JP4389726B2 - Thin steel strip for metal belt ring of continuously variable transmission belt - Google Patents
Thin steel strip for metal belt ring of continuously variable transmission belt Download PDFInfo
- Publication number
- JP4389726B2 JP4389726B2 JP2004239969A JP2004239969A JP4389726B2 JP 4389726 B2 JP4389726 B2 JP 4389726B2 JP 2004239969 A JP2004239969 A JP 2004239969A JP 2004239969 A JP2004239969 A JP 2004239969A JP 4389726 B2 JP4389726 B2 JP 4389726B2
- Authority
- JP
- Japan
- Prior art keywords
- continuously variable
- variable transmission
- thin steel
- fatigue
- transmission belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Description
この発明は無段変速機ベルトにおける金属帯リング用の薄鋼帯板、特に高耐食性,高強度,高疲労特性を有する薄鋼帯板に関する。 The present invention relates to a thin steel strip for a metal strip ring in a continuously variable transmission belt, and more particularly to a thin steel strip having high corrosion resistance, high strength, and high fatigue characteristics.
自動車のベルト式無段変速機(CVT)では、図2に示すように無端環状(一部のみ図示)をなす複数枚の金属帯リング200に多数の鋼製且つ板状のエレメント(駒)202を並べて取り付けて成るスチールベルト(無段変速機ベルト)204を、図3に示す溝幅が可変の一対のプーリ(プライマリプーリ206及びセカンダリプーリ208)間に無端環状に巻き掛け、かかるスチールベルト204を介してプライマリプーリ206からセカンダリプーリ208へと動力伝達を行う。
In a belt type continuously variable transmission (CVT) of an automobile, as shown in FIG. 2, a plurality of steel and plate-like elements (pieces) 202 are provided on a plurality of
具体的には、エンジンからの入力は一方のプーリ(プライマリプーリ206)へと入り、他方のプーリ(セカンダリプーリ208)へと伝達された上で出力される。
その際、各プーリの溝幅を変化させることで各プーリの有効径を変化させ、変速を無段階で連続的に行う。
Specifically, the input from the engine enters one pulley (primary pulley 206), is transmitted to the other pulley (secondary pulley 208), and then output.
At that time, the effective diameter of each pulley is changed by changing the groove width of each pulley, and the gear shift is continuously performed in a stepless manner.
従来、かかる無段変速機ベルトにおける金属帯リングとして、高強度鋼として知られる18Niマルエージング鋼が多く使われて来た。
例えば下記特許文献1,特許文献2,特許文献3,特許文献4に、かかる18Niマルエージング鋼を自動車の無段変速機ベルトにおける金属帯リング材料として用いる点が開示されている。
この18Niマルエージング鋼は、溶体化熱処理状態でほぼマルテンサイト単相であり、時効処理によって析出硬化させ硬度を高めて使用する。
Conventionally, 18Ni maraging steel known as high-strength steel has been widely used as a metal band ring in such a continuously variable transmission belt.
For example, the following Patent Document 1,
This 18Ni maraging steel is almost martensite single phase in the solution heat treatment state, and is used by increasing the hardness by precipitation hardening by aging treatment.
そしてこの18Niマルエージング鋼を無段変速機ベルトにおける金属帯リングとして用いる場合には、更に窒化処理を施して表面の硬度を高め、これにより耐摩耗性や疲労特性を向上させて使用する。 When this 18Ni maraging steel is used as a metal band ring in a continuously variable transmission belt, it is further subjected to nitriding treatment to increase the surface hardness, thereby improving wear resistance and fatigue characteristics.
無段変速機ベルト204の金属帯リング200は、無段変速機における動力伝達の動きの中でエレメント202や金属帯リング200同士で相対的に摩擦摺動を起し、このためかかる金属帯リング200には高い耐摩耗性が求められる。
The
一方でこれらの金属帯リング200は、プーリとプーリとの間ではストレート形状となり、また各プーリに巻き付いた部分では回曲形状となるなど繰返し変形を起す。そのために高い疲労強度と靭性も求められる。
On the other hand, these
そこで18Niマルエージング鋼を無段変速機ベルトの金属帯リングとして用いる場合には、表層に窒化処理を施すことで、中心部が過剰に高硬度となるのを防ぎつつ表面を高硬度化し、靭性と耐摩耗性との両特性を確保するようにしている。 Therefore, when 18Ni maraging steel is used as a metal belt ring for a continuously variable transmission belt, the surface layer is nitrided to prevent the center from becoming excessively hard and toughen the surface. Both wear resistance and wear resistance are ensured.
この18Niマルエージング鋼は高張力鋼の1つで、無段変速機ベルトの金属帯リングのように高い引張応力がかかる部品の好適な材料として従来から適用されて来た。 This 18Ni maraging steel is one of high-strength steels and has been conventionally applied as a suitable material for parts subjected to high tensile stress such as a metal belt ring of a continuously variable transmission belt.
しかしながらこの18Niマルエージング鋼の場合、時効硬化でNi3Ti,Ni3Al等の金属間化合物を微細析出させて高張力を得るものであることからTi,Alの添加を必須としており、そのため疲労特性に対して有害であるTi系介在物やAl系介在物が生成し易く、それらが疲労特性の低下をもたらすといった固有の問題を内包している。 However, in the case of this 18Ni maraging steel, the addition of Ti and Al is indispensable because high tension is obtained by fine precipitation of intermetallic compounds such as Ni 3 Ti and Ni 3 Al by age hardening. Ti-based inclusions and Al-based inclusions, which are harmful to the properties, are likely to be generated, and inherent problems such as deterioration of fatigue properties are included.
一般に低サイクル域で疲労破壊する場合には、疲労破壊は表面を起点とした亀裂発生、伝播によって起ることが知られている。
このような疲労破壊に対しては、表層に窒化処理を施して表層に圧縮応力を付与することで、表面を起点とする疲労破壊を防ぐことができる。
一方で従来、疲労限と考えられている107回を超える超高サイクル域においては、疲労破壊は表面を起点とせず内部の介在物を起点として起ると考えられている。
In general, when fatigue failure occurs in a low cycle region, it is known that fatigue failure occurs due to crack initiation and propagation starting from the surface.
For such fatigue failure, fatigue failure starting from the surface can be prevented by subjecting the surface layer to nitriding treatment and applying compressive stress to the surface layer.
On the other hand the conventional, in the ultra high cycle range exceeding 10 7 times that are believed to fatigue limit is believed to fatigue fracture occurs as a starting point inside the inclusions not starting from the surface.
そのため、18Niマルエージング鋼を無段変速機ベルトの金属帯リング等疲労特性が特に重視される用途に適用する場合には、原料の選定,高真空溶解や2次精錬を行うなどして鋼中の不純物を極力低減する必要がある。そのため製造コストが著しく高いものとなっていた。
更に材料的にも高価な元素であるNi,Coが多量に添加されているため、鉄鋼材料の中では材料コストにおいても高いものとなっていた。
Therefore, when 18Ni maraging steel is applied to applications where fatigue characteristics are particularly important, such as metal belt rings for continuously variable transmission belts, the raw materials are selected by high-vacuum melting or secondary refining. It is necessary to reduce impurities as much as possible. Therefore, the manufacturing cost has been extremely high.
Furthermore, since Ni and Co, which are expensive elements, are added in a large amount, the material cost among steel materials is high.
その上、18Niマルエージング鋼はステンレス鋼に比べて耐食性を向上させる元素であるCrを含有していないことから耐食性が劣り、使用中に腐食が生じて、その腐食箇所を起点として早期に疲労破壊が起る可能性があるといった問題も内包している。 In addition, 18Ni maraging steel does not contain Cr, which is an element that improves corrosion resistance compared to stainless steel, so it is inferior in corrosion resistance. Corrosion occurs during use, and fatigue failure occurs at an early stage starting from the corrosion location. There is also a problem that may occur.
本発明は以上のような事情を背景とし、材料及び製造コストが安価でしかも疲労強度が高く、加えて耐食性が良好でしかも窒化特性も良好な無段変速機ベルトの金属帯リング用の高強度薄鋼帯板を提供することを目的としてなされたものである。 The present invention is based on the above circumstances, and has high strength for a metal belt ring of a continuously variable transmission belt having low material and manufacturing cost, high fatigue strength, good corrosion resistance and good nitriding characteristics. It was made for the purpose of providing a thin steel strip.
而して請求項1のものは、質量%でC:0.10〜0.25%,Si:≦0.25%,Mn:≦0.40%,Ni:5.0〜8.5%,Cr:0.30〜2.50%,Mo+1/2W:1.20〜2.50%,Cu:≦0.20%,V:0.05〜0.15%,Co:1.00〜6.00%,N:≦0.010%,O:≦0.0050%,Al:≦0.10%,Ti:≦0.10%,P:≦0.05%,S:≦0.03%,残部Fe及びその他不可避的不純物から成る組成を有することを特徴とする。 Thus, in the first aspect, C: 0.10 to 0.25%, Si: ≤0.25%, Mn: ≤0.40%, Ni: 5.0 to 8.5%, Cr: 0.30 to 2.50%, Mo + 1 / 2W: 1.20 to 2.50%, Cu: ≤0.20%, V: 0.05 to 0.15%, Co: 1.00 to 6.00%, N: ≤0.010%, O: ≤0.0050%, Al: ≤0.10%, Ti: ≤0.10%, P : ≦ 0.05%, S: ≦ 0.03%, and having a composition consisting of the remaining portion Fe and unavoidable impurities.
請求項2のものは、請求項1において、質量%でZr:0.01〜0.50%を更に含有することを特徴とする。 According to a second aspect of the present invention, in the first aspect, the composition further contains Zr: 0.01 to 0.50% by mass%.
請求項3のものは、請求項1,2の何れかにおいて、質量%でB:0.0010〜0.010%,Ca:0.0010〜0.010%,Mg:0.0010〜0.010%の1種若しくは2種以上を更に含有することを特徴とする。
Claim 3 further contains one or more of B: 0.0010 to 0.010%, Ca: 0.0010 to 0.010%, Mg: 0.0010 to 0.010% by mass% in any of
請求項4のものは、請求項1〜3の何れかにおいて、非金属介在物量が清浄度dで0.05%以下であることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the amount of nonmetallic inclusions is 0.05% or less in terms of cleanliness d.
請求項5のものは、請求項1〜4の何れかにおいて、表層に窒化処理が施されており、JIS G 0562に準拠した窒化層深さが20μm以上、JIS G 0563に準拠した表面硬さが800HV以上であることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the surface layer is nitrided, the nitrided layer depth according to JIS G 0562 is 20 μm or more, and the surface hardness according to JIS G 0563 Is 800 HV or more.
請求項6のものは、請求項1〜5の何れかにおいて、JIS Z 2241に準拠した引張試験における0.2%耐力が1250MPa以上であることを特徴とする。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the 0.2% yield strength in a tensile test based on JIS Z 2241 is 1250 MPa or more.
本発明の無段変速機ベルトの金属帯リング用薄鋼帯板は、18Niマルエージング鋼に比べNi,Co,Moが、それぞれNiが8.50%以下、Coが6.00%以下、Moが(Mo+1/2Wで)2.50%以下と少なく、またCを添加しているため組織が異なる。本発明の合金はベイナイト組織であり、焼入れ焼戻し処理によって高い引張強度が得られ、更に窒化処理による表層の硬化により良好な疲労特性が得られる。
このため従来の18Niマルエージング鋼に比べ引張強度は若干劣るものの十分な強度が得られ、尚且つ良好な疲労特性を有する。
一方で高価な元素であるNi,Co,Moの添加量が少ないことから材料のコストを安価に抑制できる。
The thin steel strip for the metal belt ring of the continuously variable transmission belt of the present invention has Ni, Co, and Mo of Ni of 8.50% or less, Co of 6.00% or less, and Mo of (Mo + 1 / Mo) compared to 18Ni maraging steel. (With 2W) Less than 2.50%, and the structure is different because C is added. The alloy of the present invention has a bainite structure, high tensile strength can be obtained by quenching and tempering treatment, and good fatigue characteristics can be obtained by hardening the surface layer by nitriding treatment.
For this reason, the tensile strength is slightly inferior to that of the conventional 18Ni maraging steel, but sufficient strength is obtained and the fatigue strength is good.
On the other hand, since the amount of expensive elements Ni, Co, and Mo is small, the cost of the material can be suppressed at a low cost.
また本発明は不純物成分であるO,Ti,Alを低く規制している点を1つの特徴としている。
Ti,AlはOと反応して酸化物の介在物を生成せしめ、それらを破壊起点として疲労寿命を低下させる原因となる。
そこで本発明ではこれらTi,AlをOとともに低く規制してTi,Alの酸化物が介在物として生成するのを抑制しており、これによって疲労寿命をより一層向上せしめることができる。
Another feature of the present invention is that the impurity components O, Ti, and Al are restricted to a low level.
Ti and Al react with O to form oxide inclusions, which cause the fatigue life to decrease with the origin of fracture.
Therefore, in the present invention, these Ti and Al are regulated to be low together with O to suppress the formation of oxides of Ti and Al as inclusions, which can further improve the fatigue life.
また従来の18Niマルエージング鋼はCrを含有していないことから耐食性が十分でなく、従ってこれを無段変速機ベルトの金属帯リング用薄鋼帯板に用いたときに、腐食箇所を起点として亀裂が発生及び進行し、疲労破壊の原因となる問題を内包しているが、本発明の鋼はCrを所定量含有していることから耐食性においても優れており、従って腐食に起因する疲労破壊を抑制して疲労寿命を高寿命化することができる。 Also, the conventional 18Ni maraging steel does not contain Cr, so it has insufficient corrosion resistance. Therefore, when it is used for a thin steel strip for a metal strip ring of a continuously variable transmission belt, the corrosion point is the starting point. Although cracks are generated and progress and contain problems that cause fatigue failure, the steel of the present invention is excellent in corrosion resistance because it contains a predetermined amount of Cr, and therefore fatigue failure due to corrosion. It is possible to suppress fatigue and increase the fatigue life.
このCrは酸化膜(不動態膜)を形成することによって耐食性を高める働きがあるが、一方でそのような酸化物が形成されると窒化処理の際の窒化特性が阻害される。即ちCrの含有は耐食性を高める一方で窒化特性を阻害すると考えられていた。
しかしながらCrの添加量が少量に抑えられる限りにおいては、Crの添加は窒化特性を却って高めるとの知見が本発明者等の研究によって得られた。
即ち本発明ではCrを0.30%以上添加するが、その添加量は2.50%以下に抑えられており、その結果として耐食性を高めることができるとともに窒化特性もまた高めることができる。
This Cr has a function of improving the corrosion resistance by forming an oxide film (passive film). On the other hand, when such an oxide is formed, the nitriding characteristics during the nitriding treatment are hindered. That is, Cr content was thought to increase the corrosion resistance while inhibiting the nitriding properties.
However, as long as the addition amount of Cr can be suppressed to a small amount, the inventors have found that addition of Cr improves the nitriding characteristics instead.
That is, in the present invention, Cr is added in an amount of 0.30% or more, but the addition amount is suppressed to 2.50% or less. As a result, the corrosion resistance can be improved and the nitriding characteristics can also be improved.
本発明はまた、不純物成分としてのP,Sを所定の低値に規制しておりこれによって良好な靭性を確保している。
尚本発明では薄鋼板の厚みを0.5mm以下となしておくことができる。
The present invention also regulates P and S as impurity components to a predetermined low value, thereby ensuring good toughness.
In the present invention, the thickness of the thin steel plate can be 0.5 mm or less.
本発明ではまた、上記成分の他に必要に応じてZr を上記所定量で添加することができ、更にB,Ca,Mg,の1種若しくは2種以上を上記所定量で添加することができる(請求項2,請求項3)。
In the present invention, in addition to the above components, Zr can be added in the above-mentioned predetermined amount as necessary, and one or more of B, Ca, Mg can be added in the above-mentioned predetermined amount. (
本発明では、非金属介在物量を清浄度dで0.05%以下とすることが望ましく(請求項4)、また窒化処理後における表面硬さが800HV以上且つ窒化層深さ20μm以上を実現することができる。
無段変速機ベルトにおけるエレメントと常に接触状態となる金属帯リングは耐摩耗性の要求される部材であり、従って表面硬さ800HV以上となした本発明の薄鋼帯板は、かかる金属帯リングとして好適に適用可能なものである(請求項5)。
In the present invention, the amount of non-metallic inclusions is preferably 0.05% or less in terms of cleanliness d (Claim 4), and the surface hardness after nitriding is 800 HV or more and the nitrided layer depth is 20 μm or more. it can.
The metal band ring that is always in contact with the elements in the continuously variable transmission belt is a member that requires wear resistance. Therefore, the thin steel band plate of the present invention having a surface hardness of 800 HV or more is provided with such a metal band ring. The present invention can be preferably applied as (claim 5).
本発明は、薄鋼帯板の強度(0.2%耐力)として1250MPa以上の強度を達成し得るものであり、強い引張応力のかかる無段変速機ベルトの金属帯リングとして好適なものである(請求項6)。 INDUSTRIAL APPLICABILITY The present invention can achieve a strength of 1250 MPa or more as the strength (0.2% yield strength) of a thin steel strip, and is suitable as a metal strip of a continuously variable transmission belt subjected to a strong tensile stress. (Claim 6).
次に本発明における各化学成分の限定理由を詳述する。
C:0.10〜0.25%
Cは強力な固溶強化元素であるとともに、ベイナイト組織を得るために重要な元素である。また、焼入れ後の焼戻し処理により微細な炭化物,炭窒化物を析出させ高強度を得るために必須の元素であり、その効果は、0.10%以上添加しないと十分な強度が得られない。
しかし、多量に添加すると結晶粒界部に粗大な炭化物を生成することにより鋼の耐食性及び切欠靭性が低下し、また同様な理由で溶接部の強度低下をもたらす。
以上の影響による結果として疲労強度が低下するため、Cの含有率の上限は0.25%とする。
Next, the reasons for limiting each chemical component in the present invention will be described in detail.
C: 0.10-0.25%
C is a strong solid solution strengthening element and an important element for obtaining a bainite structure. Further, it is an essential element for obtaining high strength by precipitating fine carbides and carbonitrides by tempering after quenching, and the effect cannot be obtained unless 0.10% or more is added.
However, when added in a large amount, coarse carbides are formed at the grain boundary portion, thereby reducing the corrosion resistance and notch toughness of the steel, and for the same reason, reducing the strength of the weld.
Since the fatigue strength decreases as a result of the above effects, the upper limit of the C content is 0.25%.
Si:≦0.25%
Siは鋼の溶製時における脱酸剤として添加される。余剰のSiは常温における鋼の強度を高めるが、冷間加工性を低下させるとともに鋼中に生成したSi酸化物が破壊の起点となって疲労特性を低下させるので含有率を極力低減する必要がある。
またSiの多量添加は窒化処理直前の熱処理(例えば焼戻し処理)時に酸化皮膜を生成して窒化性を劣化させるため、その上限を0.25%とする。
Si: ≤0.25%
Si is added as a deoxidizer during the melting of steel. Excess Si increases the strength of the steel at room temperature, but it reduces the cold workability and reduces the fatigue properties as the Si oxide generated in the steel becomes the starting point of fracture, so it is necessary to reduce the content as much as possible. is there.
Further, since the addition of a large amount of Si causes an oxide film to be formed during heat treatment (for example, tempering treatment) immediately before the nitriding treatment and deteriorates the nitriding property, the upper limit is made 0.25%.
Mn:≦0.40%
Mnは脱酸剤として添加するが、過剰に含有すると焼入れ性が増加し、ベイナイト組織を形成し難くなるので上限を0.40%とする。
Mn: ≤0.40%
Mn is added as a deoxidizer, but if it is contained excessively, the hardenability increases and it becomes difficult to form a bainite structure, so the upper limit is made 0.40%.
Ni:5.00〜8.50%
Niはベイナイト組織調整のためにCr,Mo,Wとともに有効な元素である。
しかし5.00%未満では強度靭性が低く、逆に8.50%を超えると残留オーステナイトを生成し、強度上昇が小さくなり、また一方で焼戻し硬さが上昇し冷間加工性が劣化するため5.00〜8.50%とする。
Ni: 5.00-8.50%
Ni is an effective element together with Cr, Mo and W for adjusting the bainite structure.
However, if it is less than 5.00%, the strength toughness is low, and conversely if it exceeds 8.50%, retained austenite is formed and the increase in strength is reduced. On the other hand, the tempering hardness is increased and the cold workability is deteriorated. And
Cr:0.30〜2.50%
Crの適量の添加は窒素の拡散を促進するため窒化特性を改善する。また、耐食性の改善にも効果がある。そのためその効果が現れる0.30%以上添加する。
しかし必要以上にCrを添加すると、却って表面に形成される酸化膜(不動態膜)が窒化処理時の窒素の拡散を妨げ、窒化層深さを浅くする。
このため耐食性,窒化特性の両方の改善効果が得られる条件としてCrの含有率の範囲を0.30〜2.50%とする。
Cr: 0.30-2.50%
Appropriate addition of Cr improves the nitriding properties because it promotes the diffusion of nitrogen. It is also effective in improving corrosion resistance. Therefore, add 0.30% or more where the effect appears.
However, if Cr is added more than necessary, the oxide film (passive film) formed on the surface prevents the diffusion of nitrogen during the nitriding process and makes the nitride layer depth shallow.
For this reason, the range of Cr content is set to 0.30 to 2.50% as a condition for improving both corrosion resistance and nitriding characteristics.
Mo+1/2W:1.20〜2.50%
Mo,Wはベイナイト組織調整のために必要であるとともに、焼戻し軟化抵抗を改良するために1.20%以上含有させる必要があるが、2.50%を超えて添加すると焼入れ性が増加し、ベイナイト組織のバランスが崩れるため含有率の範囲を1.20〜2.50%とする。
Mo + 1 / 2W: 1.20-2.50%
Mo and W are necessary for adjusting the bainite structure, and in order to improve the temper softening resistance, it is necessary to contain 1.20% or more, but if added over 2.50%, the hardenability increases and the balance of the bainite structure. Therefore, the content range is set to 1.20 to 2.50%.
Cu:≦0.20%
Cuは不純物元素として混入するものであるが、0.20%を超えると遅れ破壊特性や熱間加工性を害するので、Cu含有率の上限を0.20%とする。
Cu: ≤0.20%
Cu is mixed as an impurity element, but if it exceeds 0.20%, delayed fracture characteristics and hot workability are impaired, so the upper limit of Cu content is set to 0.20%.
V:0.05〜0.15%
Vは焼入れ性を増加させるとともに、結晶粒を微細化するため、0.05%以上必要であるが、0.15%超ではその効果が飽和するので含有率の範囲を0.05〜0.15%とする。
V: 0.05-0.15%
V increases the hardenability and refines the crystal grains, so 0.05% or more is necessary. However, if over 0.15%, the effect is saturated, so the content range is 0.05 to 0.15%.
Co:1.00〜6.00%
Coは焼きなまし硬さを向上させることなく高強度を得るため1.00%以上添加する。Coのベイナイトマルテンサイトの変態温度に対する影響はNi,Cr,Mo,Wよりも小さく、ベイナイトの安定生成に有効に働く。しかし6.00%を上回る過剰の添加は切欠靭性の低下を招き、疲労強度低下に繋がるのでCoの含有率の範囲を1.00〜6.00%とする。
Co: 1.00-6.00%
Co is added in an amount of 1.00% or more in order to obtain high strength without improving the annealing hardness. The effect of Co on the transformation temperature of bainite martensite is smaller than that of Ni, Cr, Mo, and W, and works effectively for the stable formation of bainite. However, excessive addition exceeding 6.00% leads to a decrease in notch toughness and a decrease in fatigue strength, so the Co content range is set to 1.00 to 6.00%.
N:≦0.010%
Nは強力な固溶強化元素であるとともに、焼入れ後の焼戻し処理により微細な窒化物,炭窒化物を析出させ、高強度を得るために必須の元素であるが、疲労特性に影響を及ぼすTi系介在物やAl系介在物を形成するため極力低減する必要がある。本発明ではNの含有率の上限を0.010%とする。
N: ≤0.010%
N is a powerful solid-solution strengthening element and is an essential element for obtaining high strength by precipitating fine nitrides and carbonitrides by tempering after quenching. It is necessary to reduce as much as possible in order to form a system inclusion and an Al system inclusion. In the present invention, the upper limit of the N content is set to 0.010%.
O:≦0.0050%
Oは、SiO2,Al2O3等の酸化物を生成し、疲労強度等の疲労特性を低下させるため、極力低い方が望ましい。しかし極端な低下は製造コストの上昇を招くため、その上限を0.0050%に規制する。
O: ≦ 0.0050%
O generates oxides such as SiO 2 and Al 2 O 3 and lowers fatigue characteristics such as fatigue strength. Therefore, it is desirable that O be as low as possible. However, an extreme decrease leads to an increase in manufacturing costs, so the upper limit is regulated to 0.0050%.
Al:≦0.10%
Alは焼入れ後の焼戻し処理によりNi3Al等を形成し、強度の向上が期待できる元素であるが、N,O等と結合し易く、Tiと同様にAl系非金属介在物を形成し、却って疲労特性を悪化させるため、Tiと同様に極力低減することが望ましい。
またAlの増加はCrと同様に窒化層深さを低減するため、その上限を0.10%とした。
Al: ≤0.10%
Al is an element that can be expected to improve strength by forming Ni 3 Al or the like by tempering after quenching, but it is easy to bond with N, O, etc., and forms Al-based nonmetallic inclusions like Ti, On the other hand, in order to deteriorate the fatigue characteristics, it is desirable to reduce it as much as possible like Ti.
In addition, the increase in Al reduces the nitrided layer depth in the same way as Cr, so the upper limit was made 0.10%.
Ti:≦0.10%
Tiは焼入れ後の焼戻し処理によりNi3Ti等を形成し、強度の向上が期待できる元素であるが、C,N,O等と結合し易く、Ti系非金属介在物を形成し、却って疲労特性を悪化させるため極力低減することが望ましい。従ってその上限を0.10%とした。
Ti: ≤0.10%
Ti is an element that can be expected to improve strength by forming Ni 3 Ti, etc. by tempering after quenching, but it is easy to bond with C, N, O, etc. and forms Ti-based non-metallic inclusions. It is desirable to reduce as much as possible in order to deteriorate the characteristics. Therefore, the upper limit was made 0.10%.
P:≦0.05%
Pは粒界に偏析して粒界腐食感受性を高めるとともに、靭性の低下を招くため低い方が望ましいが、その改善効果は0.05%以下でほぼ飽和するため、その上限を0.05%とする。
P: ≦ 0.05%
P is segregated at the grain boundaries to increase the intergranular corrosion susceptibility and cause a decrease in toughness. However, the lower effect is preferable, but the improvement effect is almost saturated at 0.05% or less, so the upper limit is made 0.05%.
S:≦0.03%
Sは熱間加工性を劣化させるとともに、疲労特性や耐食性を著しく低下させるため極力低減することが望ましいが、0.03%以下にすれば十分な疲労特性,耐食性が得られるのでその上限を0.03%とした。
S: ≤0.03%
S degrades hot workability and significantly reduces fatigue properties and corrosion resistance. It is desirable to reduce it as much as possible. However, if 0.03% or less, sufficient fatigue properties and corrosion resistance can be obtained, so the upper limit is 0.03%. did.
Zr:0.01〜0.50%
Zrは熱処理後の結晶粒を微細化する効果をもつ。結晶粒を微細化すれば鋼の限界圧縮率が増大するので、強い冷間加工を加えることができるようになる。その効果は含有率0.01%から現れ始めるが、含有率0.50%を超えてもその効果は飽和するため、含有率の範囲を0.01〜0.50%とする。
Zr: 0.01-0.50%
Zr has the effect of refining crystal grains after heat treatment. If the crystal grains are refined, the critical compressibility of the steel increases, so that strong cold working can be applied. The effect starts to appear at a content rate of 0.01%, but even if the content rate exceeds 0.50%, the effect is saturated, so the range of the content rate is set to 0.01 to 0.50%.
B,Ca,Mg:0.0010〜0.010%
B,Ca,Mgは熱間加工性を向上させるのに有効な元素であることから添加してもよい。その効果は含有率0.0010%で現れ始めるが、過剰な添加は低融点のほう化物を粒界に形成したり、酸化物を形成したりして鋼の清浄度を悪化させ、熱間加工性や冷間加工性及び疲労強度の低下を招くため、これら元素の含有率の範囲を0.0010〜0.010%とする。
B, Ca, Mg: 0.0010 to 0.010%
B, Ca, and Mg may be added because they are effective elements for improving hot workability. The effect begins to appear at a content of 0.0010%, but excessive addition forms low-boiling borides at the grain boundaries or forms oxides, degrading the cleanliness of the steel, In order to reduce the cold workability and fatigue strength, the content range of these elements is set to 0.0010 to 0.010%.
次に本発明の実施形態を以下に説明する。
表1に示す化学組成の鋼を150kg溶解して鋳造し、1200℃×6hrの条件で均質化処理した後、1200℃以下の温度条件で熱間加工して厚さ3mmに加工し、その後冷間圧延により0.4mmほどの薄鋼帯板を得た。
この材料を焼入れ,焼戻し,窒化処理の順で熱処理を実施し、以下の条件で機械的特性(引張強度,0.2%耐力,伸び,絞り),母材硬さ,表層硬さ,耐食性,疲労特性について調査した。
焼入れは700〜1100℃/〜1hrにて実施する。ここでは850℃/10min/空冷の条件での結果を示す。
また、焼戻しは300〜600℃/〜100hrで実施する。本工程の短時間処理を想定して実施例では保持時間を2hr/空冷とし、表2の温度条件での結果を示している。
窒化処理はアンモニアと窒素の混合気流中にて300〜600℃/〜10hrで実施する。ここでは500℃/1hr/空冷とした。
また合金成分によっては焼戻し処理及び窒化処理の温度条件が揃えば、窒化処理で焼戻し処理を兼ねることも可能である。
Next, embodiments of the present invention will be described below.
150 kg of steel having the chemical composition shown in Table 1 is melted and cast, homogenized at 1200 ° C. × 6 hr, hot-worked at a temperature of 1200 ° C. or lower to a thickness of 3 mm, and then cooled. A thin steel strip of about 0.4 mm was obtained by hot rolling.
This material is heat treated in the order of quenching, tempering, nitriding treatment, mechanical properties (tensile strength, 0.2% proof stress, elongation, drawing), base material hardness, surface layer hardness, corrosion resistance under the following conditions: The fatigue properties were investigated.
Quenching is performed at 700 to 1100 ° C./˜1 hr. Here, the results under conditions of 850 ° C./10 min / air cooling are shown.
Moreover, tempering is implemented at 300-600 degreeC / -100hr. Assuming the short-time processing of this step, in the examples, the holding time is 2 hr / air cooling, and the results under the temperature conditions in Table 2 are shown.
The nitriding treatment is performed at 300 to 600 ° C./-10 hr in a mixed gas stream of ammonia and nitrogen. Here, it was set to 500 ° C./1 hr / air cooling.
Further, depending on the alloy component, if the temperature conditions of the tempering treatment and the nitriding treatment are uniform, the nitriding treatment can also serve as the tempering treatment.
(1)清浄度
JIS G 0555の、鋼中の非金属介在物の顕微鏡試験方法に準じて清浄度測定を実施した。
試験片は0.4mm×5mm×10mm形状とし、これを5枚重ね埋め込んで鏡面研磨し、エッチングしたものを用いた。
(1) Cleanliness Cleanliness was measured according to JIS G 0555, a microscopic test method for nonmetallic inclusions in steel.
The test piece had a shape of 0.4 mm × 5 mm × 10 mm, and five of these were embedded, mirror polished, and etched.
(2)引張試験
JIS Z 2241の、金属引張試験方法に準じて引張試験を行った。
試験片はJIS Z 22015号試験片とした。
(2) Tensile test A tensile test was performed according to the metal tensile test method of JIS Z 2241.
The test piece was a JIS Z 22015 test piece.
(3)T/2硬さ
JIS Z 2244の、ビッカース硬さ試験方法に準じて試験を行った。
試験片は0.4mm×5mm×10mm形状とし、これを埋め込んで鏡面研磨したものについて荷重0.5Nで硬さ測定を実施した。測定値は10点測定の平均値を採用した。
測定部位は横断面において表面から試料厚さの1/2の位置(T/2)の位置での硬さ測定とした。
(3) T / 2 hardness A test was performed according to the Vickers hardness test method of JIS Z 2244.
The test piece had a shape of 0.4 mm × 5 mm × 10 mm, and the hardness was measured with a load of 0.5 N for the sample that was embedded and mirror-polished. The average value of 10-point measurement was adopted as the measurement value.
The measurement site was a hardness measurement at a position (T / 2) half the sample thickness from the surface in the cross section.
(4)表面硬さ
JIS G 0563の、鉄鋼の窒化層表面硬さ測定方法に従って表面硬さを測定した。尚、測定荷重は0.1Nにて実施した。
(4) Surface hardness The surface hardness was measured in accordance with JIS G 0563, a method for measuring the surface hardness of a nitrided steel layer. The measurement load was 0.1N.
(5)窒化特性
JIS G 0562の、鉄鋼の窒化層深さ測定方法に従って窒化層深さを測定した。
(5) Nitriding characteristics The nitrided layer depth was measured according to the method for measuring the nitrided layer depth of steel according to JIS G 0562.
(6)疲労特性
JIS Z 2273の、金属材料の疲れ試験方法通則に従って疲労特性を調査した。
具体的には、図1に示しているように寸法0.4mm×10mm×60mm程度の試験片10に対して、最大応力1450N/mm2,最小応力0N/mm2,加振速度1000rpmの条件の下で振動を加えて試験片10を繰り返し曲げ変形させ、破断に到るまでの加振(変形)繰り返し回数を測定した。随時板のつけね部にかかる垂直応力の最大値を変化させて、破断までの繰り返し回数を測定することでS−N線図を作成した。
疲労特性の評価には、最大応力値を1000N/mm2とし、5回同様な試験を実施し、破断までの加振(変形)繰り返し回数が107回以上になるものが5回あった場合を◎、4回あった場合を○、2〜3回の場合を△、0回の場合を×として評価した。
(6) Fatigue properties Fatigue properties were investigated in accordance with JIS Z 2273 general rules for fatigue testing of metallic materials.
Specifically, as shown in FIG. 1, for a
For the evaluation of fatigue characteristics, when the maximum stress value is 1000 N / mm 2 and the same test is performed 5 times, and the number of times of repeated vibration (deformation) until breakage is 10 7 times or more. Was evaluated as ◯ when 4 times, Δ as 2 to 3 times, and × when 0 times.
(7)耐食性
試験片はφ15mm×50mm形状で表面は▽▽▽G仕上げとし、同様なものを各合金3本ずつ用意した。湿潤試験(50℃,95%RH以上)にて168hr保持後に発錆の有無を確認し、1本でも発錆が認められる場合を×、まったく無い場合を○で評価した。
これらの結果が表3に示してある。
(7) Corrosion resistance The test piece had a shape of φ15 mm × 50 mm, the surface was finished with ▽▽▽ G, and three similar alloys were prepared. In a wet test (50 ° C., 95% RH or more), the presence or absence of rusting was confirmed after holding for 168 hours.
These results are shown in Table 3.
尚、表3において硬さHVのT/2と表面との差(Δ)は芯部と表面との硬さの差を表すもので、この硬さの差は窒化層深さとともに窒化特性の良否を表している。 In Table 3, the difference (Δ) between T / 2 of the hardness HV and the surface represents the difference in hardness between the core and the surface, and this difference in hardness represents the nitriding characteristics along with the nitrided layer depth. Expresses good or bad.
この表3において、C量が0.31%と本発明の上限値である0.25%よりも多い比較例Sは、結晶粒界部に粗大な炭化物を生成するため機械的特性が悪くなり、十分な疲労特性は得られない。 In Table 3, Comparative Example S having a C content of 0.31% and more than the upper limit of 0.25% of the present invention produces coarse carbides at the crystal grain boundaries, resulting in poor mechanical properties and sufficient fatigue. Characteristics cannot be obtained.
Si量が0.98%と本発明の上限値である0.25%よりも多い比較例Tは靭性評価の指標である絞り値が44%と若干低く、また酸化物の形成によって窒化が阻害され窒化特性の指標である硬さの差Δが低く、窒化層深さも浅い。このため耐食性,疲労特性が何れも×で悪いものとなっている。 In Comparative Example T, the Si amount is 0.98%, which is larger than the upper limit of 0.25% of the present invention, and the drawing value, which is an index for toughness evaluation, is slightly low, 44%. The hardness difference Δ, which is an index, is low, and the nitride layer depth is also shallow. For this reason, the corrosion resistance and fatigue characteristics are both poor and poor.
Mn量が0.88%と本発明の上限値である0.40%よりも多い比較例Uは、MnS等の形成が清浄度を悪化させている。このため比較例Uでは窒化特性に関しては問題なく耐食性も確保できるものの、疲労特性は、不十分である。 In Comparative Example U where the Mn amount is 0.88%, which is higher than the upper limit of 0.40% of the present invention, the formation of MnS or the like deteriorates the cleanliness. For this reason, in Comparative Example U, although corrosion resistance can be secured without any problem with respect to nitriding characteristics, fatigue characteristics are insufficient.
Cr量が0.12%と本発明の下限である0.30%よりも少ない比較例Vは、20μm以上の窒化層深さを得ることができるが耐食性が不十分である。また、表面硬さも低いため疲労特性で×となっている。
また3.09%と本発明の上限である2.50%よりも多い比較例Wは、Cr炭化物の生成により十分な引張強度、0.2%耐力が得られるものの、窒化処理時のCrの窒素拡散促進効果と酸化膜(不動態膜)の形成による窒素拡散を抑制する効果のバランスで後者が勝るため窒化層深さが浅く、疲労特性が△と悪いものとなっている。
因みに図4には発明鋼Jの成分をベースとしてCr量を変化させたときのCr量と窒化層深さ,表面硬さ,耐食性,疲労特性との関係を示している。
図4より、少量のCr添加で窒化層深さ,表面硬さが改善されることが分る。
材料表面を窒化したため耐食性も良く、十分な窒化層深さ、表面硬さが得られる0.30%Cr添加で疲労特性は目標を満足できている。
しかしながら過剰のCr添加は表層に酸化皮膜を形成し、材料内への窒素の拡散が阻害されるため、十分な窒化特性が得られていない。
Comparative Example V with a Cr content of 0.12%, which is less than 0.30%, which is the lower limit of the present invention, can obtain a nitrided layer depth of 20 μm or more, but has insufficient corrosion resistance. Further, since the surface hardness is low, the fatigue characteristics are x.
In Comparative Example W, which is 3.09%, which is higher than the upper limit of 2.50% of the present invention, although sufficient tensile strength and 0.2% proof stress can be obtained by the formation of Cr carbide, the effect of promoting nitrogen diffusion of Cr during nitriding treatment And the latter is superior in the balance of the effect of suppressing the nitrogen diffusion due to the formation of the oxide film (passive film), so that the nitrided layer depth is shallow and the fatigue characteristics are as bad as Δ.
FIG. 4 shows the relationship between the Cr content and the nitrided layer depth, surface hardness, corrosion resistance, and fatigue characteristics when the Cr content is changed based on the components of Invention Steel J.
FIG. 4 shows that the nitride layer depth and surface hardness can be improved by adding a small amount of Cr.
Since the material surface is nitrided, the corrosion resistance is also good, and the fatigue properties satisfy the target with 0.30% Cr addition that can provide sufficient nitrided layer depth and surface hardness.
However, excessive addition of Cr forms an oxide film on the surface layer and inhibits the diffusion of nitrogen into the material, so that sufficient nitriding characteristics are not obtained.
Mo量が2.89%である比較例XとW量が6.52%である比較例Zは本発明Mo+1/2W量の上限値である2.50%よりも多いため、Mo,W炭化物の粗大化によって機械的特性、特に強度特性が低下する。比較例Zでは若干ではあるが靭性の指標である絞り値の改善が見られ、W添加の効果と考えられる。
以上より、比較例X,Zでは十分な母材強度が得られないため窒化特性,疲労特性ともに悪い結果となっている。
またW添加量が1.52%でMo+1/2Wが0.76%となり、本発明のMo+1/2W量の下限値1.20%よりも少ない比較例Yは強化元素が不足するため、やはり引張強度,0.2%耐力,T/2硬さが不十分となり十分な疲労特性が得られていない。
Since Comparative Example X with Mo content of 2.89% and Comparative Example Z with W content of 6.52% are higher than 2.50% which is the upper limit value of the Mo + 1 / 2W amount of the present invention, it is mechanical due to coarsening of Mo and W carbides. Properties, particularly strength properties, are degraded. In Comparative Example Z, the aperture value, which is an indicator of toughness, is slightly improved, which is considered to be an effect of W addition.
As described above, Comparative Examples X and Z have poor results in both nitriding characteristics and fatigue characteristics because sufficient base material strength cannot be obtained.
In addition, since W addition amount is 1.52% and Mo + 1 / 2W is 0.76%, Comparative Example Y, which is less than the lower limit value 1.20% of Mo + 1 / 2W amount of the present invention, lacks reinforcing elements, so tensile strength is 0.2%. The yield strength and T / 2 hardness are insufficient, and sufficient fatigue characteristics are not obtained.
P,S量が本発明のそれぞれの上限値である0.05,0.03%を超えて多量に含まれる比較例2Aでは冷間加工性,耐食性,疲労特性が悪く、またCu量が0.44%と本発明の上限値である0.20%よりも多い比較例2Bは熱間加工性,疲労特性が悪いものとなっている。 In Comparative Example 2A, in which P and S contents exceed the upper limits of 0.05 and 0.03% of the present invention and are contained in a large amount, the cold workability, corrosion resistance and fatigue characteristics are poor, and the Cu content is 0.44%. Comparative Example 2B, which is greater than the upper limit of 0.20%, has poor hot workability and fatigue properties.
O量が0.0087%と本発明の上限値である0.0050%よりも多い比較例2Cの場合、酸化物の形成により清浄度が悪化するため、疲労特性が悪くなる。またN量が0.028%、Al量が0.46%とそれぞれ本発明の上限値である0.010%,0.10%よりも多い比較例2DではAl窒化物の形成によりやはり清浄度が悪化し、また窒化処理時の窒化物の形成も促進されるため窒化層深さが浅く、不均一なものとなるため耐食性,疲労特性が悪いものとなっている。 In the case of Comparative Example 2C in which the amount of O is 0.0087%, which is higher than 0.0050%, which is the upper limit of the present invention, the cleanliness deteriorates due to the formation of oxides, so the fatigue characteristics deteriorate. Further, in Comparative Example 2D in which the N amount is 0.028% and the Al amount is 0.46%, which is higher than the upper limit values of 0.010% and 0.10% of the present invention, respectively, the cleanliness is deteriorated due to the formation of Al nitride, and also during nitriding Since the formation of the nitride is promoted, the depth of the nitrided layer is shallow and non-uniform, resulting in poor corrosion resistance and fatigue characteristics.
N量が0.034%、Ti量が0.19%と本発明のそれぞれの上限値である0.010%,0.10%よりも多い比較例2Eでは、Ti窒化物の形成によりAlと同様に介在物量が増加し、疲労特性が悪いものとなっている。 In Comparative Example 2E in which the N amount is 0.034% and the Ti amount is 0.19%, which is higher than the respective upper limit values of 0.010% and 0.10% of the present invention, the amount of inclusion increases in the same manner as Al due to the formation of Ti nitride. The fatigue characteristics are poor.
一方、従来の18Niマルエージング鋼である比較例2Fでは引張強度、0.2%耐力が優れているため疲労特性は○の評価であるが、Cr無添加のため本発明合金ほどの耐食性が得られていない。またCo,Ni,Mo等の添加量が多いため材料コストが高く、更にTi等を多めに含んでいるため溶解鋳造における製造コストが高くなる等の問題点が有る。 On the other hand, Comparative Example 2F, which is a conventional 18Ni maraging steel, has excellent tensile strength and 0.2% proof stress, so its fatigue characteristics are evaluated as ◯. However, since it does not contain Cr, it has the same corrosion resistance as the alloy of the present invention. It is not done. In addition, there are problems such as a high material cost due to a large amount of addition of Co, Ni, Mo, and the like, and a high manufacturing cost in the melt casting because it contains a large amount of Ti and the like.
これに対して本発明例のものは何れの特性も良好な特性が得られている。
また図4の結果に見られるようにCr含有量が本発明の範囲に入っていない比較例V,Wでは窒化特性が悪くなっているが、本発明の範囲内でCrを含有させた本発明例のものは窒化特性と耐食性の改善が両立している。Crを含有していない18Niマルエージング鋼の比較例2Fに比べても、Crを所定量添加していることによって窒化特性(窒化層深さ)が略同等以上となっており良好であることが分る。
On the other hand, in the examples of the present invention, good characteristics are obtained in all the characteristics.
Further, as seen in the results of FIG. 4, the nitriding characteristics are deteriorated in Comparative Examples V and W in which the Cr content does not fall within the scope of the present invention, but the present invention containing Cr within the scope of the present invention. The example has both improved nitriding properties and improved corrosion resistance. Compared to Comparative Example 2F of 18Ni maraging steel containing no Cr, the addition of a predetermined amount of Cr results in excellent nitriding characteristics (nitriding layer depth) that are substantially equal to or greater. I understand.
表4,表5は表1の鋼種B,Jについてそれぞれ表2の工程1〜5に従って処理したものの各種特性を示したもので、これらの表の結果から、処理条件として工程1〜3に示すものが良好であることが理解できる。 Tables 4 and 5 show various characteristics of the steel types B and J shown in Table 1 treated according to Steps 1 to 5 in Table 2, respectively. From the results of these tables, the treatment conditions are shown in Steps 1 to 3. It can be understood that things are good.
また表6は鋼種B,Jについて窒化処理のみとした場合の特性を示している。
表6の結果では,焼戻し時間としては保持時間が不十分なため、引張特性が若干落ち、硬さも落ちている。
Table 6 shows the characteristics of steel types B and J when only nitriding is performed.
In the results of Table 6, since the holding time is insufficient as the tempering time, the tensile properties are slightly lowered and the hardness is also lowered.
以上本発明の実施形態を詳述したがこれらはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。 Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.
Claims (6)
C :0.10〜0.25%
Si:≦0.25%
Mn:≦0.40%
Ni:5.0〜8.5%
Cr:0.30〜2.50%
Mo+1/2W:1.20〜2.50%
Cu:≦0.20%
V :0.05〜0.15%
Co:1.00〜6.00%
N :≦0.010%
O :≦0.0050%
Al:≦0.10%
Ti:≦0.10%
P :≦0.05%
S :≦0.03%
残部Fe及びその他不可避的不純物から成る組成を有することを特徴とする無段変速機ベルトの金属帯リング用薄鋼帯板。 In mass%
C: 0.10-0.25%
Si: ≤0.25%
Mn: ≤0.40%
Ni: 5.0 to 8.5%
Cr: 0.30-2.50%
Mo + 1 / 2W: 1.20-2.50%
Cu: ≤0.20%
V: 0.05-0.15%
Co: 1.00-6.00%
N: ≦ 0.010%
O: ≦ 0.0050%
Al: ≤0.10%
Ti: ≤0.10%
P: ≦ 0.05%
S: ≦ 0.03%
Remaining portion Fe and other CVT metal strip ring for thin steel strip of the belt, characterized in that it has a composition consisting of unavoidable impurities.
Zr:0.01〜0.50%
を更に含有することを特徴とする請求項1に記載の無段変速機ベルトの金属帯リング用薄鋼帯板。 In mass%
Zr: 0.01-0.50%
The thin steel strip for a metal strip of a continuously variable transmission belt according to claim 1, further comprising:
B :0.0010〜0.010%
Ca:0.0010〜0.010%
Mg:0.0010〜0.010%
の1種若しくは2種以上を更に含有することを特徴とする請求項1,2の何れかに記載の無断変速機ベルトの金属帯リング用薄鋼帯板。 In mass%
B: 0.0010 to 0.010%
Ca: 0.0010 to 0.010%
Mg: 0.0010 to 0.010%
The thin steel strip for a metal strip of a continuously variable transmission belt according to any one of claims 1 and 2, further comprising at least one of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004239969A JP4389726B2 (en) | 2004-08-19 | 2004-08-19 | Thin steel strip for metal belt ring of continuously variable transmission belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004239969A JP4389726B2 (en) | 2004-08-19 | 2004-08-19 | Thin steel strip for metal belt ring of continuously variable transmission belt |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006057136A JP2006057136A (en) | 2006-03-02 |
JP4389726B2 true JP4389726B2 (en) | 2009-12-24 |
Family
ID=36104860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004239969A Expired - Fee Related JP4389726B2 (en) | 2004-08-19 | 2004-08-19 | Thin steel strip for metal belt ring of continuously variable transmission belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4389726B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013000436B1 (en) * | 2010-07-09 | 2018-07-03 | Nippon Steel & Sumitomo Metal Corporation | NI ADDED STEEL SHEET AND SAME PRODUCTION METHOD |
US9260771B2 (en) | 2011-09-28 | 2016-02-16 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
-
2004
- 2004-08-19 JP JP2004239969A patent/JP4389726B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006057136A (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2733612C2 (en) | Steel, product made from such steel, and method of its production | |
JP2007162128A (en) | Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component | |
JP2011153364A (en) | Crankshaft and method for producing the same | |
JP2007177317A (en) | Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same | |
JP6927427B2 (en) | High carbon hot-rolled steel sheet and its manufacturing method | |
JP5046363B2 (en) | Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same | |
JPWO2002101108A1 (en) | Duplex stainless steel strip for steel belt | |
JP6065121B2 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP5897975B2 (en) | Steel for belt type CVT pulley and belt type CVT pulley | |
WO2021230244A1 (en) | Austenitic stainless steel material, method for producing same, and plate spring | |
JP2010189697A (en) | Crankshaft and method for producing the same | |
JP2009052144A (en) | High strength spring | |
JP2023002842A (en) | Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength | |
JP2004315968A (en) | Steel wire for high strength spring having excellent workability, and high strength spring | |
JP2005097682A (en) | Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor | |
JP2010222697A (en) | Steel for machine structural use having excellent toughness | |
JP4389726B2 (en) | Thin steel strip for metal belt ring of continuously variable transmission belt | |
JPWO2020158356A1 (en) | High carbon hot-rolled steel sheet and its manufacturing method | |
JP4613698B2 (en) | Steel strip and strip | |
JP2011195922A (en) | Thin steel sheet for cvt ring | |
JP7031428B2 (en) | Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods | |
JP4315049B2 (en) | Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof | |
JP2023142664A (en) | Nitridation steel with excellent core part hardness | |
JP2007113071A (en) | Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property | |
JP4488228B2 (en) | Induction hardening steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |