Nothing Special   »   [go: up one dir, main page]

JP4397061B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4397061B2
JP4397061B2 JP24950498A JP24950498A JP4397061B2 JP 4397061 B2 JP4397061 B2 JP 4397061B2 JP 24950498 A JP24950498 A JP 24950498A JP 24950498 A JP24950498 A JP 24950498A JP 4397061 B2 JP4397061 B2 JP 4397061B2
Authority
JP
Japan
Prior art keywords
layer
gate electrode
electrode
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24950498A
Other languages
English (en)
Other versions
JP2000077549A (ja
JP2000077549A5 (ja
Inventor
孝行 五十嵐
良孝 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP24950498A priority Critical patent/JP4397061B2/ja
Priority to US09/257,507 priority patent/US6281060B1/en
Publication of JP2000077549A publication Critical patent/JP2000077549A/ja
Priority to US09/866,849 priority patent/US6426533B2/en
Publication of JP2000077549A5 publication Critical patent/JP2000077549A5/ja
Application granted granted Critical
Publication of JP4397061B2 publication Critical patent/JP4397061B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特に、NチャネルMOS(Metal Oxide Semiconductor )電界効果トランジスタ、PチャネルMOS電界効果トランジスタおよびバイポーラトランジスタを有するBiCMOS(Bipolar Complementary Metal Oxide Semiconductor )回路を備える半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
従来より、大きな出力で高速動作が可能なバイポーラトランジスタと高集積可能で低消費電力性能を有するCMOS(Complementaly Metal Oxide Semiconductor )トランジスタとを兼ね備えたBiCMOS回路が、半導体装置の回路として用いられている。
【0003】
以下、従来のBiCMOS回路の構図およびその製造方法を図34〜図43を用いて説明する。従来のBiCMOS回路の製造方法は、まず、p型の半導体基板101の表面から略同じ深さに、p型の下面分離層105、比較的濃度が高いn型のコレクタ埋込み層102、p型の下面分離層105、n型の埋込み層103、p型の埋込み層104をそれぞれ所定の間隔をおいて形成する。
【0004】
次に、バイポーラトランジスタの活性領域となる半導体基板101の表面からコレクタ埋込み層102にまで比較的濃度が低いn型のエピタキシャル層106をエピタキシャル成長により形成する。また、n型のエピタキシャル層106に隣接して、半導体基板101の表面からコレクタ埋込み層102まで比較的濃度が高いn型のコレクタウォール領域108を形成する。また、PチャネルMOS(p型のMetal Oxide Semiconductor )トランジスタの活性領域に、半導体基板101の表面からコレクタ埋込み層103にまで達する比較的濃度が低いn型のウェル109を形成する。
【0005】
また、NチャネルMOS(n型のMetal Oxide Semiconductor )トランジスタの活性領域に、半導体基板101の表面から比較的濃度が高いp型の埋込み層104にまで達する比較的濃度が低いp型のウェル110を形成する。また、半導体基板101の表面から下面分離層105にまで達する比較的濃度が低いp型の分離領域111をそれぞれ形成する。
【0006】
次に、分離領域111の表面上に素子形成領域を分離形成するための分離酸化膜107e,107g、コレクタウォール領域108とn型のエピタキシャル層106とを分離する分離酸化膜107f、n型のウェル109とp型のウェル110とを分離する分離酸化膜107h、および、p型のウェル110と他の領域とを分離する分離酸化膜107iをそれぞれ形成する。その後、活性領域となるn型のエピタキシャル層106、コレクタウォール領域108、n型のウェル109、p型のウェル110の表面に酸化膜107b,107a,107c,107dをそれぞれ形成し、図34の状態にする。
【0007】
次に、リンがドープされた膜厚1500Åのn型の多結晶シリコン膜を、図34の状態で、全表面に堆積する。その後、膜厚2000Åの多結晶シリコン膜の上に膜厚2000Åのタングステンシリサイド膜を形成する。次に、タングステンシリサイド膜および多結晶シリコン膜、酸化膜107a,107bおよび酸化膜107c,107dを選択的にエッチングし、n型のウェル109の表面上に多結晶シリコン膜113bおよびタングステンシリサイド膜113aからなるゲート電極113とゲート酸化膜112とを、p型のウェル110の表面上に多結晶シリコン膜115bおよびタングステンシリサイド膜115bからなるゲート電極115とゲート酸化膜114とを形成し、図35に示す状態とする。
【0008】
その後、図36に示すように、p型のウェル110が露出するようにマスク116を形成して、n型の不純物200、たとえば、高濃度のリン(以下、「P」という。)イオンを注入エネルギー70KeV、注入量2×1013cm-2条件で、注入することにより図37に示すようなp型のウェル110にn型のソース/ドレイン領域117a,117bを形成する。その後、マスク116を除去し、酸化膜を全面に堆積させた後、枠付けエッチングによりゲート電極13,15の側面にそれぞれサイドウォール酸化膜119a,119bおよびサイドウォール酸化膜118a,118bをそれぞれ形成する。その後、図37に示すように、p型のウェル110の表面が露出するようにマスク120を形成し、n型の不純物300、たとえば、高濃度の砒素(以下、「As」という。)イオンを注入エネルギー50KeV、注入量4×1015cm-2の条件で注入することにより、p型のウェル110にLDD(lighty Doped Drain)構造となるように、図38に示すようなn型のソース/ドレイン領域120a,120bを形成する。
【0009】
次に、図38に示すように、n型のウェル109が露出するように、マスク121a,121bを形成する。その後、図38に示すように、n型のウェル109に、高濃度のp型の不純物400、たとえば、弗化ボロン(以下、「BF2 」という。)イオンを注入エネルギー40KeV、注入量4×1015cm-2の条件で注入することにより、図39に示すようなp型のソース/ドレイン領域122a,122bを形成する。
【0010】
次に、全面に膜厚2000Åの多結晶シリコン膜を堆積した後、たとえば、BF2 イオンを注入エネルギー40KeV、注入量4×1015cm-2の条件で注入することにより、ベース電極となる導電性の多結晶シリコン膜を形成する。また、BF2 イオンを注入する工程で多結晶シリコン膜を透過したBF2 イオンがn型のエピタキシャル層106に注入され、p型の外部ベース領域となる部分を形成する。その後、さらに全面を覆うように膜厚3000ÅのCVD酸化膜を堆積した後、マスクを用いてCVD酸化膜、多結晶シリコン膜およびn型のエピタキシャル層106の上部をドライエッチングを行うことにより、図39に示すように、バイポーラトランジスタのエミッタ電極形成予定領域106aを開口し、CVD酸化膜123a,124a、多結晶シリコン膜からなるベース電極123b,124bおよびp型の外部ベース領域126a,126bを形成する。
【0011】
その後、図40に示すように、エミッタ開口領域からn型のエピタキシャル層106に高濃度のp型の不純物500、たとえばBF2 イオンを注入エネルギー30KeV、注入量6×1013cm-2の条件で注入することにより、図41に示すようなp型の真性ベース領域128を形成する。その後、全面にCVD酸化膜を形成し、枠付けエッチングを行うことにより、図41に示すように、多結晶シリコン膜からなるベース電極123b,124bおよびCVD酸化膜123a,124aの側壁にサイドウォール酸化膜127a,127b,127c,127dを形成する。次に、全面に膜厚2000Åの不純物がドープされていない多結晶シリコン膜を形成し、高濃度のn型の不純物、たとえば、Asイオンを、50KeV、1×1016cm-2の条件で注入した後、図42に示すような形状にすることにより、n型のエミッタ電極129を形成する。なお、n型不純物のイオン注入を行わず、予めn型の不純物がドープされた多結晶シリコン膜を形成してもよい。
【0012】
次に、図42に示す状態で全面に層間酸化膜130を形成する。次に、コレクタウォール領域108、エミッタ電極129、ベース電極124a、p型のソース/ドレイン領域122a、および、n型のソース/ドレイン領域122b、120a,120bのそれぞれに接続するコンタクトホール130a,130b,130c,130d,130e,130f,130gを層間酸化膜130に形成する。その後、アルミニウムをコンタクトホール130a,130b,130c,130d,130e,130f,130gを埋込むとともに層間酸化膜130の上に形成する。次に、アルミニウムを所定のパターンにエッチングすることにより、アルミニウム配線131,132,133,134,135,136,137を形成し、BiCMOS回路が完成する。
【0013】
【発明が解決しようとする課題】
しかしながら、上記BiCMOS回路の製造工程においては、図39に示すように、ベース電極123b,124bに、n型のエピタキシャル層106まで貫通する開口を形成するためのエッチング工程において、p型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bも同時にエッチングしてしまう。
【0014】
また、図41に示すサイドウォール酸化膜127a,127b,127c,127dを形成するためにCVD酸化膜をエッチングする工程においも、ソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bがエッチングされてしまう。このように、p型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bが2度エッチングされることにより、p型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bの表面が削れられるため、不純物拡散領域としてのn型およびp型のウェル109,110の領域が小さくなる恐れがある。そのため、後工程で接続される配線との間の、接合不良によるリーク電流の発生、および、コンタクト特性のばらつきが生じる。
【0015】
さらに、不必要なエッチングによりp型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bの表面が大きく削られると、図43に示すように、後工程でp型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bに接続されるアルミニウム配線を埋め込むためのコンタクトホール130d,130e,130f,130gのアスペクト比が大きくなり、エッチングガスがコンタクトホール130d,130e,130f,130gの底面、すなわち、p型のソース/ドレイン領域122a,122bおよびn型のソース/ドレイン領域120a,120bにまで行き届かず、エッチング不良を引き起こす恐れがある。
【0016】
本発明は、上記の課題を解決するためになされたものであり、その目的は、BiCMOS回路のバイポーラトランジスタ部分のベース電極を形成する工程において、CMOSトランジスタのソース/ドレイン領域の半導体特性およびコンタクト特性を確保し、かつ、ゲート電極のゲート抵抗およびコンタクト特性の向上を図り得るBiCMOS回路を備える半導体装置の製造方法を提供することである。
【0017】
【課題を解決するための手段】
本発明の実施の形態の半導体装置の製造方法は、半導体基板上にバイポーラトランジスタと電界効果トランジスタとを設けた半導体装置の製造方法であって、以下の工程を備えている。
【0018】
すなわち、本発明の実施の形態の半導体装置の製造方法は、半導体基板の主表面から所定の深さにかけての部分が第1の活性領域となるように、該第1の活性領域となる部分の少なくとも下面側に、第1導電型のコレクタ領域を形成する工程と、半導体基板の主表面上に素子分離絶縁膜を形成することによって、コレクタウォール領域の上に、バイポーラトランジスタが形成される第1の活性領域を、コレクタウォール領域の上方以外の領域に、電界効果トランジスタが形成される第1導電型の第2の活性領域を、それぞれ分離形成する工程と、第1および第2の活性領域にそれぞれ第1導電型の第1の不純物層および第2の不純物層を形成する工程と、第2の活性領域の主表面上に第1の絶縁膜を形成する工程と、第1の絶縁膜の上に、第1導電型の不純物が添加された第1の導電層を形成する工程と、第1の活性領域の主表面および第1の導電層の上に第1の半導体層を形成する工程と、第1の半導体層、第1の導電層、および、第1の絶縁膜をエッチングすることにより、第1の活性領域の上にベース電極となる層を形成するとともに、第2の活性領域の上にゲート電極上層およびゲート電極下層からなるゲート電極とゲート絶縁膜とを形成する工程と、ベース電極となる層に第2導電型の不純物を注入してベース電極を形成し、第2の活性領域に第2導電型の不純物を注入して第1の不純物拡散領域を形成する工程と、ゲート電極上層、ゲート電極下層、ゲート絶縁膜、ベース電極および第1の不純物拡散領域を第2の絶縁膜で覆う工程と、第2の絶縁膜およびベース電極に開口を形成する工程と、開口から第1の活性領域に第2導電型の不純物を注入し、ベース領域となる第2の不純物拡散領域を形成する工程と、開口の側壁に側壁絶縁膜を形成する工程と、側壁絶縁膜および第2の絶縁膜の上面に沿うように、第2の不純物拡散領域に接触するエミッタ電極を形成する工程とを備えている。
【0019】
このような工程で製造することにより、第1の半導体層をエッチングすることにより、ベース電極とゲート電極とを同時に形成するため、第1の不純物拡散領域を、第1の絶縁膜で保護された状態で第1の半導体層をエッチングする。そのため、第1の不純物拡散領域は、第1の絶縁膜という保護膜を有した状態でエッチング工程が実行されることとなり、過度に削られることはない。また、第2の絶縁膜を有した状態でベース電極に開口を形成するため、第1の不純物拡散領域は、この工程においても、第2の絶縁膜という保護膜を有した状態である。そのため、第1の不純物拡散領域は、その表面が損傷することはない。その結果、第1の不純物拡散領域の損傷に起因する半導体特性およびコンタクト特性の劣化を防止し得る半導体装置を提供することが可能となる。
【0020】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、エミッタ電極を形成する工程が、エミッタ電極となる層および抵抗素子となる層を有する第2の半導体層を形成する工程と、第2の半導体層をエッチングすることにより、エミッタ電極となる層と抵抗素子となる層とを分離形成する工程とを含んでいてもよい
【0021】
このような工程で製造することにより、抵抗素子を構成する第2の半導体層をエミッタ電極となる層の形成と同時に形成できる。その結果、同一半導体基板にバイポーラトランジスタ、電界効果トランジスタおよび抵抗素子を有する半導体装置の製造方法において、工程数の低減を図ることが可能となる。
【0022】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、コレクタ領域、ベース電極、エミッタ電極、ゲート電極上層および第1の不純物拡散領域の上部をシリサイド化し、金属シリサイド膜を形成する工程をさらに備えていてもよい
【0023】
このような工程で製造することにより、エミッタ電極、ベース電極、ゲート電極の上層、および、第1および第2の不純物拡散領域の上部に金属シリサイド膜を備えているため、コンタクト配線が接続されたときのコンタクト抵抗を低減させ得る半導体装置を提供できる。
【0024】
また、ゲート電極上層は、ゲート電極の下層からの不純物拡散により不純物が分布されるため、ゲート電極上層は不純物が拡散しきれない場合があり、金属シリサイド膜がなければ、不純物が拡散していないゲート電極上層の上表面近傍はゲート抵抗を増加させる恐れがある。しかしながら、本製造方法によれば、ゲート電極上層の上部は、シリサイド化されることにより、導電性が得られるため、ゲート電極上層のゲート抵抗は低減される。その結果、ゲート電極下層からゲート電極上層へ不純物が拡散するような工程でゲート電極上層を形成しても、半導体特性を向上させ得る半導体装置を提供することが可能となる。
【0025】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、コレクタ領域、ベース電極、エミッタ電極、ゲート電極上層および第1の不純物拡散領域の上部をシリサイド化し、金属シリサイド膜を形成するとともに、抵抗素子となる層も平面的に所定の間隔をおいてシリサイド化し、抵抗素子用金属シリサイド膜を形成する工程を含んでいてもよい
【0026】
このような製造方法にすることにより、抵抗素子に対するコンタクト配線のコンタクト抵抗の低減を図り、抵抗素子の抵抗値の制御を容易にすることが可能となる。
【0027】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、ベース電極およびゲート電極上層の上に、金属膜を形成する工程をさらに備えていてもよい
【0028】
このような工程で製造することにより、ベース電極、ゲート電極上層の上に金属膜を備えているため、ゲート電極にコンタクト配線が接続されたときに、コンタクト抵抗の増加の原因となる、不純物が拡散しなかったゲート電極上層の上表面近傍部に起因する寄生抵抗が形成される恐れを低減させることができる。
【0029】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、ベース電極およびゲート電極を形成した後、第1の不純物拡散領域を形成する前に、ゲート電極を熱処理し、ゲート電極下層からゲート電極上層へ第1導電型の不純物を拡散させる工程をさらに備えていてもよい
【0030】
このような工程で製造することにより、熱処理工程において、ゲート電極下層からゲート電極上層へ不純物が拡散する。そのため、ゲート電極上層およびベース電極となる層を、不純物が注入されていない状態の第1の半導体層をエッチングして切断する方法で形成しても、本熱処理工程において、ゲート電極下層からゲート電極上層へ不純物を拡散させることにより、所定の不純物が均一な状態で分布したゲート電極を形成することが可能となる。そのため、ゲート抵抗の低減を図ることが可能となる。その結果、工程数を減少させるために、ベース電極とゲート電極上層とを同一工程で第1の半導体層を堆積させることにより形成しても、半導体特性の劣化を防止し得る半導体装置を提供できる。
【0031】
また、第1の導電層および第1の半導体層をエッチングして、分離形成することにより、ベース電極およびゲート電極を形成した後に熱処理工程を行うため、第1の導電層から半導体層へ不純物が拡散せず、バイポーラトランジスタのベース電極の不純物濃度が一定に保たれる。その結果、半導体特性が確保されたバイポーラトランジスタを有する半導体装置を提供できる。
【0032】
また、熱処理工程は、通常、行われる工程であり、新たにゲート電極に不純物を注入する必要がないため、全体的に見て工程数が減少する。
【0033】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、ゲート電極下層の膜をd2 とし、ゲート電極上層の膜厚をd1 とすると、ゲート電極下層となる第1の導電層に添加される不純物の濃度は、1×1020×{(d1 +d2 )/d2 }cm-3以上であってもよい
【0034】
このような工程で製造することにより、ゲート電極下層の不純物濃度は、1×1020×{(d1 +d2 )/d2 }cm-3以上であるため、ゲート電極上層に拡散されるべき不純物量も含めて、ゲート電極下層に不純物が注入されていることになる。それにより、後工程における熱拡散時に、ゲート電極下層からゲート電極上層へ不純物が拡散した後の状態での不純物濃度は、ゲート電極全体として適度な濃度で均一になる。その結果、ゲート抵抗およびゲート電極に対するコンタクト配線のコンタクト抵抗を小さくできる半導体装置を提供できる。
【0035】
本発明の実施の形態の半導体装置の製造方法は、上記の実施の形態において、ゲート電極下層の膜厚が、ゲート電極の膜厚からベース電極の膜厚を引いた値であってもよい
【0036】
このような工程で製造することにより、ゲート電極下層の膜厚を予め調節することにより、ベース電極とゲート電極上層となる第1の半導体層を同一の堆積工程で行うことが可能となる。そのため、ゲート電極とベース電極とを1つの工程で形成でき、工程数を減少させることが可能となる。
請求項9に記載の本発明の半導体装置の製造方法は、請求項1〜8のいずれかに記載の半導体装置の製造方法において、電界効果トランジスタが、pチャネル電界効果トランジスタおよびnチャネル電界効果トランジスタからなっている。
請求項10に記載の本発明の半導体装置の製造方法は、請求項1〜9のいずれかに記載の半導体装置の製造方法において、第1の導電層が不純物が添加された多結晶シリコン膜を有し、第1の半導体層が不純物が添加されていない多結晶シリコン膜を有する。
請求項11に記載の本発明の半導体装置の製造方法は、請求項2に記載の半導体装置の製造方法において、第2の半導体層が多結晶シリコン膜を有する。
【0037】
本発明の実施の形態の半導体装置は、バイポーラトランジスタと電界効果トランジスタとを半導体基板上に備える半導体装置であって、電界効果トランジスタのゲート電極が、ゲート電極上層とゲート電極下層との2層で形成され、バイポーラトランジスタのベース電極とゲート電極上層とが同じ膜厚である。
【0038】
このような構造にすることにより、上記の半導体装置の製造方法を用いることが可能となる。それにより、ゲート電極上層とベース電極とが同一の層で形成されても、所定の膜厚を有するゲート電極とベース電極とが形成される。その結果、本半導体装置の構造にすれば、工程数を低減させることができる。
【0039】
本発明の実施の形態の半導体装置は、上記の実施の形態において、ゲート電極上層とベース電極とが、ともに不純物がドープされた半導体層で形成され、それぞれ不純物濃度が互いに異なっていてもよい
【0040】
このような構造にすることにより、上記の半導体装置の製造方法を用いてベース電極とゲート電極とを同時に形成しても、バイポーラトランジスタと電界効果トランジスタとの半導体特性を制御することが可能となる。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
【0042】
(実施の形態1)
本発明の実施の形態1のBiCMOS回路の構造およびその製造方法を図1〜図15を用いて説明する。本実施の形態のBiCMOS回路の製造方法は、まず、p型の半導体基板1の表面から略同じ深さに、比較的濃度が高い、p型の下面分離層5、p型の下面分離層5、n型のコレクタ埋込み層2、n型の埋込み層3、p型の埋込み層4をそれぞれ所定の間隔をおいて形成する。
【0043】
次に、バイポーラトランジスタの活性領域に、半導体基板1の表面からコレクタ埋込み層2にまで比較的濃度が低いn型のエピタキシャル層6をエピタキシャル成長により形成する。また、n型のエピタキシャル層6に隣接して、半導体基板1の表面からコレクタの埋込み層2まで達する比較的濃度が高いn型のコレクタウォール領域8を形成する。また、PチャネルMOSトランジスタの活性領域に、半導体基板1の表面からコレクタ埋込み層3にまで達する比較的濃度が低いn型のウェル9を形成する。また、NチャネルMOSトランジスタの活性領域に、半導体基板1の表面からコレクタ埋込み層3にまで達する比較的濃度が低いp型のウェル10を形成する。また、半導体基板1の表面から下面分離層5にまで達する比較的濃度が低いp型の分離領域11を形成する。
【0044】
次に、分離領域11の表面上に素子形成領域を分離形成するための分離酸化膜7e,7g、コレクタウォール領域8とn型のエピタキシャル層6とを分離する分離酸化膜7f、n型のウェル9とp型のウェル10とを分離する分離酸化膜7h、および、p型のウェル10と他の領域とを分離する分離酸化膜7iを形成することにより、各々のトランジスタの活性領域を分離形成する。その後、コレクタウォール領域8、バイポーラトランジスタの活性領域、PチャネルMOSトランジスタの活性領域およびNチャネルMOSトランジスタの活性領域のとなるn型のエピタキシャル層6、コウレクタウォール領域8、n型のウェル9およびp型のウェル10の表面の半導体基板1の表面に、酸化膜7b,7a,7c,7dをそれぞれ形成し、図1の状態にする。
【0045】
次に、リンが予め添加された膜厚1500Åの多結晶シリコン膜を、図1の状態で、全表面に堆積した後、分離酸化膜7f、7gの一部および酸化膜7bが露出するように多結晶シリコン膜をエッチングし、分離酸化膜7e、酸化膜7a、分離酸化膜7fを覆う多結晶シリコン膜51aと分離酸化膜7g、酸化膜7c、分離酸化膜7h、酸化膜7dおよび分離酸化膜7iを覆う多結晶シリコン膜51bとを形成し、図2に示す状態とする。
【0046】
また、上記図2の状態とする代わりに、図1の状態から、リンが予め添加された多結晶シリコン膜を、図3に示すように、全表面に堆積した後、酸化膜7bおよび分離酸化膜7hの一部が露出するように多結晶シリコン膜をエッチングし、分離酸化膜7e、酸化膜7a、分離酸化膜7fを覆う多結晶シリコン膜51aと、分離酸化膜7g、酸化膜7c、分離酸化膜7hを覆う多結晶シリコン膜51bと、分離酸化膜7h、酸化膜7dおよび分離酸化膜7iを覆う多結晶シリコン膜51cとを形成してもよい。
【0047】
次に、図2の状態で酸化膜7bを除去した後、図4に示すように、多結晶シリコン膜51a、分離酸化膜7f、n型のエピタキシャル層6、分離酸化膜7gおよび多結晶シリコン膜51bを覆うように、不純物がドープされていない膜厚1000Åの多結晶シリコン膜52を堆積する。
【0048】
次に、多結晶シリコン膜52を選択的にエッチングし、n型のエピタキシャル層6上に多結晶シリコン膜53を形成するとともに、n型のウェル9の表面上に多結晶膜13a,13bからなるゲート電極13およびゲート酸化膜12を、p型のウェル10の表面上に多結晶膜15a,15bからなるゲート電極15およびゲート酸化膜14を形成し、図5に示す状態とする。その後、図6に示すように、分離酸化膜7f,7gの一部および多結晶シリコン膜53のみが露出するようにマスク54a,54bを形成して、p型の不純物81、たとえば、BF2 イオンを注入エネルギー40KeV、注入量4×1015cm-2の条件で注入することにより多結晶シリコン膜53に注入し、ベース電極53aを形成するとともに、n型のエピタキシャル層6の表面近傍に外部ベース領域となる不純物拡散領域を形成する。
【0049】
次に、図7に示すように、分離酸化膜7hの一部およびp型のウェル10からなる活性領域以外の領域上にマスク55を形成する。その後、n型の不純物82、たとえば、Pイオンを注入エネルギー70KeV、注入量2×1013cm-2条件で注入することにより、図8に示すようなp型のウェル10にn型のソース/ドレイン領域17a,17bを形成するとともに、ゲート電極15の上層となる多結晶シリコン膜15aにも不純物82を注入する。その後、マスク55を除去し、酸化膜を全面に堆積させた後、枠付けエッチングによりベース電極53aおよびゲート電極13,15の両端にサイドウォール酸化膜27a,27d,19a,19b,18a,18bをそれぞれ形成する。
【0050】
その後、図8に示すように、分離酸化膜7hの一部およびp型のウェル10からなる活性領域以外の領域上にマスク56を形成し、n型の不純物83、たとえば、Asイオンを注入エネルギー50KeV、注入量4×1015cm-2の条件で注入することにより、p型のウェル10にLDD(lighty Doped Drain)構造となるように、図9に示すようなn型のソース/ドレイン領域20a,20bを形成するとともに、ゲート電極15の上層となる多結晶シリコン膜15aにも不純物83を注入する。次に、図9に示すように、n型のウェル9および分離酸化膜7g,7hの一部のみが露出するように、マスク57a,57bを形成する。その後、p型の不純物84、たとえば、BF2 を注入エネルギー40KeV、注入量4×1015cm-2の条件で注入することにより、図10に示すように、p型のソース/ドレイン領域22a,22bを形成するとともに、ゲート電極13の層を構成する多結晶シリコン膜13aにも不純物84を注入する。
【0051】
その後、全面を覆うように膜厚3000ÅのCVD酸化膜を堆積した後、図10に示すように、マスクを用いてドライエッチングを行うことにより、バイポーラトランジスタのエミッタ電極形成予定領域6aを開口し、ベース電極23b,24bおよびCVD酸化膜58a,58bを形成するとともに、エピタキシャル層6の表面近傍のエミッタ電極形成予定領域6aをわずかにエッチングすることにより、外部ベース領域26a,26bを形成する。その後、図11に示すように、エミッタ電極形成予定領域6aからp型の不純物85、たとえばBF2 イオンを注入エネルギー30KeV、注入量6×1013cm-2の条件で注入することにより、図12に示すような真性ベース領域28を形成する。
【0052】
その後、図11の状態で、全面にCVD酸化膜を形成し、枠付けエッチングを行うことにより、図12に示すように、ベース電極23b,24bおよびCVD酸化膜58a,58bの側壁にサイドウォール酸化膜27b,27cを形成する。次に、図2の状態で、全面に膜厚2000Åの不純物がドープされていない多結晶シリコン膜を形成し、n型の不純物、たとえばAsイオンを、注入エネルギー50KeV、注入量1×1016cm-2の条件で注入した後、図13に示すような形状にエッチングすることにより、エミッタ電極29を形成する。なお、n型の不純物をイオン注入する代わりに、予めn型の不純物がドープされた多結晶シリコン膜を形成してもよい。
【0053】
次に、全面に層間酸化膜30を形成し、コレクタウォール領域8、エミッタ電極29、ベース電極24b、p型のソース/ドレイン領域22a、22bおよびn型のソース/ドレイン領域20a,20bのそれぞれに接続するコンタクトホール30a,30b,30c,30d,30e,30f,30gを形成し、アルミニウムをコンタクトホール30a,30b,30c,30d,30e,30f,30gを埋込みながら層間酸化膜30の上に形成した後、所定のパターンにエッチングすることにより、アルミニウム配線31,32,33,34,35,36,37を形成し、図14に示すような構造の本実施の形態のBiCMOS回路が完成する。
【0054】
このような工程で製造することにより、CMOSトランジスタのゲート電極13,15とバイポーラトランジスタのベース電極23b,24bとを同時にドライエッチングにより形成する場合には、図4に示す多結晶シリコン膜51a,51b,52に対する酸化膜7c,7d,7aのエッチング速度が極端に遅いため、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのそれぞれの活性領域であるn型のウェル9およびp型のウェル10の表面、コレクタウォール領域8の表面が、それぞれ酸化膜7c,7d,7aを突き抜けてエッチングされることはない。そのため、バイポーラトランジスタ、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのそれぞれの活性領域であるn型のエピタキシャル層6、n型のウェル9およびp型のウェル10は、エッチングによるダメージが抑制されるため、バイポーラトランジスタ、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタそのそれぞれは安定したトランジスタ特性を確保することが可能となる。
【0055】
また、ゲート電極13,15は、通常、1×1020cm-3程度の濃度の多結晶シリコン膜または非晶質シリコン膜で形成されている。そのため、外部ベース電極を構成する多結晶シリコン膜23b,24bの膜厚を厚くしてベース抵抗を小さくする場合は、ゲート電極13,15の上層を構成する多結晶シリコン膜13a,15aも厚くなる。それにより、後工程における熱処理による不純物拡散時に、ゲート電極上層を構成する多結晶シリコン膜13a,15aに十分な不純物を行き渡らせるためには、ゲート電極13,15の下層を構成する多結晶シリコン膜13b,15bの膜厚を厚くするか、あるいは、多結晶シリコン膜13b,15bの濃度を大きくする必要がある。
【0056】
このとき、過度に多結晶シリコン膜13b,15bの膜厚を大きくすると、ゲート電極13,15の下層を構成する多結晶シリコン膜13b,15bからゲート電極13,15の上層を構成する多結晶シリコン膜膜13a,15aに拡散するn型の不純物が、熱処理温度および時間によっては十分に拡散が行われず、ゲート電極13,15の上層を構成する多結晶シリコン膜13a,15aの表面濃度が低下する恐れがある。
【0057】
また、n型のウェル9にp型の不純物注入が行われた場合、ゲート電極13の上層を構成する本来n型となるゲート電極上層13aにもp型の不純物が注入され、ゲート電極上層の上表面近傍でPN接合のような状態が形成される。このPN接合に類似した状態は、ゲート電極13のゲート抵抗を増加させ、また、ゲート電極13と配線とのコンタクトを不良を引き起こす。
そのため、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのゲート電極13,15の形成時には、図15に示すように、ゲート電極13,15の上層となる多結晶シリコン膜13a,15aおよびゲート電極13,15の下層となる多結晶シリコン膜13b,15bの膜厚をそれぞれd1 ,d2 とし、多結晶シリコン膜13b,15bの不純物濃度を、1×1020×{(d1 +d2 )/d2 }cm-3以上とする。
【0058】
このような濃度を有する構造にすることにより、後工程において不純物が多結晶シリコン膜13b,15bから多結晶シリコン膜13a,15aへ熱拡散した場合に、多結晶シリコン膜13a,15aの不純物濃度が、1×1020cm-3となるように均一に不純物が拡散し、多結晶シリコン膜13a,15aの表面濃度が低くならない。その結果、ゲート電極13,15のゲート抵抗の上昇、および、ゲート電極13,15とアルミニウム配線31,32,33,34,35,36,37とのコンタクト抵抗の上昇を抑制することが可能となる。
【0059】
(実施の形態2)
本発明の実施の形態2のBiCMOS回路の構造およびその製造方法を図16を用いて説明する。本実施の形態のBiCMOS回路の製造方法は、まず、図7に示すように、マスク55を形成し、p型のウェル10に不純物82の注入を行い図8に示すソース/ドレイン領域17a,17bを形成するまでは実施の形態1と略同様の工程で行うが、図5に示す状態で多結晶シリコン膜53にイオン注入を行わないことがだけが実施の形態1と異なる点である。
【0060】
次に、図8に示すように、不純物83を注入した後、図16に示すように、NチャネルMOSトランジスタの活性領域となるp型のウェル10にマスク59を形成し、バイポーラトランジスタのベース電極となる多結晶シリコン膜53およびn型のウェル9に同時に高濃度のp型の不純物86,87を注入することにより、1つの工程でベース電極53aおよびPチャネルMOSトランジスタのソース/ドレイン領域22a,22bを形成する。その後、図9以後の工程は実施の形態1と同様である。
【0061】
このような工程で行うことにより、実施の形態1よりも工程数を1つ減少させることが可能となる。その結果、製造コストの低減を図ることかできる。
【0062】
(実施の形態3)
本発明の実施の形態3のBiCMOS回路の構造および製造方法を図17〜図21を用いて説明する。本実施の形態のBiCMOS回路の製造方法は、まず、図7に示すようにマスク55を形成し、p型のウェル10に不純物82の注入を行い図8に示すようなn型のソース/ドレイン領域17a,17bを形成するまでは実施の形態1と略同様の工程で行うが、その後に、図18および図20で示すように、ソース/ドレイン領域22a,22bを形成するために2回のp型の不純物89,92を行い、同時に多結晶シリコン膜53にも注入を行うこと、および、図5に示す状態で多結晶シリコン膜53にイオン注入を行わないことがだけが実施の形態1および2と異なる点である。
【0063】
すなわち、本実施の形態では、図5に示す状態で多結晶シリコン膜53にイオン注入を行わない状態で、図7で示す工程を行った後、まず、図17に示すように、p型のウェル10を露出させるようにマスク60を形成する。その後、マスク60を用いて、NチャネルMOSトランジスタとなるp型のウェル10に低濃度のn型の不純物87、たとえばPイオンを注入エネルギー70KeV、注入量2×1013cm-2の条件で注入する。
【0064】
次に、図18に示すように、マスク61を用いて、p型のウェル10および分離酸化膜7h,7iを覆い、バイポーラトランジスタのベース電極となる多結晶シリコン膜53に低濃度のp型の不純物88、たとえばBイオンを注入エネルギー10KeV、注入量1×1013cm-2の条件で、また、PチャネルMOSトランジスタの活性領域となるn型のウェル9にp型の不純物89を同時に注入し、図19に示すようなベース電極53aおよびp型のソース/ドレイン領域22a,22bを形成する。
【0065】
このとき、n型のコレクタウォール領域8にもp型の不純物が注入されることになるが、コレクタウォール領域8のn型の不純物濃度は、p型の不純物88の不純物濃度に比べて、比較的に大きいため、コレクタウォール領域8の導電性に大きな悪影響を与えることはない。また、コレクタウォール領域8の濃度が低く導電性に問題がある場合は、コレクタウォール領域8の上にマスク61を形成してもよい。その後、全面にCVD酸化膜を堆積させてから、枠付けエッチングを行うことにより、ベース電極53aの側面にサイドウォール酸化膜27a,27dを、ゲート電極13の側面にサイドウォール酸化膜19a,19bを、ゲート電極15の側面にサイドウォール酸化膜18a,18bを形成する。
【0066】
次に、図19に示すように、p型のウェル10を露出するようにマスク62を形成する。その後、NチャネルMOSトランジスタの活性領域となるp型のウェル10に高濃度のn型の不純物90を注入する。次に、図20に示すように、NチャネルMOSトランジスタの活性領域となるp型のウェル10および分離酸化膜7h,7gをマスク63で覆い、バイポーラトランジスタのベース電極となる多結晶シリコン膜53に高濃度のp型の不純物91を注入し、ベース電極を形成するとともに、PチャネルMOSトランジスタの活領域となるn型のウェル9に高濃度のp型の不純物92を注入し、図21に示すようなp型のソース/ドレイン領域22a,22bを形成する。
【0067】
次に、全面に層間酸化膜30を形成し、コレクタウォール領域8、エミッタ電極29、ベース電極24b、p型のソース/ドレイン領域22a、22bおよびn型のソース/ドレイン領域20a,20bのそれぞれに接続するコンタクトホール30a,30b,30c,30d,30e,30f,30gを形成する。その後、アルミニウムをコンタクトホール30a,30b,30c,30d,30e,30f,30gを埋込みながら層間酸化膜30の上に形成する。次に、アルミニウムを所定のパターンにエッチングすることにより、アルミニウム配線31,32,33,34,35,36,37を形成し、図21に示すような構造の本実施の形態のBiCMOS回路が完成する。
【0068】
このように、図18および図20に示すように、バイポーラトランジスタのベース電極となる多結晶シリコン膜53とPMOSトランジスタの活性領域となるn型のウェル9に同時に不純物を注入することにより、工程数を増加させることなく、LDD構造を有するPMOSトランジスタ構造を形成できる。
【0069】
(実施の形態4)
本発明の実施の形態3のBiCMOS回路の構造およびその製造方法を図22〜図24を用いて説明する。本実施の形態のBiCMOS回路の製造方法は、まず、図1に示すような状態を形成するまでは、実施の形態1と同様の工程で行う。次に、図1の状態で、図22に示すように、全面に膜厚1500Åのn型の不純物がドープされていない多結晶シリコン膜64を堆積する。その後、多結晶シリコン膜64の全面に不純物、たとえばPイオンを注入エネルギー20KeV、注入量7×1015cm-2の条件で注入する。
【0070】
その後、図23に示すように、酸化膜7bおよび分離酸化膜7f,7gの一部のみ露出するように、多結晶シリコン膜64をエッチングし、多結晶シリコン膜64a,64bを形成する。この後、実施の形態1と同様に、図3〜図15で説明した工程を経て、図24に示すような構造の本実施の形態のBiCMOS回路を完成させる。
【0071】
このような製造方法にすることにより、予めゲート電極の下層となる多結晶シリコン膜13b,15bの不純物濃度を大きくすることができる。それにより、より多くの不純物がゲート電極上層に拡散することが可能となるため、ゲート電極13,15の上層となるの多結晶シリコン膜13a,15aの上表面の不純物濃度を大きくすることができる。その結果、ゲート抵抗の低減およびゲート電極に接続されるアルミニウム配線31,32,33,34,35,36,37のコンタクト抵抗の低減を図ることができる。
【0072】
なお、この多結晶シリコン膜64に不純物を注入するかわりに、予めPがドープされた非晶質シリコン膜を堆積させてもよい。また、本実施の形態の工程は実施の形態2または3の工程に組み込んでも同様に、ゲート抵抗の低減およびゲート電極に接続される配線のコンタクト抵抗の低減を図ることができる。
【0073】
(実施の形態5)
本発明の実施の形態3のBiCMOS回路の構造およびその製造方法を図5を用いて説明する。本発明の実施の形態5のBiCMOS回路の製造方法は、まず、実施の形態1と図4に示す工程までは同様の工程を行う。次に、図5に示す状態で、窒素雰囲気中850℃で30分間アニールを行い、下層の多結晶シリコン膜13b,15bの不純物を上層の多結晶シリコン膜13a,15aに拡散させゲート電極13,15の不純物濃度を均一にする。その後、実施の形態1の図6〜図14までと同様の工程を行うことにより、図14に示すような構造の本実施の形態のBiCMOS回路を完成させる。
【0074】
このような工程で製造することにより、アニールする工程で、ゲート電極13,15の下層の多結晶シリコン膜13b,15bと上層の多結晶シリコン膜13a,15aとの不純物濃度を均一にできる。また、ゲート電極13,15およびベース電極となる多結晶シリコン膜53をパターングした後でアニールを行うため、下層の多結晶シリコン膜51a,51bから上層の多結晶シリコン膜52へ、本来のベース電極の導電型と反対の導電型の不純物が拡散することを防止できる。そのため、ベース電極23b,24bの電気抵抗の増加を抑制できる。
【0075】
また、ゲート電極13,15の上下層を構成する多結晶シリコン膜13a,13b,15a,15bに非晶質シリコン膜を用いた場合、ゲート電極13,15をパターングする前にアニールすれば、大きな結晶粒界の多結晶シリコン膜に成長してしまうため、エッチング後の形状が結晶粒界を反映してしまい、寸法のばらつきが大きくなってしまう。しかしながら、本実施の形態の製造方法によれば、ゲート電極13,15をパターングした後に、アニールを行うため、ゲート電極13,15の寸法制御性の悪化は抑制される。
【0076】
また、p型のソース/ドレイン領域22a,22bおよびn型のソース/ドレイン領域20a,20bを形成した後にアニールを行うと、アニールの温度や時間の条件によってはp型のソース/ドレイン領域22a,22bおよびn型のソース/ドレイン領域20a,20bが拡散してしまう恐れがある。しがしながら、本実施の形態の製造方法によれば、p型のソース/ドレイン領域22a,22bおよびn型のソース/ドレイン領域20a,20bを形成する前にアニールを行うことにより、p型のソース/ドレイン領域22a,22bおよびn型のソース/ドレイン領域20a,20bの不純物が拡散する恐れを低減できる。その結果、PチャネルMOSおよびNチャネルMOSトランジスタの半導体特性の劣化を抑制できる。
【0077】
(実施の形態6)
本発明の実施の形態6のBiCMOS回路の構造およびその製造方法を図25〜図26を用いて説明する。本実施の形態のBiCMOSトランジスタの製造方法は、まず、図2に示す状態までは実施の形態1と同様である。次に、図25に示すように、全面に不純物がドープされていない膜厚1000Åの多結晶シリコン膜65を堆積する。その後、多結晶シリコン膜の上に膜厚1000Åのタングステンシリサイド膜66を堆積する。
【0078】
その後、実施の形態1の図5〜図14までと略同様の工程を行うことにより、BiCMOS回路を完成させ、最終構造は図26に示すような状態となる。本実施の形態の図26に示したBiCMOS回路と実施の形態1のBiCMOS回路とは、ベース電極65a,65bとなる多結晶シリコン膜およびゲート電極13,15の上層を構成する多結晶シリコン膜13a,15aの上にタングステンシリサイド膜66a,66b,66c,66dが形成されていることのみ異なる。
【0079】
このような工程で製造することにより、ベース電極65a,65bとなる多結晶シリコン膜およびゲート電極13,15の上層を構成する多結晶シリコン膜13a,15aの上にタングステンシリサイド膜66a,66b,66c,66dが形成されているため、CMOSトランジスタのゲート電極13,15の上層となる多結晶シリコン膜13a,15aおよびバイポーラトランジスタのベース電極65a,65bとなる多結晶シリコン膜の膜厚を薄くしても、ゲート電極13,15およびベース電極65a,65bのゲート抵抗およびベース抵抗を小さくでき、また、ゲート電極およびベース電極に対するアルミニウム配線31,32,33,34,35,36,37のコンタクト抵抗は小さくできる。
【0080】
(実施の形態7)
本発明の実施の形態7のBiCMOS回路の製造方法を図27〜図30を用いて説明する。本実施の形態のBiCMOS回路の製造方法は、実施の形態1と図12に示す工程までは同様の工程を行う。次に、図12に示す状態で、全面に不純物がドープされていない膜厚2000Åの多結晶シリコン膜を堆積する。その後、n型の不純物、たとえば、Asイオンを注入エネルギー50KeV、注入量1×1016cm-2の条件で注入する。次に、全面にCVD酸化膜を堆積する。その後、レジストをパターングして、図27に示すようなエミッタ電極68となる多結晶シリコン膜およびエミッタ電極68の上部を覆う酸化膜69を形成する。
【0081】
次に、全面にCVD酸化膜を堆積する。その後、CVD酸化膜のドライエッチングを行い、ベース電極23b,24bの両端に、側壁酸化膜27a,27dが露出するとともに、エミッタ電極68およびエミッタ電極68の上部を覆う酸化膜69の側面に側壁酸化膜28a,28bを形成し、図28に示す状態となる。その後、膜厚100Å程度のコバルトからなる金属膜をスパッタ法により堆積する。次に、ランプアニール処理を行い、金属膜をシリサイド化する。次に、ウエットエッチングにより、酸化膜上のシリサイド化していないコバルトのみを除去する。
【0082】
次に、図29に示すように、ランプアニール処理を行い、抵抗値の低い金属シリサイド膜71a,71b,71c,71d,71e,71f,71g,71h,71,71jを形成する。その後、実施の形態1の図14に示した工程と同様の工程を行うことにより、図30に示すよな構造の本実施の形態のBiCMOS回路を完成させる。
【0083】
このような工程で製造することにより、ゲート電極13,15の表面濃度が低下しないように、ゲート電極13,15の上層となる多結晶シリコン膜13a,15aを薄く形成しても、バイポーラトランジスタのベース電極65a,65bおよびエミッタ電極68の表面には、金属シリサイド膜71c,71dが形成されていため、ベース抵抗、エミッタ抵抗およびそのコンタクト抵抗が小さくなる。
【0084】
また、CMOSトランジスタのゲート電極13,15の上層となる多結晶シリコン膜13a,15aの表面およびソース/ドレイン領域22a,22b,20a,20bの表面にも、金属シリサイド膜71f,71iおよび金属シリサイド膜71e,71g,71h,71jが形成されているため、ゲート抵抗、シート抵抗およびそのコンタクト抵抗が小さくなる。なお、本実施の形態では、シリサイド化する金属膜はコバルトで形成したが、チタンまたはニッケルであってもよい。
【0085】
(実施の形態8)
本発明の実施の形態8のBiCMOS回路の構造およびその製造方法を図31〜図33を用いて説明する。本実施の形態のBiCMOSの回路製造方法は、まず、実施の形態1と図12に示す工程までは同様の工程で行う。その後、多結晶シリコン膜を全面に堆積し、さらに多結晶シリコン膜の上にCVD酸化膜を形成する。
【0086】
次に、図31に示すように、エミッタ電極68aおよびエミッタ電極68aの上に形成される酸化膜69a、分離酸化膜7iの上方で酸化膜67bを介して形成される多結晶シリコン膜68bおよび多結晶シリコン膜68bの上に形成される酸化膜69bを形成するようにエッチングを行う。その後、全面にCVD酸化膜をさらに堆積する。次に、マスク73aをマスクとして、CVD酸化膜および酸化膜67bをエッチングすることにより、図32に示すように、エミッタ電極29の両端に側壁酸化膜72d,72eを形成するとともに、多結晶シリコン膜68bの両端に側壁酸化膜72b,72cを形成する。その後、マスク73aを除去する。
【0087】
次に、コレクタウォール領域8、多結晶シリコン膜65a,68a,65b、p型のソース/ドレイン領域22a,22b、n型のソース/ドレイン領域20a,20bおよびゲート電極13,15の上部をシリサイド化するとともに、抵抗素子となる部分の多結晶シリコン膜68bの表面を間隔をおいてシリサイド化することにより、金属シリサイド膜73a,73b,73c,73d,73e,73f,73g,73h,73i,73j,73k,73lを形成する。その後、全面に層間酸化膜30を堆積させた後、金属シリサイド膜73a,73b,73c,73d,73e,73f,73g,73h,73i,73j,73k,73lに接続するためのコンタクトホール30a,30b,30c,30d,30e,30f,30g,30h,30iを形成する。
【0088】
次に、コンタクトホール30a,30b,30c,30d,30e,30f,30g,30h,30iにアルミニウムを埋込みながら層間酸化膜30の上にも堆積された後、所定のパターンになるようににエッチングを行い、アルミニウム配線31,32,33,34,35,36,37を形成し、図33に示す状態とする。
【0089】
このような工程で製造することにより、バイポーラトランジスタのエミッタ電極68aを形成するときに、同時に抵抗素子形成用の多結晶シリコン膜68bを形成することができ、別個に抵抗素子形成用の多結晶シリコン膜68bを形成する必要がない。その結果、1つの工程で2つの素子を形成できるため、コストの低減、プロセスの簡略化をはかることができる。
【0090】
また、上記実施の形態1〜8においては、半導体基板および多結晶シリコン膜に添加はたは注入されるn型およびp型の不純物は上記のような構成としたが、n型とp型とがまったく逆の場合においても上記と同様のBiCMOS回路の製造方法の効果が得られる。
【0091】
上記実施の形態の半導体装置の製造方法によれば、第1の半導体層をエッチングすることにより、ベース電極とゲート電極上層とを同時に形成するため、また、第2の絶縁膜を有した状態でベース電極に開口を形成するため、第1の不純物拡散領域は、その表面が損傷することはない。その結果、不純物拡散領域の損傷に起因する半導体特性およびコンタクト特性の劣化を防止し得る半導体装置を提供することが可能となる。
上記実施の形態の半導体装置の製造方法によれば、抵抗素子を構成する第2の半導体層をエミッタ電極の形成と同時に形成できるため、同一半導体基板にバイポーラトランジスタと抵抗素子とを有する半導体装置の製造方法において、工程数の低減を図ることが可能となる。
上記実施の形態の半導体装置の製造方法によれば、エミッタ電極、ベース電極、ゲート電極の上層、第1および第2の不純物拡散領域の上に金属シリサイド膜を備えているため、コンタクト配線が接続されたときのコンタクト抵抗、シート抵抗を低減させ得る半導体装置を提供できる。
上記実施の形態の半導体装置の製造方法によれば、抵抗素子に対するコンタクト配線のコンタクト抵抗の低減を図り、抵抗素子の抵抗値の制御を容易にすることが可能となる。また、ゲート電極下層からゲート電極上層へ不純物が拡散するような工程を有していても、半導体特性を向上させ得る半導体装置を提供することが可能となる。
上記実施の形態の半導体装置の製造方法によれば、ベース電極、ゲート電極上層の上に金属膜を備えているため、コンタクト配線が接続されたときのコンタクト抵抗、シート抵抗、ベース抵抗およびゲート抵抗を低減させ得る半導体装置を提供できる。
上記実施の形態の半導体装置の製造方法によれば、熱処理工程において、ゲート電極下層からゲート電極上層へ不純物が拡散するため、所定の不純物が均一な状態で分布したゲート電極を形成することでき、ゲート抵抗の低減を図ることが可能となる。その結果、工程数を減少させるために、ベース電極とゲート電極上層とを同一の半導体層で形成しても、半導体特性の劣化を防止し得る半導体装置を提供できる。
また、ゲート電極と外部ベース電極とを分離形成した後に、熱処理工程を行うため、第1の導電層から半導体層へ不純物が拡散せず、半導体特性が確保された半導体装置を提供できる。
また、熱処理工程は、通常、行われる工程であり、新たにゲート電極に不純物を注入する必要がないため、全体的に見て工程数が減少する。
上記実施の形態の半導体装置の製造方法によれば、後工程における熱拡散時に、ゲート電極下層からゲート電極上層へ不純物が拡散した後の状態での不純物濃度は、ゲート電極全体として適度な濃度で均一になるため、ゲート抵抗およびゲート電極へのコンタクト抵抗を小さくできる半導体装置を提供できる。
上記実施の形態の半導体装置の製造方法によれば、ゲート電極下層の膜厚を予め調節することにより、ベース電極とゲート電極上層となる第1の半導体層とを同一の堆積工程で行うことが可能となるため、ゲート電極とベース電極とを1つの工程で形成でき、工程数を減少させることが可能となる。
上記実施の形態の半導体装置によれば、上記の半導体装置の製造方法を用いることが可能となるため、工程数を低減させることができる。
上記実施の形態の半導体装置によれば、前述の半導体装置の製造方法を用いてベース電極とゲート電極とを同時に形成しても、バイポーラトランジスタと電界効果トランジスタとの半導体特性を制御することが可能となる。
なお、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のBiCMOS回路の製造工程において、バイポーラトランジスタ、PチャネルMOSトランジスタ、NチャネルMOSトランジスタの活性領域を分離する分離酸化膜を形成した直後の断面の状態を示す図である。
【図2】 本発明の実施の形態1のBiCMOS回路の製造工程において、PチャネルMOSトランジスタ、NチャネルMOSトランジスタのゲート電極の下層となる予め不純物が添加された多結晶シリコン膜を形成した直後の断面の状態を示す図である。
【図3】 本発明の実施の形態1のBiCMOS回路の製造工程において、PチャネルMOSトランジスタ、NチャネルMOSトランジスタのゲート電極の下層となる多結晶シリコン膜を形成し、異なる導電型の不純物をイオン注入した直後の断面の状態を示す図である。
【図4】 本発明の実施の形態1のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜およびPチャネルMOSトランジスタ、NチャネルMOSトランジスタのゲート電極の上層となる多結晶シリコン膜を形成した直後の断面の状態を示す図である。
【図5】 本発明の実施の形態1のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのゲート電極を形成した直後の断面の状態を示す図である。
【図6】 本発明の実施の形態1のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜に不純物を注入した直後の断面の状態を示す図である。
【図7】 本発明の実施の形態1のBiCMOS回路の製造工程において、NチャネルMOSトランジスタのウェルに不純物を注入している状態の断面を示す図である。
【図8】 本発明の実施の形態1のBiCMOS回路の製造工程において、NチャネルMOSトランジスタのウェルに2回目の不純物を注入している状態の断面を示す図である。
【図9】 本発明の実施の形態1のBiCMOS回路の製造工程において、PチャネルMOSトランジスタのウェルに不純物を注入している状態の断面を示す図である。
【図10】 本発明の実施の形態1のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜をエッチングし、真性ベース領域が露出するように開口した直後の断面の状態を示す図である。
【図11】 本発明の実施の形態1のBiCMOS回路の製造工程において、真性ベース領域に不純物を注入している状態の断面を示す図である。
【図12】 本発明の実施の形態1のBiCMOS回路の製造工程において、エミッタ電極の端部にサイドウォール酸化膜を形成した直後の断面の状態を示す図である。
【図13】 本発明の実施の形態1のBiCMOS回路の製造工程において、真性ベース領域に接続するエミッタ電極を形成した直後の断面の状態を示す図である。
【図14】 本発明の実施の形態1のBiCMOS回路の製造工程において、コレクタウォール領域、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図15】 本発明の実施の形態1のBiCMOS回路の製造工程において、ゲート電極上層およびゲート電極下層の膜厚を示すの断面図である。
【図16】 本発明の実施の形態2のBiCMOS回路の製造工程において、ベース電極とPチャネルMOSトランジスタのウェルに不純物を注入した直後の断面の状態を示す図である。
【図17】 本発明の実施の形態3のBiCMOS回路の製造工程において、NチャネルMOSトランジスタのウェルに不純物を注入している状態の断面を示す図である。
【図18】 本発明の実施の形態3のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜、PチャネルMOSトランジスタのウェルに不純物を注入した直後の断面の状態を示す図である。
【図19】 本発明の実施の形態3のBiCMOS回路の製造工程において、NチャネルMOSトランジスタのウェルに2回目の不純物を注入している状態の断面を示す図である。
【図20】 本発明の実施の形態3のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜とPチャネルMOSトランジスタのソース/ドレイン領域に不純物を注入している状態の断面を示す図である。
【図21】 本発明の実施の形態3のBiCMOS回路の製造工程において、コレクタウォール領域、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図22】 本発明の実施の形態4のBiCMOS回路の製造工程において、ゲート電極の下層となる、不純物が注入された多結晶シリコン膜を堆積した直後の断面の状態を示す図である。
【図23】 本発明の実施の形態4のBiCMOS回路の製造工程において、バイポーラトランジスタの活性領域を露出させるために多結晶シリコン膜をエッチングした直後の断面の状態を示す図である。
【図24】 本発明の実施の形態4のBiCMOS回路の製造工程において、コレクタウォール領域、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図25】 本発明の実施の形態6のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜、ゲート電極上層となる多結晶シリコン膜の上に、金属膜を形成した直後の断面の状態を示す図である。
【図26】 本発明の実施の形態6のBiCMOS回路の製造工程において、コレクタウォール領域、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図27】 本発明の実施の形態7のBiCMOS回路の製造工程において、エミッタ電極の上に酸化膜を形成した直後の断面の状態を示す図である。
【図28】 本発明の実施の形態7のBiCMOS回路の製造工程において、エミッタ電極の両端にサイドウォール酸化膜を形成した直後の断面の状態を示す図である。
【図29】 本発明の実施の形態7のBiCMOS回路の製造工程において、エミッタ電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのゲート電極上層の上に、金属シリサイドを形成した直後の断面の状態を示す図である。
【図30】 本発明の実施の形態7のBiCMOS回路の製造工程において、コレクタウォール領域、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図31】 本発明の実施の形態8のBiCMOS回路の製造工程において、抵抗素子となる多結晶シリコン膜上の酸化膜をエミッタ電極上の酸化膜と同時に形成した直後の断面の状態を示す図である。
【図32】 本発明の実施の形態8のBiCMOS回路の製造工程において、抵抗素子上の酸化膜の上にマスクを形成した直後の断面の状態を示す図である。
【図33】 本発明の実施の形態8のBiCMOS回路の製造工程において、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域ならびに抵抗素子にアルミニウム配線を接続した直後の断面の状態を示す図である。
【図34】 従来のBiCMOS回路の製造工程において、バイポーラトランジスタ、PチャネルMOSトランジスタ、NチャネルMOSトランジスタの活性領域を分離する分離酸化膜を形成した直後の断面の状態を示す図である。
【図35】 従来のBiCMOS回路の製造工程において、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのゲート電極を形成した直後の断面の状態を示す図である。
【図36】 従来のBiCMOS回路の製造工程において、NチャネルMOSトランジスタのウェルに不純物を注入している状態の断面を示す図である。
【図37】 従来のBiCMOS回路の製造工程において、NチャネルMOSトランジスタの活性領域に2回目の不純物注入を実行している状態の断面を示す図である。
【図38】 従来のBiCMOS回路の製造工程において、PチャネルMOSトランジスタの活性領域に不純物を注入している状態の断面を示す図である。
【図39】 従来のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜を開口した直後の断面の状態を示す図である。
【図40】 従来のBiCMOS回路の製造工程において、ベース電極となる多結晶シリコン膜の開口から不純物を注入し、真性ベース領域を形成した直後の断面の状態を示す図である。
【図41】 従来のBiCMOS回路の製造工程において、ベース電極の端部にサイドウォール酸化膜を形成した直後の断面の状態を示す図である。
【図42】 従来のBiCMOS回路の製造工程において、ベース電極に接続するエミッタ電極を形成した直後の断面の状態を示す図である。
【図43】 従来のBiCMOS回路の製造工程において、エミッタ電極、ベース電極、PチャネルMOSトランジスタおよびNチャネルMOSトランジスタのソース/ドレイン領域にアルミニウム配線を接続した直後の断面の状態を示す図である。
【符号の説明】
1 半導体基板、2 コレクタ埋込み層、3 n型の埋込み層、4 p型の埋込み層、5 p型下面分離層、6 n型のエピタキシャル層、7a,7b,7c,7d 酸化膜、7e,7f,7g,7h,7i 分離酸化膜、8 コレクタウォール領域、9 n型のウェル、10 p型のウェル、11 p型の分離領域、12,14 ゲート酸化膜、13,15 ゲート電極、13a,13b,15a,15b 多結晶シリコン膜、17a,17b,20a,20b,22a,22b ソース/ドレイン領域、18a,18b,19a,19b 側壁酸化膜、23a,24a 酸化膜、23b,24b ベース電極、26a,26b 外部ベース領域、27a,27b サイドウォール酸化膜、28 真性ベース領域、29 エミッタ電極、30 層間酸化膜、30a,30b,30c,30d,30e,30f,30g コンタクトホール、31,32,33,34,35,36,37 アルミニウム配線、51a,51b,52,64,64a,64b,65 多結晶シリコン膜、53,68 ベース電極となる多結晶シリコン膜、53a,65a,65b,68a ベース電極、54a,54b,55,56,57a,57b,59,60,61,62,63,73 マスク、58a,58b,67a,67b,69,72 酸化膜、66 金属膜、70 サイドウォール酸化膜、71a,71b,71c,71d,71e,71f,71g,71h,71i,71j タングステンシリサイド膜。

Claims (10)

  1. 半導体基板上にバイポーラトランジスタと電界効果トランジスタとを設けた半導体装置の製造方法であって、
    前記半導体基板の主表面から所定の深さにかけての部分が第1の活性領域となるように、該第1の活性領域となる部分の少なくとも下面側に、第1導電型のコレクタ領域を形成する工程と、
    前記半導体基板の前記主表面上に素子分離絶縁膜を形成することによって、前記コレクタ領域の上に、前記バイポーラトランジスタが形成される前記第1の活性領域を、前記コレクタ領域の上方以外の領域に、前記電界効果トランジスタが形成される第1導電型の第2の活性領域を、それぞれ分離形成する工程と、
    前記第1および第2の活性領域にそれぞれ第1導電型の第1の不純物層および第2の不純物層を形成する工程と、
    前記第2の活性領域の前記主表面上に第1の絶縁膜を形成する工程と、
    前記第1の絶縁膜の上に、第1導電型の不純物が添加された第1の導電層を形成する工程と、
    前記第1の活性領域の前記主表面および前記第1の導電層の上に第1の半導体層を形成する工程と、
    前記第1の半導体層、前記第1の導電層、および、前記第1の絶縁膜をエッチングすることにより、前記第1の活性領域の上にベース電極となる層を形成するとともに、前記第2の活性領域の上にゲート電極上層およびゲート電極下層からなるゲート電極とゲート絶縁膜とを形成する工程と、
    前記ゲート電極を熱処理し、前記ゲート電極下層から前記ゲート電極上層へ前記第1導電型の不純物を拡散させる工程と、
    前記ベース電極となる層に第2導電型の不純物を注入してベース電極を形成し、前記第2の活性領域に第2導電型の不純物を注入して第1の不純物拡散領域を形成する工程と、
    前記ゲート電極上層、前記ゲート電極下層、前記ゲート絶縁膜、前記ベース電極および前記第1の不純物拡散領域を第2の絶縁膜で覆う工程と、
    前記第2の絶縁膜および前記ベース電極に開口を形成する工程と、
    前記開口から前記第1の活性領域に第2導電型の不純物を注入し、ベース領域となる第2の不純物拡散領域を形成する工程と、
    前記開口の側壁に側壁絶縁膜を形成する工程と、
    前記側壁絶縁膜および前記第2の絶縁膜の上面に沿うように、前記第2の不純物拡散領域に接触するエミッタ電極を形成する工程とを備える、半導体装置の製造方法。
  2. 前記エミッタ電極を形成する工程が、エミッタ電極となる層および抵抗素子となる層を有する第2の半導体層を形成する工程と、
    前記第2の半導体層をエッチングすることにより、前記エミッタ電極となる層と前記抵抗素子となる層とを分離形成する工程とを含む、請求項1に記載の半導体装置の製造方法。
  3. 前記コレクタ領域、前記ベース電極、前記エミッタ電極、前記ゲート電極上層および前記第1の不純物拡散領域の上部のそれぞれをシリサイド化し、金属シリサイド膜を形成する工程をさらに備える、請求項1または2に記載の半導体装置の製造方法。
  4. 前記コレクタ領域、前記ベース電極、前記エミッタ電極、前記ゲート電極上層、および前記第1の不純物拡散領域のそれぞれの上部をシリサイド化し、金属シリサイド膜を形成するとともに、前記抵抗素子となる層も平面的に所定の間隔をおいてシリサイド化し、抵抗素子用金属シリサイド膜を形成する工程をさらに備える、請求項2に記載の半導体装置の製造方法。
  5. 前記ベース電極および前記ゲート電極上層の上に、金属膜を形成する工程をさらに備える、請求項1または2に記載の半導体装置の製造方法。
  6. 前記ゲート電極下層の膜厚をd2とし、前記ゲート電極上層の膜厚を
    1とすると、前記ゲート電極下層となる前記第1の導電層に添加される不純物の濃度は
    、1×1020×{(d1+d2)/d2}cm-3以上である、請求項1〜のいずれかに記載の半導体装置の製造方法。
  7. 前記ゲート電極下層の膜厚が、前記ゲート電極の膜厚から前記ベース電極の膜厚を引いた値である、請求項1〜のいずれかに記載の半導体装置の製造方法。
  8. 前記電界効果トランジスタが、pチャネル電界効果トランジスタおよびnチャネル電界効果トランジスタからなる、請求項1〜のいずれかに記載の半導体装置の製造方法。
  9. 前記第1の導電層が不純物が添加された多結晶シリコン膜を有し、
    前記第1の半導体層が不純物が添加されていない多結晶シリコン膜を有する、請求項1〜のいずれかに記載の半導体装置の製造方法。
  10. 前記第2の半導体層が多結晶シリコン膜を有する、請求項2に記載の半導体装置の製造方法。
JP24950498A 1998-09-03 1998-09-03 半導体装置の製造方法 Expired - Fee Related JP4397061B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24950498A JP4397061B2 (ja) 1998-09-03 1998-09-03 半導体装置の製造方法
US09/257,507 US6281060B1 (en) 1998-09-03 1999-02-25 Method of manufacturing a semiconductor device containing a BiCMOS circuit
US09/866,849 US6426533B2 (en) 1998-09-03 2001-05-30 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24950498A JP4397061B2 (ja) 1998-09-03 1998-09-03 半導体装置の製造方法

Publications (3)

Publication Number Publication Date
JP2000077549A JP2000077549A (ja) 2000-03-14
JP2000077549A5 JP2000077549A5 (ja) 2005-11-04
JP4397061B2 true JP4397061B2 (ja) 2010-01-13

Family

ID=17193958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24950498A Expired - Fee Related JP4397061B2 (ja) 1998-09-03 1998-09-03 半導体装置の製造方法

Country Status (2)

Country Link
US (2) US6281060B1 (ja)
JP (1) JP4397061B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948046A1 (en) * 1998-03-26 1999-10-06 Texas Instruments Incorporated Merged bipolar and CMOS circuit and method
JP2002368146A (ja) * 2001-06-13 2002-12-20 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6602747B1 (en) * 2002-06-26 2003-08-05 Taiwan Semiconductor Manufacturing Co., Ltd Method for fabricating bipolar complementary metal oxide semiconductor (BiCMOS) device structure
US8993393B2 (en) * 2010-02-11 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple silicide integration structure and method
TWI408807B (zh) * 2011-05-05 2013-09-11 Winbond Electronics Corp 半導體元件及其製造方法
US8975130B2 (en) * 2013-06-28 2015-03-10 Globalfoundries Inc. Methods of forming bipolar devices and an integrated circuit product containing such bipolar devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0120196B1 (ko) * 1987-05-13 1997-10-17 미다 가쓰시게 반도체 집적회로장치 및 그 제조방법
JPS63281456A (ja) 1987-05-13 1988-11-17 Hitachi Ltd 半導体集積回路装置及びその製造方法
US5354699A (en) 1987-05-13 1994-10-11 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device
JPH0348457A (ja) * 1989-04-14 1991-03-01 Toshiba Corp 半導体装置およびその製造方法
KR940018967A (ko) * 1993-01-30 1994-08-19 오가 노리오 반도체장치 및 그 제조방법
JP3444002B2 (ja) * 1995-02-14 2003-09-08 ソニー株式会社 半導体装置およびその製造方法
JP3329640B2 (ja) * 1995-10-10 2002-09-30 株式会社東芝 半導体装置の製造方法
JP3058067B2 (ja) * 1995-11-06 2000-07-04 日本電気株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2000077549A (ja) 2000-03-14
US6426533B2 (en) 2002-07-30
US6281060B1 (en) 2001-08-28
US20010023978A1 (en) 2001-09-27

Similar Documents

Publication Publication Date Title
CA1228178A (en) Cmos integrated circuit technology
EP0465045B1 (en) Method of field effect transistor fabrication for integrated circuits
JP4458442B2 (ja) Cmosトランジスタ及びその製造方法
JPS622465B2 (ja)
JP4397061B2 (ja) 半導体装置の製造方法
JPH0824144B2 (ja) 半導体装置の製造方法
JP2914293B2 (ja) 半導体装置の製造方法
JP3123453B2 (ja) 半導体装置の製造方法
JP4556295B2 (ja) 半導体装置の製造方法
JP4083507B2 (ja) 半導体装置の製造方法
JP3088547B2 (ja) 半導体装置の製造方法
JP3097095B2 (ja) 半導体装置の製造方法
JP2892415B2 (ja) 半導体素子の製造方法
JPS5837990B2 (ja) 半導体装置の製造方法
KR100705233B1 (ko) 반도체 소자의 제조 방법
JP2001044437A (ja) Mosトランジスタ及びその製造方法
KR100529618B1 (ko) 반도체 소자 및 그의 제조 방법
KR100194204B1 (ko) 모스 트랜지스터 및 그 제조방법
JP2808620B2 (ja) 半導体装置の製造方法
KR100463956B1 (ko) 반도체 소자의 트랜지스터 형성 방법
KR950012742B1 (ko) 2극성 및 상보 전계효과 트랜지스터들(BiCMOS)을 동시에 제조하는 방법
JP3848782B2 (ja) 半導体装置の製造方法
JP4115895B2 (ja) 半導体装置の製造方法
JP2000012836A (ja) 半導体装置および半導体装置の製造方法
JPH0734453B2 (ja) 半導体集積回路装置の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees