JP4121266B2 - Method for producing semi-molten billet of aluminum alloy for transportation equipment - Google Patents
Method for producing semi-molten billet of aluminum alloy for transportation equipment Download PDFInfo
- Publication number
- JP4121266B2 JP4121266B2 JP2001343072A JP2001343072A JP4121266B2 JP 4121266 B2 JP4121266 B2 JP 4121266B2 JP 2001343072 A JP2001343072 A JP 2001343072A JP 2001343072 A JP2001343072 A JP 2001343072A JP 4121266 B2 JP4121266 B2 JP 4121266B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- temperature
- semi
- less
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Forging (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、輸送機器用として用いるアルミニウム合金の半溶融成型ビレットの製造方法に関するものである。
【0002】
【従来の技術】
半溶融ビレットを用いるチクソキャスト法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少なく、金型寿命が長いなどの利点があり最近注目されている技術である。これに用いるビレットの鋳造方法としては、ペシネー・アルマックス方式として知られているビレット段階で初晶α(Al)相を球状化するため、半溶融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳造時に通常添加されている量よりも多量のAl−Ti−Bを添加し、その後半溶融温度域まで昇温し初晶α(Al)相を球状化させる方法(方式B)がある。また、押出・圧延にて歪みを導入後、方式Bのように昇温し球状化させる方法(方式C)が広く知られている。
【0003】
【発明が解決しようとする課題】
従来の半溶融製造法の場合、方式Aでは工程が非常に煩雑で、製造コストが高くつく不具合があった。
また、方式Bでは、多量のAl−Ti−Bを添加するため溶融炉内でのTiB2沈降による品質不安定が発生し、更に方式Cの圧延により歪みを導入する方法は均一な歪みの導入が難しく、また押出では常温押出により作業工程が煩雑で、しかも均一な歪み導入が難しいし、両歪み導入法とも加工後の製品加工が必要となり、量産化や低コスト化が図れないという問題があった。
【0004】
特許第2976073号には、改良された方法が開示されている。即ち、そこには第1項中に「完全に固化した金属または金属合金材料をその再結晶温度未満の温度で変形する工程、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させることによりチキソトロピック的な挙動を呈する液状マトリックス中に独立した粒子を形成させるために、再結晶構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるために変形材料を加熱する工程、および該材料の温度をその固相線温度を上回る温度に上昇させるといういわば2段階加熱とも言うべき加熱が行われる。このような方法は、従来の技術に比べれば、改善された技術と言えるが、やはり2段階の加熱を必要とし、工程が複雑で加熱制御が難しいという問題があった。
【0005】
本発明は、上記従来技術の欠点を解消し、工程が簡素で低コスト化を促進でき、得られる製品が均質な輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu0.40〜5.5wt%、Si13.6〜25.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上、Mg0.40〜1.8wt%を含み、残部が実質的にAlの組成から成り、初晶Siの平均粒径が300μm以下で、しかもデンドライト枝間隔(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工する方法である。
【0007】
この場合に、成分偏析の均質化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0008】
また、上記目的を達成するために、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、Cu0.40〜5.5wt%、Si10.0〜25.0wt%、Zn1.0wt%以下、Fe1.5wt%以下、Mn0.65wt%以下、Ti0.005〜0.5wt%及びB0.0001〜0.5wt%の少なくとも1種以上、Mg0.40〜1.8wt%、Ni0.05〜1.7wt%を含み、残部が実質的にAlの組成から成り、初晶Siの平均粒径が300μm以下で、しかもデンドライト枝間隔(DAS)が200μm以下であるアルミニウム合金を製造し、次いで歪み率5〜50%、加工導入速度50mm/sec.以下で再結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融加工する方法である。
【0009】
この場合に、成分偏析の均質化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0010】
さらに、上記目的を達成するために、本願の輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法は、上述した方法で用いた合金に、更にP0.003〜0.150wt%含有するアルミニウム合金を用いる場合もある。
【0011】
この場合にも、成分偏析の均質化及び鋳造応力の解放のために、加工歪みを導入する前に、450〜550℃の温度で1〜10時間の均質化処理を行うと好ましい。
【0012】
【発明の実施の形態】
以下本発明で用いるアルミニウム合金成分量の数値限定等種々の数値限定理由について詳述する。
【0013】
Cu成分は、機械的性質の向上のみならず、硬度・切削性・鋳造性を良くするが、0.40wt%未満ではその効果は小さく、一方5.5wt%を越えると耐食性の低下をまねくので、0.40〜5.5wt%とした。
【0014】
Si成分は、耐摩耗性を向上させる効果があるが、10.0wt%未満ではその効果は小さく、一方25.0wt%を越えると伸び・靭性が劣化し冷間鍛造加工性が悪くなるので、10.0〜25.0wt%とした。
【0015】
Mg成分は、Mg2Siを析出し機械的性質の向上に寄与するが、0.40wt%未満ではその効果は小さく、一方1.8wt%を超えると冷間鍛造加工性が悪くなるため、0.40〜1.8wt%とした。
【0016】
Fe成分は、Al成分と金属間化合物をつくり、多く含有されるとAl−Fe−Si系化合物となり伸び・靭性・耐食性に悪影響を及ぼすため、1.5wt%以下とした。
【0017】
Ti成分は、鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.005wt%未満ではその効果は小さく、一方0.5wt%を越えるとTiAl3の巨大な晶出物の発生を促進させ、冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので、0.005〜0.5wt%とした。
【0018】
B成分もまたTi成分と共に鋳塊の組織を微細化し、鋳塊割れの発生を防止するが、0.0001wt%未満ではその効果は小さく、一方0.5wt%を越えると冷間鍛造加工時の割れや輸送機器部品の機械的性質の低下をまねくので、0.0001〜0.5wt%とした。
【0019】
Zn成分は、鋳造性を改善するが、耐食性を劣化させるため、1.0wt%以下とした。
【0020】
Mn成分は、粗大金属間化合物の生成による靭性低下を起こすことから0.65wt%以下とした。
【0021】
Ni成分は、高温強度の向上に寄与するが、0.05wt%未満ではその効果は小さく、一方1.7wt%を越えると耐食性を劣化させるため、0.05〜1.7wt%とした。
【0022】
P成分は、高Si合金の初晶Siを微細化し、機械的性質の向上に寄与するが、0.003wt%未満ではその効果は小さく、一方0.015wt%を超えるとアルミニウム合金溶湯の流動性や充填性を低下し鋳造性を害することから、0.003〜0.015wt%とした。
【0023】
デンドライト枝間隔(DAS)が200μm以下であるビレットを鋳造するが、デンドライト枝間隔(DAS)が200μmを越えると、半溶融温度域に加熱した際に初晶α(Al)相の均一微細球状化が難しくなるし、また均質化処理を行う場合には均質化処理に時間を要するので、デンドライト枝間隔(DAS)を200μm以下とした。また、初晶Siの平均粒径が300μmを越えると、機械的性質が低下するため、300μm以下とした。
【0024】
鋳造で得られたビレットを均質化処理することにより、鋳造時に結晶粒界に晶出したAl2Cu、Mg2Si等の晶出物がマトリックスに固溶する。また共晶Siや初晶Siを球状化し冷間鍛造加工時の変形抵抗を小さくする。均質化処理温度が450℃未満や1時間に達しない加熱時間では、固溶化が充分得られず、また共晶Siや初晶Siの球状化や鋳造歪の除去も不充分である。しかし550℃を越える処理温度では、共晶融解が発生し鍛造時の加工性を損う。また10時間を越える加熱時間では、加熱時間の長時間に見合った均質化の効果上昇が見られず、加熱エネルギーの損失となる。このため、均質化処理条件は450〜550℃の温度で1〜10時間加熱とした。
【0025】
次に加工歪みの導入は、工程が簡素化でき、かつ少ない加工率で歪みが有効に導入されるように冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一に歪みが導入されるように型枠鍛造とする。歪み率は、5%未満の場合には歪み導入が少ないため半溶融温度域まで昇温しても初晶α(Al)相の均一な球状化は図れず、一方50%を越えると初晶α(Al)相サイズに変化は見られないのみならず冷間鍛造時に割れが発生するため、5〜50%とした。ここでの歪み率は、鍛造用ビレットの元の長さをL1とし、鍛造後のビレットの長さをL2とした時、(L1−L2)/L1×100(%)で定義した。
【0026】
加工導入速度は、ビレット鋳塊の結晶粒微細化や共晶Siの微細化や初晶Siの微細化と均質化処理を加えることにより大幅にアップできる。生産性から言えば加工導入速度はできるだけ早い方が好ましい。しかしながら、50mm/sec.を越えると鍛造時に割れが生じたり、鍛造デッドゾーンが歪みが均一に導入されないため50mm/sec.以下とした。また冷間型枠鍛造の際のビレット温度は、再結晶温度以上では所定の加工率に対する歪み導入が不充分となり、半溶融温度に昇温しても初晶α(Al)相が粒状組織とならないため再結晶温度未満とした。
【0027】
その後ビレットを共晶温度以上に昇温し、液相率が20〜80%となる温度で保持して半溶融成型するが、液相率が20%未満では初晶α(Al)相の均一な球状化は図れず、半溶融成型の変形抵抗が大きく加圧成型が困難となる。また、80%を越えると均一な組織を有する成型品が得られない。このため、共晶温度以上の半溶融温度域での液相率は20〜80%とした。
【0028】
【実施例】
以下本発明の具体的な実施例を示す。
図1は本発明方法で用いる冷間型枠鍛造の模式図であり、図中符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアルミニウム合金ビレットを示す。
【0029】
Cu、Si、Mg、Zn、Fe、Ti、B、Ni及びPをそれぞれ下記表1に示すような組成となるように溶湯を調整し、連続鋳造にてアルミニウム合金ビレットを鋳造した。
【0030】
【表1】
【0031】
上記表1に示すアルミニウム合金ビレットを、表2に示す条件で処理し、半溶融成型の成型性、半溶融成型後の初晶α(Al)相の形状を評価した結果も表2に併記した。
【0032】
【表2】
【0033】
表2に示した加工歪み導入時の成型性は、表2で示す成型条件で成型した際に割れが発生せず成型性が良好なものを○とし、割れが見られるものを×で判定した。半溶融成型の成型性は、良好なものを○とし、成型性の悪いものを×と判定した。半溶融成型後の初晶α(Al)相の形状は、球状化が認められるものを○とし、球状化が不充分であるものを×と判定した。半溶融成型後の初晶α(Al)相の微細均一化では初晶α(Al)相のサイズが100μm以下を○とし、100μmを越えるサイズのものを×と判定した。
【0034】
図2は、初晶α(Al)相の微細均一化が○評価の代表例写真を示す。
【0035】
【発明の効果】
以上述べて来た如く、本発明によれば、従来の半溶融ビレットよりも工程が簡素化され低コスト化が図れる。また、得られる組織も初晶α(Al)相サイズが平均100μm以下で、かつ初晶α(Al)相の面積率50%の均一球状化組織となっており、自動車部材等の輸送機器用として使用が可能である。
【図面の簡単な説明】
【図1】冷間型枠鍛造の模式図である。
【図2】初晶α(Al)相の微細均一化が○評価の代表例の顕微鏡組織写真であり、倍率は50倍である。
【符号の説明】
1 鍛造用金型
2 鍛造用金型ポンチ
3 アルミニウム合金ビレット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a semi-melt molded billet of an aluminum alloy used for transportation equipment.
[0002]
[Prior art]
The thixocast method using a semi-molten billet is a technology that has recently been attracting attention because it has advantages such as fewer casting segregation and defects and a longer die life compared to conventional die casting methods. The billet casting method used for this is a method (method) in which electromagnetic and mechanical stirring is performed in the semi-melting temperature range in order to spheroidize the primary crystal α (Al) phase at the billet stage known as the Pesine Almax method. A) or a method of adding a larger amount of Al-Ti-B than the amount normally added at the time of casting, and raising the temperature to the latter half melting temperature range to spheroidize the primary crystal α (Al) phase (Method B) There is. Further, a method (method C) in which strain is introduced by extrusion / rolling and then heated and spheroidized as in method B is widely known.
[0003]
[Problems to be solved by the invention]
In the case of the conventional semi-molten production method, the method A has a problem that the process is very complicated and the production cost is high.
Moreover, in method B, since a large amount of Al—Ti—B is added, quality instability occurs due to TiB 2 sedimentation in the melting furnace, and the method of introducing strain by rolling in method C introduces uniform strain. In addition, the extrusion process is cumbersome due to room temperature extrusion, and it is difficult to introduce uniform strain, and both strain introduction methods require product processing after processing, and mass production and cost reduction cannot be achieved. there were.
[0004]
Japanese Patent No. 2976073 discloses an improved method. That is, in the first item, there is described in “the step of deforming a fully solidified metal or metal alloy material at a temperature below its recrystallization temperature, heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form independent particles in a liquid matrix that exhibits thixotropic behavior by raising the temperature of the material above its solidus temperature. It is a method including the step of
In this method, the deformation material is heated to cause recrystallization of the microstructure of the material, and heating that is called so-called two-step heating in which the temperature of the material is raised to a temperature above the solidus temperature. Is done. Such a method can be said to be an improved technique as compared with the conventional technique, but it still requires two-stage heating, and has a problem that the process is complicated and heating control is difficult.
[0005]
An object of the present invention is to provide a method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment in which the disadvantages of the above prior art are eliminated, the process is simple and cost reduction can be promoted, and the resulting product is homogeneous. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the semi-molten molded billet of the aluminum alloy for transportation equipment of the present application is Cu 0.40 to 5.5 wt%, Si 13.6 to 25.0 wt%, Zn 1.0 wt% or less, Fe1. 5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt% and at least one of B0.0001 to 0.5 wt%, Mg 0.40 to 1.8 wt%, the balance being substantially Al An aluminum alloy having an average particle size of primary Si of 300 μm or less and a dendrite branch interval (DAS) of 200 μm or less is manufactured, and then a strain rate of 5 to 50% and a processing introduction speed of 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. It is a method of processing.
[0007]
In this case, for homogenization of component segregation and release of casting stress, it is preferable to perform a homogenization treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing processing strain.
[0008]
Moreover, in order to achieve the said objective, the manufacturing method of the semi-molten shaping | molding billet of the aluminum alloy for transportation apparatuses of this application is Cu0.40-5.5 wt%, Si10.0-25.0 wt%, Zn1.0 wt% or less Fe 1.5 wt% or less, Mn 0.65 wt% or less, Ti 0.005 to 0.5 wt%, and B0.0001 to 0.5 wt%, at least one of Mg, 0.40 to 1.8 wt%, Ni 0.05 to 1 An aluminum alloy containing 0.7 wt%, the balance being substantially composed of Al, the primary crystal Si having an average particle diameter of 300 μm or less and a dendrite branch interval (DAS) of 200 μm or less is manufactured, and then the distortion rate 5 to 50%, processing introduction speed 50 mm / sec. In the following, processing strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is maintained at a temperature of 20 to 80% and semi-molten. It is a method of processing.
[0009]
In this case, for homogenization of component segregation and release of casting stress, it is preferable to perform a homogenization treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing processing strain.
[0010]
Furthermore, in order to achieve the said objective, the manufacturing method of the semi-molten shaping | molding billet of the aluminum alloy for transport equipment of this application is the alloy used by the method mentioned above, and also contains the aluminum alloy which contains P0.003-0.150 wt%. Sometimes used.
[0011]
Also in this case, in order to homogenize the component segregation and release the casting stress, it is preferable to perform a homogenization treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing processing strain.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various numerical limitation reasons such as numerical limitation of the amount of aluminum alloy components used in the present invention will be described in detail.
[0013]
The Cu component improves not only mechanical properties but also hardness, machinability, and castability. However, the effect is small if it is less than 0.40 wt%, while corrosion resistance decreases if it exceeds 5.5 wt%. 0.40 to 5.5 wt%.
[0014]
The Si component has an effect of improving the wear resistance. However, if the content is less than 10.0 wt%, the effect is small. On the other hand, if it exceeds 25.0 wt%, the elongation / toughness deteriorates and the cold forging workability deteriorates. It was set to 10.0-25.0 wt%.
[0015]
The Mg component precipitates Mg 2 Si and contributes to the improvement of mechanical properties. However, the effect is small when the content is less than 0.40 wt%, while the cold forgeability deteriorates when the content exceeds 1.8 wt%. 40-1.8 wt%.
[0016]
The Fe component produces an Al component and an intermetallic compound, and if it is contained in a large amount, it becomes an Al—Fe—Si compound and adversely affects elongation, toughness, and corrosion resistance.
[0017]
The Ti component refines the ingot structure and prevents the occurrence of ingot cracking, but the effect is small if it is less than 0.005 wt%, while the TiAl 3 giant crystallized material is exceeded if it exceeds 0.5 wt%. The generation is promoted and causes cracking during cold forging and deterioration of mechanical properties of transport equipment parts, so 0.005 to 0.5 wt% was set.
[0018]
The B component also refines the structure of the ingot together with the Ti component to prevent the occurrence of ingot cracking, but the effect is small if it is less than 0.0001 wt%, while it exceeds the 0.5 wt% during cold forging. Since it causes cracks and deterioration of mechanical properties of parts for transportation equipment, the content is set to 0.0001 to 0.5 wt%.
[0019]
The Zn component improves the castability but deteriorates the corrosion resistance.
[0020]
The Mn component is set to 0.65 wt% or less because it causes a decrease in toughness due to the formation of coarse intermetallic compounds.
[0021]
The Ni component contributes to the improvement of the high-temperature strength, but the effect is small if it is less than 0.05 wt%, while the corrosion resistance deteriorates if it exceeds 1.7 wt%, so it was made 0.05 to 1.7 wt%.
[0022]
The P component refines the primary Si of the high Si alloy and contributes to the improvement of mechanical properties, but the effect is small if it is less than 0.003 wt%, while the fluidity of the molten aluminum alloy exceeds 0.015 wt%. Or 0.003 to 0.015 wt% because the filling property is deteriorated and the castability is impaired.
[0023]
A billet with a dendrite branch interval (DAS) of 200 μm or less is cast, but when the dendrite branch interval (DAS) exceeds 200 μm, the primary α (Al) phase becomes uniform and fine spheroidized when heated to the semi-melting temperature range. In addition, when the homogenization process is performed, the homogenization process takes time, so the dendrite branch interval (DAS) is set to 200 μm or less. Further, when the average grain size of primary Si exceeds 300 μm, the mechanical properties deteriorate, so it is set to 300 μm or less.
[0024]
By homogenizing the billet obtained by casting, crystallized substances such as Al 2 Cu and Mg 2 Si crystallized at the crystal grain boundaries during casting are dissolved in the matrix. In addition, eutectic Si and primary Si are spheroidized to reduce deformation resistance during cold forging. If the homogenization temperature is less than 450 ° C. or a heating time that does not reach 1 hour, sufficient solid solution cannot be obtained, and spheroidization of eutectic Si or primary crystal Si or removal of casting strain is insufficient. However, if the processing temperature exceeds 550 ° C., eutectic melting occurs and the workability during forging is impaired. On the other hand, when the heating time exceeds 10 hours, the effect of homogenization corresponding to the long heating time is not observed, and heating energy is lost. For this reason, the homogenization treatment conditions were heating at a temperature of 450 to 550 ° C. for 1 to 10 hours.
[0025]
Next, processing strain is introduced by cold forging so that the process can be simplified and strain is effectively introduced at a low processing rate, and strain is uniformly introduced into the entire forging billet. Formwork forging. When the strain rate is less than 5%, the introduction of strain is small, so even if the temperature is raised to the semi-melting temperature range, uniform spheroidization of the primary crystal α (Al) phase cannot be achieved. In addition to no change in the α (Al) phase size, cracks occur during cold forging, so the content was set to 5 to 50%. The distortion rate here is (L 1 −L 2 ) / L 1 × 100 (%), where L 1 is the original length of the forging billet and L 2 is the length of the billet after forging. Defined.
[0026]
The processing introduction speed can be significantly increased by adding grain refinement of the billet ingot, refinement of eutectic Si, refinement of primary Si and homogenization treatment. In terms of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. Exceeds 50 mm / sec., Because cracking occurs during forging and distortion is not uniformly introduced into the forged dead zone. It was as follows. Further, when the billet temperature during cold mold forging is higher than the recrystallization temperature, the introduction of strain for the predetermined processing rate is insufficient, and even when the temperature is raised to the semi-melting temperature, the primary α (Al) phase has a granular structure. Therefore, it was set below the recrystallization temperature.
[0027]
Thereafter, the billet is heated to a temperature equal to or higher than the eutectic temperature and held at a temperature at which the liquid phase ratio becomes 20 to 80%, and semi-molten molding is performed. However, when the liquid phase ratio is less than 20%, the primary α (Al) phase is uniform. Sphericalization cannot be achieved, and the deformation resistance of semi-molten molding is large, and pressure molding becomes difficult. On the other hand, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. For this reason, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature was set to 20 to 80%.
[0028]
【Example】
Specific examples of the present invention are shown below.
FIG. 1 is a schematic view of cold mold forging used in the method of the present invention, in which 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.
[0029]
The molten metal was adjusted so that Cu, Si, Mg, Zn, Fe, Ti, B, Ni, and P each had a composition as shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.
[0030]
[Table 1]
[0031]
The aluminum alloy billet shown in Table 1 was processed under the conditions shown in Table 2, and the results of evaluating the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding are also shown in Table 2. .
[0032]
[Table 2]
[0033]
The moldability at the time of introducing the processing strain shown in Table 2 was judged as “Good” when the mold did not generate a crack when molded under the molding conditions shown in Table 2 and the moldability was good. . Regarding the moldability of the semi-melt molding, a good one was evaluated as “good”, and a poor one was determined as “poor”. The shape of the primary crystal α (Al) phase after semi-melt molding was evaluated as “◯” when spheroidization was observed, and “×” when the spheroidization was insufficient. In the fine homogenization of the primary crystal α (Al) phase after semi-melt molding, the primary crystal α (Al) phase size was evaluated as ○ when the size of the primary crystal α (Al) phase was 100 μm or less, and × when the size exceeded 100 μm.
[0034]
FIG. 2 shows a photograph of a representative example in which fine homogenization of the primary crystal α (Al) phase is evaluated as o.
[0035]
【The invention's effect】
As described above, according to the present invention, the process is simplified and the cost can be reduced as compared with the conventional semi-molten billet. The resulting structure also has a uniform spheroidized structure with an average primary crystal α (Al) phase size of 100 μm or less and an area ratio of primary crystal α (Al) phase of 50%. It can be used as
[Brief description of the drawings]
FIG. 1 is a schematic diagram of cold mold forging.
FIG. 2 is a photomicrograph of a representative example of evaluation of fine homogenization of primary crystal α (Al) phase, with a magnification of 50 times.
[Explanation of symbols]
1 Forging die 2 Forging die punch 3 Aluminum alloy billet
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343072A JP4121266B2 (en) | 2001-11-08 | 2001-11-08 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343072A JP4121266B2 (en) | 2001-11-08 | 2001-11-08 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003136199A JP2003136199A (en) | 2003-05-14 |
JP4121266B2 true JP4121266B2 (en) | 2008-07-23 |
Family
ID=19156823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001343072A Expired - Fee Related JP4121266B2 (en) | 2001-11-08 | 2001-11-08 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4121266B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506409A (en) * | 2015-12-28 | 2016-04-20 | 常熟市明瑞针纺织有限公司 | High-wear-resistant cam of warp knitting machine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103667752A (en) * | 2013-11-20 | 2014-03-26 | 茹林宝 | Preparation technology of aluminum alloy sectional material |
CN110241333A (en) * | 2019-06-27 | 2019-09-17 | 广东顺博铝合金有限公司 | A kind of aluminium alloy with good heat radiating |
CN110241332A (en) * | 2019-06-27 | 2019-09-17 | 广东顺博铝合金有限公司 | A kind of wear-resistant aluminum alloy and its preparation |
-
2001
- 2001-11-08 JP JP2001343072A patent/JP4121266B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506409A (en) * | 2015-12-28 | 2016-04-20 | 常熟市明瑞针纺织有限公司 | High-wear-resistant cam of warp knitting machine |
Also Published As
Publication number | Publication date |
---|---|
JP2003136199A (en) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07145441A (en) | Superplastic aluminum alloy and its production | |
JP2010018875A (en) | High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member | |
CN109972009B (en) | High-toughness high-modulus wrought magnesium alloy and preparation method thereof | |
JP2001220639A (en) | Aluminum alloy for casting | |
JP3548709B2 (en) | Method for producing semi-solid billet of Al alloy for transportation equipment | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
JP4433916B2 (en) | Magnesium alloy and magnesium alloy member for plastic working | |
JP3852915B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3346186B2 (en) | Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method | |
KR101400140B1 (en) | Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby | |
KR20210130455A (en) | Wrought magnesium alloys with high mechanical properties and method for preparing the same | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3676723B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP4121266B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP3798676B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP5575028B2 (en) | High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method | |
US20200354818A1 (en) | High Strength Microalloyed Magnesium Alloy | |
WO2019023818A1 (en) | Readily cold-formable deformable zinc alloy material, preparation method therefor, and application thereof | |
KR101680046B1 (en) | Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby | |
JP4152095B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP2003311373A (en) | Method for producing base material for semi-melting formation | |
JP2006161103A (en) | Aluminum alloy member and manufacturing method therefor | |
WO2020052129A1 (en) | Rare-earth aluminum alloy material having high ductility and high strength and preparation method therefor | |
JP3802796B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
KR102407828B1 (en) | Wrought magnesium alloys with high mechanical properties and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080428 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |