JP4351609B2 - Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof - Google Patents
Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof Download PDFInfo
- Publication number
- JP4351609B2 JP4351609B2 JP2004329101A JP2004329101A JP4351609B2 JP 4351609 B2 JP4351609 B2 JP 4351609B2 JP 2004329101 A JP2004329101 A JP 2004329101A JP 2004329101 A JP2004329101 A JP 2004329101A JP 4351609 B2 JP4351609 B2 JP 4351609B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- strength
- mass
- heat
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 description 34
- 239000000956 alloy Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000011777 magnesium Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 230000032683 aging Effects 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 229910001234 light alloy Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000009471 action Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000005496 eutectics Effects 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000004512 die casting Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 102200094897 rs121913558 Human genes 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012422 test repetition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Supercharger (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Description
本発明は、100〜150℃の高温環境下にて使用されるエンジン部品、フレーム部品等に好適に使用可能なアルミニウム合金、耐熱高強度アルミニウム合金部品及びその製造方法に関する。 The present invention relates to an aluminum alloy, a heat-resistant and high-strength aluminum alloy component that can be suitably used for engine parts, frame parts, and the like used in a high-temperature environment of 100 to 150 ° C., and a method for producing the same.
従来、地球環境保護の観点から、例えば車両等の燃費向上を目的として、エンジン部品及びフレーム部品等を構成している材料を、鉄鋼材料からアルミニウムやマグネシウムといった軽合金材料へ置換することが検討、実施されている。そして、軽合金材料を適用する際には、部品の全体的な剛性を鉄鋼材料と同等にするために、部品各部の断面積を拡大することが行われていた。 Conventionally, from the viewpoint of protecting the global environment, for example, for the purpose of improving the fuel efficiency of vehicles, etc., it has been considered to replace materials constituting engine parts and frame parts with light alloy materials such as aluminum and magnesium from steel materials, It has been implemented. And when applying a light alloy material, in order to make the whole rigidity of a part equivalent to a steel material, expanding the cross-sectional area of each part of a part was performed.
しかしながら、従来の軽合金材料をエンジン部品等に適用した際、その部品の使用温度雰囲気も無視出来ない要素であり、部品が使用される温度雰囲気によっては、前記のように断面積を拡大させて部品全体の剛性を鉄鋼材料と同等以上にしても、その部品の要求強度に対し、部品の強度が大幅に低下するという問題があった。 However, when conventional light alloy materials are applied to engine parts, etc., the operating temperature atmosphere of the parts cannot be ignored. Depending on the temperature atmosphere in which the parts are used, the cross-sectional area may be increased as described above. Even if the rigidity of the entire part is equal to or higher than that of the steel material, there is a problem that the strength of the part is greatly reduced with respect to the required strength of the part.
これは、以下のような理由による。例えば、エンジン内部の冷却油温雰囲気(100〜150℃)に晒される部品において、部品を鉄鋼材料で構成した場合には、鉄鋼材料の融点が1000℃以上と高いため、100〜150℃程度の比較的低い温度域では、素材の強度特性の低下は殆ど生じない。しかしながら、部品を従来の軽合金材料で構成した場合には、従来の軽合金材料の融点が約660℃前後と低いため、100〜150℃という温度域では、素材の強度特性が著しく低下してしまうためである。したがって、部品の使用温度雰囲気(100〜150℃)においても素材の強度特性が低下しない、鉄鋼材料に代わる軽合金材料の開発が望まれていた。 This is due to the following reasons. For example, in a part exposed to a cooling oil temperature atmosphere (100 to 150 ° C.) inside the engine, when the part is made of a steel material, the melting point of the steel material is as high as 1000 ° C. or higher, so that the temperature is about 100 to 150 ° C. In a relatively low temperature range, the strength characteristics of the material hardly deteriorate. However, when the parts are made of a conventional light alloy material, the melting point of the conventional light alloy material is as low as about 660 ° C., so the strength characteristics of the material are significantly reduced in the temperature range of 100 to 150 ° C. It is because it ends. Therefore, there has been a demand for the development of a light alloy material that replaces the steel material that does not deteriorate the strength characteristics of the material even in the use temperature atmosphere (100 to 150 ° C.) of the component.
ところで、このような軽合金材料からなる素材の100〜150℃における強度特性の低下を防止するために、軽合金材料からなる素材に熱処理を施すことが広く知られており、その多くは溶体化処理(450℃〜530℃にて数時間の等温保持)を伴うものである。例えば、特許文献1、2には、素材としてのアルミニウム合金板(鋳物)を所定量のCu、Si、Mg、Agを含有するアルミニウム合金から構成し、所定条件で溶体化処理、焼き戻し(人工時効処理)することによって、耐クリープ性が高い、または強度の高いものが得られることが記載されている。
しかしながら、前記従来の軽合金材料をエンジン部品等の製造に適用した場合には、以下のような問題が発生する。第1に、鋳造等の成形後に前記の溶体化処理を施すと、素材内部に鋳造欠陥として存在していた鋳巣や引け巣が熱膨張を起こし、素材に膨れやブリスタとなって現れ、素材外観を著しく悪化させるだけでなく、強度特性をも著しく低下させる。そして、素材が押出部材や展伸部材、鍛造部材である場合には、前記の鋳巣や引け巣の存在は無視出来るほど微少であるが、素材が鋳造部材、或いはダイカスト部材である場合には、前記の鋳巣や引け巣が顕著で、素材外観や強度特性に悪影響を与えるものとなる。 However, when the conventional light alloy material is applied to manufacture of engine parts and the like, the following problems occur. First, when the above-mentioned solution treatment is performed after molding such as casting, the casting cavity and shrinkage cavity that existed as casting defects inside the material undergo thermal expansion, appearing as blisters and blisters in the material, Not only is the appearance significantly worsened, but the strength properties are also significantly reduced. And when the material is an extruded member, a stretched member, or a forged member, the presence of the above-mentioned cast or shrinkage is negligibly small, but when the material is a cast member or a die-cast member The above-mentioned casting cavity and shrinkage cavity are prominent, and the material appearance and strength characteristics are adversely affected.
また、第2に、前記の溶体化処理後に人工時効処理を施すと、以下のような問題が発生する。すなわち、溶体化処理過程では、析出元素は、溶媒となる母材マトリクスヘ固溶し、その後の急冷処理にて、常温下でもその固溶濃度が維持される。そして、その後の人工時効処理にて、マトリクス内に必要な量の元素が析出する。この人工時効処理の際、マトリクス内部には析出物の粗大化に伴う大きな歪みが生じ、この歪みを維持することで強度特性を向上させることができる。しかしながら、その反面、この析出物の粗大化に伴う歪みにより、素材の寸法成長が発生する。 Secondly, if an artificial aging treatment is performed after the solution treatment, the following problems occur. That is, in the solution treatment process, the precipitated element is dissolved in the matrix matrix serving as a solvent, and the solid solution concentration is maintained even at room temperature by the subsequent rapid cooling treatment. Then, in the subsequent artificial aging treatment, a necessary amount of elements is precipitated in the matrix. During this artificial aging treatment, a large strain is generated in the matrix due to the coarsening of precipitates, and the strength characteristics can be improved by maintaining this strain. However, on the other hand, dimensional growth of the material occurs due to distortion accompanying the coarsening of the precipitate.
これらの観点から、複雑形状かつ素材強度および寸法精度の要求が非常に厳しいエンジン部品の製造においては、溶体化処理及び人工時効処理を最適に実施することは、非常に困難である。そのため、軽合金材料を適用してエンジン部品を製造する際には、鋳造もしくはダイカスト製法にて製造し、併せて無熱処理、或いは溶体化処理を伴わない人工時効処理のみが施され、エンジン部品の強度特性としては、中程度を余儀なくされることが多い。 From these viewpoints, it is very difficult to optimally perform the solution treatment and the artificial aging treatment in the production of an engine part having a complicated shape and extremely strict requirements for material strength and dimensional accuracy. For this reason, when manufacturing engine parts using light alloy materials, they are manufactured by casting or die casting, and combined with non-heat treatment or artificial aging treatment without solution treatment. The strength characteristics are often forced to be moderate.
本発明は前記の問題に鑑みてなされたもので、本発明は、エンジン内の油温相当である100〜150℃における強度特性(耐力、疲労強度、伸び)を兼ね揃え、かつ、寸法安定性及び耐摩耗性に優れたアルミニウム合金及び耐熱高強度アルミニウム合金部品を提供することを目的とする。 The present invention has been made in view of the above problems, and the present invention has both strength characteristics (yield strength, fatigue strength, elongation) at 100 to 150 ° C. corresponding to the oil temperature in the engine, and dimensional stability. An object of the present invention is to provide an aluminum alloy excellent in wear resistance and a heat-resistant high-strength aluminum alloy part.
前記の課題を解決するために、本発明のアルミニウム合金は、Cu:1.5質量%以上3.8質量%未満、Si:7.5〜12.0質量%、Mg:0.7〜1.5質量%、Ag:0.1〜0.5質量%、Zn:0.5〜4.0質量%、Ca:50〜200ppmを含み、残部がAl及び不可避的不純物からなることを特徴とする。 In order to solve the above problems, the aluminum alloy of the present invention has Cu: 1.5 mass% or more and less than 3.8 mass%, Si: 7.5 to 12.0 mass%, Mg: 0.7 to 1 0.5% by mass, Ag: 0.1 to 0.5% by mass , Zn : 0.5 to 4.0% by mass, Ca: 50 to 200 ppm , the balance being made of Al and inevitable impurities To do.
こうように構成すれば、アルミニウム合金が所定量のCu、Si、Mg及びAgを含有することによって、アルミニウム合金の鋳造性および加工性が向上すると共に、初晶Siの晶出を抑制し、Al、Cu、Mg、Agからなる析出強化相(Ω相)が形成される。それによって、溶体化処理を伴わない、人工時効処理のみで、アルミニウム合金の高温環境下での強度特性(耐力、疲労強度、伸び)及び耐摩耗性が向上する。また、アルミニウム合金のAlマトリクス内に生じる歪みに起因した寸法成長が抑制される。また、Znを更に含むように構成すれば、アルミニウム合金の強度がより一層高くなる。さらに、Caを更に含むように構成すれば、共晶Siが微細化し、アルミニウム合金の伸びがより一層大きくなる。 If comprised in this way, while aluminum alloy contains predetermined amount Cu, Si, Mg, and Ag, while the castability and workability of aluminum alloy will improve, the crystallization of primary Si will be suppressed, Al A precipitation strengthening phase (Ω phase) composed of Cu, Mg, and Ag is formed. Thereby, the strength characteristics (proof strength, fatigue strength, elongation) and wear resistance of the aluminum alloy in a high temperature environment are improved only by artificial aging treatment without solution treatment. Further, dimensional growth due to strain generated in the Al matrix of the aluminum alloy is suppressed. Moreover, if it comprises so that Zn may be included further, the intensity | strength of an aluminum alloy will become still higher. Furthermore, if it is configured to further contain Ca, the eutectic Si becomes finer and the elongation of the aluminum alloy becomes even larger.
また、本発明のアルミニウム合金は、前記組成のアルミニウム合金に、Ti:0.02〜0.2質量%を更に含むことを特徴とする。このように構成すれば、Alマトリクスの過度な成長が抑えられ、結晶粒が微細化し、アルミニウム合金の耐力が高くなる。 Moreover, the aluminum alloy of this invention is characterized by further including Ti: 0.02-0.2 mass% in the aluminum alloy of the said composition. If comprised in this way, the excessive growth of Al matrix will be suppressed, a crystal grain will refine | miniaturize, and the yield strength of an aluminum alloy will become high.
また、本発明のアルミニウム合金は、前記組成のアルミニウム合金に、JIS規定のT5熱処理が施されたことを特徴とする。このように構成すれば、アルミニウム合金に溶体化処理を伴わない、人工時効処理のみの熱処理(T5熱処理)が施されることによって、溶体化処理に起因する鋳造欠陥の熱膨張が発生せず、アルミニウム合金の強度特性が向上する。 The aluminum alloy of the present invention is characterized in that the aluminum alloy having the above composition is subjected to T5 heat treatment as defined in JIS. If comprised in this way, the thermal expansion of the casting defect resulting from a solution treatment does not generate | occur | produce by performing the heat treatment (T5 heat treatment) only of an artificial aging treatment without solution treatment to an aluminum alloy, Strength characteristics of aluminum alloy are improved.
また、本発明の耐熱高強度アルミニウム合金部品は、前記のアルミニウム合金から成形されたことを特徴とする。このように構成すれば、アルミニウム合金部品の高温環境下での強度特性及び耐磨耗性が向上すると共に、寸法成長が抑制される。 Moreover, the heat-resistant and high-strength aluminum alloy part of the present invention is characterized by being formed from the aluminum alloy. If comprised in this way, while the intensity | strength characteristic and abrasion resistance in the high temperature environment of an aluminum alloy component will improve, dimensional growth will be suppressed.
さらに、本発明の耐熱高強度アルミニウム合金部品の製造方法は、前記のアルミニウム合金でダイカスト成形し、その後、JIS規定のT5熱処理が施されたことを特徴とする。このように構成すれば、前記アルミニウム合金によって、アルミニウム合金部品の高温環境下での強度特性及び耐磨耗性が向上すると共に、寸法成長が抑制される。また、ダイカスト成形及びT5熱処理によって、凝固時間が短縮されると共に、手間のかかる溶体化処理が省略される。 Furthermore, the method for producing a heat-resistant and high-strength aluminum alloy part according to the present invention is characterized in that die-casting is performed with the above-described aluminum alloy, and then T5 heat treatment specified by JIS is performed. If comprised in this way, the said aluminum alloy will improve the intensity | strength characteristic and abrasion resistance in the high temperature environment of aluminum alloy components, and a dimension growth will be suppressed. In addition, die casting and T5 heat treatment shorten the solidification time and eliminate the time-consuming solution treatment.
本発明のアルミニウム合金は、強度と伸びという、一般的に相反関係となっている特性を両立して向上させることができ、100℃〜150℃という中程度の高温環境下において、高強度、高靭性を有し、かつ寸法安定性、耐摩耗性に優れている。そして、構造部品用材料、例えば、高速移動体の構造部品用、内燃機関部品用および過給器部品用、特にエンジン内部のロッカーアーム用材料として使用できる。 The aluminum alloy of the present invention can improve both the strength and elongation, which are generally in conflict with each other, and has a high strength and high strength under a moderate high temperature environment of 100 ° C to 150 ° C. It has toughness and excellent dimensional stability and wear resistance. And it can be used as a material for a structural part, for example, a structural part for a high-speed moving body, an internal combustion engine part and a supercharger part, especially a rocker arm material inside the engine.
また、本発明の耐熱高強度アルミニウム合金部品は、同様に、高温環境下において、高強度、高靭性を有し、かつ寸法安定性、耐摩耗性に優れている。そして、構造部品、例えば、高速移動体の構造部品、内燃機関部品および過給器部品、特にエンジン内部のロッカーアームとして使用できる。 Similarly, the heat-resistant and high-strength aluminum alloy part of the present invention has high strength and high toughness in a high-temperature environment, and is excellent in dimensional stability and wear resistance. And it can be used as a structural part, for example, a structural part of a high-speed moving body, an internal combustion engine part and a supercharger part, particularly a rocker arm inside the engine.
さらに、本発明の耐熱高強度アルミニウム合金部品の製造方法は、同様に、高温環境下において、高強度、高靭性を有し、かつ寸法安定性、耐摩耗性に優れたものが製造可能となると共に、生産性が向上し、製造コストを下げることが可能となる。 Furthermore, the method for producing a heat-resistant and high-strength aluminum alloy part of the present invention can similarly produce a product having high strength and high toughness and excellent dimensional stability and wear resistance in a high-temperature environment. At the same time, productivity can be improved and manufacturing costs can be reduced.
次に、本発明の実施形態について詳細に説明する。
まず、本発明のアルミニウム合金の目的としている、100〜150℃における強度特性(耐力、疲労強度、伸び)及び寸法安定性を改善するには、その温度雰囲気において、アルミニウム合金が如何なる破壊形態をとるのかを把握しておく必要がある。
Next, an embodiment of the present invention will be described in detail.
First, in order to improve the strength characteristics (proof stress, fatigue strength, elongation) and dimensional stability at 100 to 150 ° C., which is the purpose of the aluminum alloy of the present invention, the aluminum alloy takes any fracture form in the temperature atmosphere. It is necessary to know whether it is.
広く一般に知られている結果として、アルミニウム合金においては、その合金融点(その多くは約920K前後)の約二分の一(約460K前後、すなわち190℃前後)の温度を境にして、母材結晶内部より破壊が起こる粒内破壊形態から、結晶粒界より破壊が起こる粒界破壊形態へと破壊形態が変位するという実験事実があるため、本発明においては、前記の粒内破壊を抑制する材料組成を検討するに至った。そして、結晶粒内を強化する材料組成とした。 As a generally known result, in an aluminum alloy, the base metal is separated from a temperature of about one-half (about 460 K, that is, about 190 ° C.) of the melting point of the alloy (most of which is about 920 K). In the present invention, the intragranular fracture is suppressed because there is an experimental fact that the fracture mode shifts from the intragranular fracture mode where the fracture occurs from the inside of the crystal to the grain boundary fracture mode where the fracture occurs from the crystal grain boundary. It came to examine the material composition. And it was set as the material composition which reinforces the inside of a crystal grain.
すなわち、本発明のアルミニウム合金は、Cu:1.5質量%以上3.8質量%未満、Si:7.5〜12.0質量%、Mg:0.3〜1.5質量%、Ag:0.1〜0.5質量%を含み、残部がAl及び不可避的不純物からなる。また、本発明のアルミニウム合金は、前記の組成を有するアルミニウム合金に、Zn:0.5〜4.0質量%、Ca、Na、Sr、Sbのうち少なくとも1種の元素(Caが望ましい):30〜300ppm及びTi:0.02〜0.2質量%のうちの少なくとも1種の元素を更に含むことが望ましい。以下に各元素の作用及び成分範囲について説明する。 That is, the aluminum alloy of the present invention has Cu: 1.5 mass% or more and less than 3.8 mass%, Si: 7.5-12.0 mass%, Mg: 0.3-1.5 mass%, Ag: It contains 0.1 to 0.5% by mass, and the balance consists of Al and inevitable impurities. Moreover, the aluminum alloy of the present invention is obtained by adding Zn: 0.5 to 4.0% by mass, at least one element of Ca, Na, Sr, and Sb (Ca is desirable) to the aluminum alloy having the above composition: It is desirable to further contain at least one element of 30 to 300 ppm and Ti: 0.02 to 0.2 mass%. The action and component range of each element will be described below.
1.Cuの作用と成分範囲
Cuは凝固収縮、寸法成長、強度に影響を与え、3.8質量%以上含有すると、鋳造時の凝固収縮が著しく、また、熱処理時の寸法成長も大きい。また、Cuは1.5質量%を下回ると、今度は熱処理時の析出硬化の寄与が薄い。すなわち、本発明のCuの成分範囲は、1.5質量%以上3.8質量%未満である。また、Cuは、2.0〜3.0質量%であることが望ましい(ここで、「〜」は以上、以下を意味し、2.0質量%以上3.0質量%以下である。後記する「〜」も同義である。)。
1. Action and component range of Cu Cu affects solidification shrinkage, dimensional growth, and strength. When Cu is contained in an amount of 3.8% by mass or more, solidification shrinkage during casting is remarkable and dimensional growth during heat treatment is also large. If Cu is less than 1.5% by mass, the contribution of precipitation hardening during heat treatment is small. That is, the component range of Cu of the present invention is 1.5% by mass or more and less than 3.8% by mass. Further, Cu is desirably 2.0 to 3.0% by mass (here, “to” means the following, and is 2.0% by mass or more and 3.0% by mass or less). "~" Is also synonymous.)
2.Siの作用と成分範囲
Siは鋳造性、耐摩耗性、加工性に影響を与え、共晶組成付近が最も鋳造性が良いことが知られているが、多元系のアルミニウム合金に対し、共晶組成までSiを含有すると、初晶Siがまばらに晶出してしまう。この初晶SiはAlマトリクス側との接合性が悪く、界面にて割れが発生し易い為に、伸び低下の原因となりやすい。よって、本発明におけるSi含有量の上限は、初晶Siが全く晶出しない組成として、12.0質量%までとした。また、Si含有量が少ないと、今度は組織の均一分散性が悪化し耐摩耗性の低下を招き、強度も低下する、そして、7.5質量%を下回ると顕著になることから、Si含有量の下限を7.5質量%とした。すなわち、本発明のSiの成分範囲は、7.5〜12.0質量%である。また、耐摩耗性を考慮すると、Siは、10.5〜11.5質量%であることが望ましい。
2. Action and component range of Si Si has an effect on castability, wear resistance, and workability and is known to have the best castability in the vicinity of the eutectic composition. When Si is contained up to the composition, primary Si is crystallized sparsely. This primary crystal Si is poor in bondability with the Al matrix side and easily cracks at the interface, so that it tends to cause a decrease in elongation. Therefore, the upper limit of the Si content in the present invention is set to 12.0 mass% as a composition in which primary Si does not crystallize at all. Also, if the Si content is low, the uniform dispersibility of the structure deteriorates this time, resulting in a decrease in wear resistance, and the strength also decreases. The lower limit of the amount was 7.5% by mass. That is, the Si component range of the present invention is 7.5 to 12.0 mass%. In consideration of wear resistance, Si is desirably 10.5 to 11.5% by mass.
3.Mgの作用と成分範囲
Mgは鋳造割れ、強度に影響を与え、1.5質量%を超えて含有すると鋳造時の割れが著しく、健全な製品を得ることが困難となる。また、Mgは0.3質量%未満だと、Al、Cu、Agとの析出強化相(Ω相)が不十分となり、十分な強化は期待できない。すなわち、本発明のMgの成分範囲は、0.3〜1.5質量%である。また、Mgは、最も効果のある0.7〜1.5質量%であることが望ましい。
3. Action of Mg and component range Mg affects casting cracking and strength, and if it exceeds 1.5 mass%, cracking during casting is remarkable and it becomes difficult to obtain a sound product. If Mg is less than 0.3% by mass, the precipitation strengthening phase (Ω phase) with Al, Cu, and Ag becomes insufficient, and sufficient strengthening cannot be expected. That is, the component range of Mg of the present invention is 0.3 to 1.5% by mass. Moreover, it is desirable that Mg is 0.7 to 1.5% by mass which is most effective.
4.Agの作用と成分範囲
Agは本発明合金成分の中で、Al、Cu、Mgとの析出強化相(Ω相)を作り、強度への寄与が高い。しかしながら、AgはΩ相として析出させる目的では、0.5質量%を超えて含有しても効果は薄く、合金コストが高くなるだけである。また、Agは0.1質量%未満では、Ω相が不十分となり、十分な強化は期待できない。さらに、Agを添加しないと、熱処理によりAl−Cu系のθ相析出が起こり、その際に格子歪みが大きくなるために寸法成長が発生する。しかしながら、Agの添加によりΩ相が析出し、このΩ相は格子歪みが少なく、かつ、熱的に安定相であるために、Agを添加しない場合よりも寸法成長が発生しにくくなる。すなわち、本発明のAgの成分範囲は、0.1〜0.5質量%である。また、コスト面も考慮して、Agは、0.1〜0.3質量%であることが望ましい。
4). Action of Ag and Component Range Ag forms a precipitation strengthening phase (Ω phase) with Al, Cu, and Mg among the alloy components of the present invention, and has a high contribution to strength. However, for the purpose of precipitating Ag as an Ω phase, even if it contains more than 0.5% by mass, the effect is small and only the alloy cost is increased. On the other hand, when Ag is less than 0.1% by mass, the Ω phase becomes insufficient and sufficient strengthening cannot be expected. Further, if Ag is not added, Al—Cu-based θ phase precipitation occurs due to heat treatment, and lattice distortion increases at that time, resulting in dimensional growth. However, the addition of Ag precipitates an Ω phase, and this Ω phase has less lattice distortion and is a thermally stable phase, and therefore, dimensional growth is less likely to occur than when Ag is not added. That is, the component range of Ag of the present invention is 0.1 to 0.5% by mass. In consideration of cost, Ag is preferably 0.1 to 0.3% by mass.
5.Znの作用と成分範囲
Znは湯流れ性、強度に影響を与え、5.0質量%程度までは鋳造性に影響を及ぼさないが、4.0質量%を超えて含有すると強度低下が起こり、0.5質量%未満でも強度低下が起こる。すなわち、本発明のZnの成分範囲は、0.5〜4.0質量%である。また、Znは、強度的に最も効果のある2.0〜3.5質量%であることが望ましい。
5. Action of Zn and component range Zn affects the flowability and strength of the molten metal, and does not affect the castability up to about 5.0% by mass, but if it exceeds 4.0% by mass, the strength decreases, Even if it is less than 0.5% by mass, the strength is lowered. That is, the component range of Zn of the present invention is 0.5 to 4.0% by mass. Further, Zn is desirably 2.0 to 3.5% by mass which is most effective in strength.
6.Ca、Na、Sr、Sbの作用と成分範囲
Ca、Na、Sr、Sbは共晶Siを微細にする元素であり、これらの元素のうち少なくとも1種の元素を含有しない場合には、共晶Siは針状(立体的には板状)に晶出し、割れや伸び低下の原因となりやすい。しかしながら、これらの元素のうち少なくとも1種の元素を含有する場合には、これらの元素は、共晶Siの成長界面へ濃縮した形で存在し(成長界面を三次元的に取り囲み)、板状への成長を抑制し、最終的に微細な樹脂状(ネットワーク状)組織を持った共晶Siにする働きがある。このように共晶Siが樹脂状組織となることで、界面割れが発生しにくくなり、伸びの向上が期待できる共に、組織が均一分散し、耐摩耗性が向上する。
6). Actions and component ranges of Ca, Na, Sr, and Sb Ca, Na, Sr, and Sb are elements that make eutectic Si fine. When these elements do not contain at least one element, eutectic Si crystallizes in a needle shape (three-dimensionally plate-like) and tends to cause cracking and elongation reduction. However, when at least one of these elements is contained, these elements are present in a concentrated form at the eutectic Si growth interface (three-dimensionally surrounding the growth interface), and are plate-like. It has the function of suppressing the growth of silicon into eutectic Si having a fine resinous (network-like) structure. Since eutectic Si becomes a resinous structure in this manner, interfacial cracking is less likely to occur, and an improvement in elongation can be expected, while the structure is uniformly dispersed and wear resistance is improved.
これらの元素のうち少なくとも1種の元素は、300ppmを超えて含有すると、余剰となり、MgやZnとの脆弱な化合物が晶出する為、強度低下を招く。また、これらの元素のうち少なくとも1種の元素は、30ppm未満では、十分な共晶Siの微細化効果が得られない。すなわち、本発明のCa、Na、Sr、Sbのうち少なくとも1種の元素の成分範囲は、30〜300ppmである。また、Ca、Na、Sr、Sbのうち少なくとも1種の元素は、50〜200ppmであることが望ましい。 If at least one of these elements exceeds 300 ppm, it becomes excessive, and a brittle compound with Mg or Zn is crystallized, leading to a decrease in strength. Further, if at least one of these elements is less than 30 ppm, a sufficient eutectic Si refinement effect cannot be obtained. That is, the component range of at least one element among Ca, Na, Sr, and Sb of the present invention is 30 to 300 ppm. Moreover, it is desirable that at least one element of Ca, Na, Sr, and Sb is 50 to 200 ppm.
また、Ca、Na、Sr、Sbのうち、Naは非常に活性な元素であることから、扱いが困難であり、Srは粒界へ化合物を形成し易いために、伸び低下の原因となりやすく、Sbは今後、有害物質指定となる可能性がある。よって、Caを用いることが最も望ましい。 In addition, among Ca, Na, Sr, and Sb, Na is a very active element, so that it is difficult to handle, and Sr is easy to form a compound at the grain boundary, and thus easily causes a decrease in elongation. Sb may be designated as a hazardous substance in the future. Therefore, it is most desirable to use Ca.
7.Tiの作用と成分範囲
TiはAlに対し、包晶系の元素であり、Alが凝固する際の有効異質核となる。したがって、Tiを含有すると、結晶核が多く存在することとなり、Alマトリクスの過度な成長が抑えられ、結果的に結晶粒が微細化され、耐力が改善される。しかしながら、Tiは、0.2質量%を超えて含有しても、TiのAlへの溶解度が非常に少ないため、微細化の向上効果は得られない。逆に、粒界へTi化合物として晶出してしまうため、伸び低下の原因となる。また、Tiは、0.02質量%未満では、十分な微細化効果は得られない。すなわち、本発明のTiの成分範囲は、0.02〜0.2質量%である。また、Tiは、0.05〜0.15質量%であることが望ましい。
7). Action and component range of Ti Ti is a peritectic element with respect to Al, and becomes an effective heterogeneous nucleus when Al solidifies. Therefore, when Ti is contained, a large number of crystal nuclei exist, and excessive growth of the Al matrix is suppressed. As a result, crystal grains are refined and yield strength is improved. However, even if Ti is contained in an amount exceeding 0.2% by mass, the solubility of Ti in Al is very small, so that the effect of improving the miniaturization cannot be obtained. On the contrary, since it crystallizes out as a Ti compound at the grain boundary, it causes a decrease in elongation. Further, when Ti is less than 0.02% by mass, a sufficient fine effect cannot be obtained. That is, the component range of Ti of the present invention is 0.02 to 0.2% by mass. Further, Ti is desirably 0.05 to 0.15 mass%.
8.不可避的不純物
本発明のアルミニウム合金は、不可避的不純物として、Feが1.3質量%以下、Mnが0.5質量%以下、Niが0.5質量%以下、Snが0.3質量%以下含有されても、本発明の効果が妨げられるものではなく、このような不可避的不純物の含有は許容される。
8). Inevitable impurities In the aluminum alloy of the present invention, Fe is 1.3% by mass or less, Mn is 0.5% by mass or less, Ni is 0.5% by mass or less, and Sn is 0.3% by mass or less as inevitable impurities. Even if it contains, the effect of this invention is not prevented, and inclusion of such an unavoidable impurity is accept | permitted.
次に、本発明の耐熱高強度アルミニウム合金部品は、前記アルミニウム合金から成形されたもので、100〜150℃という高温環境下において、高強度、高靭性を必要とし、かつ寸法安定性が重視される構造部品、具体的には、車両等の高速移動体の構造部品(例えば、フレーム部品)、内燃機関部品(エンジン内部のロッカーアーム)および過給器部品に使用される。そして、成形方法としては、従来公知の成形方法を使用することが可能であり、耐熱高強度アルミニウム合金部品の部品形状、部品強度等を考慮して、例えば、押出、圧延、鍛造、鋳造、ダイカスト等から適宜選択され、アルミニウム合金の凝固時間が短く、生産性の高いダイカストが好ましい。 Next, the heat-resistant and high-strength aluminum alloy part of the present invention is formed from the aluminum alloy, and requires high strength and high toughness in a high temperature environment of 100 to 150 ° C., and dimensional stability is emphasized. Specifically, it is used for structural parts (for example, frame parts), internal combustion engine parts (rocker arms inside the engine) and supercharger parts of high-speed moving bodies such as vehicles. As a forming method, a conventionally known forming method can be used. For example, extrusion, rolling, forging, casting, die casting are performed in consideration of the shape of the heat-resistant and high-strength aluminum alloy component, the strength of the component, and the like. It is suitably selected from the above, and die casting is preferred because the solidification time of the aluminum alloy is short and the productivity is high.
また、本発明の耐熱高強度アルミニウム合金部品は、前記の成形後に熱処理が施されたものが好ましい。また、熱処理は、JISH001に規定する、人工時効処理のみを行うT5熱処理が好ましい。そして、人工時効処理の条件は、耐熱高強度アルミニウム合金部品の肉厚、大きさ等によって適宜調整し、例えば、200〜250℃、1〜5時間が好ましい。 In addition, the heat-resistant and high-strength aluminum alloy part of the present invention is preferably one that has been heat-treated after the molding. Further, the heat treatment is preferably T5 heat treatment that performs only artificial aging treatment as defined in JISH001. And the conditions of an artificial aging treatment are suitably adjusted with the thickness, size, etc. of a heat-resistant high-strength aluminum alloy part, for example, 200-250 degreeC and 1 to 5 hours are preferable.
さらに、本発明の耐熱高強度アルミニウム合金部品においては、前記のアルミニウム合金から耐熱高強度アルミニウム合金部品が製造されることによって、従来の耐熱高強度アルミニウム合金部品の製造において実施されていたJISH001に規定する溶体化処理及び人工時効処理を行うT6処理ではなく、人工時効処理のみを行う前記のT5熱処理で耐熱高強度アルミニウム合金部品を製造することが可能となり、鋳造欠陥の熱膨張に起因した素材の膨れやブリスタの発生しやすい溶体化処理を省略することが可能となる。その結果、高温環境下における高強度、高靭性および寸法安定性を有する耐熱高強度アルミニウム合金部品を得ることができる。 Furthermore, in the heat-resistant and high-strength aluminum alloy part of the present invention, the heat-resistant and high-strength aluminum alloy part is manufactured from the above-mentioned aluminum alloy. It is possible to manufacture heat-resistant and high-strength aluminum alloy parts by the above-described T5 heat treatment that only performs artificial aging treatment, not T6 treatment that performs solution treatment and artificial aging treatment. It is possible to omit the solution treatment that is liable to cause blistering or blistering. As a result, a heat-resistant and high-strength aluminum alloy part having high strength, high toughness and dimensional stability in a high-temperature environment can be obtained.
次に、本発明の効果を確認した実施例について説明する。
(参考例1〜11、実施例1〜3)
表1に示す成分組成を持ったAl合金溶湯14種を約700℃にて溶解・保持し、ダイカストにて丸棒試験片形状の金型へ射出し、得られたダイカスト素材をT5熱処理(230℃×3時間)した。
Next, examples in which the effects of the present invention have been confirmed will be described.
( Reference Examples 1-11, Examples 1-3 )
Fourteen types of Al alloy melts having the composition shown in Table 1 were melted and held at about 700 ° C., injected into a round bar test piece mold by die casting, and the resulting die cast material was subjected to T5 heat treatment (230 ° C x 3 hours).
(比較例1〜14)
参考例1〜11、実施例1〜3の比較対照として、表2に示す、比較例1としてAl−Si系ダイカスト用合金として最も多く使用されているJIS規定のADC12合金溶湯、比較例2〜14として本発明の成分範囲外の成分組成を有するAl合金溶湯13種を用いて、参考例1〜11、実施例1〜3と同様にしてダイカスト素材を作製し、得られたダイカスト素材をT5熱処理(230℃×3時間)した。
(Comparative Examples 1-14)
As a comparative control of Reference Examples 1 to 11 and Examples 1 to 3 , shown in Table 2, as a comparative example 1, the most frequently used alloy for Al-Si die casting, a JIS-regulated molten ADC12 alloy, comparative example 2 14 using 13 types of molten Al alloy having a component composition outside the component range of the present invention, a die-cast material was prepared in the same manner as in Reference Examples 1 to 11 and Examples 1 to 3, and the obtained die-cast material was T5. Heat treatment (230 ° C. × 3 hours) was performed.
前記の参考例1〜11、実施例1〜3、比較例1〜14のT5熱処理後のダイカスト素材を用いて、以下の方法で、内部品質、150℃雰囲気における強度特性及び0〜400時間までの試験片長手方向の寸法成長、耐摩耗性について確認した。 Using the die cast materials after the T5 heat treatment of Reference Examples 1 to 11, Examples 1 to 3 and Comparative Examples 1 to 14, the internal quality, strength characteristics in an atmosphere at 150 ° C., and 0 to 400 hours are as follows. The size growth and wear resistance of the test piece in the longitudinal direction were confirmed.
(内部品質)
T5熱処理後のダイカスト素材について、目視にて凝固収縮、割れの発生を確認し、その結果を表1、表2に示す。なお、凝固収縮、割れの発生のないものを「○」で良好、凝固収縮、割れの発生がみられるものを「△」でやや不良、凝固収縮、割れの発生が著しいものを「×」で不良とした。
(Internal quality)
About the die-cast material after T5 heat processing, the solidification shrinkage | contraction and generation | occurrence | production of a crack were confirmed visually, and the result is shown in Table 1, Table 2. In addition, “○” indicates that no solidification shrinkage or cracking occurs, “Good” indicates that solidification shrinkage or cracking is observed. Defective.
(150℃強度特性)
T5熱処理後のダイカスト素材を旋削加工し、引張試験片および疲労試験片とした。これらの試験片を150℃にて100hrソーキングした後に、それぞれ150℃にて、JISZ2241に規定する引張試験、及びJISZ2286に規定する回転曲げ疲労試験を行った。その結果を表1、表2に示す。なお、表2において、0.2%耐力及び伸びについては平均値を、疲労強度については、試験繰返し数1×107におけるP=0.5(破断確率50%)の疲労強度とした。そして、0.2%耐力については、190MPa以上を良好、190MPa未満を不良とした。また、疲労強度については、96MPa以上を良好、96MPa未満を不良とした。さらに、伸びについては、0.4%以上を良好、0.4%未満を不良とした。
(150 ° C strength characteristics)
The die-cast material after the T5 heat treatment was turned to obtain tensile test pieces and fatigue test pieces. These test pieces were soaked at 150 ° C. for 100 hours, and then subjected to a tensile test specified in JISZ2241 and a rotating bending fatigue test specified in JISZ2286 at 150 ° C., respectively. The results are shown in Tables 1 and 2. In Table 2, the average value was set for 0.2% proof stress and elongation, and the fatigue strength was P = 0.5 (50% fracture probability) fatigue strength at a test repetition number of 1 × 10 7 . And about 0.2% yield strength, 190 MPa or more was made favorable and less than 190 MPa was made bad. Moreover, about fatigue strength, 96 MPa or more was made favorable and less than 96 MPa was made bad. Furthermore, about elongation, 0.4% or more was made favorable and less than 0.4% was made defective.
(耐摩耗性)
実施例2、比較例1及び比較例2のT5熱処理後のダイカスト素材を8mm×10mm×50mmの板状に旋削加工し、往復摺動試験機にて耐摩耗性を検証した。具体的には、T5熱処理後のダイカスト素材を、JIS規定のS58C鉄鋼材上で、測定温度150℃、荷重5Nまたは30Nを負荷しながら、150、300または600回往復摺動し、その際の摩耗量を測定した。その結果を図2に示す。
(Abrasion resistance)
The die-cast material after the T5 heat treatment of Example 2 , Comparative Example 1 and Comparative Example 2 was turned into a plate shape of 8 mm × 10 mm × 50 mm, and the wear resistance was verified with a reciprocating sliding tester. Specifically, the die-cast material after the T5 heat treatment is reciprocated 150, 300, or 600 times on a JIS-specified S58C steel material while applying a measurement temperature of 150 ° C. and a load of 5 N or 30 N. The amount of wear was measured. The result is shown in FIG.
(寸法成長)
実施例2、比較例1のダイカスト素材からφ10mm×25mmの丸棒試験片を切り出し、150℃雰囲気における、0〜400時間までの試験片長手方向の寸法成長を確認した。その結果を図1に示す。
(Dimensional growth)
Example 2 A round bar test piece of φ10 mm × 25 mm was cut out from the die-cast material of Comparative Example 1, and dimensional growth in the longitudinal direction of the test piece in a 150 ° C. atmosphere was confirmed from 0 to 400 hours. The result is shown in FIG.
表1、表2の結果から、参考例1〜11、実施例1〜3の本発明のアルミニウム合金は、内部品質、150℃強度特性(0.2%耐力、疲労強度、伸び)の全てが良好であった。また、比較例1〜13のアルミニウム合金は、内部品質、150℃強度特性(0.2%耐力、疲労強度、伸び)の少なくとも1つが不良であり、比較例14はAg含有量が多いため、アルミニウム合金のコストが高くなり実用性に欠けるものであった。また、図1の結果から、本発明のアルミニウム合金(実施例2)は、比較例のアルミニウム合金(比較例1)に比べて、寸法成長が小さいものであった。さらに、図2の結果から、本発明のアルミニウム合金(実施例2)は、比較例のアルミニウム合金(比較例1及び比較例2)に比べて、摩耗量が少ないものであった。 From the results of Tables 1 and 2, the aluminum alloys of the present invention of Reference Examples 1 to 11 and Examples 1 to 3 have all of internal quality and 150 ° C. strength characteristics (0.2% proof stress, fatigue strength, elongation). It was good. In addition, the aluminum alloys of Comparative Examples 1 to 13 have poor internal quality and 150 ° C. strength characteristics (0.2% proof stress, fatigue strength, elongation), and Comparative Example 14 has a high Ag content. The cost of the aluminum alloy was high and lacked practicality. Further, from the results of FIG. 1, the aluminum alloy of the present invention (Example 2 ) had a smaller dimensional growth than the aluminum alloy of the comparative example (Comparative Example 1). Furthermore, from the results shown in FIG. 2, the aluminum alloy of the present invention (Example 2 ) was less worn than the aluminum alloys of Comparative Examples (Comparative Examples 1 and 2).
したがって、本発明のアルミニウム合金は、高温環境下において高強度、高靭性を有し、耐摩耗性及び寸法安定性においても優れていることが確認された。 Therefore, it was confirmed that the aluminum alloy of the present invention has high strength and toughness in a high temperature environment, and is excellent in wear resistance and dimensional stability.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004329101A JP4351609B2 (en) | 2004-11-12 | 2004-11-12 | Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004329101A JP4351609B2 (en) | 2004-11-12 | 2004-11-12 | Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006137994A JP2006137994A (en) | 2006-06-01 |
JP4351609B2 true JP4351609B2 (en) | 2009-10-28 |
Family
ID=36619001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004329101A Expired - Fee Related JP4351609B2 (en) | 2004-11-12 | 2004-11-12 | Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4351609B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352150A (en) * | 2013-07-02 | 2013-10-16 | 安徽天祥空调科技有限公司 | Aluminum alloy with good processability for radiator and manufacturing method thereof |
KR20180069268A (en) | 2016-12-15 | 2018-06-25 | 현대자동차주식회사 | Heat-treatment device for alluminum alloy diecasting product and heat-treatment method using the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5082483B2 (en) * | 2007-02-13 | 2012-11-28 | トヨタ自動車株式会社 | Method for producing aluminum alloy material |
JP5271215B2 (en) * | 2009-09-15 | 2013-08-21 | 株式会社日立製作所 | Method for reforming aluminum die-cast products |
CN103540879B (en) * | 2013-09-24 | 2016-05-18 | 李露青 | A kind of Pr6O11The processing method of the Al-Si-Zn line aluminium alloy strengthening |
CN103540878B (en) * | 2013-09-24 | 2016-07-06 | 李露青 | A kind of CeO2The processing method of the Al-Si-Zn line aluminium alloy strengthened |
CN105441738A (en) * | 2015-12-11 | 2016-03-30 | 天津爱田汽车部件有限公司 | Aluminum alloy and preparation method thereof |
CN116926387B (en) * | 2023-09-14 | 2023-12-15 | 中南大学 | Heat-resistant high-strength Al-Si alloy and preparation method thereof |
-
2004
- 2004-11-12 JP JP2004329101A patent/JP4351609B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352150A (en) * | 2013-07-02 | 2013-10-16 | 安徽天祥空调科技有限公司 | Aluminum alloy with good processability for radiator and manufacturing method thereof |
CN103352150B (en) * | 2013-07-02 | 2016-03-02 | 安徽天祥空调科技有限公司 | The radiator aluminum alloy that processibility is good and manufacture method thereof |
KR20180069268A (en) | 2016-12-15 | 2018-06-25 | 현대자동차주식회사 | Heat-treatment device for alluminum alloy diecasting product and heat-treatment method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006137994A (en) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4867806A (en) | Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy | |
JP6990527B2 (en) | Aluminum alloy material | |
JP2005264301A (en) | Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
JP6348466B2 (en) | Aluminum alloy extruded material and method for producing the same | |
JP2013142168A (en) | Aluminum alloy excellent in creep resistance | |
CN109136681B (en) | 6061 aluminum cast bar and casting process thereof | |
JP4351609B2 (en) | Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
JP2007169712A (en) | Aluminum alloy for plastic working | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
JP3164587B2 (en) | Alloys with excellent thermal fatigue resistance, aluminum alloys with excellent thermal fatigue resistance, and aluminum alloy members with excellent thermal fatigue resistance | |
JP5004032B2 (en) | Aluminum-based alloy having excellent high-temperature strength and low thermal expansibility and method for producing the same | |
JP4088546B2 (en) | Manufacturing method of aluminum alloy forging with excellent high temperature characteristics | |
JPS6326188B2 (en) | ||
JP2020152965A (en) | Aluminum alloy material, method for producing the same, and impeller | |
JP2007070686A (en) | Highly workable magnesium alloy, and method for producing the same | |
JP4796563B2 (en) | Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity | |
JP5688744B2 (en) | High strength and high toughness copper alloy forging | |
JP3798676B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP2007070685A (en) | Highly workable magnesium alloy, and method for producing the same | |
JP5522692B2 (en) | High strength copper alloy forging | |
KR102012952B1 (en) | Aluminium alloy and manufacturing method thereof | |
JP4121266B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP4058398B2 (en) | Aluminum alloy forging with excellent high-temperature fatigue strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090724 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4351609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140731 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |