Nothing Special   »   [go: up one dir, main page]

JP4447300B2 - Phosphor bronze strip with excellent bendability - Google Patents

Phosphor bronze strip with excellent bendability Download PDF

Info

Publication number
JP4447300B2
JP4447300B2 JP2003422433A JP2003422433A JP4447300B2 JP 4447300 B2 JP4447300 B2 JP 4447300B2 JP 2003422433 A JP2003422433 A JP 2003422433A JP 2003422433 A JP2003422433 A JP 2003422433A JP 4447300 B2 JP4447300 B2 JP 4447300B2
Authority
JP
Japan
Prior art keywords
rolling
phosphor bronze
grain size
crystal grain
bendability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422433A
Other languages
Japanese (ja)
Other versions
JP2005179740A (en
Inventor
宏司 原田
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003422433A priority Critical patent/JP4447300B2/en
Publication of JP2005179740A publication Critical patent/JP2005179740A/en
Application granted granted Critical
Publication of JP4447300B2 publication Critical patent/JP4447300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、端子・コネクタ等の電子部品に用いられる、高い強度および良好な曲げ加工性を兼ね備えたりん青銅条、さらにそれらを用いた端子、コネクタ、またはリレーに関するものである。   The present invention relates to a phosphor bronze strip used for electronic parts such as terminals and connectors, which has high strength and good bending workability, and further relates to a terminal, connector or relay using the same.

一般に、端子やコネクターやリレー等の電子部品には機械的強度および電気伝導性、さらには半田付け性やめっき性等の観点から銅合金が用いられ、その中でもりん青銅は高い機械的強度と優れた曲げ加工性を有するため広く用いられている。   In general, copper alloys are used for electronic parts such as terminals, connectors, and relays from the viewpoints of mechanical strength and electrical conductivity, as well as solderability and plating properties. Among them, phosphor bronze has high mechanical strength and superiority. Widely used because of its excellent bending workability.

一方、近年における著しい電子部品の軽薄・短小化の進展に伴い、より薄い材料が求められているが、薄くなるとコネクタの接圧が下がるため材料を高強度化する必要がある。同様に携帯電話等の高密度実装化に伴い、より微細な加工が施されるため加工性、特に曲げ性を向上させる必要がある。
国際公開WO02/053790
On the other hand, with the recent progress of remarkable thinning and shortening of electronic parts, thinner materials are required. However, when the thickness is reduced, the contact pressure of the connector is lowered, so that it is necessary to increase the strength of the material. Similarly, along with the high-density mounting of cellular phones and the like, finer processing is performed, so it is necessary to improve workability, particularly bendability.
International Publication WO02 / 053790

この要求に対し、結晶粒径を微細化することにより曲げ性が向上することが報告されているが(WO02/053790)、優れた曲げ性を安定して得ることは必ずしもできなかった。   In response to this requirement, it has been reported that bendability is improved by reducing the crystal grain size (WO02 / 053790), but it has not always been possible to stably obtain excellent bendability.

本発明の目的は、優れた曲げ性を安定して得ることができるりん青銅条を提供することにある。   An object of the present invention is to provide a phosphor bronze strip capable of stably obtaining excellent bendability.

本発明者は、上記の不具合に対し結晶方位と曲げ性との関係を調査したところ、以下の知見が得られた。
(1)エッチングにより試料表面を除去することにより、厚内部のエッチング面について結晶方位(板面方位)を測定した。その結果、りん青銅条では、表面(圧延面)についての(220)強度(IS(220))が、厚内部のエッチング面についての(220)強度(IC(220))より低いことを見出した。
(2)また、厚内部のエッチング面についての(220)強度が同じ場合、表面(圧延面)についての(220)強度が低いほど、良好な曲げ性が得られることを発見した。すなわち、優れた曲げ性を安定して得るためには、IS(220)とIC(220)との比(IS(220)/IC(220))を、所定のレベル以下に規制する必要があることを知見した。
(3)りん青銅の最終圧延では一般的に所定の厚(t0)から、所定の厚(t)まで加工する過程において、圧延を複数パスで行う。IC(220)はt0からtまでのトータルの圧延加工度によって定まり、トータルの加工度を高くするとIC(220)は大きくなる。一方、IS(220)はトータル加工度だけでなく種々の圧延条件の影響をも受け、
a.圧延回数が少ない(一回の圧延での加工度が高い)ほどIS(220)は低い。
b.圧延油の粘度が低いほどIS(220)は低い。
c.圧延温度が低いほどIS(220)は低い。
ことが判明した。
(4)銅合金条の曲げ性は、通常、圧延加工度が低くなると向上する。一方、IC(220)、IS(220)とも一般的には圧延加工度を低くすると低減する。この両関係より、IS(220)が低い銅合金条の曲げが優れることは、従来より公表されていた。しかし、IC(220)とIS(220)の比に着目した曲げ改善策は、過去に報告されていない。
(5)厚方向での結晶方位制御に加え、結晶粒を微細化することにより、さらに良好な曲げ性が得られる。りん青銅の曲げ性は加工度が高くなると劣化する。結晶粒径を微細化すると粒界強化により強度が高くなるため、製品に求められる強度を得るための圧延加工度を低く設定できるため曲げ性が向上する。
The present inventor investigated the relationship between crystal orientation and bendability with respect to the above problems, and the following knowledge was obtained.
(1) by removing the sample surface by etching, it was measured crystal orientation (plate surface direction) for etching surface of the inner thick. As a result, the phosphor bronze strip, the surface (rolled surface) of the (220) intensity (I S (220)) is, the internal thickness of the etched surface of the (220) intensity (I C (220)) that is lower than I found.
(2) Further, if (220) the strength of the etched surface of the internal thickness of the same, the lower the (220) intensity of the surface (rolled surface), it found that good bending properties are obtained. That is, in order to stably obtain excellent bendability, the ratio of I S (220) to I C (220) (I S (220) / I C (220) ) is regulated to a predetermined level or less. I found out that there is a need to do.
(3) phosphorus generally predetermined thickness at final rolling bronze from (t 0), in the course of processing to a predetermined thickness (t), is rolling in multiple passes. I C (220) is determined by the total degree of rolling from t 0 to t, and I C (220) increases as the total degree of processing increases. On the other hand, IS (220) is affected not only by the total workability but also by various rolling conditions.
a. The smaller the number of rolling times (the higher the degree of processing in one rolling ), the lower the I S (220) .
b. The lower the viscosity of the rolling oil, the lower is I S (220) .
c. The lower the rolling temperature, the lower is IS (220) .
It has been found.
(4) The bendability of the copper alloy strip is usually improved when the rolling degree is lowered. On the other hand, both I C (220) and I S (220) are generally reduced when the rolling degree is lowered. From these two relationships, it has been publicly announced that bending of a copper alloy strip having a low IS (220) is excellent. However, no bending improvement measures focusing on the ratio of I C (220) and I S (220) have been reported in the past.
(5) In addition to the crystal orientation control in the thickness direction, by refining the crystal grains, better bending properties are obtained. The bendability of phosphor bronze deteriorates as the degree of processing increases. When the crystal grain size is refined, the strength increases due to grain boundary strengthening, so that the bendability is improved because the degree of rolling work for obtaining the strength required for the product can be set low.

以上説明したように、今回発見した厚方向での結晶方位制御の方策と、従来より報告されている結晶粒微細化の方策とを組み合わせることにより、良好な曲げ性が安定して得られるようになった。本発明のりん青銅条は、小型電子部品で使用される端子、コネクタ、またはリレー用の素材として好適であり、従来のりん青銅と同様のコストで製造でき、また、強度、曲げ性以外の特性が従来のりん青銅と同等であることから、工業的に極めて有用である。 As described above, the measures of the crystal orientation control in the thickness direction was now found, by combining the measures of grain refinement has been reported conventionally, so that good bending properties can be stably obtained Became. The phosphor bronze strip of the present invention is suitable as a material for terminals, connectors or relays used in small electronic components, can be manufactured at the same cost as conventional phosphor bronze, and has properties other than strength and bendability. Is equivalent to conventional phosphor bronze, it is extremely useful industrially.

本発明の詳細を以下に説明する。   Details of the present invention will be described below.

圧延面と厚さ中央のエッチング面についての(220)強度の比
本発明のりん青銅は、圧延面についての(220)面の強度(IS(220))と厚中央部のエッチング面についての強度(IC(220))との関係が、IS(220)/IC(220)≦0.8であることを特徴とする。
Phosphor bronze ratio <br/> present invention (220) intensity of the rolling surface and the thickness etched surface of the central intensity of the (220) plane of the rolled surface (I S (220)) and a thickness of the central portion The relationship with the strength (I C (220) ) of the etched surface is that I S (220) / I C (220) ≦ 0.8.

結晶粒径が同じ場合、製品の強度は最終圧延のトータル加工度と相関を持つ。また、IC(200)は最終圧延でのトータル加工度と相関を持つ。すなわち、IC(220)は製品に求められる強度によって決定される。一方、IS(220)は良好な曲げ性を得る目的で規定される。 When the crystal grain size is the same, the strength of the product has a correlation with the total workability of the final rolling. Moreover, I C (200) has a correlation with the total processing degree in the final rolling. That is, I C (220) is determined by the strength required for the product. On the other hand, I S (220) is defined for the purpose of obtaining good bendability.

S(220)/IC(220)>0.8の範囲では、IS(220)が低くなるに従い曲げ性が向上する。IS(220)=0.8でこの効果は飽和しこれ以上小さくしても曲げ性はほとんど変化しない。そこでIS(220)/IC(220)≦0.8と規定する。 In the range of I S (220) / I C (220) > 0.8, the bendability improves as I S (220) decreases. This effect is saturated when I S (220) = 0.8, and the bendability hardly changes even if it is further reduced. Therefore, I S (220) / I C (220) ≦ 0.8 is specified.

平均結晶粒径および最大結晶粒径
平均結晶粒径を2μm以下としたのは、2μm以下にすると粒界強化による強度増加が著しくなり、より少ない圧延加工度で所望の強度を得ることが可能となるからである。また最大結晶径を10μm以下としたのは、小さな結晶粒のなかに大きな結晶粒が局在すると、曲げ加工の際に大きな結晶粒(塑性変形が開始する応力が低い)に変形が集中し、大きな結晶粒において早期にクラックが発生するためである。したがって、結晶粒径を均一に制御することも重要である。
Average crystal grain size and maximum crystal grain size The average crystal grain size is set to 2 μm or less. When the average crystal grain size is set to 2 μm or less, the strength increases due to grain boundary strengthening, and a desired strength is obtained with a smaller degree of rolling work. Because it becomes possible. The maximum crystal grain size is set to 10 μm or less because when large crystal grains are localized in small crystal grains, the deformation concentrates on large crystal grains (low stress at which plastic deformation starts) during bending. This is because cracks occur early in large crystal grains. Therefore, it is also important to control the crystal grain size uniformly.

Sn濃度
本発明では、Sn濃度は3.5〜11%の範囲に規定している。Sn濃度が3.5%未満では端子・コネクタ材に必要な強度が得られず、11%を超えると端子・コネクタ材に必要な導電率が得られないことに加え、原料コストが高くなる、鋳塊のSn偏析が大きくなり製造性が低下する等の問題がある。したがって、素材に要求される諸特性や許容できるコスト等を考慮し、Sn濃度が決定されることになる。
Sn concentration In this invention, Sn concentration is prescribed | regulated in the range of 3.5 to 11%. If the Sn concentration is less than 3.5%, the necessary strength for the terminal / connector material cannot be obtained. If the Sn concentration exceeds 11%, the necessary conductivity for the terminal / connector material cannot be obtained, and the raw material cost increases. There is a problem that Sn segregation of the ingot is increased and productivity is lowered. Therefore, the Sn concentration is determined in consideration of various characteristics required for the material, acceptable cost, and the like.

P濃度
P濃度はJIS規格やASTM規格に従い、0.03〜0.35%の範囲とする。P濃度が低すぎるとりん青銅を溶製する際に溶湯の脱酸が不十分となり、溶湯の粘度が高くなって健全な鋳塊を製造できなくなる。また、条を製造できたとしても粗大な酸化物系介在物が発生し曲げ性が低下する。
P concentration P concentration is in the range of 0.03 to 0.35% in accordance with JIS standards and ASTM standards. When the P concentration is too low, deoxidation of the molten metal becomes insufficient when melting phosphor bronze, the viscosity of the molten metal becomes high, and a healthy ingot cannot be manufactured. Further, even if the strip can be manufactured, coarse oxide inclusions are generated, and the bendability is lowered.

微量合金元素
Mg、Si、Fe、Co、Niを微量添加すると、これらの元素とP等が金属間化合物を形成し、金属間化合物がマトリックス中に析出分散される。Fe−P等の金属間化合物が析出分散されると、合金自体の析出強化により高強度化されるとともに、析出物あるいは晶出物の残留粒子による結晶粒界のピン止め効果により結晶粒が成長しにくくなり結晶微細化が達成される。また、Znを添加すると、錫、はんだめっきの熱剥離が抑制される。
When a small amount of the trace alloy elements Mg, Si, Fe, Co, Ni is added, these elements and P form an intermetallic compound, and the intermetallic compound is precipitated and dispersed in the matrix. When intermetallic compounds such as Fe-P are precipitated and dispersed, the strength is increased by precipitation strengthening of the alloy itself, and crystal grains grow due to the pinning effect of the crystal grain boundaries due to residual particles of precipitates or crystallized substances. This makes it difficult to achieve crystal refinement. Moreover, when Zn is added, thermal peeling of tin and solder plating is suppressed.

ただし、これら元素の添加量が0.5mass%を超えると(220)強度に無視できない変化が現れ曲げ加工性が劣化するため、本発明においては、これら元素の添加総量は0.5mass%以下と規定してある。 However, if the addition amount of these elements exceeds 0.5 mass%, (220) a change that cannot be ignored appears and the bending workability deteriorates. Therefore, in the present invention, the total addition amount of these elements is 0.5 mass% or less. It is prescribed.

厚さ
条の厚が0.4mmより厚くなると微細な曲げ加工が困難となるため、素材の厚を0.4mm以下に限定する。
Since the thickness of the thick <br/> conditions becomes difficult than thicker the fine bending 0.4mm, to limit the thickness of the material to 0.4mm or less.

Sn濃度の異なる厚30mm、幅60mmの各種りん青銅インゴットを溶製した。なお表1にSn濃度ごとに対応関係にあるデータをグループ1〜5に分けて表示している。つぎに75%N2+25%H2雰囲気中で600℃〜800℃で0.5時間〜3時間均質化焼鈍し、皮削りにより表層のSnの逆偏析を片面2mm機械的に除去し、冷間圧延により1.3mmまで圧延しここで第1回目の再結晶焼鈍を行った。その後さらに冷間圧延により表1に示す実施例の各グループA、Bについては0.25mmまで圧延した後結晶粒が微細になるよう再結晶焼鈍を行い、C、Dについては0.3mmまで圧延した後通常の再結晶焼鈍を行い、Eについては0.25mmまで圧延した後通常の再結晶焼鈍を行った。 Sn concentrations of different thicknesses 30 mm, and melted various phosphor bronze ingot width 60 mm. In Table 1, data corresponding to each Sn concentration is divided into groups 1 to 5 and displayed. Next, homogenization annealing is performed at 600 ° C. to 800 ° C. for 0.5 hours to 3 hours in a 75% N 2 + 25% H 2 atmosphere, and the reverse segregation of Sn on the surface layer is mechanically removed by 2 mm on the surface, Rolling to 1.3 mm was performed by hot rolling, and the first recrystallization annealing was performed here. After that, each group A and B of the examples shown in Table 1 is further rolled to 0.25 mm by cold rolling, followed by recrystallization annealing so that the crystal grains become fine, and C and D are rolled to 0.3 mm. After that, normal recrystallization annealing was performed, and E was rolled to 0.25 mm and then subjected to normal recrystallization annealing.

なお、再結晶焼鈍後の微細な結晶粒の調整はWO02/053790に準じて行った。   The fine crystal grains after recrystallization annealing were adjusted according to WO02 / 053790.

次に、冷間圧延により、0.2mmの板材に仕上げた。この冷間圧延では圧延油の粘度を10cSt、圧延温度を25℃とし、焼鈍上がりの厚が0.2mmまで圧延する過程での圧延回数を変えることにより、IS(220)/IC(220)を変化させた。すなわち、
グループA:トータルの圧延加工度20%、圧延回数1回
グループB:トータルの圧延加工度20%、圧延回数3回
グループC:トータルの圧延加工度33%、圧延回数1回
グループD:トータルの圧延加工度33%、圧延回数3回
グループE:トータルの圧延加工度20%、圧延回数3回
Next, a 0.2 mm plate was finished by cold rolling. 10cSt viscosity of rolling oil in the cold rolling, the rolling temperature of 25 ° C., the thickness of the annealing raises the by changing the rolling count in the process of rolling up 0.2mm, I S (220) / I C ( 220) was changed. That is,
Group A: Total rolling degree 20%, rolling number 1 time Group B: Total rolling degree 20%, rolling number 3 times Group C: Total rolling degree 33%, rolling number 1 time Group D: Total Rolling degree 33%, rolling times 3 times Group E: Total rolling degree 20%, rolling times 3 times

次いで、この板材について曲げ性の評価として曲げ試験および結晶粒径測定を行った。また、X線回折装置により(220)ピーク強度を求めた。 Subsequently, a bending test and a crystal grain size measurement were performed on the plate material as an evaluation of bendability. Moreover, (220) peak intensity was calculated | required with the X-ray-diffraction apparatus.

曲げ試験はbadwayのW曲げ(JIS H 3110)を各種曲げ半径で行い、割れの発生しない最小の曲げ半径比(r(曲げ半径)/t(試験片厚さ))を求めた。 In the bending test, badway W-bending (JIS H 3110) was performed at various bending radii, and the minimum bending radius ratio (r (bending radius) / t (test specimen thickness)) at which no crack was generated was obtained.

結晶粒径は圧延面に平行な断面において測定した。観察面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。平均粒径は切断法(JIS H 0501、1999年)に準じ、所定長さの線分により完全に切られる結晶粒の数を数える方法により求めた。圧延方向と平行な方向および直交する方向に、それぞれ線分を引いて平均粒径を求め、両方向での測定値の平均を平均粒径と定義した。また、最大粒径は結晶粒を含む最小の円の直径と定義した。   The crystal grain size was measured in a cross section parallel to the rolling surface. After the observation surface was finished to a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. The average grain size was determined by a method of counting the number of crystal grains that are completely cut by a line segment of a predetermined length according to the cutting method (JIS H 0501, 1999). The average particle size was determined by drawing line segments in the direction parallel to and perpendicular to the rolling direction, and the average of the measured values in both directions was defined as the average particle size. The maximum grain size was defined as the diameter of the smallest circle containing crystal grains.

(220)ピーク強度は(株)リガク製X線回折装置RINT2500を用い、Co管球(λ=1.7889Å)を使用して、管電圧:30kV、管電流:100mA、発散スリット:1°、発散縦制限スリット:10mm、散乱スリット:1°、受光スリット:0.3mm、モノクロ受光スリット0.8mm、走査速度7°/min、ステップ幅0.05°、走査軸:2θ/θ、走査範囲:83°〜93°の条件で測定を行い、スムージングおよびバックグラウンド除去を行った後、測定範囲中の最大強度を(220)ピーク強度とした。   (220) The peak intensity was measured using a Rigaku X-ray diffractometer RINT2500, using a Co tube (λ = 1.7889 mm), tube voltage: 30 kV, tube current: 100 mA, divergence slit: 1 °, Divergence length limiting slit: 10 mm, scattering slit: 1 °, light receiving slit: 0.3 mm, monochrome light receiving slit 0.8 mm, scanning speed 7 ° / min, step width 0.05 °, scanning axis: 2θ / θ, scanning range : Measurement was performed under conditions of 83 ° to 93 °, and after smoothing and background removal, the maximum intensity in the measurement range was defined as the (220) peak intensity.

表1に各試料の評価結果を示す。実施例の各グループAは結晶粒径および(220)ピーク強度の両方の調整を実施したもので、いずれも良好な曲げ性であることが分かる。これに対し実施例の各グループBは結晶粒径の調整のみ実施したものであり(220)ピーク強度の比が同等なため曲げ性がやや劣る。また実施例の各グループCは(220)ピーク強度の調整のみ実施したものであり平均結晶粒径や最大結晶径が大きいため曲げ性はやや劣る。また、実施例の各グループDについては、強度は発明例と同等だが結晶粒径および(220)ピーク強度の調整を実施していないため曲げ性が最も悪い。実施例の各グループEの曲げ性は発明例と同等だが結晶粒径および(220)ピーク強度の調整を実施していないため所望の強度が得られていない。

Figure 0004447300
Table 1 shows the evaluation results of each sample. Each group A in the examples was prepared by adjusting both the crystal grain size and the (220) peak intensity, and it can be seen that all have good bendability. On the other hand, each group B of the examples was only adjusted for the crystal grain size (220), and the bendability was slightly inferior because the ratio of peak intensities was the same. In addition, each group C in the examples was only adjusted for the (220) peak intensity, and the bendability was slightly inferior because the average crystal grain size and the maximum crystal grain size were large. For each group D of the examples, the strength is the same as that of the invention example, but the bendability is the worst because the crystal grain size and (220) peak intensity are not adjusted. The bendability of each group E in the examples is equal to that of the invention example, but the crystal grain size and (220) peak intensity are not adjusted, so that the desired strength is not obtained.
Figure 0004447300

Claims (3)

Snを3.5〜11mass%、Pを0.03〜0.35mass含有し、残部がCuおよび不可避的不純物からなるりん青銅条であり、この圧延面における平均結晶粒径が2μm以下でかつ最大結晶径が10μm以下で、X線回折により圧延面について測定した(220)面のピーク強度(IS(220))と圧延面の片側を厚さ中央部までエッチング除去し、このエッチング面について測定した(220)面のピーク強度(IC(220))との関係が、
S(220)/IC(220)≦0.8
であることを特徴とする曲げ性に優れるりん青銅条。
Sn the 3.5~11Mass%, a P containing 0.03~0.35Mass%, balance being phosphor bronze strip consisting of Cu and unavoidable impurities, and the average crystal grain size in this rolling surface at 2μm or less The maximum crystal grain size is 10 μm or less, and the (220) plane peak intensity (I S (220) ) measured on the rolled surface by X-ray diffraction and one side of the rolled surface are etched away to the center of the thickness. The relationship with the peak intensity (I C (220) ) of (220) plane measured for
I S (220) / I C (220) ≦ 0.8
A phosphor bronze strip excellent in bendability characterized by being.
Snを3.5〜11mass%、Pを0.03〜0.35mass、Mg、Si、Fe、Co、Ni、およびZnの中から選ばれる1種以上を総量で0.05〜0.5mass%含有し、残部がCuおよび不可避的不純物からなるりん青銅条であり、この圧延面における平均結晶粒径が2μm以下でかつ最大結晶径が10μm以下で、X線回折により圧延面において測定した(220)面のピーク強度(IS(220))と圧延面の片側を厚中央部までエッチング除去し、このエッチング面について測定した(220)面のピーク強度(IC(220))との関係が、
S(220)/IC(220)≦0.8
であることを特徴とする曲げ性に優れるりん青銅条。
0.05 to 0.5 mass in total of at least one selected from Sn to 3.5 to 11 mass%, P to 0.03 to 0.35 mass % , Mg, Si, Fe, Co, Ni, and Zn The balance is phosphor bronze strips composed of Cu and inevitable impurities, the average crystal grain size on this rolled surface is 2 μm or less and the maximum crystal grain size is 10 μm or less, and measured on the rolled surface by X-ray diffraction. (220) peak intensity (I S (220)) of the surface and removed by etching to a thickness of the central portion of one side of the rolling plane, the peak intensity of the measured for etching surface (220) plane (I C (220)) Relationship
I S (220) / I C (220) ≦ 0.8
A phosphor bronze strip excellent in bendability characterized by being.
請求項1または2に記載のりん青銅条を用いた端子、コネクタ、またはリレー。 A terminal, connector, or relay using the phosphor bronze strip according to claim 1 or 2.
JP2003422433A 2003-12-19 2003-12-19 Phosphor bronze strip with excellent bendability Expired - Fee Related JP4447300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422433A JP4447300B2 (en) 2003-12-19 2003-12-19 Phosphor bronze strip with excellent bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422433A JP4447300B2 (en) 2003-12-19 2003-12-19 Phosphor bronze strip with excellent bendability

Publications (2)

Publication Number Publication Date
JP2005179740A JP2005179740A (en) 2005-07-07
JP4447300B2 true JP4447300B2 (en) 2010-04-07

Family

ID=34783309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422433A Expired - Fee Related JP4447300B2 (en) 2003-12-19 2003-12-19 Phosphor bronze strip with excellent bendability

Country Status (1)

Country Link
JP (1) JP4447300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781145B2 (en) * 2006-03-30 2011-09-28 Jx日鉱日石金属株式会社 Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
CN102952965A (en) * 2012-11-22 2013-03-06 烟台大丰轴瓦有限责任公司 Phosphor bronze alloy for manufacturing high-power bearing bush
JP5453565B1 (en) * 2013-06-13 2014-03-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient

Also Published As

Publication number Publication date
JP2005179740A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
WO2013018228A1 (en) Copper alloy
KR20110088595A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP2013047360A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
KR20140002001A (en) Cu-ni-si alloy wire having excellent bendability
JP2006291356A (en) Ni-sn-p based copper alloy
JP4574583B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4959141B2 (en) High strength copper alloy
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP4447300B2 (en) Phosphor bronze strip with excellent bendability
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
KR101537151B1 (en) Cu-Zn-Sn-Ca ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICE
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP4175920B2 (en) High strength copper alloy
KR20040068007A (en) High strength and high electrical conductivity copper alloy having excellent fatigue property and intermediate temperature property
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees