JP4221697B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP4221697B2 JP4221697B2 JP2002175243A JP2002175243A JP4221697B2 JP 4221697 B2 JP4221697 B2 JP 4221697B2 JP 2002175243 A JP2002175243 A JP 2002175243A JP 2002175243 A JP2002175243 A JP 2002175243A JP 4221697 B2 JP4221697 B2 JP 4221697B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- metal layer
- semiconductor
- semiconductor device
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 95
- 229910052751 metal Inorganic materials 0.000 claims description 119
- 239000002184 metal Substances 0.000 claims description 119
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 51
- 229910002704 AlGaN Inorganic materials 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052697 platinum Inorganic materials 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 description 46
- 230000000694 effects Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 10
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 10
- 230000005533 two-dimensional electron gas Effects 0.000 description 8
- 229910005883 NiSi Inorganic materials 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
- H01L29/475—Schottky barrier electrodes on AIII-BV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【産業上の利用分野】
本発明はGaNを主材料として含む、マイクロ波帯で使用される高出力半導体装置に関し、特に、耐熱性、パワー性能に優れた半導体装置に用いるショットキー接合電極に関するものである。
【0002】
【従来の技術】
図8は、この種の従来の半導体装置の断面図である。このような半導体装置は、例えば、ミシュラ(U.K.Mishra)らにより、文献アイ・イー・イー・イー・トランザクションズ・オン・マイクロウェーブ・セオリー・アンド・テクニクス( IEEE Trans. Microwave Theory Tech.) 、第46巻、第6号、756頁、1998年に報告されている。
図8に示すように、半導体装置は、例えば、ヘテロ接合電界効果トランジスタであり、サファイア基板上に積層された半導体層を有している。サファイア基板61には、窒化アルミニウム(AlN)からなるバッファ層62、窒化ガリウム(GaN)チャネル層63、窒化アルミニウム・ガリウム(AlGaN)電子供給層64が順次形成されて半導体層の積層体を構成している。
そして、AlGaN電子供給層64に接してソース電極6Sおよびドレイン電極6Dが形成され、これらはオーム性接触がとられている。さらに、AlGaN電子供給層64に接してゲート電極67が形成され、これはショットキー性接触がとられている。ここでゲート電極67は、Ni層671とAu層672の積層構造からなる。
【0003】
【発明が解決しようとする課題】
GaN、AlGaN等のGaN系半導体のショットキー界面においては、フェルミレベルのピニングの影響が小さいため、障壁高さ(φB)が金属の仕事関数(Wm)と半導体の電子親和力(χs)の差で決定される。
φB=Wm−χs ・・・(1)
このため、従来技術による半導体装置のショットキー接合電極67においては、AlGaN層64に接して、仕事関数が大きい金属、例えば、Ni、Pt、Pd等からなる金属層(671)を形成していた。また、この金属層(671)上に形成されるAu層672は、電極抵抗を低減するために用いられている。
ショットキー接合電極67を構成するNi、Pt、Pdでは高いショットキー障壁が得られる反面、例えば、Niは転移点が約353℃と低いなど、熱的に不安定であるという問題がある。GaNを主たる材料とする半導体装置では、高電流密度(〜1A/mm)、高耐圧(〜100V)が得られるため、高電力密度(1〜10W/mm)での動作が可能になる。そのような動作状態では、自己発熱に伴いゲート電極近傍の温度が400℃以上まで上昇するため、Ni、Pt、Pdの熱拡散および金属層672を構成するAuとの合金化反応が顕著であった。
【0004】
このことを確かめるために、図8に示す従来の半導体装置に熱処理(500℃15分)を施した。このときの熱処理前、熱処理後の半導体装置の逆方向ゲート電流−電圧特性を図9に示す。図9は、縦軸がゲート電流(A/mm)であり、横軸がゲート−ドレイン電圧(V)である。図9によると、従来の半導体装置では熱処理により逆方向ゲート電流が1桁程度上昇した。
さらに、オージェ分光分析を用いて、熱処理前、熱処理後におけるこの半導体装置の構成元素の深さ方向分布を調べた。図10は、熱処理前のオージェ・プロファイル、図11は、熱処理後のオージェ・プロファイルである。図10および図11は、縦軸がオージェ強度(a.u.)であり、横軸がスパッタ時間(分)である。従来の半導体装置では500℃の熱処理によりNiとAuの相互拡散が生じることが確かめられた。したがって、熱処理により逆方向ゲート電流が増加したのは、NiとAuの合金化が促進され、NiAu合金の仕事関数がNiの仕事関数より小さいためにAlGaN電子供給層64との界面のショットキー障壁が低下したものと考えられる。また、高温ではショットキー接合電極(671)を構成するNiのAlGaN電子供給層64への熱拡散が生じ、深い準位が形成されて、素子特性が不安定になるという問題があった。
本発明は、上述した従来技術の問題点に鑑みてなされたものであって、その目的は、ショットキー接合電極の耐熱性を向上させ、電力性能、信頼性に優れたGaNを主材料とする半導体装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、このような課題を解決するために、GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層、第3金属層が順次積層された積層構造からなり、前記第1金属層は、Ni、Pt、Pd、NizSi1−z、NizN1−z、PdzN1−z(但し、0<z<1)のいずれかから選択された材料からなり、前記第2金属層は、Mo、Pt、W、Ta、MoxSi1−x、PtxSi1−x、WxSi1−x、TixSi1−x、TaxSi1−x、MoxN1−x、WxN1−x、TixN1−x、TaxN1−x(但し、0<x<1;第1金属層と同一材料である場合を除く)のいずれかから選択された材料からなり、前記第3金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴としている。
【0006】
また、本発明は、GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層が順次積層された積層構造からなり、前記第1金属層は、NiySi1−y、NiyN1−y、PdyN1−y(但し、0<y<1)のいずれかから選択された材料からなり、前記第2金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴としている。
ここで、好ましくは、半導体層は、AluGa1−uN(但し、0≦u≦1)で表される。
【0007】
[作用]
第1金属層から第3金属層までの積層構造において、第2金属層が第1金属と第3金属の相互拡散を抑制し信頼性が向上する。また、第1金属が仕事関数が大きいため、ショットキー障壁が高く、良好なショットキー接触を有する半導体装置が得られる。また、第1金属層および第2金属層からなる積層構造では、第1金属のGaN系半導体への熱拡散が抑制され、信頼性が向上する。このため、半導体装置の高温特性、電力性能に寄与するところ大となる。
【0008】
【発明の実施の形態】
以下、図面を参照しながら実施例に即くして発明の実施の形態を説明する。
(第1の実施例)
図1、図2および図3を参照して本発明の第1の実施例を説明する。
図1は、この実施例によるAlGaN/GaN系ヘテロ接合電界効果トランジスタ(Hetero-Junction Field Effect Transistor ;HJFET)の断面構造を示す図である。このトランジスタは、サファイア基板11上に形成される。図1において、サファイア基板11上に、アンドープのAlNバッファ層12、アンドープのGaNチャネル層13、アンドープのAlGaN電子供給層14の半導体層が順次形成されている。そして、AlGaN電子供給層14に接してソース電極6S、ドレイン電極6Dが形成され、オーム性接触がとられている。さらに、AlGaN電子供給層14と接してNi層171、Mo層172、Au層173の積層構造からなるゲート電極17が形成され、このゲート電極は、ショットキー性接触がとられている。GaNとAlGaNの格子定数差に起因するピエゾ分極効果および自発性分極効果に伴い、GaNチャネル層13のAlGaN電子供給層14との界面近傍には2次元電子ガスが形成される。HJFETは、ゲート電極17の電位で2次元電子ガス濃度を変調することにより、トランジスタとして動作させることができる。
この実施例の半導体装置は、以下のようにして作製される。( 0001) サファイア基板11上に、例えば分子線エピタキシャル成長(Molecular Beam Epitaxy;MBEと略する)法により、次に示す順および膜厚で順次成長させる。
アンドープAlN層(12) ・・・20nm
アンドープGaN層(13) ・・・2μm
アンドープAl0.3Ga0.7 N電子供給層(14)・・・30nm
【0009】
ここで、AlGaNとGaNは格子定数が異なるが、アンドープAl0.3Ga0.7N層14の膜厚30nmは、転位発生の臨界膜厚以下である。
次に、AlGaN層14上には、例えば、Ti/Alなどの金属を蒸着、アロイ処理することにより、ソース電極6S、ドレイン電極6Dをそれぞれ形成し、これら電極は、オーム性接触をとる。最後に、AlGaN層14上に、例えば、蒸着・リフトオフ法により、次に示す順および層厚で金属層を順次形成し、ショットキー接触するゲート電極17を形成する。
【0010】
Ni第1金属層(171) ・・・15nm
Mo第2金属層(172) ・・・15nm
Au第3金属層(173) ・・・200nm
【0011】
このようにして、図1に示す半導体装置が作製される。
この実施例の特徴は、ゲート電極17がNi層171、Mo層172、Au層173の積層構造からなることである。Moは融点が約2630℃と高いため、NiとAuの相互拡散に対するバリヤとして働く。このため、高温においてもゲートリーク電流が抑制され、素子信頼性が向上した。また、AlGaN電子供給層14に接する第1金属Niは、仕事関数が約4.6eVと大きいため、ショットキー障壁が高く、良好なショットキー接触が得られる。
このような半導体装置に対して熱処理(500℃、15分)を施した。この時の熱処理前、熱処理後の半導体装置の逆方向ゲート電流−電圧特性を図2に示す。図2は、縦軸がゲート電流(A/mm)であり、横軸がゲート−ドレイン電圧(V)である。図2に示すように、熱処理前後で逆方向ゲート電流の変化は殆ど見られず、Mo層挿入による耐熱性向上の効果が確認された。
図3は、従来技術の特性と比較した、この実施例の半導体装置における飽和出力密度のゲート幅依存性を示す特性図である。図3の縦軸は、飽和電力(W/mm)、横軸は半導体装置のゲート幅(mm)である。図中には従来技術による半導体装置における測定結果も示されている。従来技術において、ゲート幅が32mm以上の大型素子では、自己発熱による飽和出力密度の大幅な低下が観測された。一方、この実施例では出力密度の低下は小さく、ゲート電極の耐熱性向上によるパワー性能の改善が確認された。
【0012】
この実施例では、第2金属層をMo層172により構成したがこれを他の高融点金属層で置き換えても同様な効果が得られる。例えば、第2金属層(172)をPt層、W層、Ta層のいずれかで置き換えてもよい。
また、第2金属層(172)を高融点であり且つ熱的に安定な珪化金属層または窒化金属層で置き換えても同様な効果が得られる。例えば、第2金属層172をMoxSi1−x層、PtxSi1−x層、WxSi1−x層、TixSi1−x層、TaxSi1−x層、MoxN1−x層、WxN1−x層、TixN1−x層、TaxN1−x層(但し、0<x<1)のいずれかで置き換えてもよい。
この実施例では、第1金属層をNi層171により構成したが、これを仕事関数が大きい他の金属層で置き換えても同様な効果が得られる。例えば、第1金属層171をPt層またはPd層で置き換えてもよい。
また、この実施例では、第3金属層をAu層173により構成したが、これをを抵抗率が小さい他の金属層で置き換えても同様な効果が得られる。例えば、第3金属層(173)をCu層、Al層、Pt層のいずれかで置き換えてもよい。
【0013】
(第2の実施例)
次に、図4を参照して本発明の第2の実施例を説明する。
図4は、この実施例によるAlGaN/GaN系HJFETの断面構造を示す図である。このHJFETは、サファイア基板21上に形成された半導体層から構成されている。サファイア基板21上には、アンドープのAlNバッファ層22(20nm)、アンドープのGaNチャネル層23(膜厚2μm)、アンドープAl0.3Ga0.7NからなるAlGaN電子供給層24(膜厚30nm)の積層された半導体層が形成されている。
AlGaN電子供給層24上には、これに接してソース電極6S、ドレイン電極6Dが形成され、これらはオーム性接触がとられている。さらにAlGaN電子供給層24に接して第1金属層としてNi0.7 Si0.3からなるNiSi層271(15nm)、第2金属層となるAu層272(200nm)の積層構造からなるゲート電極27が形成され、これはショットキー性接触がとられている。GaNとAlGaNの格子定数差に起因するピエゾ分極効果および自発性分極効果に伴い、GaNチャネル層23のAlGaN電子供給層24との界面近傍には、2次元電子ガスが形成される。HJFETは、ゲート電極27の電位で2次元電子ガス濃度を変調することにより、トランジスタとして動作させることができる。
【0014】
この実施例の特徴は、ゲート電極27がNi0.7 Si0.3 第1金属層271、Au第2金属層層272の積層構造からなることにある。NiySi1−y(但し、0<y<1)はNi−Si間の結合力が強いため、Ni単体よりも高温で安定である。好ましくは、0.4≦y≦0.75である。特に、0.65≦y≦0.75の場合には、融点が約1200℃以上と非常に高く、また、Niと比較して抵抗率増加も小さくより好ましい。このため、高温においても第1金属のAlGaN電子供給層24への熱拡散が抑制され、素子信頼性が向上した。
この実施例では、第1金属層をNiSi層271により構成したが、第1金属層(271)を他の熱的に安定で仕事関数が大きい窒化金属、例えばNiN、PdNで置き換えても同様な効果が得られる。ここで、第1金属層(271)をNiyN1−y(但し、0.5≦y≦0.85)、PdyN1−y (但し、0.5≦y≦0.85)のいずれかで構成することがより好ましい。
また、この実施例では、第2金属層をAu層272により構成したが、これを抵抗率が小さい他の金属層で置き換えても同様な効果が得られる。例えば、第2金属層(272)をCu層、Al層、Pt層のいずれかで置き換えてもよい。
【0015】
(第3の実施例)
次に、図5を参照して本発明の第3の実施例を説明する。
図5は、この実施例によるAlGaN/GaN系HJFETの断面構造を示す図である。このHJFETは、SiC基板31上に形成された半導体層から構成されている。SiC基板31上には、アンドープのAlNバッファ層32、アンドープのGaNバッファ層33(膜厚2μm)、アンドープIn0.1Ga0.9 NからなるInGaNチャネル層34(膜厚15nm)およびアンドープAl0.2Ga0.8NからなるAlGaN電子供給層35(膜厚40nm)の積層された半導体層が形成されている。
AlGaN電子供給層35に接してオーム性接触をとるソース電極6Sおよびドレイン電極6Dが形成されている。さらに、AlGaN電子供給層35に接して第1金属層としてNi0.7 Si0.3からなるNiSi層371、第2金属層としてMo層372、第3金属層としてAu層373の積層構造からなるゲート電極37が形成され、この電極はショットキー性接触がとられている。InGaNとAlGaNの格子定数差に起因するピエゾ分極効果および自発性分極効果に伴い、InGaNチャネル層34のAlGaN層35との界面近傍には2次元電子ガスが形成される。HJFETは、ゲート電極37の電位で2次元電子ガス濃度を変調することにより、トランジスタとして動作させることができる。
【0016】
この実施例の特徴は、ゲート電極37がNiSi層371、Mo層372、Au層373の積層構造から構成されていることである。Moは、融点が約2630℃と高いため、NiとAuの相互拡散に対するバリヤとして働く。このため、高温においてもゲートリーク電流が抑制される。また、AlGaN電子供給層35に接する第1金属は、NiySi1−y(但し、0<y<1、より好ましくは0.4≦y≦0.75)のNi−Si間の結合力が強いためNi単体よりも高温で安定である。とくに、0.65≦y≦0.75の場合には、融点が約1200℃以上と非常に高く、また、Niと比較して抵抗率増加も小さい。このため、高温においても第1金属のAlGaN電子供給層34への熱拡散が抑制されて素子信頼性が向上した。
この実施例においても、第1および第2の実施例と同様に、ゲート電極の耐熱性の向上が確認された。また、ゲート電極の耐熱性向上によるパワー性能の改善も確認された。
この実施例では、第1金属層(371)をNiySi1−yにより構成したが、これを他の熱的に安定で且つ仕事関数が大きい窒化金属、例えばNiN、PdNで置き換えても同様な効果が得られる。ここで、さらに、望ましくは、NiyN1−y(但し、0.5≦y≦0.85)、PdyN1−y(但し、0.5≦y≦0.85)のいずれかで置き換えることである。
【0017】
この実施例では、第2金属層をMo層372により構成したが、これを他の高融点金属層で置き換えても同様な効果が得られる。例えば、第2金属層(372)をPt層、W層、Ta層のいずれかで置き換えてもよい。また、第2金属層(372)を高融点でかつ熱的に安定な珪化金属層または窒化金属層で置き換えても同様な効果が得られる。例えば、第2金属層(372)をMoxSi1−x層、PtxSi1−x層、WxSi1−x層、TixSi1−x層、TaxSi1−x層、MoxN1−x層、WxN1−x層、TixN1−x層、TaxN1−x層(但し、0<x<1)のいずれかで置き換えてもよい。
また、この実施例では、第3金属層をAu層373により構成したが、第3金属層(373)を抵抗率が小さい他の金属層で置き換えても同様な効果が得られる。例えば、第2金属層(373)をCu層、Al層、Pt層のいずれかで置き換えることができる。
【0018】
(第4の実施例)
次に、図6を参照して本発明の第4の実施例を説明する。
図6は、この実施例によるGaN系金属−半導体電界効果トランジスタ(MESFET)の断面構造を示す図である。このMESFETは、SiC基板41上に形成された半導体層から構成されている。SiC基板41上には、アンドープのAlNバッファ層42、アンドープのGaNバッファ層43(膜厚1μm)、n型GaNチャネル層44(不純物濃度2×1017/cm3 、膜厚150nm)の積層された半導体層が形成されている。
n型GaNチャネル層44上にこれに接してオーム性接触がとられるソース電極6Sおよびドレイン電極6Dが形成されている。さらに、GaNチャネル層44上にこれに接して第1金属層としてNi層471、第2金属層としてMo層472、第3金属層としてAu層473の積層構造からなるゲート電極47が形成され、この電極は、ショットキー性接触がとられている。n型GaNチャネル層44のゲート電極47との界面近傍には、空乏層が形成される。MESFETは、ゲート電極47の電位で空乏層厚を変調することにより、トランジスタとして動作させることができる。この実施例では、チャネル層をn型GaNにより構成したが、これをn型InGaNに置き換えてもよい。
【0019】
この実施例は、図1に示したゲート電極構造17をGaN系MESFETに適用したものである。したがって、第1の実施例と同様に、高温においても第1金属層と第3金属層の相互拡散が抑制され、素子信頼性が向上する。また、ショットキー障壁が高く、良好なショットキー接触が得られる。また、ゲート電極47を、図4に示したゲート電極構造27で置き換えてもよい。この場合には、第2の実施例と同様に、高温においても、NiのGaNチャネル層44への熱拡散が抑制され、素子信頼性が向上する。さらに、ゲート電極47を、図5に示したゲート電極構造37で置き換えてもよい。この場合には、第3の実施例と同様に、第1金属層と第3金属層の相互拡散が抑制されると共に、第1金属層のGaNチャネル層44への熱拡散が抑制され、素子信頼性が向上する。
【0020】
(第5の実施例)
次に、図7を参照して本発明の第5の実施例を説明する。
図7は、この実施例によるGaN/AlGaN系HJFETの断面構造を示す図である。このHJFETは、GaN基板51上に形成された半導体層から構成されている。GaN基板51上には、アンドープのAlNバッファ層52、アンドープのGaNチャネル層53(膜厚1μm)、n型Al0.2Ga0.8 N(不純物濃度2×1018/cm3 、膜厚30nm)からなるn型AlGaN電子供給層54、アンドープのGaNチャネル層55の積層された半導体層が形成されている。
GaNチャネル層55上にこれに接してオーム性接触がとられたソース電極6Sおよびドレイン電極6Dが形成されている。さらに、GaNチャネル層55上にこれに接して第1金属層としてNi0.5Si0.5 からなるNiSi層571、第2金属層としてAu層572の積層構造からなるゲート電極57が形成され、この電極は、ショットキー性接触がとられている。GaNチャネル層55のAlGaN電子供給層54との界面近傍には、2次元電子ガスが形成される。HJFETは、ゲート電極57の電位で2次元電子ガス濃度を変調することにより、トランジスタとして動作させることができる。この実施例では、チャネル層をGaNにより構成したが、これをInGaNに置き換えてもよい。
【0021】
この実施例は、図4に示したゲート電極構造27をGaN/AlGaN系のHJFET構造に適用したものである。したがって、第2の実施例と同様に、高温においても、第1金属層のGaNチャネル層55への熱拡散が抑制され、素子信頼性が向上する。
また、ゲート電極57を、図1に示したゲート電極構造17で置き換えてもよい。この場合には、第1の実施例と同様に、高温においても第1金属層と第3金属層の相互拡散が抑制され、素子信頼性が向上する。また、ショットキー障壁が高く、良好なショットキー接触が得られる。
さらに、ゲート電極57を、図5に示したゲート電極構造37で置き換えてもよい。この場合には、第3の実施例と同様に、第1金属層と第3金属層の相互拡散が抑制されると共に、第1金属層のGaNチャネル層55への熱拡散が抑制され、素子信頼性が向上する。
【0022】
以上、本発明を上記実施例に即して説明したが、本発明は、このような実施例のみ限定されず、本発明の原理に準ずる各種態様を含むことは勿論である。例えば、上記実施例においてはショットキー接合電極が接触する半導体層としてGaN層またはAlGaN層を用いたが、InAlN層、InGaN層、InAlGaN層、AlN層を用いてもよい。また、GaN層、AlGaN層、InAlN層、InGaN層、InAlGaN層、AlN層の内の少なくとも1層を含む超格子層としてもよい。
更に、上記実施例においてはソース電極、ゲート電極、ドレイン電極が同一半導体層上に形成されたプレーナ構造をとっていたが、ソース電極およびドレイン電極の下に選択的にN形半導体からなるキャップ層が形成されたリセス構造であってもよい。また、ゲート電極がGaN、AlGaN等の半導体層内に埋め込まれた埋め込みゲート構造をとってもよい。
【0023】
【発明の効果】
以上、本発明によれば、GaN系半導体装置において、ショットキー接合電極をNi、Pt、Pdのいずれかにより形成される第1金属層、Mo、Pt、W、Ta、MoxSi1−x、PtxSi1−x、WxSi1−x、TixSi1−x、TaxSi1−x、MoxN1−x、WxN1−x、TixN1−x、TaxN1−x(但し、0<x<1)の内のいずれかにより形成される第2金属層、Au、Cu、Al、Ptの内のいずれかにより形成される第3金属層の積層構造により構成する。これにより、第1金属と第3金属の相互拡散が抑制され、信頼性が向上する。また、第1金属は仕事関数が大きいため、ショットキー障壁が高く、良好なショットキー接触が得られる。
更に、ショットキー接合電極をNiySi1−y、NiyN1−y、PdyN1−y(但し、0<y<1)のいずれかにより形成される第1金属層、Au、Cu、Al、Ptの内のいずれかにより形成される第2金属層の積層構造により構成すれば、第1金属のGaN系半導体への熱拡散が抑制され、信頼性が向上する。このため、半導体装置の高温特性、電力性能に寄与するところ大である。
【図面の簡単な説明】
【図1】 本発明の第1の実施例であるHJFETの断面構造を示す図である。
【図2】 図1の半導体装置に対する熱処理前、熱処理後の逆方向ゲート電流−電圧特性を示す特性図である。
【図3】 従来技術と比較した図1の半導体装置における飽和出力密度のゲート幅依存性を示す特性図である。
【図4】 本発明の第2の実施例であるHJFETの断面構造を示す図である。
【図5】 本発明の第3の実施例であるHJFETの断面構造を示す図である。
【図6】 本発明の第4の実施例であるMESFETの断面構造を示す図である。
【図7】 本発明の第5の実施例であるHJFETの断面構造を示す図である。
【図8】 従来技術による半導体装置の断面構造を示す図である。
【図9】 従来の半導体装置の熱処理前、熱処理後の逆方向ゲート電流−電圧特性を示す特性図である。
【図10】 従来の半導体装置の熱処理前のオージェ・プロファイルを示す図である。
【図11】 従来の半導体装置の熱処理後のオージェ・プロファイル示す図である。
【符号の説明】
6D ドレイン電極
6S ソース電極
11、21、61 サファイア基板
12、22、32、42、52、62 AlNバッファ層
13、23、55、63 GaNチャネル層
14、24、35、64 AlGaN電子供給層
17、27、37、47、57、67 ゲート電極
171、471、671 Ni層
172、372、472 Mo層
173、272、373、473、572、672 Au層
271、371、571 NiSi層
31、41 SiC基板
33、43 GaNバッファ層
34 InGaNチャネル層
44 n型GaNチャネル層
51 GaN基板
53 AlGaNバッファ層
54 n型AlGaN電子供給層
Claims (9)
- GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層、第3金属層が順次積層された積層構造からなり、前記第1金属層は、Ni、Pt、Pd、NizSi1−z、NizN1−z、PdzN1−z(但し、0<z<1)のいずれかから選択された材料からなり、前記第2金属層は、Mo、Pt、W、Ta、MoxSi1−x、PtxSi1−x、WxSi1−x、TixSi1−x、TaxSi1−x、MoxN1−x、WxN1−x、TixN1−x、TaxN1−x(但し、0<x<1;第1金属層と同一材料である場合を除く)のいずれかから選択された材料からなり、前記第3金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴とする半導体装置。
- GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層が順次積層された積層構造からなり、前記第1金属層は、NiySi1−y、NiyN1−y、PdyN1−y(但し、0<y<1)のいずれかから選択された材料からなり、前記第2金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴とする半導体装置。
- GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層、第3金属層が順次積層された積層構造からなり、前記第1金属層は、Niz1Si1−z1(但し、0.4≦z1≦0.75) 、Niz4N1−z4(但し、0.5≦z4≦0.85) 、Pdz5N1−z5(但し、0.5≦z5≦0.85)のいずれかから選択された材料からなり、前記第2金属層は、Mo、Pt、W、Ta、MoxSi1−x、PtxSi1−x、WxSi1−x、TixSi1−x、TaxSi1−x、MoxN1−x、WxN1−x、TixN1−x、TaxN1−x(但し、0<x<1;第1金属層と同一材料である場合を除く)のいずれかから選択された材料からなり、前記第3金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴とする半導体装置。
- GavAl1−v(但し、0≦v≦1)をIII族側元素の主成分としNをV族側元素の主成分とする化合物半導体から構成された半導体層とこの半導体層に接触するショットキー接合電極とを有する半導体装置において、前記ショットキー接合電極は、前記半導体層と接触する側から第1金属層、第2金属層が順次積層された積層構造からなり、前記第1金属層は、Niy1Si1−y1(但し、0.4≦y1≦0.75)、Niy4N1−y4(但し、0.5≦y4≦0.85) 、Pdy5N1−y5(但し、0.5≦y5≦0.85)のいずれかから選択された材料からなり、前記第2金属層は、Au、Cu、Al、Ptのいずれかから選択された材料からなることを特徴とする半導体装置。
- 前記半導体層は、サファイヤ基板、SiC基板、GaN基板のいずれかの基板上に形成された複数の化合物半導体層上に形成されていることを特徴とする請求項1から4のいずれかに記載の半導体装置。
- 前記半導体層が、AluGa1−uN層(但し、0≦u≦1)であることを特徴とする請求項1から5のいずれかに記載の半導体装置。
- 前記半導体層が、GaNチャネル層またはInGaNチャネル層上に形成されたAlGaN電子供給層であることを特徴とする請求項1から5のいずれかに記載の半導体装置。
- 前記半導体層が、AlGaN電子供給層上に形成されたGaNチャネル層またはInGaNチャネル層であることを特徴とする請求項1から5のいずれかに記載の半導体装置。
- 前記半導体層が、n型GaNチャネル層であることを特徴とする請求項1から5のいずれかに記載の半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002175243A JP4221697B2 (ja) | 2002-06-17 | 2002-06-17 | 半導体装置 |
CNB038195194A CN100380678C (zh) | 2002-06-17 | 2003-06-17 | 具有肖特基结电极的半导体装置 |
US10/518,602 US7071526B2 (en) | 2002-06-17 | 2003-06-17 | Semiconductor device having Schottky junction electrode |
PCT/JP2003/007676 WO2003107431A1 (ja) | 2002-06-17 | 2003-06-17 | ショットキー接合電極を有する半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002175243A JP4221697B2 (ja) | 2002-06-17 | 2002-06-17 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004022773A JP2004022773A (ja) | 2004-01-22 |
JP4221697B2 true JP4221697B2 (ja) | 2009-02-12 |
Family
ID=29728025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002175243A Expired - Fee Related JP4221697B2 (ja) | 2002-06-17 | 2002-06-17 | 半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7071526B2 (ja) |
JP (1) | JP4221697B2 (ja) |
CN (1) | CN100380678C (ja) |
WO (1) | WO2003107431A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12142677B2 (en) | 2021-07-27 | 2024-11-12 | Nuvoton Technology Corporation Japan | Semiconductor device |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7400112B2 (en) * | 2001-06-20 | 2008-07-15 | Helen Of Troy Limited | Autoilluminating rechargeable lamp system |
EP2267783B1 (en) | 2001-07-24 | 2017-06-21 | Cree, Inc. | Insulating gate algan/gan hemt |
US7166867B2 (en) * | 2003-12-05 | 2007-01-23 | International Rectifier Corporation | III-nitride device with improved layout geometry |
WO2005081304A1 (ja) * | 2004-02-20 | 2005-09-01 | Nec Corporation | 電界効果トランジスタ |
US7417266B1 (en) | 2004-06-10 | 2008-08-26 | Qspeed Semiconductor Inc. | MOSFET having a JFET embedded as a body diode |
KR100848379B1 (ko) * | 2004-06-11 | 2008-07-25 | 암모노 에스피. 제트오. 오. | Ⅹⅲ족 원소 질화물의 층으로 이루어진 고 전자이동도트랜지스터 및 그 제조 방법 |
JP4345626B2 (ja) * | 2004-09-27 | 2009-10-14 | 豊田合成株式会社 | 半導体素子及びその製造方法。 |
US7288803B2 (en) * | 2004-10-01 | 2007-10-30 | International Rectifier Corporation | III-nitride power semiconductor device with a current sense electrode |
US7236053B2 (en) | 2004-12-31 | 2007-06-26 | Cree, Inc. | High efficiency switch-mode power amplifier |
JP4866007B2 (ja) * | 2005-01-14 | 2012-02-01 | 富士通株式会社 | 化合物半導体装置 |
JP2006310769A (ja) * | 2005-02-02 | 2006-11-09 | Internatl Rectifier Corp | Iii族窒化物一体化ショットキおよび電力素子 |
JP2006223016A (ja) * | 2005-02-08 | 2006-08-24 | Renesas Technology Corp | 電源システム、マルチチップモジュール、システムインパッケージ、および非絶縁型dc/dcコンバータ |
US7737522B2 (en) * | 2005-02-11 | 2010-06-15 | Alpha & Omega Semiconductor, Ltd. | Trench junction barrier controlled Schottky device with top and bottom doped regions for enhancing forward current in a vertical direction |
WO2007007589A1 (ja) * | 2005-07-08 | 2007-01-18 | Nec Corporation | 電界効果トランジスタおよびその製造方法 |
JP2007048878A (ja) | 2005-08-09 | 2007-02-22 | Mitsubishi Electric Corp | 半導体装置 |
CN100381609C (zh) * | 2005-11-03 | 2008-04-16 | 上海交通大学 | 铜互连阻挡层材料TaWN薄膜 |
US8026568B2 (en) * | 2005-11-15 | 2011-09-27 | Velox Semiconductor Corporation | Second Schottky contact metal layer to improve GaN Schottky diode performance |
KR100662850B1 (ko) * | 2006-02-02 | 2007-01-02 | 삼성전자주식회사 | 복수 개의 금속층을 적층한 반도체 소자 |
EP1883141B1 (de) * | 2006-07-27 | 2017-05-24 | OSRAM Opto Semiconductors GmbH | LD oder LED mit Übergitter-Mantelschicht |
PL1883119T3 (pl) * | 2006-07-27 | 2016-04-29 | Osram Opto Semiconductors Gmbh | Półprzewodnikowa struktura warstwowa z supersiecią |
EP1883140B1 (de) * | 2006-07-27 | 2013-02-27 | OSRAM Opto Semiconductors GmbH | LD oder LED mit Übergitter-Mantelschicht und Dotierungsgradienten |
US7692263B2 (en) | 2006-11-21 | 2010-04-06 | Cree, Inc. | High voltage GaN transistors |
DE102007003541A1 (de) * | 2007-01-24 | 2008-07-31 | Robert Bosch Gmbh | Elektronisches Bauteil |
US8212290B2 (en) * | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
JP2010219130A (ja) * | 2009-03-13 | 2010-09-30 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
CN101527174B (zh) * | 2009-04-10 | 2012-01-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 肖特基型核电池及其制备方法 |
JP5144585B2 (ja) * | 2009-05-08 | 2013-02-13 | 住友電気工業株式会社 | 半導体装置およびその製造方法 |
KR101774933B1 (ko) * | 2010-03-02 | 2017-09-06 | 삼성전자 주식회사 | 듀얼 디플리션을 나타내는 고 전자 이동도 트랜지스터 및 그 제조방법 |
US9142631B2 (en) * | 2010-03-17 | 2015-09-22 | Cree, Inc. | Multilayer diffusion barriers for wide bandgap Schottky barrier devices |
JP5343910B2 (ja) * | 2010-04-09 | 2013-11-13 | 富士通株式会社 | 化合物半導体装置の製造方法 |
US8896122B2 (en) | 2010-05-12 | 2014-11-25 | Cree, Inc. | Semiconductor devices having gates including oxidized nickel |
JP2012227228A (ja) * | 2011-04-15 | 2012-11-15 | Advanced Power Device Research Association | 半導体デバイスおよび半導体デバイスの製造方法 |
US9111904B2 (en) | 2011-11-29 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate breakdown voltage improvement for group III-nitride on a silicon substrate |
US8633094B2 (en) | 2011-12-01 | 2014-01-21 | Power Integrations, Inc. | GaN high voltage HFET with passivation plus gate dielectric multilayer structure |
US8940620B2 (en) | 2011-12-15 | 2015-01-27 | Power Integrations, Inc. | Composite wafer for fabrication of semiconductor devices |
US9640627B2 (en) * | 2012-03-07 | 2017-05-02 | Cree, Inc. | Schottky contact |
JP5995309B2 (ja) * | 2012-03-28 | 2016-09-21 | 住友電工デバイス・イノベーション株式会社 | 半導体装置及びその製造方法 |
CN102664197B (zh) * | 2012-06-05 | 2014-08-06 | 长安大学 | Jfet及其制造方法以及使用该jfet的微型逆变器 |
JP5777586B2 (ja) * | 2012-09-20 | 2015-09-09 | 株式会社東芝 | 半導体装置及びその製造方法 |
US9202703B2 (en) | 2012-11-05 | 2015-12-01 | Cree, Inc. | Ni-rich Schottky contact |
US8928037B2 (en) | 2013-02-28 | 2015-01-06 | Power Integrations, Inc. | Heterostructure power transistor with AlSiN passivation layer |
CN103219239B (zh) * | 2013-03-27 | 2015-05-27 | 中国电子科技集团公司第五十五研究所 | AlGaN/GaN HEMT制造法 |
JP6156038B2 (ja) * | 2013-10-03 | 2017-07-05 | 富士通株式会社 | 半導体装置の製造方法 |
CN103745922A (zh) * | 2013-12-09 | 2014-04-23 | 中国电子科技集团公司第五十五研究所 | GaN高电子迁移率晶体管复合介质绝缘栅的制造方法 |
JP2015167220A (ja) * | 2014-02-12 | 2015-09-24 | 三菱電機株式会社 | 半導体装置及びその製造方法 |
US20150364330A1 (en) | 2014-06-11 | 2015-12-17 | Hrl Laboratories Llc | Ta based au-free ohmic contacts in advanced aigan/gan based hfets and/or moshfets for power switch applications |
JP6237553B2 (ja) * | 2014-09-24 | 2017-11-29 | 豊田合成株式会社 | 半導体装置およびその製造方法 |
CN105097910B (zh) * | 2015-07-14 | 2018-11-13 | 工业和信息化部电子第五研究所 | 氮化镓基高电子迁移率晶体管的栅电极 |
JP6398909B2 (ja) * | 2015-08-20 | 2018-10-03 | 豊田合成株式会社 | ショットキーバリアダイオード及びその製造方法 |
JP2017163050A (ja) * | 2016-03-10 | 2017-09-14 | 株式会社東芝 | 半導体装置 |
JP6724685B2 (ja) * | 2016-09-23 | 2020-07-15 | 住友電気工業株式会社 | 半導体装置 |
US10026823B1 (en) * | 2017-03-08 | 2018-07-17 | Raytheon Company | Schottky contact structure for semiconductor devices and method for forming such schottky contact structure |
CN109659361B (zh) | 2017-10-12 | 2022-03-04 | 电力集成公司 | 用于异质结器件的栅极堆叠体 |
US20190148498A1 (en) * | 2017-11-13 | 2019-05-16 | Win Semiconductors Corp. | Passivation Structure For GaN Field Effect Transistor |
JP6997002B2 (ja) | 2018-02-19 | 2022-01-17 | 住友電気工業株式会社 | 半導体装置及びその製造方法 |
CN108550622A (zh) * | 2018-03-16 | 2018-09-18 | 扬州科讯威半导体有限公司 | 一种氮化镓肖特基势垒二极管及其制造方法 |
JP7047615B2 (ja) | 2018-06-13 | 2022-04-05 | 住友電工デバイス・イノベーション株式会社 | 半導体デバイスの製造方法 |
CN111293179A (zh) * | 2018-12-10 | 2020-06-16 | 黄山学院 | 一种硅基氮化镓肖特基二极管及其制备方法 |
IT201800011065A1 (it) * | 2018-12-13 | 2020-06-13 | St Microelectronics Srl | Transistore hemt includente una regione di porta perfezionata e relativo procedimento di fabbricazione |
CN113257893A (zh) * | 2021-04-30 | 2021-08-13 | 北海惠科半导体科技有限公司 | 一种肖特基二极管及其制作方法和芯片 |
CN118318308A (zh) * | 2021-11-25 | 2024-07-09 | 华为技术有限公司 | 一种高电子迁移率晶体管、射频晶体管、功率放大器和高电子迁移率晶体管的制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61117868A (ja) * | 1984-11-14 | 1986-06-05 | Toshiba Corp | 半導体装置及びその製造方法 |
JP4043600B2 (ja) | 1998-06-03 | 2008-02-06 | 古河電気工業株式会社 | ショットキー障壁形成用電極 |
JP3512659B2 (ja) * | 1998-12-28 | 2004-03-31 | シャープ株式会社 | 窒化物系iii−v族化合物半導体装置 |
JP2000277724A (ja) * | 1999-03-26 | 2000-10-06 | Nagoya Kogyo Univ | 電界効果トランジスタとそれを備えた半導体装置及びその製造方法 |
US6380552B2 (en) * | 1999-05-28 | 2002-04-30 | Hrl Laboratories, Llc | Low turn-on voltage InP Schottky device and method |
US6774449B1 (en) * | 1999-09-16 | 2004-08-10 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
JP3344416B2 (ja) | 1999-09-16 | 2002-11-11 | 松下電器産業株式会社 | 半導体装置およびその製造方法 |
JP2003209124A (ja) * | 2001-11-06 | 2003-07-25 | Sony Corp | 電界効果半導体素子の製造方法及び電界効果半導体素子 |
-
2002
- 2002-06-17 JP JP2002175243A patent/JP4221697B2/ja not_active Expired - Fee Related
-
2003
- 2003-06-17 WO PCT/JP2003/007676 patent/WO2003107431A1/ja active Application Filing
- 2003-06-17 CN CNB038195194A patent/CN100380678C/zh not_active Expired - Fee Related
- 2003-06-17 US US10/518,602 patent/US7071526B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12142677B2 (en) | 2021-07-27 | 2024-11-12 | Nuvoton Technology Corporation Japan | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2004022773A (ja) | 2004-01-22 |
US7071526B2 (en) | 2006-07-04 |
US20050151255A1 (en) | 2005-07-14 |
CN100380678C (zh) | 2008-04-09 |
CN1675775A (zh) | 2005-09-28 |
WO2003107431A1 (ja) | 2003-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4221697B2 (ja) | 半導体装置 | |
JP5580602B2 (ja) | デプレッションモードGaNベースFETを使用したカスコード回路 | |
JP4705481B2 (ja) | 窒化物半導体装置 | |
US9171945B2 (en) | Switching element utilizing recombination | |
US8183597B2 (en) | GaN semiconductor device having a high withstand voltage | |
US11462635B2 (en) | Nitride semiconductor device and method of manufacturing the same | |
JP4134575B2 (ja) | 半導体装置およびその製造方法 | |
US9680001B2 (en) | Nitride semiconductor device | |
JP2001196575A (ja) | 半導体装置 | |
JP5202897B2 (ja) | 電界効果トランジスタおよびその製造方法 | |
JP6119215B2 (ja) | 電界効果トランジスタ | |
JP5691138B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
JP6225584B2 (ja) | 半導体装置の評価方法、並びに半導体装置およびその製造方法 | |
JP5415668B2 (ja) | 半導体素子 | |
JP2011108712A (ja) | 窒化物半導体装置 | |
WO2016151704A1 (ja) | 窒化物半導体素子及び電力変換装置 | |
JP2016207890A (ja) | ヘテロ接合半導体装置 | |
JP5113375B2 (ja) | 窒化物半導体装置 | |
JP4327114B2 (ja) | 窒化物半導体装置 | |
JP2015056413A (ja) | 窒化物半導体装置 | |
JP2006286698A (ja) | 電子デバイス及び電力変換装置 | |
JP2009060065A (ja) | 窒化物半導体装置 | |
JP4444188B2 (ja) | GaN系半導体装置 | |
JP2013074128A (ja) | スイッチング素子 | |
JP2007059448A (ja) | ヘテロ接合電界効果型トランジスタおよび、ヘテロ接合電界効果型トランジスタの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081024 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081106 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |