other and are restrained, and the blades are torsionally deformed. Receives rotational force. Generation of this rotational force also acts on the blade root and the disk groove that are engaged with each other, but the engagement portion between the blade root and the disk groove is inward of the radial direction of the disk groove when viewed from the turbine rotation axis direction. A force in the inner oblique direction acts on the engaging portion between the blade root portion and the disk groove.

一方、翼根部とディスク溝との係合部には、通常組付け時を考慮して間隙が設けられていることと、前述した先細りのディスク溝の形状とに起因して、翼根部は、ディスク溝の一方側に、内側斜め方向に向かって押し付けられる。   On the other hand, due to the fact that the engagement portion between the blade root and the disk groove is provided with a gap in consideration of normal assembly and the shape of the tapered disk groove described above, the blade root is It is pressed toward one side of the disk groove in an oblique inner direction.

その結果、翼根部とディスク溝との係合部に、片当たりが生じる。これにより、係合部に高い応力が生じてしまい、タービンを高速回転させるため強度上の問題が発生する危険性がある。また、相隣接するインテグラルカバー同士の接触力が低下し、プリツイスト連結構造の本来的な機能が損なわれる可能性もある。   As a result, one-side contact occurs at the engaging portion between the blade root portion and the disk groove. As a result, high stress is generated in the engaging portion, and there is a risk that a problem in strength occurs because the turbine is rotated at a high speed. In addition, the contact force between adjacent integral covers may be reduced, and the original function of the pretwisted connection structure may be impaired.

本発明の目的は、上述の事柄に基づいてなされたもので、短翼であっても、翼根部の回転を防止することで、隣接するインテグラルカバーを確実に連結することができ、なおかつ翼根部に作用する応力を軽減することができる信頼性の高いタービン動翼及びこれを用いたタービン設備を提供することにある。   The object of the present invention has been made based on the above-mentioned matters, and even with a short blade, by preventing the rotation of the blade root, adjacent integral covers can be reliably connected, and the blade An object of the present invention is to provide a highly reliable turbine blade capable of reducing stress acting on the root portion and a turbine equipment using the turbine blade.

上記の目的を達成するために、第1の発明は、タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向入口側および出口側の端面に、ディスク溝下部を通り翼回転方向に沿って設けた溝と、前記ディスク溝に押し込まれる翼根部の先端側端面に、前記溝の半径方向外周面とほぼ一致するように設けた半径方向内周面と、前記翼根部の半径方向内周面に半径方向外周面が当接するように前記溝内に組み込まれる押圧部材と、前記タービンディスクの端面に設けられ、前記押圧部材をタービン回転軸方向側から前記溝に挿入可能な切り欠き部とを備え、前記溝及びこの溝に組み込まれる前記押圧部材は、半径方向外周側端面および内周側端面を有する断面形状を備え、前記押圧部材は、半径方向高さが周方向への挿入方向に漸する半径方向外周面および内周面を備えたことを特徴とする。 In order to achieve the above object, a first invention includes a blade root portion that is inserted and engaged with a plurality of disk grooves provided on the outer peripheral portion of a turbine disk in the blade rotation direction from the turbine axial direction side, and a blade profile. Integral cover integrally formed at the tip of the part, and adjacent integral covers by elastic restoring force of the blade profile part to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side A turbine rotor blade configured to contact and restrain the rotor blade, and a groove provided on the end surface on the turbine disk axial direction inlet side and outlet side through the lower part of the disk groove along the blade rotation direction, and pushed into the disk groove A radially inner peripheral surface provided to substantially coincide with a radially outer peripheral surface of the groove, and a radial direction of the blade root portion. A pressing member incorporated in the groove so that the outer peripheral surface in the radial direction abuts on the peripheral surface, and a notch portion provided on the end surface of the turbine disk and capable of inserting the pressing member into the groove from the turbine rotating shaft direction side The groove and the pressing member incorporated in the groove have a cross-sectional shape having a radially outer end surface and an inner peripheral end surface, and the pressing member has a radial height in the insertion direction in the circumferential direction. characterized by comprising a radial outer peripheral surface and the inner peripheral surface of reduced gradually to.

また、第2の発明は、タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向入口側および出口側の端面に、ディスク溝下部を通り翼回転方向に沿って設けた溝と、前記ディスク溝に押し込まれる翼根部の先端側端面に、前記溝の半径方向外周面とほぼ一致するように設けた半径方向内周面と、前記翼根部の半径方向内周面に半径方向外周面が当接するように前記溝内に組み込まれる押圧部材とを備え、前記押圧部材は、前記溝への組み込み後に、タービン軸方向外周側からの荷重付加により塑性変形され、前記翼根部を半径方向外方に押し上げて、翼根部の回転を防止したことを特徴とする。 In addition, the second invention is integrally formed at the tip of the blade profile portion and the blade root portion that is inserted into and engaged with the disk grooves provided on the outer peripheral portion of the turbine disk in the blade rotation direction from the turbine axial direction side. The adjacent integral covers by the elastic restoring force of the blade profile portion to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side. A turbine blade configured as described above, a groove provided in the turbine disk axial direction inlet side and outlet side end face along the blade rotation direction through the lower part of the disk groove, and a tip side end face of the blade root portion to be pushed into the disk groove A radially inner circumferential surface provided so as to substantially coincide with a radially outer circumferential surface of the groove, and a radially outer circumferential surface on a radially inner circumferential surface of the blade root portion. And a pressing member in which the incorporated in the groove so as to contact said pressing member, after the incorporation into the groove, is plastically deformed by the load application from the turbine axial direction outer peripheral side, radially outward of the blade root portion The blade root portion is prevented from rotating by pushing it up .

更に、第3の発明は、タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向側端面に、翼回転方向に半径方向外周側端面及び内周側端面を有する断面形状を備えた溝が設けられ、この溝に半径方向高さが周方向への挿入方向に漸する半径方向外周面及び内周面を備えた押圧部材を組み込み、この押圧部材の溝への組み込みにより前記翼根部を半径方向外方に押し上げて、翼根部の回転を防止したことを特徴とする。 Furthermore, the third invention is integrally formed at the tip of the blade profile portion and the blade root portion that is inserted into and engaged with the disk grooves provided in the blade rotation direction on the outer peripheral portion of the turbine disk from the turbine axial direction side. The adjacent integral covers by the elastic restoring force of the blade profile portion to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side. A turbine blade configured as described above, wherein a groove having a cross-sectional shape having a radially outer end surface and an inner periphery end surface in a blade rotation direction is provided on a turbine disk axial end surface, and a radial height is provided in the groove. the blade root by but incorporate pressing member having a radially outer peripheral surface and inner peripheral surface to decrease gradually in the direction of insertion into the circumferential direction, integration into the groove of the pressing member The pushing up radially outwardly, characterized in that to prevent rotation of the blade root.

また、第4の発明は、第1乃至第3のいずれかに記載のタービン動翼を備えたタービン設備にある。 The fourth invention is the turbine equipment provided with a turbine rotor blade according to any one the first to third.

本発明タービン動翼によれば、タービン動翼の翼根部とディスク溝を形成するタービンディスクとの間に、翼根部とディスク溝との係合部生じる内側斜め方向の押し付け力に対向して、翼根部を外方に押し戻す部材を設けたので、翼根部とディスク溝との係合部での片当たりが防止され、翼根部とディスク溝の係合部に高い応力が作用しない信頼性が高いタービン動翼を提供できる。   According to the turbine rotor blade of the present invention, opposed to the inner diagonal pressing force generated between the blade root portion and the disk groove forming the disk groove between the blade root portion of the turbine rotor blade and the disk groove, Since a member that pushes back the blade root portion is provided, it is possible to prevent contact between the blade root portion and the disk groove engaging portion, and high reliability that high stress does not act on the blade root portion and the disk groove engaging portion is high. Turbine blades can be provided.

また、本発明のタービン設備によれば、タービン動翼の信頼性向上に伴い、設備の長期運転が可能になり、作業効率が向上する。   Further, according to the turbine equipment of the present invention, along with the improvement of the reliability of the turbine rotor blade, the equipment can be operated for a long time, and the working efficiency is improved.

以下、図面を用いて本発明のタービン動翼の実施の形態を説明する。
図1及び図2は本発明のタービン動翼の第1の実施の形態を示すもので、図1は本発明のタービン動翼の第1の実施の形態が構成する環状翼列の一部をタービン回転軸方向から見た側面図、図2は図1に示すII−II矢視から見た本発明のタービン動翼の第1の実施の形態の断面図である。
図1、図2において、タービン動翼1は、翼プロフィル部2と、この翼プロフィル部2の翼付け根部3と、この翼付け根部3に設けた翼根部4と、タービンディスク5と、このタービンディスク5の外周部に翼回転方向に複数設けられ、タービン回転軸方向側から翼根部4が挿入され係合するディスク溝6と、翼プロフィル部2の先端に一体に形成されたインテグラルカバー7とを有している。
Hereinafter, an embodiment of a turbine rotor blade of the present invention will be described with reference to the drawings.
1 and 2 show a first embodiment of a turbine rotor blade of the present invention, and FIG. 1 shows a part of an annular blade row formed by the first embodiment of a turbine rotor blade of the present invention. FIG. 2 is a cross-sectional view of the first embodiment of the turbine rotor blade of the present invention viewed from the direction of arrows II-II shown in FIG.
1 and 2, a turbine rotor blade 1 includes a blade profile portion 2, a blade root portion 3 of the blade profile portion 2, a blade root portion 4 provided on the blade root portion 3, a turbine disk 5, An integral cover integrally formed at the tip of the blade profile portion 2 and a disk groove 6 provided in the outer peripheral portion of the turbine disc 5 in the blade rotation direction and engaged with the blade root portion 4 inserted from the turbine rotation axis direction side. 7.

前述した翼根部4とディスク溝6とは、それぞれ内側に向かうにしたがって先細りの形状であり、また、翼根部4とディスク溝6との係合部は、その係合面にそれぞれタービン回転軸方向で、その径方向に並設した複数の係合用の突起を備えている。   The blade root portion 4 and the disk groove 6 are tapered toward the inner side, respectively, and the engagement portion between the blade root portion 4 and the disk groove 6 is on the engagement surface thereof in the turbine rotational axis direction. And a plurality of engaging protrusions arranged in the radial direction.

タービン動翼1は、順次タービン軸方向側からタービンディスク5に設けられたディスク溝6に組み付けられ、タービンディスク5に対し翼回転方向に複数取り付けられて環状翼列を構成する。   The turbine rotor blades 1 are sequentially assembled from the turbine axial direction side into a disk groove 6 provided in the turbine disk 5, and a plurality of turbine rotor blades 1 are attached to the turbine disk 5 in the blade rotation direction to constitute an annular blade row.

このタービンディスク5の軸方向側端面におけるディスク溝6の内方部(下部)には、タービン回転軸の軸心と同心的で、タービン回転軸の軸線方向に向かう溝8がそれぞれ形成されている。この溝8は、図2に示すように、ディスク溝6の半径方向最内周面より半径方向外周側に位置する半径方向外周側の周面81と、ディスク溝6の半径方向最内周面より半径方向内周側に位置する半径方向内周側の周面82とを備えている。前述した半径方向外周側の周面81は、ディスク溝6により、部分的に断続している。   Grooves 8 that are concentric with the axial center of the turbine rotating shaft and that extend in the axial direction of the turbine rotating shaft are formed in the inner part (lower part) of the disk groove 6 on the axial end surface of the turbine disk 5. . As shown in FIG. 2, the groove 8 includes a radially outer peripheral surface 81 located on the radially outer peripheral side of the radially innermost surface of the disk groove 6 and a radially innermost peripheral surface of the disk groove 6. And a circumferential surface 82 on the radially inner peripheral side which is located on the radially inner peripheral side. The peripheral surface 81 on the radially outer peripheral side described above is partially interrupted by the disk groove 6.

翼根部4の径方向内周側における入口側出口側端面には、翼1を挿入した時に、翼1を径方向外周側に押し上げた状態で、溝8を形成する半径方向外周側の周面81とほぼ合致する周面41を形成する切り欠き部42が設けられている。   On the inlet side outlet side end surface on the radially inner peripheral side of the blade root portion 4, when the blade 1 is inserted, the peripheral surface on the radially outer peripheral side that forms the groove 8 in a state where the blade 1 is pushed up to the radially outer peripheral side. A notch 42 is provided to form a peripheral surface 41 that substantially matches 81.

溝8には、この溝8の断面形状にほぼ合致する断面形状の押圧部材9が周方向に沿って複数挿入される。この押圧部材9は、溝8に挿入された後、その脱落を防止するために、かしめ、又は溶接等の固定手段によって、タービンディスク5に固定される。   A plurality of pressing members 9 having a cross-sectional shape that substantially matches the cross-sectional shape of the groove 8 are inserted into the groove 8 along the circumferential direction. After the pressing member 9 is inserted into the groove 8, the pressing member 9 is fixed to the turbine disk 5 by fixing means such as caulking or welding in order to prevent the pressing member 9 from falling off.

また、この押圧部材9は、その半径方向外周側の外周面91と、翼根部4に設けた切り欠き部42により形成された周面41との接触により、翼根部4を半径方向外周側に押圧して、翼1の回転を押える。これにより、翼根部4とディスク溝6との係合部に生起していた片当たりを防止する。更に、この押圧部材9は、翼1の組付け後におけるインテグラルカバー7の外周面の機械加工時の保持治具としての機能も有している。   Further, the pressing member 9 brings the blade root portion 4 to the radially outer peripheral side by contact between the outer peripheral surface 91 on the outer peripheral side in the radial direction and the peripheral surface 41 formed by the notch portion 42 provided in the blade root portion 4. By pressing, the rotation of the wing 1 is suppressed. As a result, the one-sided contact that has occurred at the engaging portion between the blade root portion 4 and the disk groove 6 is prevented. Further, the pressing member 9 also has a function as a holding jig when machining the outer peripheral surface of the integral cover 7 after the blade 1 is assembled.

次に、上述した本発明のタービン動翼の第1の実施の形態の動作を図1及び図2を用いて説明する。
タービン動翼1は、ディスク溝6に順番に植え込まれ、最後(M番目)のタービン翼1まで順次全周の翼本数M本植え込まれることにより組み立てられる。
Next, the operation of the above-described first embodiment of the turbine rotor blade of the present invention will be described with reference to FIGS.
The turbine rotor blades 1 are assembled by sequentially implanting them in the disk grooves 6 and sequentially implanting M blades on the entire circumference up to the last (Mth) turbine blade 1.

まず、1番目のタービン動翼1をディスク溝6に所定の位置まで挿入する。次に、押圧部材9を挿入する。押圧部材9を溝8に挿入することで、タービン動翼1は、その半径方向外周側に押し上げられる。同様にして、2番目のタービン動翼をディスク溝6に所定の位置まで挿入し、押圧部材9を溝8に挿入する。これを最後(M番目)のタービン動翼まで繰り返し、全周の翼が植え込まれることにより組み立てられる。   First, the first turbine blade 1 is inserted into the disk groove 6 to a predetermined position. Next, the pressing member 9 is inserted. By inserting the pressing member 9 into the groove 8, the turbine rotor blade 1 is pushed up to the radially outer peripheral side. Similarly, the second turbine blade is inserted into the disk groove 6 to a predetermined position, and the pressing member 9 is inserted into the groove 8. This is repeated until the last (Mth) turbine blade, and the blades of the entire circumference are implanted.

上述のように、押圧部材9を溝8に挿入しない構成を採用した場合、インテグラルカバー7の翼回転方向ピッチは、幾何学的ピッチ(インテグラルカバー7の翼回転方向に向いた端面をタービン回転軸方向に対して傾斜させ、かつインテグラルカバー7の取り付け半径位置の円周方向長さを周方向の翼取り付け本数で割った翼1本分のピッチ)よりも大きく形成されているため、すべてのタービン動翼1は、相隣接するインテグラルカバー7同士が接触し拘束され、翼1はねじり変形すると同時に、翼付け根部3および翼根部4は、その軸線回りに回転しようとする。翼根部4とディスク溝6には、通常間隙が設けられているため、翼根部4は、ディスク溝6の係合部の形状により、ディスク溝6に対し、周方向に回転する。翼根部4が回転した状態でタービンが回転し遠心力が作用すると、翼根部4はディスク溝6の軸方向入口側端面および出口端面の一部により遠心力が支えられることになり、非常に高い応力が発生するおそれがあるが、これは、前述した押圧部材9を溝8に挿入することによって解決されている。   As described above, when the configuration in which the pressing member 9 is not inserted into the groove 8 is adopted, the blade rotation direction pitch of the integral cover 7 is the geometric pitch (the end face of the integral cover 7 facing the blade rotation direction is the turbine surface). The pitch is inclined with respect to the rotation axis direction and is larger than the pitch of one blade obtained by dividing the circumferential length of the mounting radius position of the integral cover 7 by the number of blades attached in the circumferential direction. All the turbine blades 1 are constrained by contact between adjacent integral covers 7 and the blades 1 are torsionally deformed. At the same time, the blade root portion 3 and the blade root portion 4 try to rotate around the axis thereof. Since the blade root portion 4 and the disk groove 6 are usually provided with a gap, the blade root portion 4 rotates in the circumferential direction with respect to the disk groove 6 due to the shape of the engaging portion of the disk groove 6. When the turbine rotates and centrifugal force acts while the blade root portion 4 is rotated, the blade root portion 4 is supported by a part of the axial end side end surface and the outlet end surface of the disk groove 6 and is very high. Although there is a possibility that stress is generated, this is solved by inserting the above-described pressing member 9 into the groove 8.

即ち、押圧部材9を溝8に挿入すると、押圧部材9の半径方向外周側の周面81は、翼根部4に設けた切り欠き部42により形成された周面41に接触して、翼根部4を、翼根部4とディスク溝6との係合部に生じる内側斜め方向の押し付け力に抗して半径方向外周側へ押し上げて、翼根部4の回転を防止する。その結果、翼根部4とディスク溝6との係合部の片当たりを防止し、この係合部の係合状態を適切に維持することができる。   That is, when the pressing member 9 is inserted into the groove 8, the peripheral surface 81 on the radially outer peripheral side of the pressing member 9 comes into contact with the peripheral surface 41 formed by the notch portion 42 provided in the blade root portion 4, and the blade root portion 4 is pushed up radially outward against the pressing force in the inner diagonal direction generated at the engaging portion between the blade root 4 and the disk groove 6 to prevent the blade root 4 from rotating. As a result, it is possible to prevent the engagement portion between the blade root portion 4 and the disk groove 6 from coming into contact with each other and maintain the engagement state of the engagement portion appropriately.

また、押圧部材9は、翼1の組付け後におけるインテグラルカバー7の外周面の機械加工時の保持治具としての機能しており、通常、この種の保持治具は、前述したインテグラルカバー7の外周面の機械加工後は、抜き取られるものであるが、本発明においては、押圧部材9を抜き取る必要がないようにしているので、そのための抜き取り作業の段取りが不要になり、その組立作業時間が短縮するとともに、保持治具の保管管理も必要もない。   Further, the pressing member 9 functions as a holding jig at the time of machining the outer peripheral surface of the integral cover 7 after the wing 1 is assembled. Although the outer peripheral surface of the cover 7 is extracted after machining, in the present invention, the pressing member 9 is not required to be extracted. Work time is shortened and storage management of the holding jig is not necessary.

以上のように、本実施の形態によれば、タービン動翼1の翼根部4の回転を防止し、隣接するインテグラルカバー7同士を確実に連結することができ、遠心力により翼根部4に作用する応力を軽減することができ、高い信頼性を確保することができる。   As described above, according to the present embodiment, rotation of the blade root 4 of the turbine rotor blade 1 can be prevented, adjacent integral covers 7 can be reliably connected, and the blade root 4 can be connected to the blade root 4 by centrifugal force. The acting stress can be reduced, and high reliability can be ensured.

図3及び図4は、本発明のタービン動翼の第2の実施の形態を示すもので、図3は本発明のタービン動翼の第2の実施の形態を構成するタービン動翼の一部を円周方向から見た断面図、図4は図3に示す本発明のタービン動翼の第2の実施の形態に用いた押圧部材の他の例を示す斜視図である。これらの図において、図1及び図2に示す部分と同様の部分には、図1及び図2の符号と同符号を付し説明を省略する。   3 and 4 show a second embodiment of the turbine rotor blade of the present invention, and FIG. 3 shows a part of the turbine rotor blade constituting the second embodiment of the turbine rotor blade of the present invention. FIG. 4 is a perspective view showing another example of the pressing member used in the second embodiment of the turbine rotor blade of the present invention shown in FIG. 3. In these drawings, the same parts as those shown in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS. 1 and 2, and the description thereof is omitted.

本発明の第2の実施の形態は、前述した本発明の第1の実施の形態と同様に、押圧部材9による翼根部4とディスク溝6との係合部の片当たりを防止するとともに、押圧部材9の溝8への固定作業を削減するようにしたもので、押圧部材9を、図4に示すように断面を逆L字状に形成したものである。   As in the first embodiment of the present invention described above, the second embodiment of the present invention prevents the engagement of the blade root portion 4 and the disk groove 6 due to the pressing member 9, and The work for fixing the pressing member 9 to the groove 8 is reduced, and the pressing member 9 is formed in an inverted L-shaped cross section as shown in FIG.

即ち、押圧部材9は、その一方側の端面の内周部を切り欠いてその半径方向外周側の周面91と半径方向内周側の周面92との間に、前記周面91との径方向寸法h2よりも小さい寸法h1に設定したもう一つの内周面93を設けて構成されている。この構成により、周面93から半径方向内側に突出している部分が、溝8との係合により抜け止め機能を発揮する。   That is, the pressing member 9 is formed by cutting out the inner peripheral portion of the end surface on one side and between the peripheral surface 91 on the radially outer peripheral side and the peripheral surface 92 on the radially inner peripheral side. Another inner peripheral surface 93 set to a dimension h1 smaller than the radial dimension h2 is provided. With this configuration, the portion protruding radially inward from the peripheral surface 93 exhibits a retaining function by engaging with the groove 8.

タービンディスク5側には、図3に示すように押圧部材9が嵌め込まれるように、同様な断面形状の溝8が形成されている。また、押圧部材9をタービン回転軸方向からは嵌め込み可能とするために、タービンディスク5の周方向の一部には、溝8に接続し、押圧部材9の径寸法h2に対応する径方向寸法を有する切り欠き部10が形成されている。   On the turbine disk 5 side, a groove 8 having a similar cross-sectional shape is formed so that the pressing member 9 is fitted as shown in FIG. Further, in order to enable the pressing member 9 to be fitted from the turbine rotation axis direction, a radial dimension corresponding to the radial dimension h2 of the pressing member 9 is connected to the groove 8 at a part of the circumferential direction of the turbine disk 5. The notch part 10 which has is formed.

次に、上述した本発明のタービン動翼の第2の実施の形態の動作を図3及び図4を用いて説明する。   Next, the operation of the above-described second embodiment of the turbine rotor blade of the present invention will be described with reference to FIGS.

タービン動翼1は、ディスク溝6に順番に植え込まれ、最後(M番目)のタービン動翼まで順次全周の翼本数M本植え込まれることにより組み立てられる。   The turbine rotor blades 1 are assembled by sequentially implanting in the disk grooves 6 and sequentially implanting M blades on the entire circumference up to the last (M-th) turbine rotor blade.

まず、1番目のタービン動翼をディスク溝6に所定の位置まで挿入する。次に、押圧部材9を、溝8の一箇所に設けた切り欠き部10から、押圧部材9を溝8内に挿入し、押圧部材9を1番目のタービン動翼の翼根部4下まで円周方向に移動する。押圧部材9を挿入することで、タービン動翼1は、径方向外周側に押し上げられる。同様にして、2番目のタービン動翼をディスク溝6に所定の位置まで挿入し、上述と同様に押圧部材9を溝8に挿入する。   First, the first turbine blade is inserted into the disk groove 6 to a predetermined position. Next, the pressing member 9 is inserted into the groove 8 from the notch 10 provided at one location of the groove 8, and the pressing member 9 is circled to the bottom of the blade root 4 of the first turbine blade. Move in the circumferential direction. By inserting the pressing member 9, the turbine rotor blade 1 is pushed up radially outward. Similarly, the second turbine blade is inserted into the disk groove 6 to a predetermined position, and the pressing member 9 is inserted into the groove 8 in the same manner as described above.

これを最後(M番目)のタービン動翼まで繰り返し、全周の翼が植え込まれることにより組み立てられる。このとき、切り欠き部10には、最終の押圧部材9が位置するが、この押圧部材9は、前述した第1の実施の形態と同様にその脱落を防止するために、かしめ又は溶接等の固定手段によってタービンディスク5に固定される。   This is repeated until the last (Mth) turbine blade and the blades of the entire circumference are implanted. At this time, although the final pressing member 9 is located in the notch 10, the pressing member 9 is caulked, welded, or the like in order to prevent the dropout as in the first embodiment described above. It is fixed to the turbine disk 5 by fixing means.

この実施の形態によれば、タービン動翼1の翼根部4の回転を防止し、隣接するインテグラルカバー7同士を確実に連結することができ、遠心力により翼根部4に作用する応力を軽減することができ、高い信頼性を確保することができる。   According to this embodiment, the rotation of the blade root portion 4 of the turbine rotor blade 1 can be prevented, adjacent integral covers 7 can be reliably connected, and the stress acting on the blade root portion 4 due to centrifugal force can be reduced. And high reliability can be ensured.

また、押圧部材9は、翼1の組付け後におけるインテグラルカバー7の外周面の機械加工時の保持治具として機能するとともに、タービンディスク5に組み付け使用されるので、その抜き取り作業の段取りが不要になり、その組立作業時間が短縮するとともに、保持治具の保管管理も必要もない。   Further, the pressing member 9 functions as a holding jig at the time of machining the outer peripheral surface of the integral cover 7 after the blade 1 is assembled, and is used by being assembled to the turbine disk 5, so that the extraction work can be set up. This eliminates the need for the assembling operation time, and does not require storage management of the holding jig.

更に、押圧部材9は、溝8に確実に係合するので、この溝8からの脱落を防止することができる。   Furthermore, since the pressing member 9 is reliably engaged with the groove 8, it is possible to prevent the pressing member 9 from falling off the groove 8.

図5及び図6は、本発明のタービン動翼の第3の実施の形態を示すもので、図5は本発明のタービン動翼の第3の実施の形態のタービン軸方向側から見た側面図、図6は図5に示す本発明のタービン動翼の第3の実施の形態に用いた押圧部材の更に他の例を示す斜視図である。これらの図において、図1乃至図4に示す部分と同様の部分には、図1乃至図4の符号と同符号を付し説明を省略する。   5 and 6 show a third embodiment of the turbine rotor blade of the present invention. FIG. 5 is a side view of the third embodiment of the turbine rotor blade of the present invention viewed from the turbine axial direction side. 6 and 6 are perspective views showing still another example of the pressing member used in the third embodiment of the turbine rotor blade of the present invention shown in FIG. In these drawings, the same parts as those shown in FIGS. 1 to 4 are denoted by the same reference numerals as those in FIGS. 1 to 4 and description thereof is omitted.

本発明の第3の実施の形態は、前述した本発明の第1の実施の形態と同様に、押圧部材9による半径方向外周側への押し上げ量を変えることのより、翼根部4とディスク溝6との係合部の片当たりを防止するとともに、押圧部材9の溝8への固定作業を削減するようにしたもので、押圧部材9における半径方向外周側の周面91および内周側の周面92,93が、図6に示すようにその半径方向高さがその移動方向、即ち、周方向に向かって低くなる(h5<h6、h5'<h6')ように形成したものである。   In the third embodiment of the present invention, as in the first embodiment of the present invention described above, the blade root portion 4 and the disk groove are changed by changing the push-up amount of the pressing member 9 toward the outer peripheral side in the radial direction. 6, and the fixing work of the pressing member 9 to the groove 8 is reduced, and the peripheral surface 91 on the radially outer peripheral side and the inner peripheral side of the pressing member 9 are reduced. As shown in FIG. 6, the circumferential surfaces 92 and 93 are formed such that their height in the radial direction becomes lower in the moving direction, that is, in the circumferential direction (h5 <h6, h5 ′ <h6 ′). .

この実施の形態によれば、押圧部材9は、これと翼根部4の相対位置を設定調整することにより、翼根部4に対する半径方向外周側への押し上げ量を変えることができ、押し上げ量が不足する場合には、押圧部材9の半径方向高さが高くなる位置まで、押圧部材9を溝8内で周方向に移動することで、翼根部4に対する押し上げ効果を増すことができ、また、前述した実施の形態と同様な効果を得ることができる。   According to this embodiment, the pressing member 9 can change the pushing amount of the blade root portion 4 toward the outer peripheral side in the radial direction by setting and adjusting the relative position of the blade root portion 4 and the pushing amount is insufficient. In this case, the pushing-up effect on the blade root 4 can be increased by moving the pushing member 9 in the circumferential direction in the groove 8 until the radial height of the pushing member 9 is increased. The same effects as those of the embodiment described above can be obtained.

なお、押圧部材9の溝8への挿入、固定は、前述した実施の形態と同様である。   The pressing member 9 is inserted into and fixed to the groove 8 in the same manner as in the above-described embodiment.

図7は本発明のタービン動翼の第4の実施の形態を示すもので、本発明のタービン動翼の第4の実施の形態の縦断面図である。この図において先の各図と同様の部分には同符号を付し説明を省略する。   FIG. 7 shows a fourth embodiment of the turbine rotor blade of the present invention, and is a longitudinal sectional view of the fourth embodiment of the turbine rotor blade of the present invention. In this figure, parts similar to those in the previous figures are given the same reference numerals, and description thereof is omitted.

この実施の形態は、押圧部材9の断面形状を、その内周側面がタービンディスク5におけるタービン軸方向側端面よりタービンディスク5内部に向かってその半径方向高さが徐々に高くなる(h3<h4)となるように形成するとともに、溝8の断面形状も同様に形成したものである。この実施の形態においても、前述した実施の形態と同様な効果を得ることができる。   In this embodiment, the cross-sectional shape of the pressing member 9 is such that the inner circumferential side surface thereof gradually increases in height in the radial direction from the end surface on the turbine axial direction side of the turbine disk 5 toward the inside of the turbine disk 5 (h3 <h4). ) And the cross-sectional shape of the groove 8 is also formed in the same manner. Also in this embodiment, the same effect as that of the above-described embodiment can be obtained.

図8及び図9は、本発明のタービン動翼の第5の実施の形態を示すもので、図9は本発明のタービン動翼の第5の実施の形態が構成する環状翼列の一部をタービン回転軸方向から見た側面図、図9は図8に示す本発明のタービン動翼の第5の実施の形態に用いた押圧部材の更に他の例を示す斜視図である。これらの図において、図1乃至図4に示す部分と同様の部分には、図1乃至図4の符号と同符号を付し説明を省略する。   FIGS. 8 and 9 show a fifth embodiment of the turbine rotor blade of the present invention, and FIG. 9 shows a part of an annular blade row formed by the fifth embodiment of the turbine rotor blade of the present invention. FIG. 9 is a perspective view showing still another example of the pressing member used in the fifth embodiment of the turbine rotor blade of the present invention shown in FIG. In these drawings, the same parts as those shown in FIGS. 1 to 4 are denoted by the same reference numerals as those in FIGS. 1 to 4, and the description thereof is omitted.

この実施の形態は、押圧部材9とこの押圧部材9が嵌まり込む溝8の断面形状を、横T字状に形成したものである。即ち、押圧部材9の一方側側面に突出部94を設け、この突出部94の半径方向外周面95を、翼根部4に形成した周面41に当接させて、翼根部4を半径方向外方に押し上げるように構成したものである。   In this embodiment, the cross-sectional shape of the pressing member 9 and the groove 8 into which the pressing member 9 is fitted is formed in a horizontal T shape. That is, a protruding portion 94 is provided on one side surface of the pressing member 9, and the radial outer peripheral surface 95 of the protruding portion 94 is brought into contact with the peripheral surface 41 formed on the blade root portion 4, thereby It is configured to push upward.

また、この実施の形態において、押圧部材9の半径方向外周面91または突出部94の半径方向外周面95を、円周方向に向かう傾斜面に形成して、翼根部4の半径方向外方押上げ力を調整することも可能である。   In this embodiment, the radial outer peripheral surface 91 of the pressing member 9 or the radial outer peripheral surface 95 of the protruding portion 94 is formed as an inclined surface in the circumferential direction so that the blade root portion 4 is pushed outward in the radial direction. It is also possible to adjust the lifting force.

この実施の形態によれば、前述した実施の形態と同様な効果を得ることができる。また、押圧部材9はその上下の2箇所により、軸方向抜け止めされるので、その脱落による故障発生を最小減にすることができ、信頼性も向上する。   According to this embodiment, the same effect as that of the above-described embodiment can be obtained. Further, since the pressing member 9 is prevented from coming off in the axial direction by the two upper and lower portions, the occurrence of failure due to the drop-off can be minimized, and the reliability is improved.

図10は本発明のタービン動翼の第6の実施の形態を示すもので、この図10において、先の各図と同様の部分には同符号を付し説明を省略する。   FIG. 10 shows the sixth embodiment of the turbine rotor blade of the present invention. In FIG. 10, the same parts as those in the previous drawings are denoted by the same reference numerals, and description thereof is omitted.

この実施の形態は、押圧部材9を溝8に組付けた後に、溝8と押圧部材9とに間隙が生じ、翼根部4の半径方向内周側への移動を拘束することが不十分である場合に、有効に機能する方策を提供するものである。即ち、押圧部材9に対して、タービン軸方向側よりロールアップ、つまり、押圧部材9におけるタービンディスク5の軸方向側端面に、タービン軸方向側より大きな荷重Fを加えて、押圧部材9をタービン軸方向および半径方向外周側に塑性変形させることにより、翼根部4の押し上げ効果を増し、翼根部4の回転を防止するものである。   In this embodiment, after assembling the pressing member 9 into the groove 8, a gap is generated between the groove 8 and the pressing member 9, and it is insufficient to restrain the movement of the blade root portion 4 toward the radially inner peripheral side. It provides a strategy that works effectively in some cases. That is, the pressing member 9 is rolled up from the turbine axial direction side, that is, a larger load F is applied to the axial end side surface of the turbine disk 5 in the pressing member 9 than the turbine axial direction side to By plastically deforming in the axial direction and the radially outer peripheral side, the effect of pushing up the blade root portion 4 is increased and the rotation of the blade root portion 4 is prevented.

この実施の形態においても、前述した実施の形態と同様な効果を得ることができる。   Also in this embodiment, the same effect as that of the above-described embodiment can be obtained.

なお、この実施の形態は、前述した各実施の形態に適用することができる。   This embodiment can be applied to each of the embodiments described above.

図11は、本発明のタービン動翼の各実施の形態を適用したタービン設備を一部断面にて示す正面図である。このタービン設備には、 図11に示すように、以上説明した本発明のタービン動翼の各実施の形態を環状に形成した動翼翼列110が、例えばケーシング111等の静止体の内壁に静翼を環状に固定して形成した静翼翼列112間にタービン軸方向に交互に配設される。一般に、軸方向に隣接する静翼翼列112と動翼翼列110を1つの段落とし、こうした段落が複数段設けられる。   FIG. 11 is a front view showing in partial cross section turbine equipment to which each embodiment of the turbine rotor blade of the present invention is applied. In this turbine equipment, as shown in FIG. 11, a moving blade cascade 110 in which each embodiment of the turbine moving blade according to the present invention described above is formed in an annular shape has a stationary blade on the inner wall of a stationary body such as a casing 111, for example. Are alternately arranged in the turbine axial direction between the stationary blade cascades 112 formed in a ring shape. Generally, the stationary blade cascade 112 and the moving blade cascade 110 adjacent in the axial direction are set as one paragraph, and a plurality of such paragraphs are provided.

本発明のタービン動翼の各実施の形態を適用したタービン設備によれば、タービン動翼の信頼性向上に伴い、設備の長期運転が可能になり、作業効率が向上する。   According to the turbine equipment to which each embodiment of the turbine rotor blade of the present invention is applied, the equipment can be operated for a long period of time and the working efficiency is improved as the reliability of the turbine rotor blade is improved.

なお、図11には本発明のタービン動翼の適用対象として蒸気タービンを図示したが、勿論ガスタービンにも適用可能である。また、高圧段であっても、中圧段であっても、低圧段であっても本発明は適用可能であるが、特に翼長の短い高中圧段に適用すると効果的である。   In addition, although the steam turbine was illustrated in FIG. 11 as an application object of the turbine rotor blade of this invention, of course, it is applicable also to a gas turbine. Further, the present invention can be applied to a high pressure stage, an intermediate pressure stage, or a low pressure stage, but it is particularly effective when applied to a high / intermediate pressure stage having a short blade length.

本発明のタービン動翼の第1の実施の形態を構成する環状翼列の一部をタービン回転軸方向から見た正面図である。It is the front view which looked at a part of annular ring cascade which constitutes a 1st embodiment of a turbine bucket of the present invention from the turbine rotating shaft direction. 図1に示すII−II矢視から本発明のタービン動翼の第1の実施の形態の断面図である。It is sectional drawing of 1st Embodiment of the turbine rotor blade of this invention from the II-II arrow line shown in FIG. 本発明のタービン動翼の第2の実施の形態を構成するタービン動翼の一部を円周方向から見た側面図である。It is the side view which looked at a part of turbine bucket which constitutes a 2nd embodiment of a turbine bucket of the present invention from the circumference direction. 図3に示す本発明のタービン動翼の第2の実施の形態に用いた押圧部材の他の例を示す斜視図である。It is a perspective view which shows the other example of the press member used for 2nd Embodiment of the turbine rotor blade of this invention shown in FIG. 本発明のタービン動翼の第3の実施の形態のタービン軸方向側から見た側面図である。It is the side view seen from the turbine axial direction side of 3rd Embodiment of the turbine rotor blade of this invention. 図5に示す本発明のタービン動翼の第3の実施の形態に用いた押圧部材の更に他の例を示す斜視図である。It is a perspective view which shows the further another example of the press member used for 3rd Embodiment of the turbine rotor blade of this invention shown in FIG. 本発明のタービン動翼の第4の実施の形態の縦断面図である。It is a longitudinal cross-sectional view of 4th Embodiment of the turbine rotor blade of this invention. 本発明のタービン動翼の第5の実施の形態を構成する環状翼列の一部をタービン回転軸方向から見た側面図である。It is the side view which looked at a part of cyclic | annular blade cascade which comprises 5th Embodiment of the turbine rotor blade of this invention from the turbine rotating shaft direction. 図8に示す本発明のタービン動翼の第5の実施の形態に用いた押圧部材の他の例を示す斜視図である。It is a perspective view which shows the other example of the press member used for 5th Embodiment of the turbine rotor blade of this invention shown in FIG. 本発明のタービン動翼の第6の実施の形態の縦断面図である。It is a longitudinal cross-sectional view of 6th Embodiment of the turbine rotor blade of this invention. 本発明のタービン動翼の各実施の形態を適用したタービン設備を一部断面にて示す側面図である。It is a side view which shows the turbine equipment to which each embodiment of the turbine rotor blade of this invention is applied in a partial cross section.

符号の説明Explanation of symbols

1 タービン動翼
2 翼プロフィル部
3 翼付け根部
4 翼根部
5 タービンディスク
6 ディスク溝
7 インテグラルカバー
8 溝
9 押圧部材
41 周面
42 切り欠き部
DESCRIPTION OF SYMBOLS 1 Turbine blade 2 Blade profile part 3 Blade root part 4 Blade root part 5 Turbine disk 6 Disc groove 7 Integral cover 8 Groove 9 Pressing member 41 Circumferential surface 42 Notch

Claims (4)

タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向入口側および出口側の端面に、ディスク溝下部を通り翼回転方向に沿って設けた溝と、前記ディスク溝に押し込まれる翼根部の先端側端面に、前記溝の半径方向外周面とほぼ一致するように設けた半径方向内周面と、前記翼根部の半径方向内周面に半径方向外周面が当接するように前記溝内に組み込まれる押圧部材と、前記タービンディスクの端面に設けられ、前記押圧部材をタービン回転軸方向側から前記溝に挿入可能な切り欠き部とを備え、前記溝及びこの溝に組み込まれる前記押圧部材は、半径方向外周側端面および内周側端面を有する断面形状を備え、前記押圧部材は、半径方向高さが周方向への挿入方向に漸する半径方向外周面および内周面を備えたことを特徴とするタービン動翼。 A blade root portion inserted into and engaged with a plurality of disk grooves provided in the blade rotation direction on the outer peripheral portion of the turbine disk from the turbine axial direction side, and an integral cover integrally formed at the tip of the blade profile portion. A turbine blade configured to contact and restrain adjacent integral covers by elastic restoring force of the blade profile portion to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side. , A groove provided in the turbine disk axial direction inlet side and outlet side end face along the blade rotation direction through the lower part of the disk groove, and a radial outer periphery of the groove on the tip end side face of the blade root portion pushed into the disk groove The radially inner peripheral surface provided to substantially coincide with the surface and the radially outer peripheral surface abut on the radially inner peripheral surface of the blade root portion. A pressing member incorporated in the turbine disk, and a notch portion provided on an end surface of the turbine disk and capable of inserting the pressing member into the groove from the turbine rotating shaft direction side, and the groove and the pressing incorporated in the groove member comprises a cross-sectional shape having a radially outer end face and the inner peripheral end face, the pressing member is provided with a radial outer peripheral surface and the inner peripheral surface of the radial height is reduced gradually in the insertion direction of the circumferential direction Turbine blades characterized by that. タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向入口側および出口側の端面に、ディスク溝下部を通り翼回転方向に沿って設けた溝と、前記ディスク溝に押し込まれる翼根部の先端側端面に、前記溝の半径方向外周面とほぼ一致するように設けた半径方向内周面と、前記翼根部の半径方向内周面に半径方向外周面が当接するように前記溝内に組み込まれる押圧部材とを備え、前記押圧部材は、前記溝への組み込み後に、タービン軸方向外周側からの荷重付加により塑性変形され、前記翼根部を半径方向外方に押し上げて、翼根部の回転を防止したことを特徴とするタービン動翼。   A blade root portion inserted into and engaged with a plurality of disk grooves provided in the blade rotation direction on the outer peripheral portion of the turbine disk from the turbine axial direction side, and an integral cover integrally formed at the tip of the blade profile portion. A turbine rotor blade configured to contact and restrain adjacent integral covers by elastic restoring force of the blade profile portion to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side. , A groove provided in the turbine disk axial direction inlet side and outlet side end face along the blade rotation direction through the lower part of the disk groove, and a radial outer periphery of the groove on the tip end side face of the blade root portion pushed into the disk groove The radially inner peripheral surface provided so as to substantially coincide with the surface, and the radially outer peripheral surface abut on the radially inner peripheral surface of the blade root portion. A pressure member incorporated in the groove, and the pressure member is plastically deformed by applying a load from the outer peripheral side in the turbine axial direction after being assembled into the groove, and pushes the blade root portion outward in the radial direction. Turbine blades characterized by preventing rotation of the rotor. タービンディスクの外周部に翼回転方向に複数設けられたディスク溝に対しそれぞれタービン軸方向側から挿入され係合する翼根部と、翼プロフィル部の先端に一体に形成されたインテグラルカバーとを有し、タービン回転軸方向側から前記タービンディスクに押し込むことでねじり変形しようとする前記翼プロフィル部の弾性復元力によって相隣接するインテグラルカバーを接触し拘束するように構成したタービン動翼であって、タービンディスク軸方向側端面に、翼回転方向に半径方向外周側端面及び内周側端面を有する断面形状を備えた溝が設けられ、この溝に半径方向高さが周方向への挿入方向に漸する半径方向外周面及び内周面を備えた押圧部材を組み込み、この押圧部材の溝への組み込みにより前記翼根部を半径方向外方に押し上げて、翼根部の回転を防止したことを特徴とするタービン動翼。 A blade root portion inserted into and engaged with a plurality of disk grooves provided in the blade rotation direction on the outer peripheral portion of the turbine disk from the turbine axial direction side, and an integral cover integrally formed at the tip of the blade profile portion. A turbine rotor blade configured to contact and restrain adjacent integral covers by elastic restoring force of the blade profile portion to be torsionally deformed by being pushed into the turbine disk from the turbine rotating shaft direction side. The turbine disk axial end face is provided with a groove having a cross-sectional shape having a radial outer peripheral end face and an inner peripheral end face in the blade rotation direction, and the radial height of the groove in the insertion direction in the circumferential direction is provided. built pressing member having a radially outer peripheral surface and inner peripheral surface to decrease gradually, press the blade root portion radially outward by integration into the groove of the pressing member Up, the turbine blade, characterized in that to prevent rotation of the blade root. 請求項1乃至3のいずれか1項に記載のタービン動翼を備えた
ことを特徴とするタービン設備。
A turbine equipment comprising the turbine rotor blade according to any one of claims 1 to 3.
JP2005099991A 2005-03-30 2005-03-30 Turbine blade and turbine equipment using the same Expired - Fee Related JP4498964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099991A JP4498964B2 (en) 2005-03-30 2005-03-30 Turbine blade and turbine equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099991A JP4498964B2 (en) 2005-03-30 2005-03-30 Turbine blade and turbine equipment using the same

Publications (2)

Publication Number Publication Date
JP2006275032A JP2006275032A (en) 2006-10-12
JP4498964B2 true JP4498964B2 (en) 2010-07-07

Family

ID=37210019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099991A Expired - Fee Related JP4498964B2 (en) 2005-03-30 2005-03-30 Turbine blade and turbine equipment using the same

Country Status (1)

Country Link
JP (1) JP4498964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978211A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Assembly for axial protection on rotor blades in a rotor and gas turbine with such an assembly
JP5091745B2 (en) * 2008-03-31 2012-12-05 三菱重工業株式会社 Turbine blade mating structure
JP7213835B2 (en) * 2020-02-10 2023-01-27 三菱重工業株式会社 turbine wheel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975501U (en) * 1982-11-12 1984-05-22 三菱重工業株式会社 Moving blade fixing device
JPS6229703A (en) * 1985-07-30 1987-02-07 Agency Of Ind Science & Technol Locking mechanism for gas turbine bucket
JPH0512601U (en) * 1991-07-24 1993-02-19 三菱重工業株式会社 Integral shroud wing
JPH0687603U (en) * 1986-09-29 1994-12-22 ウエスチングハウス・エレクトリック・コーポレイション Turbine blade protector
JPH07229404A (en) * 1994-02-18 1995-08-29 Toshiba Corp Moving blade damping device for axial turbine
JPH11247616A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Gas turbine engine
JPH11294387A (en) * 1998-04-10 1999-10-26 Mitsubishi Heavy Ind Ltd Compressor rotor blade
JP2004257385A (en) * 2003-02-25 2004-09-16 General Electric Co <Ge> Turbine bucket dovetail of axial insertion type having integrated rotation-preventing key

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975501U (en) * 1982-11-12 1984-05-22 三菱重工業株式会社 Moving blade fixing device
JPS6229703A (en) * 1985-07-30 1987-02-07 Agency Of Ind Science & Technol Locking mechanism for gas turbine bucket
JPH0687603U (en) * 1986-09-29 1994-12-22 ウエスチングハウス・エレクトリック・コーポレイション Turbine blade protector
JPH0512601U (en) * 1991-07-24 1993-02-19 三菱重工業株式会社 Integral shroud wing
JPH07229404A (en) * 1994-02-18 1995-08-29 Toshiba Corp Moving blade damping device for axial turbine
JPH11247616A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Gas turbine engine
JPH11294387A (en) * 1998-04-10 1999-10-26 Mitsubishi Heavy Ind Ltd Compressor rotor blade
JP2004257385A (en) * 2003-02-25 2004-09-16 General Electric Co <Ge> Turbine bucket dovetail of axial insertion type having integrated rotation-preventing key

Also Published As

Publication number Publication date
JP2006275032A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4820695B2 (en) Method and system for assembling turbine bucket with shroud and tangential insertion dovetail
JP5253866B2 (en) Hydrodynamic fluid film journal bearing assembly and method of manufacturing the same
JP4335771B2 (en) Turbine blades and turbine equipment
US4725200A (en) Apparatus and method for reducing relative motion between blade and rotor in steam turbine
JP2008232151A (en) Rotary assembly for turbomachine fan
CN101160452A (en) Locking arrangement for radial entry turbine blades
JP2008144687A (en) Turbine stationary blade structure
JPH07229404A (en) Moving blade damping device for axial turbine
JP4498964B2 (en) Turbine blade and turbine equipment using the same
US7429164B2 (en) Turbine moving blade
JP2007332893A (en) Vibration damping and fretting preventive structure of axial flow turbine blade
JP5149831B2 (en) Turbine blade fixed structure and turbine
JP2011137454A (en) Turbine engine rotor blade and rotor wheel
JP6521273B2 (en) Steam turbine
WO2020025094A1 (en) Pitch bearing
EP2863017A1 (en) Turbine with bucket fixing means
JP6142587B2 (en) Clutch unit and wind power generator
AU2018264866B2 (en) Pin to reduce relative rotational movement of disk and spacer of turbine engine
WO2004027277A1 (en) A spherical roller bearing having a holding structure for controlling axial displacement of two rows of rollers in a direction away from each other
US20150003979A1 (en) Steam turbine nozzle vane arrangement and method of manufacturing
JP7217330B1 (en) Turbine rotor and manufacturing method thereof
JP5495211B2 (en) Turbine rotor
JP7414941B1 (en) Fixed structure of turbine rotor blades
JP7542365B2 (en) Rotor blade cascade and steam turbine
JP2006112303A (en) Turbine rotor and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees