JP4358807B2 - Method for preventing cracks in continuous cast pieces of high-strength steel - Google Patents
Method for preventing cracks in continuous cast pieces of high-strength steel Download PDFInfo
- Publication number
- JP4358807B2 JP4358807B2 JP2005274339A JP2005274339A JP4358807B2 JP 4358807 B2 JP4358807 B2 JP 4358807B2 JP 2005274339 A JP2005274339 A JP 2005274339A JP 2005274339 A JP2005274339 A JP 2005274339A JP 4358807 B2 JP4358807 B2 JP 4358807B2
- Authority
- JP
- Japan
- Prior art keywords
- continuous cast
- continuous
- pieces
- cast pieces
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Continuous Casting (AREA)
Description
本発明は、高張力鋼(ハイテン鋼)の連鋳片の置き割れ防止方法に関する。 The present invention relates to a method for preventing cracks in continuously cast pieces of high-tensile steel (high-tensile steel).
近年、自動車の分野では、二酸化炭素排出量の削減運動の一環として軽量化による燃費改善の取り組みが盛んに行われている。その一例として、車体や部品の薄肉化を可能とする高張力鋼(ハイテン鋼)の導入が挙げられる。
また、車両の衝突時における車体等の変形を防ぎ、乗員の安全を確保する必要性から車体・部品等の強度を高めるためにも高張力鋼の需要は拡大傾向にある。
In recent years, in the field of automobiles, efforts have been actively made to improve fuel efficiency by reducing weight as part of a campaign to reduce carbon dioxide emissions. One example of this is the introduction of high-tensile steel (high-tensile steel) that enables thinning of the vehicle body and parts.
In addition, the demand for high-tensile steel is increasing in order to prevent the deformation of the vehicle body at the time of a vehicle collision and increase the strength of the vehicle body / parts from the need to ensure the safety of passengers.
上記高張力鋼は、強度を高めることを目的として、CやSi、Mn(以下、ハイテン添加物ともいう。)が添加されている。 The high-tensile steel is added with C, Si, or Mn (hereinafter also referred to as a high tensile additive) for the purpose of increasing the strength.
しかし、ハイテン添加物の増加傾向(ハイテン化)に伴って新たな問題が発生していた。即ち、高張力鋼の連続鋳造片(以下、連鋳片ともいう。)を、連続鋳造(以下、連鋳ともいう。)直後から室温に至るまでの冷却速度を軟鋼同様に特別に管理することなく冷却すると、図3や図4・5に示すような置き割れを生じてしまうのである。この種の置き割れは冷却時に生じる熱応力によるものと考えられ、軟鋼でも極稀に発生していたが、高張力鋼の分野では、特に昨今のハイテン化に伴って頻繁に発生するようになっていた。 However, a new problem has occurred with the increasing trend of high-tensile additives (high-tensification). That is, the cooling rate of continuous cast pieces (hereinafter also referred to as continuous cast pieces) of high-strength steel from immediately after continuous casting (hereinafter also referred to as continuous cast pieces) to room temperature is specially controlled in the same manner as mild steel. If it is not cooled, it will cause cracks as shown in FIG. 3 and FIGS. This type of cracking is thought to be due to thermal stress generated during cooling, and it occurred very rarely even in mild steel, but in the field of high-strength steel, it frequently occurs especially with the recent increase in high tensile strength. It was.
この種の技術として、特許文献1や特許文献2は、軸受鋼の連鋳片の置き割れ防止方法を開示する。これら特許文献1及び特許文献2の記載によれば、連鋳後の軸受鋼(連鋳片)をその表面温度が600℃以下に冷却される前に加熱炉に装入すれば、連鋳片の冷却時における熱応力を軽減できるとされている。
上記の特許文献1及び特許文献2によると、連鋳後〜加熱炉の工程間において連鋳片を600℃以下、例えば100℃前後の室温にまで冷却することはない。一方で、連鋳片の表面欠陥(小さな割れや不純物析出物等)は、室温にまで冷却されて初めて検出できるものである。
従って上記の方法では、特許文献1や2でいうように冷却時における熱応力は軽減できるかもしれないが、連鋳片の表面欠陥は検出できないし、当然それを補修することもできない。
According to Patent Document 1 and Patent Document 2 described above, the continuous cast piece is not cooled to a room temperature of 600 ° C. or lower, for example, around 100 ° C., between the processes of continuous casting and the heating furnace. On the other hand, surface defects (small cracks, impurity precipitates, etc.) of continuous cast pieces can be detected only after cooling to room temperature.
Therefore, in the above method, the thermal stress during cooling may be reduced as described in Patent Documents 1 and 2, but the surface defect of the continuous cast piece cannot be detected, and naturally it cannot be repaired.
本発明は係る諸点に鑑みてなされたものであり、その主な目的は、連続鋳造設備で鋳造した高張力鋼の連鋳片を室温まで冷却しても置き割れの生じない置き割れ防止方法を提供することにある。 The present invention has been made in view of such various points, and its main purpose is to provide a crack prevention method that does not cause crack even when a continuous cast piece of high strength steel cast in a continuous casting facility is cooled to room temperature. It is to provide.
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.
炭素(C)含有率を0.12w%以上0.25w%以下とし、珪素(Si)含有率を1.2w%以上2.0w%以下とし、マンガン(Mn)を1.2w%以上4.0w%以下とする高張力鋼の連鋳片の置き割れ防止方法において、連鋳片の広面中央部における表面温度(T:℃)に応じて、連鋳片の冷却速度(V:℃/時間)を以下を満足するように制御する。
・ T≧500において、V≦70
・500>T≧300において、V≦55
・300>T≧200において、V≦25
・200>T≧150において、V≦15
なお、ここでいう「連鋳片の冷却速度」とは上記表面温度に基づいて求められるものとする。
The carbon (C) content is 0.12 w% or more and 0.25 w% or less, the silicon (Si) content is 1.2 w% or more and 2.0 w% or less, and manganese (Mn) is 1.2 w% or more. In a method for preventing cracking of continuous cast pieces of high-strength steel of 0 w% or less, the cooling rate of continuous cast pieces (V: ° C./hour) according to the surface temperature (T: ° C.) at the center of the wide surface of the continuous cast pieces. ) Is controlled to satisfy the following.
・ At T ≧ 500, V ≦ 70
・ When 500> T ≧ 300, V ≦ 55
・ In 300> T ≧ 200, V ≦ 25
・ When 200> T ≧ 150, V ≦ 15
Note that the “cooling rate of continuous cast slab” here is obtained based on the surface temperature.
これにより、高張力鋼の連鋳片を、置き割れを発生させることなく室温に至るまで冷却することができる。また室温まで冷却すると、連鋳片の表面欠陥を検出かつ補修可能となるので、表面欠陥のない高張力鋼を提供できる。 Thereby, the continuous cast piece of high-tensile steel can be cooled to room temperature without generating a set crack. Further, when cooled to room temperature, it becomes possible to detect and repair surface defects of the continuous cast slab, so that it is possible to provide high-strength steel having no surface defects.
前記連鋳片の冷却速度は、当該連鋳片を他の2枚の連鋳片により挟むことにより制御することが好ましい。これによれば、前記冷却速度を制御するための特別な装置は一切必要とされず、単に他の連鋳片により当該連鋳片を挟むだけでよいので、本発明を極めて安価かつ容易に導入できる。 The cooling rate of the continuous cast piece is preferably controlled by sandwiching the continuous cast piece between the other two continuous cast pieces. According to this, no special device for controlling the cooling rate is required, and it is only necessary to sandwich the continuous cast piece with another continuous cast piece, so that the present invention is introduced very inexpensively and easily. it can.
前記他の2枚の連鋳片により、複数枚の前記連鋳片を同時に挟むことが好ましい。これにより、前記連鋳片の冷却速度をさらに抑制できる。また、生産効率を向上できる。 It is preferable that a plurality of the continuous cast pieces are sandwiched simultaneously by the other two continuous cast pieces. Thereby, the cooling rate of the continuous cast piece can be further suppressed. Moreover, production efficiency can be improved.
以下、図面を参照しつつ、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
最初に、本実施形態に係る高張力鋼の連鋳片の置き割れ防止方法(以下、単に「置き割れ防止方法」ともいう。)が対象としている鋼種に関して説明する。本実施形態の対象鋼種は、連続鋳造設備において連続鋳造された連鋳片のうち高張力鋼に分類されるものであって、その化学成分が下記の範囲内のものとする。
・炭素含有率:0.12w%以上0.25w%以下
・珪素含有率:1.2w%以上2.0w%以下
・マンガン含有率:1.2w%以上4.0w%以下
First, the steel types targeted by the method for preventing cracks in a continuous cast piece of high-strength steel according to the present embodiment (hereinafter, also simply referred to as “placement crack preventing method”) will be described. The target steel type of the present embodiment is classified as high-tensile steel among continuous cast pieces continuously cast in a continuous casting facility, and the chemical composition thereof is within the following range.
Carbon content: 0.12 w% or more and 0.25 w% or less Silicon content: 1.2 w% or more and 2.0 w% or less Manganese content: 1.2 w% or more and 4.0 w% or less
本実施形態において対象とする鋼種の一例を表1に示す。本表の鋼種(ハイテン鋼A〜C)のうち、ハイテン鋼A及びBが上記対象鋼種となる。一方、炭素含有量が比較的低いハイテン鋼Cは、冷却時に特別な配慮をしなくても置き割れを生じないので、本実施形態では対象外とする。言い換えれば、炭素含有量が0.11w%以下のものは冷却時においてそもそも置き割れを生じないので、特別な対策を講じる必要がないのである。
その他の、炭素含有量の上記範囲の上限値(0.25w%)や珪素・マンガンについての範囲の規定に関しては、高張力鋼の一般的な値となっている。
Table 1 shows an example of the steel types targeted in this embodiment. Among the steel types (high-tensile steels A to C) in this table, high-tensile steels A and B are the target steel types. On the other hand, the high-tensile steel C having a relatively low carbon content is not subject to the present embodiment because it does not cause cracking without special consideration during cooling. In other words, those having a carbon content of 0.11 w% or less do not cause cracking in the first place during cooling, and therefore no special measures need to be taken.
The other upper limit values (0.25 w%) of the above-mentioned range of carbon content and the definition of the range for silicon / manganese are general values for high-tensile steel.
次に、図6及び図7に基づいて、上記高張力鋼の特性を説明する。図6はハイテン鋼Bの800℃前後における引張試験の結果をグラフで示す図であり、図7はハイテン鋼Bの150℃前後におけるシャルピー衝撃試験の結果をグラフで示す図である。
図6に示すように高張力鋼は通常、800℃前後の温度帯域(脆化III域)において顕著な脆性を有する。
また図7に示すように高張力鋼は、150℃前後の温度帯域において脆性が急激に変化する性質を有する。具体的には当該試験片温度が150℃以下となった途端に急激に脆化する。これは、昨今のハイテン化に伴って珪素含有量が著しく増加したことに起因するものである。
Next, based on FIG.6 and FIG.7, the characteristic of the said high strength steel is demonstrated. FIG. 6 is a graph showing the results of a tensile test of high-tensile steel B around 800 ° C., and FIG. 7 is a graph showing the results of a Charpy impact test of high-ten steel B around 150 ° C.
As shown in FIG. 6, the high-strength steel usually has remarkable brittleness in a temperature range around 800 ° C. (embrittlement III region).
Further, as shown in FIG. 7, high-strength steel has a property that brittleness changes abruptly in a temperature range of about 150.degree. Specifically, as soon as the temperature of the test piece becomes 150 ° C. or less, the specimen rapidly becomes brittle. This is due to the fact that the silicon content has remarkably increased with the recent high tempering.
そこで本実施形態に係る置き割れ防止方法は、前記脆化III域に対しては当該温度帯域を通過する時の冷却速度を適宜に制御し、一方、前記150℃前後で発生する急激な脆性の増加に対しては150℃よりも高温側の温度帯域、具体的には500℃〜150℃の帯域における冷却速度を適宜に制御する。
具体的に上記置き割れ防止方法は、連鋳片の冷却速度(V:℃/時間)を、連鋳片の広面中央部における表面温度(T:℃)に基づいて以下の如くとする。
・ T≧500において、V≦70
・500>T≧300において、V≦55
・300>T≧200において、V≦25
・200>T≧150において、V≦15
なお、ここでいう「連鋳片の冷却速度」とは上記表面温度に基づいて求められるものとする。
Therefore, the crack prevention method according to the present embodiment appropriately controls the cooling rate when passing through the temperature zone for the embrittlement III region, while the rapid brittleness generated around 150 ° C. For the increase, the cooling rate in the temperature range higher than 150 ° C., specifically in the range of 500 ° C. to 150 ° C., is appropriately controlled.
Specifically, in the above-described method of preventing cracking, the cooling rate (V: ° C./hour) of the continuous cast piece is set as follows based on the surface temperature (T: ° C.) at the center of the wide surface of the continuous cast piece.
・ At T ≧ 500, V ≦ 70
・ When 500> T ≧ 300, V ≦ 55
・ In 300> T ≧ 200, V ≦ 25
・ When 200> T ≧ 150, V ≦ 15
Note that the “cooling rate of continuous cast slab” here is obtained based on the surface temperature.
次に、連鋳片の上記冷却速度の具体的制御方法を説明する。図1は、本発明の一実施形態に係る高張力鋼の冷却方法を示す図である。
図1(a)に示すように本実施形態において連鋳直後の連鋳片は、同じく連鋳直後の他の連鋳片と共に5枚に段積みされる。そして図1(b)で示すように、上下側から他の2枚の連鋳片により挟まれた状態で空冷により徐冷される。当該他の2枚の連鋳片は、積重された5枚の前記連鋳片を挟み始める時点においては、室温(200℃未満の適宜の温度、例えば100℃など)でもよく、或いは500℃程度に予熱しておいてもよい。また、当該他の2枚の連鋳片は、専ら連鋳片を挟んで徐冷させるためだけに用いられるものであってもよいし、一度室温にまで冷却された他の半製品としての連鋳片であってもよい。
このように連鋳直後の連鋳片を他の連鋳片と共に平積みし、上下側から他の2枚の連鋳片により挟まれた状態で冷却することにより、連鋳片の冷却速度を上記の如くに制御できるのである。
Next, a specific method for controlling the cooling rate of the continuous cast slab will be described. FIG. 1 is a diagram showing a method for cooling high-tensile steel according to an embodiment of the present invention.
As shown in FIG. 1A, in the present embodiment, the continuous cast pieces immediately after continuous casting are stacked together with the other continuous cast pieces immediately after continuous casting. And as shown in FIG.1 (b), it anneals by air cooling in the state pinched | interposed by the other two continuous cast pieces from the upper and lower sides. The other two continuous cast pieces may be at room temperature (appropriate temperature lower than 200 ° C., for example, 100 ° C.) or 500 ° C. at the time when the sandwiched five continuous cast pieces are started. You may preheat to the extent. Further, the other two continuous cast pieces may be used only for slow cooling with the continuous cast pieces sandwiched therebetween, or may be used as another semi-finished product that has been cooled to room temperature once. It may be a slab.
In this way, the continuous cast pieces immediately after continuous casting are stacked together with other continuous cast pieces, and cooled in a state sandwiched between the other two continuous cast pieces from the upper and lower sides, thereby reducing the cooling rate of the continuous cast pieces. It can be controlled as described above.
その後、室温にまで徐冷された連鋳片の表面に小さな疵や不純物析出物がないか目視で確認する。もしそのような表面欠陥があった場合には、研磨機等により当該表面欠陥を取り除く。
そして、すべての表面欠陥が解消されたら、次工程である加熱炉に移されて適宜の温度まで加熱され、圧延装置にて圧延される。
Thereafter, the surface of the continuous cast piece that has been gradually cooled to room temperature is visually checked for small flaws and impurity precipitates. If there is such a surface defect, the surface defect is removed by a polishing machine or the like.
And if all the surface defects are eliminated, it will move to the heating furnace which is the next process, will be heated to a suitable temperature, and will be rolled with a rolling device.
次に、図2を参照しつつ、本発明の効果を確認する試験(試験A〜C)を説明する。図2は、連鋳片の表面温度の測定結果を示す図である。本図において符号CRで示される折れ線は、本実施形態に係る上記置き割れ防止方法に規定される条件を満足する冷却パターンのうち、最も冷却速度の速いものを示すものである。尚、連鋳片の広面中央部における表面温度は、熱電対を用いて計測した。 Next, tests (tests A to C) for confirming the effect of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing the measurement results of the surface temperature of the continuous cast slab. A broken line indicated by a reference sign CR in the drawing indicates the fastest cooling rate among the cooling patterns satisfying the conditions defined in the above-described crack prevention method according to the present embodiment. In addition, the surface temperature in the wide surface center part of a continuous cast piece was measured using the thermocouple.
〔試験A〕
本試験Aは、上記実施形態に係る置き割れ防止方法に規定される条件を満足するように実施された試験である。即ち、すべての温度帯域(表面温度:1000℃〜100℃)において、冷却パターンCRと比較して常に遅い冷却速度となるよう連鋳片を徐冷した。
具体的には連鋳直後の当該連鋳片を連鋳直後の他の3枚の連鋳片と共に積み重ね、上下側から他の連鋳片によって挟んだ状態で徐冷した。
本試験Aの条件において徐冷された連鋳片の広面中央部における表面温度の測定結果を本図において符号Aで示す。
〔試験B〕
本試験Bは、上記実施形態に係る置き割れ防止方法に規定される条件を全く満足しないように実施された試験である。即ち、すべての温度帯域において、冷却パターンCRと比較して常に速い冷却速度となるよう連鋳片を冷却した。
具体的には連鋳直後の連鋳片を、他の連鋳直後の連鋳片と共に重ねて平積みしたり、上下側から他の連鋳片で挟んだりすることなく、単に1枚のみで連鋳直後から室温に至るまで空冷した。
本試験Bの条件において冷却された連鋳片の広面中央部における表面温度の測定結果を本図において符号Bで示す。
〔試験C〕
本試験Cは、上記実施形態に係る置き割れ防止方法に規定される条件を完全には満足しないように実施された試験である。即ち、表面温度が500℃に至るまでの温度帯域においては上記試験Aのと同様の条件において連鋳片を冷却した。言い換えれば、当該温度帯域において連鋳片は上記実施形態に係る置き割れ防止方法の一部のみが適用された。
一方、500℃から室温に至るまでの温度帯域においては上記試験Bのと同様の条件において連鋳片を冷却した。言い換えば、当該温度域において連鋳片を、積重することもなければ上下側から他の連鋳片で挟むこともなく個別に空冷させた。
端的に言えば、本試験Cは、本実施形態に係る上記置き割れ防止方法が適用されていない。
本試験Cの条件において冷却された連鋳片の広面中央部における表面温度の測定結果を本図において符号Cで示す。
[Test A]
This test A is a test carried out so as to satisfy the conditions defined in the laying crack prevention method according to the embodiment. That is, the continuous cast slab was gradually cooled so that the cooling rate was always slower than the cooling pattern CR in all temperature bands (surface temperature: 1000 ° C. to 100 ° C.).
Specifically, the continuous cast pieces immediately after continuous casting were stacked together with the other three continuous cast pieces immediately after continuous casting, and gradually cooled in a state of being sandwiched by other continuous cast pieces from the upper and lower sides.
The measurement result of the surface temperature at the center of the wide surface of the continuously cast slab that has been gradually cooled under the conditions of this test A is indicated by symbol A in the figure.
[Test B]
This test B is a test that was performed so as not to satisfy the conditions defined in the method for preventing cracks according to the embodiment. That is, the continuous cast slab was cooled so that the cooling rate was always higher than that of the cooling pattern CR in all temperature zones.
Specifically, continuous cast pieces immediately after continuous casting are stacked together with other continuous cast pieces immediately after continuous casting, or are not stacked between other continuous cast pieces from the upper and lower sides. Air cooling was performed from just after continuous casting to room temperature.
The measurement result of the surface temperature in the center part of the wide surface of the continuous cast piece cooled under the conditions of the test B is indicated by a symbol B in the figure.
[Test C]
This test C is a test that was performed so as not to completely satisfy the conditions defined in the method for preventing cracks according to the embodiment. That is, the continuous cast slab was cooled under the same conditions as in Test A above in the temperature range until the surface temperature reached 500 ° C. In other words, only a part of the cracking prevention method according to the above embodiment is applied to the continuous cast piece in the temperature range.
On the other hand, in the temperature range from 500 ° C. to room temperature, the continuously cast slab was cooled under the same conditions as in Test B above. In other words, the continuous cast pieces were individually cooled in the temperature range without being stacked or sandwiched between other continuous cast pieces from the upper and lower sides.
In short, in this test C, the above-mentioned crack prevention method according to this embodiment is not applied.
The measurement result of the surface temperature in the center part of the wide surface of the continuous cast piece cooled under the conditions of the test C is indicated by a symbol C in the figure.
そして、室温に至るまで冷却された連鋳片を観察し、図3〜5に示すような置き割れが発生していないか調査した。
〔試験A(防止方法の適用あり)〕
本図符号Aで示す如く徐冷された連鋳片には、上記置き割れが全く発生しなかった。言い換えれば、置き割れを発生させることなく、連鋳片を室温に至るまで冷却することができた。
〔試験B(防止方法の適用なし)〕
本図符号Bで示す如く冷却された連鋳片には、図3〜図5に示すような置き割れが発生した。
〔試験C(防止方法の一部のみの適用はあり)〕
本図符号Cで示す如く、連鋳直後から室温に至るまでの温度帯域の一部のみに前述の置き割れ防止方法が部分的に適用される場合でも、試験Bの場合と同様、図3〜図5に示すような置き割れが発生した。
And the continuous cast piece cooled to room temperature was observed, and it was investigated whether the setting crack as shown to FIGS.
[Test A (with prevention method applied)]
In the continuous cast slab which was gradually cooled as indicated by reference symbol A in FIG. In other words, the continuous cast slab could be cooled to room temperature without generating cracks.
[Test B (no prevention method applied)]
In the continuously cast slab cooled as indicated by reference symbol B, a crack as shown in FIGS. 3 to 5 occurred.
[Test C (only some of the prevention methods apply)]
As shown in FIG. 3C, even in the case where the above-mentioned crack prevention method is partially applied only to a part of the temperature range from immediately after continuous casting to room temperature, as in the case of the test B, FIG. Placement cracks as shown in FIG. 5 occurred.
これらの結果より前述の置き割れ防止方法は、連鋳直後から室温(少なくとも200℃未満)に至るまでのすべての温度帯域において満遍なく適用されることが、置き割れを防止するために必要であるといえる。 From these results, the above-described method for preventing cracking is required to prevent cracking evenly in all temperature ranges from immediately after continuous casting to room temperature (at least less than 200 ° C.). I can say that.
以上説明したように本実施形態において、炭素(C)含有率を0.12w%以上0.25w%以下とし、珪素(Si)含有率を1.2w%以上2.0w%以下とし、マンガン(Mn)を1.2w%以上4.0w%以下とする高張力鋼の連鋳片を、その広面中央部における表面温度(T:℃)に応じて冷却速度(V:℃/時間)を以下のように制御して冷却することで下記の効果を奏する。
・ T≧500において、V≦70
・500>T≧300において、V≦55
・300>T≧200において、V≦25
・200>T≧150において、V≦15
なお、上述した如く「連鋳片の冷却速度」とは上記表面温度に基づいて求められるものとする。
As described above, in the present embodiment, the carbon (C) content is 0.12 w% or more and 0.25 w% or less, the silicon (Si) content is 1.2 w% or more and 2.0 w% or less, and manganese ( The cooling rate (V: ° C./hour) of the continuous cast slab of high-strength steel having Mn) of 1.2 w% or more and 4.0 w% or less is determined according to the surface temperature (T: ° C.) at the center of the wide surface. The following effects can be achieved by controlling and cooling as described above.
・ At T ≧ 500, V ≦ 70
・ When 500> T ≧ 300, V ≦ 55
・ In 300> T ≧ 200, V ≦ 25
・ When 200> T ≧ 150, V ≦ 15
As described above, the “cooling rate of the continuous cast slab” is obtained based on the surface temperature.
(効果)
高張力鋼の連鋳片を、置き割れを発生させることなく、室温まで冷却することができる。言い換えれば、図6及び図7に示すような高張力鋼特有の脆性による影響を回避することができる。
また室温まで冷却すると、連鋳片の表面欠陥を検出かつ補修できるので、表面欠陥のない高張力鋼を提供できる。
(effect)
The continuous cast slab of high-strength steel can be cooled to room temperature without generating cracks. In other words, it is possible to avoid the influence due to the brittleness specific to high-strength steel as shown in FIGS.
Moreover, since the surface defect of a continuous cast piece can be detected and repaired when it cools to room temperature, the high strength steel without a surface defect can be provided.
また以上説明したように本実施形態において、前記連鋳片の冷却速度は、当該連鋳片を他の2枚の連鋳片により挟むことにより制御することが好ましい。これによれば、前記冷却速度を制御するための特別な装置は一切必要とされず、単に他の連鋳片により当該連鋳片を挟むだけなので、本発明を極めて安価かつ容易に導入することができる。 Further, as described above, in this embodiment, the cooling rate of the continuous cast piece is preferably controlled by sandwiching the continuous cast piece between the other two continuous cast pieces. According to this, no special device for controlling the cooling rate is required, and the continuous cast piece is simply sandwiched between other continuous cast pieces, so that the present invention can be introduced very inexpensively and easily. Can do.
また以上説明したように本実施形態において、前記他の2枚の連鋳片により、複数枚の前記連鋳片を同時に挟むことが好ましい。これにより、前記連鋳片の冷却速度をさらに抑制できる。また、生産効率を向上できる。 Further, as described above, in the present embodiment, it is preferable that a plurality of continuous cast pieces are sandwiched simultaneously by the other two continuous cast pieces. Thereby, the cooling rate of the continuous cast piece can be further suppressed. Moreover, production efficiency can be improved.
尚、上記試験(試験条件や試験結果)は、本発明やそれによる作用効果を何ら限定するものではない。 Note that the above tests (test conditions and test results) do not limit the present invention or the operational effects thereof.
以上に本発明の好適な実施形態及び実施例を説明したが、上記の実施形態は以下のように変更して実施することができる。 The preferred embodiments and examples of the present invention have been described above, but the above-described embodiments can be modified as follows.
例えば、上記実施形態において連鋳直後の連鋳片は、冷却時において複数枚で積重されるとしたが、必ずしも積み重ねる必要はなく、前述の冷却速度についての条件を満足してれば十分である。従って、連鋳片が積重されずに1枚のみで、その上下側を他の2枚の連鋳片によって挟まれた状態で冷却される場合も考えられる。 For example, in the above embodiment, a plurality of continuous cast pieces immediately after continuous casting are stacked at the time of cooling. However, it is not always necessary to stack them, and it is sufficient if the above conditions for the cooling rate are satisfied. is there. Accordingly, there may be a case in which the continuous cast pieces are not stacked and only one piece is cooled, and the upper and lower sides are cooled in a state of being sandwiched between the other two continuous cast pieces.
また上記実施形態において連鋳片は、上下側から他の2枚の連鋳片によって挟まれた状態で冷却されるとしたが、これに限るものではなく、単に他の鋳造直後の連鋳片と積重された状態で冷却されてもよい。
また連鋳片の冷却速度を制御する方法として、例えば加熱器を備えた冷却抑制装置などを利用してもよい。
Moreover, in the said embodiment, although the continuous cast piece was cooled in the state pinched | interposed by the other two continuous cast pieces from the upper and lower sides, it is not restricted to this, The continuous cast piece just after another casting And may be cooled in a stacked state.
In addition, as a method for controlling the cooling rate of the continuous cast slab, for example, a cooling suppression device provided with a heater may be used.
なお上記の如く連鋳片の冷却速度は、熱応力の発生という観点から適度に遅い方がよいとしたが、操業上の理由から、室温(例えば100℃)程度の温度まで5日間以内に冷却することとする。 As mentioned above, the cooling rate of the continuous cast slab is preferably moderately low from the viewpoint of generation of thermal stress, but for operational reasons, it is cooled within 5 days to a temperature of about room temperature (for example, 100 ° C.). I decided to.
Claims (3)
連鋳片の広面中央部における表面温度(T:℃)に応じて、連鋳片の冷却速度(V:℃/時間)を以下を満足するように制御する、ことを特徴とする高張力鋼の連鋳片の置き割れ防止方法。
・ T≧500において、V≦70
・500>T≧300において、V≦55
・300>T≧200において、V≦25
・200>T≧150において、V≦15 The carbon (C) content is 0.12 w% or more and 0.25 w% or less, the silicon (Si) content is 1.2 w% or more and 2.0 w% or less, and manganese (Mn) is 1.2 w% or more. In the method of preventing cracks in continuous cast pieces of high-strength steel with 0 w% or less,
A high-strength steel characterized by controlling the cooling rate (V: ° C./hour) of the continuous cast piece so as to satisfy the following in accordance with the surface temperature (T: ° C.) at the center of the wide surface of the continuous cast piece. To prevent cracks in continuous cast pieces.
・ At T ≧ 500, V ≦ 70
・ When 500> T ≧ 300, V ≦ 55
・ In 300> T ≧ 200, V ≦ 25
・ When 200> T ≧ 150, V ≦ 15
3. The method for preventing cracking of a high-strength steel continuous cast piece according to claim 2, wherein a plurality of the continuous cast pieces are sandwiched simultaneously by the other two continuous cast pieces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274339A JP4358807B2 (en) | 2005-09-21 | 2005-09-21 | Method for preventing cracks in continuous cast pieces of high-strength steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274339A JP4358807B2 (en) | 2005-09-21 | 2005-09-21 | Method for preventing cracks in continuous cast pieces of high-strength steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007083274A JP2007083274A (en) | 2007-04-05 |
JP4358807B2 true JP4358807B2 (en) | 2009-11-04 |
Family
ID=37970786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005274339A Active JP4358807B2 (en) | 2005-09-21 | 2005-09-21 | Method for preventing cracks in continuous cast pieces of high-strength steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4358807B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100572021C (en) * | 2004-12-30 | 2009-12-23 | 厦门澳力普轮胎设备有限公司 | A kind of hydraulic tyre vulcanizing machine in column type strap clamp locked mould mode and method for adjusting mould thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5254130B2 (en) * | 2009-05-28 | 2013-08-07 | 株式会社神戸製鋼所 | Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher |
JP5673171B2 (en) * | 2011-02-09 | 2015-02-18 | Jfeスチール株式会社 | Method for producing high carbon high Mn steel |
JP5846066B2 (en) * | 2012-07-26 | 2016-01-20 | 新日鐵住金株式会社 | Slab cooling method |
JP6237808B2 (en) * | 2015-03-26 | 2017-11-29 | Jfeスチール株式会社 | Continuously cast slab, method for producing the same, and method for producing high-tensile steel plate excellent in workability |
JP6885257B2 (en) * | 2017-08-08 | 2021-06-09 | Jfeスチール株式会社 | Surface treatment method for metal materials and manufacturing method for metal materials |
JP7124631B2 (en) * | 2018-10-22 | 2022-08-24 | 日本製鉄株式会社 | Method for preventing cast slab placement cracks |
JP7260335B2 (en) * | 2019-02-28 | 2023-04-18 | 株式会社神戸製鋼所 | Cooling method for slabs of high-strength steel |
JP7188187B2 (en) * | 2019-02-28 | 2022-12-13 | Jfeスチール株式会社 | Cooling method of slab |
JP7575365B2 (en) | 2021-09-24 | 2024-10-29 | 株式会社神戸製鋼所 | Manufacturing method for high strength steel slabs |
-
2005
- 2005-09-21 JP JP2005274339A patent/JP4358807B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100572021C (en) * | 2004-12-30 | 2009-12-23 | 厦门澳力普轮胎设备有限公司 | A kind of hydraulic tyre vulcanizing machine in column type strap clamp locked mould mode and method for adjusting mould thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2007083274A (en) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5223511B2 (en) | Steel sheet for high strength sour line pipe, method for producing the same and steel pipe | |
JP5633594B2 (en) | Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same | |
JP6530069B2 (en) | Steel pipe for fuel injection pipe and manufacturing method thereof | |
JP2020509203A (en) | Hot-formed plated steel sheet excellent in impact characteristics, hot-formed member, and method for producing them | |
JP2008121036A (en) | Method for producing high-strength and high-toughness steel sheet | |
JP2007270331A (en) | Steel sheet superior in fine blanking workability, and manufacturing method therefor | |
JP4358807B2 (en) | Method for preventing cracks in continuous cast pieces of high-strength steel | |
JP2014218707A (en) | Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same | |
JP2007270197A (en) | Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor | |
JP5783014B2 (en) | Steel bar for bearing | |
JP5028760B2 (en) | Method for producing high-tensile steel plate and high-tensile steel plate | |
JP5644966B2 (en) | High carbon hot-rolled steel sheet with excellent in hardenability and low in-plane anisotropy and method for producing the same | |
KR20100076073A (en) | Steel sheets and process for manufacturing the same | |
KR102575803B1 (en) | Steel for bolts, and method of manufacturing same | |
JP5194454B2 (en) | Steel plate excellent in fine blanking workability and manufacturing method thereof | |
JP2013177649A (en) | Thick steel plate with low yield ratio and method for producing the same | |
JP2009275261A (en) | Welded steel-pipe superior in crushing resistance and manufacturing method therefor | |
JP5031644B2 (en) | Steel pipe excellent in workability and manufacturing method thereof | |
JP2022064241A (en) | Steel sheet and method for producing the same, and member | |
JP4462440B2 (en) | Method for producing hot-rolled bearing steel | |
WO2016158562A1 (en) | Heat-treated steel wire having excellent fatigue-resistance characteristics | |
Tavares et al. | Failure during fabrication of clamps of Mn-alloyed steel for springs in heavy vehicles | |
JPWO2020090149A1 (en) | Steel for bolts | |
JP4319948B2 (en) | High carbon cold-rolled steel sheet with excellent stretch flangeability | |
JPH07251265A (en) | Method for scarfing cast steel slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4358807 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |