JP4217870B2 - 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 - Google Patents
有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 Download PDFInfo
- Publication number
- JP4217870B2 JP4217870B2 JP2002205468A JP2002205468A JP4217870B2 JP 4217870 B2 JP4217870 B2 JP 4217870B2 JP 2002205468 A JP2002205468 A JP 2002205468A JP 2002205468 A JP2002205468 A JP 2002205468A JP 4217870 B2 JP4217870 B2 JP 4217870B2
- Authority
- JP
- Japan
- Prior art keywords
- siloxane
- film
- skeleton
- organic
- organosiloxane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001577 copolymer Polymers 0.000 title claims description 142
- 239000004065 semiconductor Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title description 11
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 288
- 239000000178 monomer Substances 0.000 claims description 183
- -1 siloxane skeleton Chemical group 0.000 claims description 119
- 239000007789 gas Substances 0.000 claims description 117
- 125000005375 organosiloxane group Chemical group 0.000 claims description 114
- 238000006243 chemical reaction Methods 0.000 claims description 84
- 239000010410 layer Substances 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 52
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 51
- 238000012644 addition polymerization Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 230000008016 vaporization Effects 0.000 claims description 42
- 239000010949 copper Substances 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000011229 interlayer Substances 0.000 claims description 16
- 238000004140 cleaning Methods 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 13
- 238000001947 vapour-phase growth Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 12
- 238000007259 addition reaction Methods 0.000 claims 4
- 150000004756 silanes Chemical class 0.000 claims 1
- 150000002430 hydrocarbons Chemical group 0.000 description 70
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 40
- 239000002994 raw material Substances 0.000 description 36
- 239000000126 substance Substances 0.000 description 35
- 238000009834 vaporization Methods 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 27
- 238000006116 polymerization reaction Methods 0.000 description 24
- 239000012159 carrier gas Substances 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 19
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 19
- 239000007788 liquid Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000004528 spin coating Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 238000005755 formation reaction Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000004132 cross linking Methods 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 230000005284 excitation Effects 0.000 description 11
- 229920006254 polymer film Polymers 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 8
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000007142 ring opening reaction Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012719 thermal polymerization Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- OOVQLEHBRDIXDZ-UHFFFAOYSA-N 7-ethenylbicyclo[4.2.0]octa-1,3,5-triene Chemical group C1=CC=C2C(C=C)CC2=C1 OOVQLEHBRDIXDZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910020177 SiOF Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 2
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical group C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- IUMSDRXLFWAGNT-UHFFFAOYSA-N Dodecamethylcyclohexasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 IUMSDRXLFWAGNT-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- PMSZNCMIJVNSPB-UHFFFAOYSA-N bis(ethenyl)silicon Chemical compound C=C[Si]C=C PMSZNCMIJVNSPB-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- BNCOGDMUGQWFQE-UHFFFAOYSA-N tris(ethenyl)silicon Chemical compound C=C[Si](C=C)C=C BNCOGDMUGQWFQE-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
- H01L21/3121—Layers comprising organo-silicon compounds
- H01L21/3122—Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
- H01L21/3124—Layers comprising organo-silicon compounds layers comprising polysiloxane compounds layers comprising hydrogen silsesquioxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76832—Multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76835—Combinations of two or more different dielectric layers having a low dielectric constant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Formation Of Insulating Films (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の属する技術分野】
本発明は、半導体素子及びその素子間を結ぶ配線間の絶縁用の有機絶縁体膜として利用可能な有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置に関し、より具体的には、
気相成長可能な有機シロキサン共重合体膜と、半導体装置への適用に適合する該共重合体膜の気相成長方法に関する。
【0002】
【従来の技術】
半導体集積回路の設計ルールは縮小を続けており、それに伴い配線による遅延による性能劣化が顕在化している。つまり、半導体集積回路の配線信号遅延は配線CR時定数(C:配線容量、R:配線抵抗)によって決まるが、配線幅の減少による配線抵抗の増大と、配線間隔の減少による配線間容量の増大で配線CR時定数がトランジスタのスイッチング速度向上に追従できない状態が懸念されている。従来、半導体集積回路の配線材料にはアルミ合金が主に使用されていたが、高速な動作が必要な集積回路では、配線の低抵抗化のため銅配線が使用されている。
【0003】
一方、配線間容量を低減するために、現在のシリカ(SiO2)系絶縁膜よりも比誘電率の低い絶縁膜材料が採用され始めている。比誘電率の低い絶縁膜としては、フッ素添加シリカ(SiOF)やポーラスシリカや有機高分子膜(有機絶縁膜)が知られている。フッ素添加シリカは、現在既に一部の製品で使用されているが、膜自身の低誘電率化を促進するために膜中フッ素濃度を高くすると、水分あるいは水素との反応によって生じるフッ酸で配線金属の腐食が発生したり、フッ素が脱離することにより誘電率が増大したりするといった課題がある。さらには、半導体集積回路技術の進歩により、絶縁膜への要求は既にフッ素添加シリカ(SiOF)膜で得られる3.3程度の比誘電率では応えられなくなってきており、半導体集積回路上、多層配線間の層間絶縁膜として、3以下の比誘電率を持つフッ素を含有しない絶縁膜が要望されている。その候補の一つとして、耐熱性・耐吸湿性に優れた、有機シロキサンの重合体膜の開発が急がれている。従来報告されている、有機シロキサンの重合体膜を形成する方法には、大きく分けて、スピンコーティング法とCVD法とがある。
【0004】
(第一の従来例)
スピンコーティング法では、原料有機シロキサンモノマーを有機溶媒に溶解して、スピンコーティング被膜を形成し、その後、成膜過程において、溶媒を除去するとともに、被膜中の有機シロキサンモノマーを加熱することにより、モノマーの重合反応を進行させる。この熱重合反応では、2次元あるいは3次元の網目構造をもった高分子膜が形成される。生成物である有機シロキサン重合体膜を構成する骨格は、有機溶剤に溶解させている有機シロキサンモノマーの構造に依存する。
【0005】
例えば、T.M.Stokich, Jr., W.M.Lee, R.A.Peters “REAL−TIME FT−IR STUDIES OF THE REACTION KINETICS FOR THE POLYMERIZATION OF DIVINYL SILOXANE BIS BENZOCYCLO BUTENE MONOMERS”(Material Research Symposium Proceeding Vol.227 p.103, 1991)には、直鎖状シロキサンの一種であるビスベンゾシクロブテン・ジビニルテトラメチルシロキサン モノマー(BCB−DVS)をメシチレンに溶解させた溶液をスピン塗布した後、100℃でベークして溶媒のメシチレンを除去し、その後、さらに300℃〜350℃まで加熱することで、有機シロキサン重合体膜を形成する方法が記載されている。ビスベンゾシクロブテン・ジビニルシロキサン モノマーは、下記化学式(1)に示す、不飽和炭化水素鎖である2つのビニル基と2つのシクロブテン基、ならびに直鎖状シロキサンが含まれている有機シロキサン・モノマーである。その熱重合反応は、以下のように進行する。
【0006】
【化1】
【0007】
式(1) ビスベンゾシクロブテン・ジビニルテトラメチルシロキサン
まず、下記化学式(2)に示す反応に伴い、ビスベンゾシクロブテン・ジビニルシロキサン・モノマー内のシクロブテン基が、熱エネルギーにより開環して、2つのビニル基(メチレン基)に変化する。
【0008】
【化2】
【0009】
式(2) ベンゾシクロブテン基の開環反応
下記化学式(3)に示す反応に伴い、この2つのビニル基(メチレン基)が、別のBSB−DVSモノマー内のビニル基と付加重合反応して、6員環炭化水素(ヒドロナフタレン)を形成することにより、重合反応が生じる。この反応経路により、下記化学式(4)に示す、2つのBSB−DVSが接合された2量体(ダイマー)が得られる。
【0010】
【化3】
【0011】
式(3) ベンゾシクロブテン基の開環基とビニル基との付加重合反応
【0012】
【化4】
【0013】
式(4) ビスベンゾシクロブテン・ジビニルテトラメチルシロキサンの2量体
生成するBCB−DVSの2量体内には、未反応の3つのベンゾシクロブテンと3つのビニル基が残存する。すなわち、この2量体に対して、少なくとも6つのBCB−DVSモノマーがさらに付加重合可能である。ビスベンゾシクロブテン・ジビニルシロキサンの移動度が十分に大きければ、下記化学式(5)に例示される、BSB−DVS同士が複雑かつ緻密に架橋された高分子膜が形成される。
【0014】
【化5】
【0015】
式(5) ビスベンゾシクロブテン・ジビニルテトラメチルシロキサン(BSB−DVS)の付加重合により形成された有機高分子膜
しかしながら、スピンコーティング法による重合体形成の場合、BSB−DVSモノマーは、溶剤に溶解されているが、この溶剤が蒸発するとともに、モノマーの濃縮が進むと液粘度が上昇し、モノマーの移動度が小さくなる。すなわち、BSB−DVSモノマー自体には、合計4つの付加重合サイトがあるにもかかわらず、近傍に存在する僅かなBSB−DVSとしか結合できない。そのため、スピンコーティング法による重合体形成では、十分な架橋密度を達成できない。付随して、得られる高分子膜の耐熱性が劣化したり、膜強度が低下したりするといった課題があった。
【0016】
さらに、スピンコーティング法の場合、有機モノマーを溶剤に溶かし、この溶解物をスピン塗布するが、そのスピン塗布工程において、溶解物の90%程度は基板外に飛ばされるため、出発原料の使用効率は低い。また、スピン塗布膜をベーク炉中で加熱して、予め溶剤を除去した後、さらに高温に加熱して、有機モノマーの高分子化反応を生じさせることで、有機高分子膜を形成するが、その際、ベーク炉中に酸素があると、酸素と有機モノマーの一部が反応して、目的の特性を有する有機高分子膜にはならない場合もある。その防止には、例えば、ベーク炉全体を窒素ガス置換する手法が有効ではあるものの、その種の装置改造は低コストでの実現がむずかしい。さらに、溶剤に溶け込んでいる溶存酸素と有機モノマーとがベーク時に反応する場合もあるため、工程全般にわたり、厳密な雰囲気制御が必要ともなるが、厳密な雰囲気制御をスピンコーティング法で行うことは、実用上困難である。なお、スピン塗布は、揮発する溶剤の作業環境への散逸を防止するため、局所排気されたスピン塗布室で行う。スピン塗布室内に浮遊しているごみ粒子や、スピン塗布室の内壁にこびりつき乾燥、固化した有機モノマーの微粒子が、場合によっては、スピン塗布膜に混入して、得られる高分子膜の膜質を劣化させる要因となる場合もある。さらに、スピン塗布の場合、大量の有機溶剤を必要とし、また、その蒸散量も多くなり、環境負荷が大きいといった課題もある。
【0017】
(第2の従来例)
特開平11−288931号公報には、原料として、直鎖状シロキサン(−Si−O−Si−)に飽和炭化水素基が結合したシリコン系炭化水素化合物の単独気化ガスを用いたプラズマCVD法で、比誘電率3以下のシリコン系有機絶縁膜を得る方法が開示されている。その際、プラズマ重合時のFRパワーや成膜圧力を調整することで、形成される有機シロキサン膜中の炭素、水素、シリカ、酸素といった組成比を制御するとはできるとしても、得られる有機シロキサン膜の分子骨格や、膜全体の重合体構造を制御することはできない。
【0018】
(第3の従来例)
特表2002−503879号公報(以後、文献3と表記)では、低パワープラズマで解離させた酸化ガスと、飽和炭化水素基とシロキサンとからなるオルガノシリコン化合物モノマー(有機シロキサンモノマー)とを反応させて、オルガノシロキサン膜(有機シロキサン膜)を形成している。この反応過程において、有機シロキサンモノマー中の、特定の炭化水素基を活性化させて、酸化剤ガスと特定のサイトに結合させるといった重合選択性を有していない。従って、プラズマ中で有機シロキサンモノマーを酸化させる際、その酸化反応や酸化度を厳密に制御することも難しい。すなわち、シリコン系有機絶縁膜に微細な空孔を導入して、ポーラスな膜を分子設計することも困難であることを意味する。さらに、形成されるシリコン系有機絶縁膜の、下地膜や上地膜に対する密着性を向上させるには、その界面付近の有機シロキサン膜の組成を制御することが必要となるが、開示されている有機シロキサン膜の成膜方法には、界面付近の組成や中間層の化学組成や分子構造を制御する手段を有していない。
【0019】
【発明が解決しようとする課題】
本発明者らは、先に、不飽和炭化水素基を含む有機シロキサンモノマーを気化させて、キャリアガスを用いて気相中を輸送し、反応室中に形成されたHeプラズマを介して加熱基板表面に吹き付けることで、基板表面に有機シロキサン膜を形成する技術を開発し、かかる技術を、特開平2000−12532号公報において開示している。この有機シロキサン膜形成方法では、気相輸送された有機シロキサンモノマーが基板上で重合反応を起こさせ、有機シロキサン膜を形成している。例えば、直鎖状有機シロキサンを骨格として有する、式(1)に示すビスベンゾシクロブテン・ジビニルシロキサン(BCB−DVS)モノマーを用いた場合、このプラズマ重合反応過程は、ほぼ熱重合反応と一致すると推測され、有機シロキサンに含まれる不飽和炭化水素基であるシクロブテン基やビニル基が選択的に活性化されて、化学式(2)〜(4)に示す反応素過程を経由する重合反応により、化学式(5)に例示する架橋構造をより緻密に有する有機シロキサン膜が得られている。
【0020】
この技術の要点は、原料に用いる有機シロキサンモノマーに、シクロブテン基やビニル基といった不飽和炭素基が含まれていることであり、この不飽和炭化水素基を介して、有機シロキサンモノマーを網目状に接合してゆくことにある。すなわち、重合反応に関与する不飽和炭化水素基の位置を制御することで、重合反応の生じる位置を特定し、所望とする有機シロキサンモノマーを骨格とする網目構造の有機シロキサン膜が形成される。スピンコーティング法と比較して、気相から供給される有機シロキサンモノマーは、高真空中にあるため、表面上での移動度が大きく、網目構造の架橋密度を向上させて、得られる有機シロキサン膜の耐熱性や膜強度の向上が実現されている。例えば、BCB−DVSモノマーからプラズマ重合により得られた有機シロキサン膜では、直鎖状のシロキサンが飽和炭化水素基を介して高密度に架橋された構造を有し、その比誘電率2.5〜2.7が得られている。
【0021】
特に、ULSIの多層配線の層間絶縁膜として利用する場合、上層の配線と下層の電極層との間に有機シロキサン膜構造が形成されるが、その際、上層の配線ならびに下層の電極層の作製に使用される他の絶縁膜が存在し、従って、層間絶縁膜の有機シロキサン膜は、これら上層、下層に存在する、無機絶縁膜あるいは有機絶縁膜との積層構造となる。そのため、有機シロキサン膜の上面あるいは下面に接する絶縁膜との密着性および界面膜強度が高いことが必要となる。有機シロキサン膜の密着性や界面近傍の膜強度を向上させるには、その架橋密度を大きくすることが有効であるが、架橋密度を増すとともに、比誘電率の増大が引き起こされる。
【0022】
理想的には、層間絶縁膜として利用する有機シロキサン膜は、他の材料膜との界面付近のみが、密着性に優れる高架橋密度で高強度の膜質を有し、この界面部を除く層間部分は、適正な比誘電率を達成できる架橋密度に保持される膜構成が望ましい。しかしながら、単一の有機シロキサンモノマー原料を用いたプラズマ重合膜においては、得られる重合膜の架橋密度を膜厚方向で任意に選択し、連続的に比誘電率や密着性の変化する重合膜とすることは、一般に困難である。つまり、従来の単一原料を使用するプラズマ重合膜においては、架橋密度を任意に制御し、膜厚方向の連続的かつ大幅な膜質制御を行うことは不可能であった。
【0023】
本発明は前記の課題を解決するもので、本発明の目的は、層間絶縁膜として利用に適する、膜厚方向において、膜内の架橋構造を連続的かつ大幅に変化でき、密着性に優れる高架橋密度で高強度の膜質を示す部分と、適正な比誘電率を達成できる架橋密度に保持される膜構造領域部を任意に制御することが可能な新規な有機シロキサン重合膜と、その作製方法を提供することにある。より具体的には、本発明の目的は、二種以上の有機シロキサンを原料に利用して、上記のプラズマ重合法による有機シロキサン共重合体膜とする際、膜厚方向において、膜内の架橋構造を連続的かつ大幅に変化でき、密着性に優れる高架橋密度で高強度の膜質を示す部分と、適正な比誘電率を達成できる架橋密度に保持される膜構造領域部を任意に制御することを容易に達成可能な、二種以上の有機シロキサン原料の選択をおこなった有機シロキサン共重合体膜の製造方法、同製造装置、かかる製造方法で作製される有機シロキサン共重合体膜、ならびに、該有機シロキサン共重合体膜を層間絶縁膜として利用する半導体装置を提供することを目的とする。
【0024】
【課題を解決するための手段】
本発明者らは、原料として、直鎖状シロキサンを骨格とする有機シロキサンのみを用いて、プラズマ重合した重合膜は、高い架橋密度を達成でき、従って、高強度の膜質を示し、加えて、シロキサン構造の面密度も高く、無機絶縁膜などの、他の材料膜に対する密着性にも優れることを見出した。さらに、環状シロキサンを骨格とする有機シロキサンに、該直鎖状シロキサンを骨格とする有機シロキサンを加えて、プラズマ重合を実施すると、環状シロキサン構造を保持した共重合体膜が形成され、環状シロキサンを骨格とする有機シロキサンの比率が増すに伴い、膜の平均密度は低下し、付随して、比誘電率の低減も達成できることを確認した。かかる知見に加えて、環状シロキサンを骨格とする有機シロキサンと、該直鎖状シロキサンを骨格とする有機シロキサンとは、気化した上で気相から供給するため、その比率を連続的に変化させることが可能であり、得られる共重合体膜の膜質も追従して、連続的に変化させることが可能であることをも確認して、本発明者らは、本発明を完成するに到った。
【0025】
すなわち、本発明にかかる有機シロキサン共重合体膜は、
複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜であって、
前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成していることを特徴とする有機シロキサン共重合体膜である。その際、膜厚方向において、
前記環状シロキサンを骨格とする第1の有機シロキサン由来のユニットと、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットとの含有比率が変化している膜構成を有する有機シロキサン共重合体膜とすることが好ましい。
【0026】
さらには、膜厚方向の上下面は、いずれも無機絶縁膜と接する形状を構成し、前記第1の有機シロキサン由来のユニットと、第2の有機シロキサン由来のユニットとの含有比率は、
前記上下面の、無機絶縁膜との界面近傍においては、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットが主成分であり、膜内部においては、前記第2の有機シロキサン由来のユニットとの含有比率は、前記界面近傍における含有比率より低く、
該界面近傍における密度は、前記膜内部における密度より大きいことを特徴とする有機シロキサン共重合体膜とすることがより好ましい。
【0027】
加えて、本発明は、上述の有機シロキサン共重合体膜の好適な用途として、本発明にかかる半導体装置の発明をも提供し、
すなわち、本発明にかかる半導体装置は、
層間絶縁膜として、有機シロキサン膜を用いる半導体装置であって、
前記有機シロキサン膜として、複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜であって、
前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している膜を具え、
前記有機シロキサン共重合体膜は、無機絶縁膜に挟まれた形態とし、
前記第1の有機シロキサン由来のユニットと、第2の有機シロキサン由来のユニットとの含有比率は、
前記上下面の、無機絶縁膜との界面近傍においては、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットが主成分であり、膜内部においては、前記第2の有機シロキサン由来のユニットとの含有比率は、前記界面近傍における含有比率より低く、
該界面近傍における密度は、前記膜内部における密度より大きくされ、
該有機シロキサン共重合体膜層中に、銅膜が埋め込まれた配線層が形成されていることを特徴とする半導体装置である。
【0028】
なお、本発明は、上記する本発明にかかる有機シロキサン共重合体膜の作製に適する製造方法を同時に提供し、
すなわち、本発明にかかる有機シロキサン共重合体膜の気相成長方法は、
基板上において、複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜を成長する方法であって、
前記有機シロキサン共重合体膜は、前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している共重合体膜であり、
少なくとも、
前記環状シロキサンを骨格とする第1の有機シロキサンモノマーを気化する工程と、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンモノマーを気化する工程と、
気化された前記第1の有機シロキサンモノマーガスを所定の供給速度で供給する工程と、
気化された前記第2の有機シロキサンモノマーガスを所定の供給速度で供給する工程と、
供給される前記第1の有機シロキサンモノマーガスと前記第2の有機シロキサンモノマーガスとを混合して、混合ガスを構成する工程と、
前記混合ガスを減圧下の反応室に導入する工程と、
導入される前記混合ガスを、該反応室内に形成されたプラズマ雰囲気中を通過させた後、加熱される基板上に吹き付ける工程とを有し、
基板上において、吹き付けられた前記混合ガス中に含まれる、前記第1の有機シロキサンモノマーと第2の有機シロキサンモノマーを反応させて、前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している共重合体膜の成長を行うことを特徴とする有機シロキサン共重合体膜の気相成長方法である。
【0029】
その際、前記第1の有機シロキサンモノマーガスの供給速度と前記第2の有機シロキサンモノマーガスの供給速度とを、その供給速度比を変化するように、それぞれ変化させ、
前記供給速度比の変化に伴い、膜厚方向において、
前記環状シロキサンを骨格とする第1の有機シロキサン由来のユニットと、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットとの含有比率が変化している膜構成とすることを特徴とする方法とすることがより好ましい。
【0030】
一方、前記の本発明にかかる有機シロキサン共重合体膜の気相成長方法の実施に適する装置の発明も併せて提供され、
すなわち、本発明にかかる有機シロキサン共重合体膜用の気相成長装置は、
複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜の気相成長用装置であって、
複数種の有機シロキサンモノマーガスを、それぞれの供給量を制御して、個々に供給する、モノマーガス供給ユニット複数と、
クリーニングガス供給ユニットと、
前記複数のモノマーガス供給ユニットから供給されるモノマーガス複数、ならびに、必要に応じて、クリーニングガス供給ユニットから供給されるクリーニングガスを、混合して、混合ガスを形成する手段と、
基板を搭載可能な基板加熱部、前記基板加熱部上に搭載される基板面に前記混合ガスを均一分散して吹き付け可能なシャワーヘッドを具える反応室と、
接地される前記基板加熱部に対して、前記シャワーヘッドにRF電圧を印加する用途の、前記シャワーヘッドに接続されるRF電源と、
前記反応室内を減圧下とするための排気装置とを少なくとも具え、
前記モノマーガス供給ユニット複数は、少なくとも、
環状シロキサンを骨格とする第1の有機シロキサンを気化供給する第1のモノマー供給ユニットと、
直鎖状シロキサンを骨格とする第2の有機シロキサンを気化供給する第2のモノマー供給ユニットとを供えることを特徴とする有機シロキサン共重合体膜用の気相成長装置である。
【0031】
【発明の実施の形態】
以下に、本発明をより詳しく説明する。
【0032】
本発明にかかる有機シロキサン共重合体膜は、複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜であるが、その複数種の有機シロキサン由来の構成ユニットとして、少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでいる。環状シロキサンを骨格とする第1の有機シロキサンは、その環状シロキサン骨格に、付加重合反応が可能な、不飽和炭化水素基が複数置換している構造のものを用いる。一方、直鎖状シロキサンを骨格とする第2の有機シロキサンは、その直鎖状シロキサン骨格に、付加重合反応が可能な、不飽和炭化水素基が少なくとも二つ以上置換している構造のものを用いる。図1に模式的に示すように、この第1の有機シロキサンと第2の有機シロキサンとを、前記の不飽和炭化水素基を利用して付加重合反応を行わせると、環状シロキサンを骨格とする第1の有機シロキサンに対して、直鎖状シロキサンを骨格とする第2の有機シロキサンが複数個反応し、さらに、前記第2の有機シロキサンは、不飽和炭化水素基を少なくとも二つ以上内在しているため、環状シロキサンを骨格とする第1の有機シロキサン二つの間を連結する形態で、共重合体を形成する。その際、環状シロキサンを骨格とする第1の有機シロキサンに対して、直鎖状シロキサンを骨格とする第2の有機シロキサンが複数個反応することで、架橋構造が形成され、共重合体膜全体としては、網目状に架橋構造が延伸された構造を構成することができる。
【0033】
加えて、直鎖状シロキサンを骨格とする第2の有機シロキサン自体でも、架橋構造を形成できる、すなわち、その直鎖状シロキサン骨格に、付加重合反応が可能な、不飽和炭化水素基が少なくとも三つ以上置換している構造のものを用いると、環状シロキサンを骨格とする第1の有機シロキサン二つの間を連結する、直鎖状シロキサンを骨格とする第2の有機シロキサン相互の間にも、さらに、第2の有機シロキサンが付加重合することによる架橋形成が可能となる。すなわち、図2に模式的に示すように、環状シロキサンを骨格とする第1の有機シロキサンを中心とする、大きな網目状の架橋構造に加えて、さらに、直鎖状シロキサンを骨格とする第2の有機シロキサン相互間の緻密な架橋構造が付加され、全体の網目構造は、格段に緻密とすることができる。
【0034】
すなわち、直鎖状シロキサンを骨格とする第2の有機シロキサンの含有比率が増すと、得られる共重合体膜では、高架橋密度となり、高強度の膜質であり、同時に、密着性にも優れる。一方、直鎖状シロキサンを骨格とする第2の有機シロキサンの含有比率が相対的に低いと、架橋密度は相対的に低くなり、また、単位体積当たりに含まれるシロキサンユニットも相対的に抑えられる結果、比誘電率自体は低く保たれる。加えて、環状シロキサン骨格に由来する空孔は、嵩密度の上昇を抑える役割を有し、比誘電率の低減にも貢献する。なお、環状シロキサン骨格に由来する空孔の大きさは、環状シロキサンの環員数に依存している。加えて、含有される直鎖状シロキサンを骨格とする第2の有機シロキサンと環状シロキサンを骨格とする第1の有機シロキサンに由来するユニット数の比率は、気相から基板面上への供給比率、従って、混合ガス中の混合比に依存するため、成長中に混合ガス中の混合比を変化させることで、得られる共重合体膜の膜質を連続的に変化させることが可能である。
【0035】
共重合体膜中の環状シロキサンユニットと直鎖状シロキサンユニットの含有比率は、例えば、環状シロキサン骨格と直鎖状シロキサン骨格に起因する分子振動の差異を利用し、両者の赤外線吸収強度の相対比に基づき、含有比率を評価可能である。具体的には、4員環状シロキサンの伸縮運動に由来する振動数は1085cm-1、3員環状シロキサンの伸縮運動に由来する振動数は1015cm-1、一方、直鎖状シロキサンの伸縮運動に由来する振動数は1055cm-1であり、それらの吸収ピークは、FT−IR法で分別検出可能である。
【0036】
本発明にかかる有機シロキサン共重合体膜の構成に利用される、環状シロキサンを骨格とする第1の有機シロキサンは、共重合体を構成するため、付加重合反応が可能な部位を少なくとも二つ以上有し、さらに、前記大きな網目状の架橋構造を構成する際に、その核となるためには、付加重合反応が可能な部位を少なくとも三つ以上有することが好ましい。一方、直鎖状シロキサンを骨格とする第2の有機シロキサンも、共重合体を構成するため、付加重合反応が可能な部位を少なくとも二つ以上有し、さらに、直鎖状シロキサンを骨格とする第2の有機シロキサン相互間の緻密な架橋構造を構成するためには、付加重合反応が可能な部位を少なくとも三つ以上有することが好ましい。
【0037】
以下に、上述する本発明にかかる有機シロキサン共重合体膜を形成する工程、ならびに、その成長に利用される装置に関して、説明をする。図3に、本発明にかかる有機シロキサン共重合体膜の形成に利用可能な成長装置を示す。
【0038】
先ず、反応室1は、真空ポンプ8により減圧されており、反応室1の内部には基板加熱部6が設けられ、その上に半導体基板5が固定される。第1の有機シロキサンモノマー(有機モノマーA)および第2の有機シロキサンモノマー(有機モノマーB)は、それぞれ気化供給システム61、62内において気相状態とされ、キャリアガスとともに、各原料供給配管38Aと38B、およびバルブ18Aと18Bを介して供給され、反応室1の直前において、両者を混合した後、反応室1内へ導入される。気化供給システム61、62において気化され、それぞれがキャリアガスにより希釈された第1の有機シロキサンモノマー 22Aと有機シロキサンモノマーB 22Bは、配管温度を保つヒータ3を備えた気化原料供給配管49を経て、反応室1中のシャワーヘッド7へ同時に供給され、均一に混合された状態で、半導体基板5の基板面に分散して吹き付けられる。その際、接地されている基板加熱部6に対して、シャワーヘッド7に印加されるRF電力により、その空間にプラズマが生成されており、このプラズマ中を第1の有機シロキサンモノマー(有機モノマーA)および第2の有機シロキサンモノマー(有機モノマーB)が通過する。前記プラズマに由来する励起エネルギー、ならびに基板加熱部6により供給される熱エネルギーにより、基板表面において、第1の有機シロキサンモノマーガス 22Aと第2の有機シロキサンモノマーガス 22Bとが共重合反応を生じ、半導体基板5表面上に有機シロキサン共重合体膜4が成長する。
【0039】
なお、未反応の原料モノマーは、反応室1の内壁を加熱するとともに、真空ポンプ8により反応室1内を減圧に保っていることから、反応室1の内壁上で凝集を起こすことなく、気相のまま、ヒータにより加熱されている配管排気配管16を経て冷却トラップ14へ到達する。冷却トラップ14内では、第1の有機シロキサンモノマーおよび第2の有機シロキサンモノマーは、ともに冷却されるため、その蒸気圧はかかる温度における飽和蒸気圧を超える結果、冷却トラップ14内で液化あるいは固化される。この冷却トラップ14において、効果的な除去、回収が行われる結果、その下流の排気ポンプ8には、不要な有機シロキサンモノマーが達することは回避される。その他、反応室1内のクリーニング用のクリーニングガス21を供給するため、気体流量制御器13とバブル17が設けられている。
【0040】
図4に、本発明に利用される、第1の有機シロキサンモノマーおよび第2の有機シロキサンモノマーが常温で液体である場合、その気化、供給に適用可能な有機シロキサンモノマー原料供給システムの一例を模式的に示す。図4に示すシステムには、気化制御器において気化され、反応室へ供給される直前までを示す。先ず、第1の有機モノマーA22は、液状のまま、第1の有機シロキサンモノマータンク23Aから、バルブ46、液体流量指示器A28A、バルブ43を介して気化制御器A 30Aに供給される。その際、第1の有機シロキサンモノマー用液体流量指示器28Aからフィードバック制御されている、気化制御バルブA35Aと気化制御機A内バルブ37とを介し、気化室A32Aに供給される。一方、キャリアガスA 26Aは、バルブ45Aを経て、気化制御器30Aへ供給される。したがって、気化室A 32Aの直前で、液体である第1の有機シロキサンモノマー 22AとキャリアガスA 26Aは混合される。キャリアガスAと混合状態で気化室A32Aへ供給された液体原料モノマーA22Aは、気化室32Aへ供給される際、急激な圧力減少を受け、同時に、ヒータ34Aによる加熱により、熱エネルギーを供給することのため、連続的に気化する。気化した第1の有機シロキサンモノマーは、原料供給配管38A、バルブ18Aを介して反応室1へと供給される。第2の有機シロキサンモノマーに関しても、常温で液体である場合には、同様な有機シロキサンモノマー原料供給システムを用いることができる。
【0041】
図5は、本発明に利用される、第1の有機シロキサンモノマーおよび第2の有機シロキサンモノマーが常温で固体である場合、その気化、供給に適用可能な有機シロキサンモノマー原料供給システムの一例を模式的に示す。図5に示すシステムには、有機シロキサンモノマー タンク23B内での気化から、反応室へ供給される直前までを示す。キャリアガスB 26Bは、気体流量制御器31Bにおいて流量を制御しつつ、バルブ45Bを介して有機モノマーBタンクB 23Bへと供給される。その際、有機シロキサンモノマーBタンク 23Bは、一定温度に加熱されている。この加熱温度は、有機モノマーBが溶融状態から気化して、あるいは、固相状態から昇華して、十分な飽和蒸気圧が得られる温度に選択される。その際、キャリアガスB 26Bは、気化した有機シロキサンモノマーBを前記の飽和蒸気圧で含む状態となる。その後、温度の低下を起こすと、含まれる有機モノマーBの凝集が起こされるので、それ以降のバルブ46B、気体流量指示器B33B、バルブ43Bをも同じ温度以上に加熱して、気化あるいは昇華状態を保持するように制御される。キャリアガスの供給により、気化した有機シロキサンモノマーBは、バルブ46B、気体流量指示器B33B、バルブ43Bを介して、原料供給配管38Bへと供給される。次いで、バルブ41Bを介して、反応室1へと供給される。
【0042】
以上のように、有機シロキサンモノマー原料が、常温で液体や固体であっても適切な供給システムを選択することで、反応室へ気相状態の有機シロキサンモノマーを所望の供給量比で供給することが可能である。なお、常温で気体の有機シロキサンモノマーを利用する場合は、予め、キャリアガスにより希釈した後、気体流量制御器により、供給流量を制御する供給形態をとればよい。その際、他の有機シロキサンモノマーとの混合に際し、混合ガスの温度低下を回避するため、原料供給配管38Bは、ヒータ3による加熱を行うことが望ましい。また、本発明において利用されるキャリアガスとしては、ヘリウムガス、アルゴンガス、ネオンガス等の有機シロキサンモノマーに対して、不活性なガスを適宜使用することが望ましい。また、これらキャリアガスは、反応室1内に生起されるプラズマの維持に寄与するものを利用することも望ましい。
【0043】
すなわち、それぞれの有機シロキサンモノマーは、付加重合反応が可能な部位として、不飽和炭化水素基等を内在しており、かかる不飽和炭化水素基等はプラズマ中の低エネルギー電子との衝突により活性化されており、加熱されている基板上に吹き付けられた際、基板表面を速やかに移行しつつ、不飽和炭化水素基等の間の付加重合反応により、環状シロキサンと直鎖状シロキサンとの面内分布が均一な有機シロキサン共重合体膜の成長が可能となる。より具体的には、環状シロキサンと直鎖状シロキサンとに含まれる、不飽和炭化水素基等の熱的な付加重合反応の反応性に有意な差異を有する場合であっても、予め活性化がなされており、供給量比率の変化に付随して、得られる共重合体膜の組成制御が効果的に行われる。
【0044】
従って、本発明にかかる有機シロキサン共重合体膜では、上述する特色を利用することで、膜厚方向において、環状シロキサンを骨格とする第1の有機シロキサン由来のユニットと、直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットとの含有比率が変化している膜構成を容易に作製することができる。例えば、半導体装置の作製に利用する、層間絶縁膜として応用する際に、膜の上下面に、他の無機絶縁膜を設ける層構造とする場合には、この無機絶縁膜に挟まれた共重合体膜の膜厚方向の組成を、無機絶縁膜との界面近傍では、主成分として、直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットを多く含有させることで、密着性に富み、高い架橋密度とすることで、高強度を示す組成とすることができる。一方、膜内部では、相対的に環状シロキサンを骨格とする第1の有機シロキサン由来のユニットを高い比率で含有する組成とすることで、体積当たりの密度を比較的に低くすることで、比誘電率を低く抑えることが可能となる。その結果、無機絶縁膜との界面近傍では、密度が高く、比誘電率が相対的には高くなるものの、膜内部と平均すると、共重合体膜全体としては、その実効的な誘電率は低くすることが可能となる。
【0045】
この利点を生かして、かかる共重合体膜内に、銅膜が埋め込まれた配線層を設けると、その間に存在する共重合体膜の比誘電率が低く抑えられているので、かかる配線間の寄生容量を抑制することが可能となる。すなわち、本発明にかかる半導体装置は、膜の上下面に、他の無機絶縁膜を設ける層構造とする際、無機絶縁膜との界面での密着性を高め、一方、膜全体としては、その実効的な誘電率は低くすることで、この共重合体膜内に、銅膜が埋め込まれた配線層を設ける構造において、かかる配線間の寄生容量を抑制することを達成している。
【0046】
【実施例】
以下に、実施例を示し、本発明をより具体的に説明する。かかる実施例は、本発明にかかる最良の実施形態の一例ではあるものの、本発明はかかる具体例に限定されるものではない。
【0047】
(第1の実施例)
本発明にかかる有機シロキサン共重合体膜において、原料の一つ、環状シロキサンを骨格とする第1の有機シロキサンモノマーの一形態として、下記一般式(6)に示す、4つのシリコン原子と4つの酸素原子とからなる「4員」環状シロキサンがある。
【0048】
【化6】
【0049】
式(6) 複数の不飽和炭化水素基を有する「4員」環状シロキサン
(式中、R11V,R12V,R13V,R1a、R21V,R22V,R23V,R2a、R31V,R32V,R33V,R3a、R41V,R42V,R43V,R4aは、炭化水素基、フェニル基あるいは水素を示す。)
具体的には、化学式(7)のテトラメチルビニル・テトラメチル・シクロテトラシロキサン(TMVTMCTS)、化学式(8)のテトラビニル・テトラメチル・シクロテトラシロキサン(TVTMCTS)、化学式(9)のテトラメチルビニル・テトラハイドロ・シクロテトラシロキサン(TMVTHCTS)、化学式(10)のテトラビニル・テトラハイドロ・シクロテトラシロキサン(TVTHCTS)が、前記一般式(6)に示す、環状シロキサンを骨格とする第1の有機シロキサンの一例に含まれる。
【0050】
【化7】
【0051】
式(7) テトラメチルビニル・テトラメチル・シクロテトラシロキサン(TMVTMCTS)
【0052】
【化8】
【0053】
式(8) テトラビニル・テトラメチル・シクロテトラシロキサン(TVTMCTS)
【0054】
【化9】
【0055】
式(9) テトラメチルビニル・テトラハイドロ・シクロテトラシロキサン(TMVTHCTS)
【0056】
【化10】
【0057】
式(10) テトラビニル・テトラハイドロ・シクロテトラシロキサン(TVTHCTS)
さらには、本発明にかかる有機シロキサン共重合体膜において、環状シロキサンを骨格とする第1の有機シロキサンモノマーとして、下記一般式(11)に示される、3つのシリコン原子と3つの酸素原子からなる「3員」環状シロキサンを用いることもできる。加えて、環状シロキサン骨格が、シクロペンタシロキサンの「5員」環状シロキサンやシクロヘキサシロキサンの「6員」環状シロキサン、あるいはそれ以上の員数のシロキサンからなる環状シロキサンでもよい。
【0058】
【化11】
【0059】
式(11) 複数の不飽和炭化水素基を有する「3員」環状シロキサン
(式中、R11V,R12V,R13V,R1a、R21V,R22V,R23V,R2a、R31V,R32V,R33Vは、炭化水素基、フェニル基あるいは水素を示す。)
環状シロキサンを骨格とする第1の有機シロキサンモノマーにおいて、環状シロキサン骨格に含まれるシリコン原子上に結合している炭化水素基は、全てが不飽和炭化水素基である必要はないものの、シリコン原子上に結合する不飽和炭化水素基として、プラズマ中の低エネルギー電子での選択活性化が可能な不飽和炭化水素基を含んでいることが望ましい。上記の一例では、シリコン原子に直接ビニル基、または、不飽和炭化水素基のC=C部が結合した分子構造を有する有機シロキサンの例を示したが、シリコン原子に、飽和な炭化水素鎖を介して、ビニル基(CH2=CH−)、エチニル基(HC≡C−)、シクロブテニル基が結合されているものを利用することもできる。さらには、炭化水素鎖に、ビニル基(CH2=CH−)やエチニル基(HC≡C−)が複数個含まれている不飽和炭化水素基を含むものであってもよい。
【0060】
有機シロキサン共重合体を構成する上では、環状シロキサン分子中に、付加重合反応の可能な部位が少なくとも、独立に二つ以上存在することが必要であり、特に、不飽和炭化水素基を介して、該環状シロキサンが連続的に接続されてゆくには、少なくとも、該環状シロキサン中、2つ以上のシリコン原子上に、不飽和炭化水素基が結合していることが望ましい。さらには、有機シロキサン共重合体膜が、網目構造を形成する上では、環状シロキサンを構成する全てのシリコン原子中、その3以上に不飽和炭化水素基が結合していることが好ましく、特には、環状シロキサンを構成する全てのシリコン原子上に、それぞれ、少なくとも、付加重合反応の可能な不飽和炭化水素基が一つは結合していることがより好ましい。
【0061】
(第2の実施例)
本発明にかかる有機シロキサン共重合体膜において、前記の環状シロキサンを骨格とする第1の有機シロキサンモノマーとともに、直鎖状シロキサンを骨格とする第2の有機シロキサンモノマーが原料として利用される。この直鎖状シロキサンを骨格とする第2の有機シロキサンの一形態として、下記一般式(12)に示される、直鎖状シロキサンの末端シリコン原子に、直接ビニル基(CH2=CH−)、または、不飽和炭化水素基のC=C部が結合した分子構造を有する、ジビニル直鎖状シロキサンを挙げることができる。
【0062】
【化12】
【0063】
式(12) ジビニル直鎖状シロキサン
(式中、R’1a、R’1b、R’11V、R’12V、R’13V、R’2a、R’2b、R’21V、R’22V、R’23Vは、炭化水素基、フェニル基、脂環式炭化水素基あるいは水素を表し、また、nは、1以上の整数を表す)
なお、一般式(12)で示され、繰り返し数n=1のジビニル直鎖状シロキサンの一例として、化学式(13)のテトラメチルジビニルシロキサン(TMVS)、化学式(14)のジメチルジフェニルジビニルシロキサンなどが挙げることができる。
【0064】
【化13】
【0065】
式(13) テトラメチルジビニルシロキサン
【0066】
【化14】
【0067】
式(14) ジメチルジフェニルジビニルシロキサン
第2の有機シロキサンとして利用可能な別の一形態として、シロキサン直鎖内のシリコン原子に不飽和炭化水素基が結合している、下記一般式(15)で示される直鎖内モノビニルシロキサンや、下記一般式(16)で示される直鎖内のシリコン原子すべて不飽和炭化水素基が1つ結合しているビニルシロキサンがある。さらには、シリコン原子すべて不飽和炭化水素基が2つ結合しているにジビニルシロキサンなども含まれる。
【0068】
【化15】
【0069】
式(15) 直鎖モノビニルシロキサン
(式中、R’11V、R’21V、R’1b、R’2a、RV1a、RV1b、R’2Vは、炭化水素基、フェニル基あるいは水素を表し、nは、2以上の整数を表す)
【0070】
【化16】
【0071】
式(16) 直鎖内ジビニルシロキサン
(式中、R’11V、R’21V、R’1b、R’2a、RV1a、RV1b、RV2a、RV2b、は炭化水素基、フェニル基あるいは水素を表し、nは、1以上の整数を表す。)
第2の有機シロキサンとして利用可能な更なる一形態として、シロキサン直鎖内および終端のシリコン原子の双方に不飽和炭化水素基が結合している、下記一般式(17)で示されるビニル終端モノビニルシロキサンや、下記一般式(18)で示されるビニル終端ジビニルシロキサンを挙げることもできる。
【0072】
【化17】
【0073】
式(17) ビニル終端モノビニルシロキサン
(式中、R’11V、R’12V、R’13V、RV1a、RV1b、R’1b、R’2a、R’2b,R’21V、R’22V、R’23Vは、炭化水素基、フェニル基あるいは水素を表し、nは、1以上の整数を表す。)
【0074】
【化18】
【0075】
式(18) ビニル終端ジビニルシロキサン
(式中、R’11V、R’12V、R’13V、RV1a、RV1b、R’1b、R’2a、RV1a、RV1b,R’21V、R’22V、R’23Vは炭化水素基など、フェニル基あるいは水素を表し、nは、1以上の整数を表す。)
さらには、直鎖状シロキサンを骨格とする第2の有機シロキサンモノマーにおいて、付加重合反応に関わる炭化水素基は、シクロブテンやベンゾシクロブテンなどの開環付加が可能な骨格を有する脂環炭化水素基あるいは脂環フェニル基であってもよく、例えば、下記一般式(19)に示すモノベンゾシクロブテン・モノビニル終端シロキサン、下記一般式(20)に示すビスベンゾシクロブテン終端シロキサン、下記一般式(21)に示すビスジビニル終端メチルベンゾシクロブテンシロキサンなどを挙げることができる。
【0076】
【化19】
【0077】
式(19) モノベンゾシクロブテン・モノビニル終端シロキサン
(式中、R’11V、R’12V、R’13V、R’1a、R’1b、R’2a、R’2bは、炭化水素基、フェニル基、炭化水素あるいは水素を表し、nは、1以上の整数を表す。)
【0078】
【化20】
【0079】
式(20) ビスベンゾシクロブテン終端シロキサン
(式中、R’1a、R’1b、R’2a、R’2bは、炭化水素基、フェニル基、炭化水素あるいは水素を表し、nは、1以上の整数を表す。)
【0080】
【化21】
【0081】
式(21) ビスジビニル終端メチルベンゾシクロブテンシロキサン
(式中、R’11V、R’12V、R’13V、R’21V、R’22V、R’23Vは、炭化水素基、フェニル基あるいは水素を表し、nは、1以上の整数を表す。)
なお、一般式(21)で示され、繰り返し数n=1のビスジビニル終端メチルベンゾシクロブテンシロキサンの一例として、化学式(22)のビスビニル・ジベンゾシクロブテン・ジメチル・シロキサン、化学式(23)のビスメチルビニル・ジベンゾシクロブテン・ジメチル・シロキサンなどを挙げることができる。
【0082】
【化22】
【0083】
式(22) ビスビニル・ジベンゾシクロブテン・ジメチル・シロキサン
【0084】
【化23】
【0085】
式(23) ビスメチルビニル・ジベンゾシクロブテン・ジメチル・シロキサン
加えて、直鎖状シロキサンを骨格とする第2の有機シロキサンモノマーにおいて、付加重合反応に関わる炭化水素基は、下記化学式(24)に示すビニルベンゾシクロブテン構造であってもよく、一例として、上述の式(1)に示すビズビニルベンゾシクロブテン・テトラメチルシロキサン、さらには、下記化学式(25)に示すビスベンゾシロブテン・ジビニルジメチルジハイドロシロキサンあるいは、下記化学式(26)に示すビスベンゾシロブテン・ジビニルテトラハイドロシロキサンを挙げることができる。
【0086】
【化24】
【0087】
式(24) ビニルベンゾシクロブテン構造
【0088】
【化25】
【0089】
式(1) ビスベンゾシロブテン・ジビニルテトラメチルシロキサン
【0090】
【化26】
【0091】
式(25) ビスベンゾシロブテン・ジビニルジメチルジハイドロシロキサン
【0092】
【化27】
【0093】
式(26) ビスベンゾシロブテン・ジビニルテトラハイドロシロキサン
上では、シリコン原子に、直接、ビニル基、または、不飽和炭化水素基のC=C部、あるいは、シクロブテンやベンゾシクロブテンなどの開環付加が可能な骨格を有する脂環炭化水素基あるいは脂環フェニル基の結合した分子構造を有するものを示したが、シリコン原子に対して、飽和な炭化水素鎖を介して、前記のビニル基(CH2=CH−)、エチニル基(HC≡C−)、シクロブテニル基、ベンゾシクロブテニル基が結合している構造を有する、直鎖状の有機シロキサンモノマーも含まれる。すなわち、本発明において利用可能な、直鎖状シロキサン骨格を有する第2の有機シロキサンモノマーには、少なくとも、直鎖状シロキサンに、付加重合反応可能な炭化水素基が結合している構造を有し、好ましくは、独立に付加重合反応可能な炭化水素基が2つ以上結合されている直鎖状シロキサンが含まれる。加えて、直鎖状シロキサン骨格を有する第2の有機シロキサンモノマー中には、付加重合反応可能な部位が3以上存在することがより好ましい。さらには、本発明において、「直鎖状シロキサン」には、広義の意味において、環状シロキサン以外のすべてのシロキサンを包含する。例えば、「鎖状シロキサン」構造相互を、炭化水素鎖で連結する構造自体は、狭義の「直鎖状シロキサン」に含まれないものの、本発明における、第2の有機シロキサンモノマーの有する「直鎖状シロキサン」としての機能を発揮できる。従って、直鎖状シロキサン骨格を有する第2の有機シロキサンモノマーとして、利用可能である。また、本発明において、有機シロキサン共重合体膜の構成ユニットとなる第2の有機シロキサンモノマーとしては、上述する直鎖状シロキサンの混合物を利用することもできる。
【0094】
(第3の実施例)
第3の実施例においては、環状シロキサンを骨格とする第1の有機シロキサンとして、化学式(8)のテトラメチルビニル・テトラハイドロ・シクロテトラシロキサン(TVTMCTS)を、直鎖状シロキサンを骨格とする第2の有機シロキサンとして、化学式(1)のビスベンゾシロブテン・ジビニルテトラメチルシロキサンを用いて、有機シロキサン共重合体膜を作製した。
【0095】
化学式(8)のTVTMCTS(分子量 346)は、シクロテトラシロキサンの「4員」環状シロキサン骨格上、各シリコン原子上に、メチル基と、不飽和炭化水素基としてビニル基がそれぞれ結合した構造を有し、常温で液体の物質である。一方、化学式(1)のBCBDVS(分子量 390)は、直鎖状シロキサン(−Si−O−Si−)骨格上、各シリコン原子末端に、付加重合可能な不飽和炭化水素基として、ビニレン基(−CH=CH−)構造にベンゾシクロブテニル基が結合した構造を有し、常温で液体である。すなわち、両者とも、少なくともそれぞれ2つ以上の不飽和炭化水素基を有しており、具体的には、第1の有機シロキサン上には、付加重合可能な不飽和炭化水素基が四つ、また、第2の有機シロキサン上には、付加重合可能な不飽和炭化水素基中に合計四つの反応部位を有している。かかるTVTMCTSとBCBDVSとを個々に気化させ、それらを予め混合した上で、この混合ガスをHeプラズマ中を通過させることで、TCTMCTSのビニル基と、BCBDVSのベンゾシクロブテニル基とを選択的に活性化させる。
【0096】
その結果、プラズマで活性化された部位において、加熱された基板上で、付加重合反応が進行し、図6に示す、開環付加型の重合体形成がなされる。すなわち、Heプラズマ中の低エネルギー電子の衝突により、ベンゾシクロブテン構造の活性化に伴い、化学式(2)に示されるような開環を起こしたシクロブテン環部と、ビニル基(CH2=CH−)とが、化学式(3)に示す形態の付加重合反応を行うシクロ環形成過程を介して、TVTMCTSとBCBDVSとの重合体形成がなされる。このように、シロキサンに結合している炭化水素基中に含まれている、不飽和炭素基部分は、選択的に活性化される結果、より付加重合が生じやすくなるため、所望とする反応経路の設計が可能となる。
【0097】
現時点においては、上記プラズマ励起過程を介した、共重合体膜の形成中での厳密な反応経路を経時的に解析する手段はないが、図7から図9に、共重合体膜内における架橋構造形成の反応経路を、ある程度推定を含めて、その時間的経過を模式的に示す(側鎖は一部図示せず)。先ず、プラズアで選択的に活性化される部位での付加重合反応が進行するとともに、図7に示すように、環状シロキサンを直鎖状シロキサンが連結した、大きな網目構造の有機シロキサン共重合体膜となる。さらには、共重合体膜内のBCBDVSユニット中には、未反応のビニレン基(−CH=CH−)が存在しており、別のBCBDVSが、このBCBDVSユニット中のビニレン基(−CH=CH−)に対する、ベンゾシクロブテン構造中のシクロブテン部の付加重合を同時に生じさせる。その結果、図8に示すように、直鎖状シロキサンであるBCBDVSユニット相互の重合反応に起因して、さらなる架橋構造が導入される。その際、混合ガス中に含まれるBCBDVSの比率がさらに高いと、図9に示すように、BCBDVSユニット相互の重合反応に起因して、さらなる高密度の架橋構造が導入される。
【0098】
得られる共重合体膜内には、環状シロキサンに由来するユニットが分散している網目状構造が形成されており、混合ガス中に含まれるBCBDVSの比率に応じて、さらなるBCBDVSユニット相互の重合反応に起因して、付加的な架橋構造が導入された有機シロキサン共重合体膜が加熱基板上に成長する。なお、共重合体膜中に含有される、環状シロキサン由来のユニットと直鎖状シロキサン由来のユニットとの存在比率は、混合ガス中に含有されるTVTMCTSモノマーガスとBCBDVSモノマーガスとのモル供給速度比に依存して決定される。また、得られる共重合体膜の密度も、TVTMCTSモノマーガスとBCBDVSモノマーガスとのモル供給速度比に依存しており、直鎖状シロキサンであるBCBDVS由来のユニットの含有比率が増すとともに、より高密度となる。その際、単位面積当たりに存在するシロキサン単位密度も増し、密着性が高く、さらには、比誘電率も高くなる。
【0099】
次に、図3に示した有機シロキサン共重合体膜の成長装置を用いて、TVTMCTSとBCBDVSとの付加重合反応を経て得られる、環状シロキサンと直鎖状シロキサンからなる有機シロキサン共重合体膜の成膜プロセスを説明する。
【0100】
先ず、気化制御器の初期状態では、気化制御器内バルブ37、バルブ41およびバルブ18を「開」とし、排気ポンプ14で、反応室1、排気配管16、廃液配管15、気化制御器34、気化原料供給配管38内を真空引きする。気化供給システム61内における、有機シロキサンモノマーの気化温度は、所望とする供給量を確保するために、必要な飽和蒸気圧に応じて適宜選択されるものであるが、有機モノマーを気相供給する配管過程での分解や重合等の変質、ならびに、配管途中での凝集に起因する閉塞等を引き起こすことのない、有機モノマー分圧範囲に維持可能な気化温度を選択することが必要である。また、その気化原料供給配管38は、配管内での凝集を防止する目的で、ヒータ加熱がなされるが、そのの部材をその加熱温度に耐えられるものとすること、あるいは、加熱温度を配管部材の耐熱温度範囲に設定することが可能な有機モノマー分圧の選択を行うことが必要である。また、配管の加熱温度は、配管各所に設置された熱電対によりモニターし、常に設定温度となるよう配管加熱ヒータ3を制御する。 次に、バルブ45を「開」とし、キャリアガス供給配管40よりキャリアガス(He)26を気体流量制御器31を介して気化制御器30に供給し、さらに、気化原料供給配管38、バルブ18を介して、反応室1に流し、排気配管16を介して排気ポンプ14で装置外に排気する。TVTMCTSとBCBDVSとを原料とする場合、気化温度を170℃〜210℃の範囲に設定する。一方、Heキャリアガス流量は、300sccm〜500sccmの範囲に選択できる。前記の条件範囲では、気化制御器34の全圧Pは、2〜4Torrであり、反応室1内の全圧は、1.0Torrであった。また、反応室1内に設置された基板加熱部6により、半導体集積回路が形成されたシリコン基板(半導体基板)5は、300℃〜400℃の範囲に加熱することが可能である。なお、TVTMCTSモノマーとBCBDVSモノマーを用いた場合、基板加熱温度は、200℃〜450℃の範囲内に選択することが適当である。
【0101】
上記の気化条件を選択する気化供給システム61より、TVTMCTSモノマーとBCBDVSモノマーはそれぞれHeキャリアガスとともに、個々の気化原料供給配管を介し反応室1へ供給される。TVTMCTSモノマーガスとBCBDVSモノマーガスとの混合ガスは、反応室1内のシャワーヘッド7部で、均一化が図られた後、基板面全体に均一に流量分散されて吹き付けられる。
【0102】
シャワーヘッド下に、Heプラズマを発生させていない状態では、該混合ガスを加熱基板に吹き付けた際、有機シロキサン膜は、ほとんど成膜されない。従って、接地されている基板加熱部に対して、該シャワーヘッドに、13.56MHzのRFパワーを印加し、シャワーヘッド下にHeプラズマを発生させ、原料有機シロキサンモノマーの活性化を行う。このプラズマによる活性化過程では、TVTMCTSモノマーとBCBDVSモノマーに、それぞれ存在している付加重合可能な炭化水素基(炭素4員環およびビニル基)を可能な限り選択的に活性化させることが望ましく、Heキャリアガスに起因するプラズマの生起用のRFパワーは、300W〜100Wの範囲に選択する。
【0103】
混合ガス中のTVTMCTSモノマーガスとBCBDVSモノマーガスは、かかるHeプラズマを通過する間に活性化を受け、加熱された基板表面上において、さらなる熱的エネルギーを付与されることで、TVTMCTSモノマーとBCBDVSモノマーの共重合反応が生じ、有機シロキサン共重合体膜が形成される。一方、未重合のモノマーガスは、排気配管16を介して、20℃程度に冷やされた冷却トラップ14に達した際、冷却トラップ14内で凝集、捕獲され、下流の排気ポンプ8には入り込まない。
【0104】
延べ供給量として、所定量のTVTMCTSモノマーガスならびにBCBDVSモノマーガスを気相供給した後、先ず、RFパワー供給を停止し、膜成長を停止し、その後、それぞれのモノマーガスの供給を停止し、反応室1内に残留するの半導体基板5を取り出す。
【0105】
上記の工程において、図10に示すように、成膜時に、環状シロキサンであるTVTMCTSモノマーガスと直鎖状シロキサンであるBCBDVSモノマーガスの相対供給量を変化させることで、膜厚方向に環状シロキサン由来のユニットと直鎖状シロキサン由来のユニットの含有比率が変化させられた、組成変調型有機シロキサン共重合体膜が得られる。例えば、RFパワー100Wの状態で、重量流量換算において、供給速度0.1g/分(2.6×10-4 mol/分)でBCBDVSモノマーガスのみを10秒間供給し、その後、BCBDVSモノマーの供給速度を一定に保ったまま、TVTMCTSモノマーガスの供給速度を、0.08g/分(2.6×10-4 mol/分)まで10秒間で増加させる。TVTMCTS供給速度 0.08g/分、BCBDVS供給速度 0.1g/分の状態を20秒保持し、TVTMCTSの供給速度を10秒間かけて0.08g/分から0g/分まで低下させる。その後、供給速度0.1g/分で、BCBDVSモノマーガスのみを10秒間供給し、RFパワーを停止する。
【0106】
この結果、350℃に加熱されたシリコン基板上、その界面層に50nm厚の緻密な直鎖状有機シロキサン膜であるBCBDVS膜が形成され、その上の75nm厚は、直鎖状シロキサン由来のユニットに対して、環状シロキサン由来のユニットの相対含有比率が増加していく遷移領域となり、次いで、200nm厚の環状シロキサン由来のユニットと直鎖状シロキサン由来のユニットの含有比率がほぼ1対1の有機シロキサン共重合体膜が作製される。さらに、その上の75nm厚は、直鎖状シロキサン由来のユニットに対して、環状シロキサン由来のユニットの含有比率が減少していく遷移領域となり、最上層として、50nm厚の緻密な緻密な直鎖状有機シロキサンであるBCBDVS膜で被覆される。なお、図10には、前記する代表的な膜構造、界面層/遷移領域/一定組成共重合体膜/遷移領域/最上層を説明するため、界面層、一定組成共重合体膜、最上層の異なる構造の三層を記載しているが、先に述べたように、モノマーの供給量はそれぞれ独立に制御可能であるので、連続的な供給量の変化を行うと、膜厚方向に連続的構造変化を示す共重合体膜が得られる。また、急激な供給量の変化を行うと、遷移領域では急激な構造変化を示す形態に制御することも可能である。
【0107】
なお、直鎖状シロキサンである単独BCBDVS膜の比誘電率kは、2.6であり、直鎖状シロキサンと環状シロキサンとして、BCBDVS+TVTMCTS(1:1)の有機シロキサン共重合体膜の比誘電率kは、2.4であった。単独TVTMCTS膜では、環状シロキサン由来のユニットは、空孔構造を有しており、その比誘電率kは、2.1−2.4程度であるが、TVTMCTS単独膜は、下地基板、無機絶縁膜に対する密着性は不足し、そのままでは、多層配線への適用は困難であった。FT−IR測定において、BCBDVS単層膜では、直鎖状シロキサンの伸縮振動による吸収ピーク1055cm-1が認められた。TVTMCTS/BCBDVS共重合体膜においては、直鎖状シロキサンの伸縮振動に起因する1055cm-1の吸収ピークに加え、環状シロキサンの伸縮振動に対応する1085cm-1の吸収ピークが認められた。
【0108】
以上に例示したように、本発明にかかる有機シロキサン共重合体膜の製造方法では、原料として、複数の有機シロキサンモノマーガスを使用し、成膜時にその供給量を独立かつ連続的に制御し、供給量比率を変化させることで、膜厚方向に対して、連続的に有機シロキサン膜の構造を変化させることができる。従って、他材料との界面においては、密着性と膜機械強度に優れる組成の界面層とし、膜全体としては実効比誘電率の低い、組成変調の有機シロキサン共重合体膜を連続して形成することができる。さらに、低圧力下での気相成長を用いているため、基板表面における、有機シロキサンモノマーの移動度が大きく、環状シロキサン由来のユニットと直鎖状シロキサン由来のユニットとが、付加重合によって生成する炭化水素鎖を介して、分子レベルで均一に混合された有機シロキサン共重合体膜を得ることができる。
【0109】
(第4の実施例)
図11に、本発明にかかるプラズマ励起型付加重合反応を利用して作製される有機シロキサン共重合体膜を、MOSFETデバイスの多層配線に適用した事例を示す。図11に示す半導体装置では、第3の実施例に記載したTVTMCTS/BCBDVSの有機シロキサン共重合体膜を、シリコン基板81に形成されたMOSFET 82上の3層の銅配線85,87,89(M1、M2、M3)における配線間絶縁膜に適用している。第1層目の銅配線(M1)85は、MOSFET 82上の無機層間絶縁膜84中に形成されているタングステン・コンタクトプラグ83上に形成される。無機層間絶縁膜84の表面には、銅拡散バリアキャップ膜として、10nm厚以下の極薄膜炭素添加シリコン窒化膜(SiCN)90が形成されている。
【0110】
第1層目の銅配線85の配線間絶縁膜91は、第2の有機シロキサンモノマーであるBCBDVSのみを使用した、直鎖状シロキサンからなる有機シロキサン膜91aと、環状シロキサンを骨格とする第1の有機シロキサンモノマーであるTVTMCTSと前記BCBDVSの両方を用いた、環状シロキサンと直鎖状シロキサンからなる有機シロキサン共重合体膜91bと、BCBDVSのみを使用した、直鎖状シロキサンからなる有機シロキサン膜91cの3層構造となっている。すなわち、下地および上地との界面層には、機械的強度と密着性に優れたBCBDVS膜91a,91cを配置した、連続的に形成された組成変調型有機シロキサン共重合体膜91を構成している。比誘電率k=2.5−2.7のBCBDVS膜には、単位骨格あたり1つの直鎖状シロキサン基(−Si−O−Si−)が含まれており、この直鎖状シロキサンが、付加重合で生成するベンゾシクロヘキサン環を介して、複雑に架橋された構造を構成する結果、機械的強度と銅拡散バリア膜との密着性に優れている。一方、連続的に形成されている、中間層のTVTMCTS/BCBDVS有機シロキサン共重合体膜91bは、空孔を有する環状シロキサン骨格に対して、炭化水素鎖やベンゾシクロヘキサン環を介して、直鎖状シロキサン骨格が複雑に架橋を形成している構造を有する。この中間層中には、環状シロキサン骨格に起因する空孔の存在により、膜全体はポーラスとされており、その実効比誘電率kは、含有比率TVTMCTS/BCBDVSが1:1の場合、k=2.4程度であった。
【0111】
かかる第1層目の銅配線85用の配線間絶縁膜91に利用する組成変調型有機シロキサン共重合体膜の実効的な比誘電率は、界面層のBCBDVS膜91a、91cと中間層のBCBDVS/TVTMCTS膜91bとの膜厚比に依存するため、界面層のBCBDVS膜膜91a、91cの総厚さは、中間層のBCBDVS/TVTMCTS膜91bの20%程度であることが望ましい。例えば、銅配線85の厚さが300nmの場合、BCBDVS膜91a、BCBDVS/TVTMCTS膜91b、BCBDVS膜91cのそれぞれの厚さを、15nm/270nm/15nmとした際、配線間絶縁膜91の実効比誘電率は2.5程度であった。
【0112】
この配線間絶縁膜91に利用する、組成変調型有機シロキサン共重合体膜は、図3に示した成長装置を用いて成長した。ここでは、基板加熱温度を350℃とし、シャワーヘッドに、周波数13.56MHz、電力100WのRFパワーを印加して、Heキャリアガスを利用して、Heプラズマを発生させた。まず、成膜初期では、BCBDVSモノマーのみを供給して、15nm厚のBCBDVS膜を成長させた。その後、BCBDVSモノマーとTVTMCTSモノマーとが等モル供給比率となるように、例えば、BCBDVSモノマー供給速度 0.1g/分、TVTMCTSモノマー供給速度 0.08/分で供給し、270nm厚のBCBDVS/TVTMCTS有機シロキサン共重合体膜を成長した。その後、再び、BCBDVSモノマーのみを供給して、15nm厚のBCBDVS膜を成長させた。なお、BCBDVSモノマーの供給量を一定とし、TVTMCTSモノマーの供給量を連続的に増減させることで、全層を組成変化のあるBCBDVS/TVTMCTS共重合体膜とすることができ、その際、シロキサン基の濃度は、下地と上地の界面近傍領域では高く、中間層では漸次的に低くなる膜構成とすることもできる。この第1層目の配線層間絶縁膜に形成された配線溝は、その側面および底面は、10nm厚のTaNバリア膜で被覆した後、溝内に、第1層目のシングルダマシン銅配線85が形成される。
【0113】
その後、第1層目の銅配線上に、10nm厚の銅拡散バリア膜90を成長させる。この銅拡散バリア膜として、例えば、シランガス(SiH4)を3秒間照射した後、下記化学式(27)のビストリメチルシルリルカージイミドを気化させて、He/N2混合ガスあるいはHe/NH3混合ガスからなるプラズマ中に導入し、250℃〜350℃に加熱された基板上、第1層目の銅配線を被覆する、比誘電率3.0〜3.5程度のSiCN膜を成長する。前記プラズマ発生に用いるRFパワーは100W程度である。
【0114】
【化28】
【0115】
式(27) ビストリメチルシルリルカージイミド
SiCN膜は、トリメチルシラン((CH3)3SiH)を、He/NH3混合ガスからなるプラズマ中に導入することでも、成膜できるが、この方法で得られるSiCN膜の比誘電率kは、通常、前記ビストリメチルシルリルカージイミドを原料とするSiCN膜よりも大きく、k=3.0〜3.5程度であった。
【0116】
その後、銅拡散バリア膜90上に、ビア絶縁膜92Vを成長する。このビア絶縁膜92Vには、機械的強度に優れる、シランガスを用いたプラズマCVDで作製されるシリコン酸化膜や、不飽和炭化水素鎖を含まない単独の有機シロキサン、例えば、下記化学式(28)のパラメチルージメトキシシランガス(PM−DMOS)をHeプラズマ中で分解して得られるアモルファスSiOCH膜を用いる。必要に応じて、ビア絶縁膜92Vの堆積後、その表面層を化学機械研磨法で削り取り平坦化する。
【0117】
【化29】
【0118】
式(29) パラメチルージメトキシシラン
その後、第2層目の配線間絶縁膜92a,b,cを成長する。ここでは、第2層目の配線間絶縁膜92a,b,cとして、第3の実施例に示した方法により、BCBDVS膜92aとBCBDVS/TVTMCTS有機シロキサン共重合体膜92bとBCBDVS膜92cの3層構造膜を連続して成長する。SiCN/SiO2の積層ハードマスク(図示せず)を用いて、該配線間絶縁膜92a,b,cに配線溝を形成し、さらに、ビア絶縁膜92Vにビアを形成する。かかるエッチンングガスには、C4F8/N2/O2系ガスを用いた。その後、イオン化スパッタ法により、Ta/TaNあるいはTiW/TiWNの積層バリア膜(75nm/75nm)を成長し、さらに、1000ÅのCuシード膜を成長する。Cuシード膜上に、電解メッキ法で7000ÅのCu膜を成長した後、300℃で30分アニールして、Cuメッキ膜の粒成長を行う。化学機械研磨法で、ビアと配線溝部以外の表面に存在する、Cu膜およびTa/TaNあるいはTiWNからなるバリアメタルを除去し、ビア86と配線溝87に一括して銅を埋め込んだ配線構造を形成する。かかる一連の工程により、第2層目の銅配線層92が形成される。同様の工程を繰り返すことにより、シリコン半導体基板のトランジスタ82上に、配線間絶縁膜として、環状シロキサン由来のユニットと直鎖状シロキン由来のユニットとが、付加重合による炭化水素鎖により連結された有機シロキサン共重合体膜を利用した多層配線が形成される。
【0119】
このように、本発明にかかる有機シロキサン共重合体膜の成長方法を利用することで、例えば、直鎖状シロキサンの一形態であるBCBDVSモノマーと、環状シロキサンの一形態であるTVTMCTSモノマーとを原料とする有機シロキサン共重合体膜の形成される気相反応系において、それぞれのシロキサン骨格に由来するユニットの含有比率を0%から100%まで変化させることができる。従って、ULSI多層配線のように各配線層の配線層間絶縁膜に対して、要求される膜物性、例えば、機械強度や密着性や比誘電率が異なる場合、原料とする複数種の有機シロキサンモノマーガスの供給比を制御することで、得られる共重合体膜の特性を自由に変化させることができるといった特色がある。
【0120】
以上に例示した共重合体膜の成長例では、直鎖シロキサンとしてBCBDVSと環状有機シロキサンとしてTVTMCTSを用いているが、本発明では、直鎖状シロキサンモノマーガスと環状シロキサンモノマーガスとを複数混合して、所望の組成を有する有機シロキサン共重合体膜を気相成長できる点に特色がある。例えば、第1の実施例に記載した種々の環状シロキサンと、第2の実施例に記載した種々の直鎖状シロキサンとから、目的に応じて選択される、有機シロキサン複数を混合して、それら供給比率に対応する組成を有する有機シロキサン共重合体膜を気相成長させることができる。さらに、自己重合可能な有機シロキサンモノマー2種類以上の混合ガスに加えて、さらに、アセチレンやエチレン、トリビニルシラン、ジビニルシランといった重合補助ガスを添加して、前記補助的な共重合ユニットも含む、有機シロキサン膜を気相成長させることもできる。
【0121】
(第5の実施例)
第5の実施例では、環状シロキサンの骨格を有する第1の有機シロキサンとして、上記一般式(11)で示される「3員」環状シロキサン類を用い、直鎖状シロキサンの骨格を有する第2の有機シロキサンとして、上記一般式(12)で示されるジビニルシロキサン類を用いて、その共重合体膜を形成した例を示す。この原料の組み合わせの場合、上述するプラズマ励起を用いる重合条件で得られる有機シロキサン共重合体膜は、図12に示す、「3員」環状シロキサン類のシリコン原子上の不飽和炭化水素基と、ジビニルシロキサン類の末端の不飽和炭化水素基との間で、付加重合反応が生じる。その結果、共重合体膜は、図13に示すように、「3員」環状シロキサン類に由来する「3員」環状シロキサン骨格を格子点とし、その間をジビニルシロキサン類に由来する架橋鎖が連結する、六角格子を基本とした膜構成となる。なお、環状シロキサンの骨格を有する第1の有機シロキサンに、「3員」環状シロキサンと「4員」環状シロキサンとの混合物を用いれば、六角格子と四角格子とが混在した網目構造を有する有機シロキサン共重合体膜が半導体基板上に成長する。
【0122】
【発明の効果】
本発明にかかる有機シロキサン共重合体膜おいては、原料として、環状シロキサンを骨格とする第1の有機シロキサンガスと、直鎖状シロキサンを骨格とする第2のシロキサンガスを複数混合することで、環状シロキサン由来のユニットと直鎖状シロキサンと由来のユニットとで形成される網目構造を含んだ、有機シロキサン共重合体膜を気相成長することが可能となる。さらに、これら有機シロキサンを気化し、それらの供給量をそれぞれ独立に制御しながら、混合ガス中における供給比率を変化させつつ、反応室へ供給することで、成長膜厚方向において、環状シロキサンと直鎖状シロキサンの構成比が変化している有機シロキサン共重合体膜を得ることができる。また、得られる共重合体膜は、含まれる環状シロキサン骨格は、シロキサンで囲まれた空孔を有しており、この空孔が直鎖状シロキサンからなる網目構造に織り込まれた構造体となる。このシロキサンで囲まれた空孔の大きさは、原料となる環状シロキサンの環員数を制御することで決まり、また、その空孔の混在密度は、原料として供給する第1の有機シロキサンと第2の有機シロキサンとのガス混合比を変化させることで制御できる利点を有する。この利点を用いて、下地の無機絶縁膜、ならびに上層の無機絶縁膜と接する、界面領域には、機械強度と密着性に富んだ直鎖状シロキサンを多く含む有機シロキサン共重合体膜を配置し、上下の界面領域の間に位置する中間層部分には、嵩密度の小さな、環状シロキサン由来のユニットを多く含む有機シロキサン共重合体膜を配置することで、膜全体として、界面領域と中間層部分とを平均した、実効比誘電率は低く、同時に、上下の界面部では、密着性および機械的強度に優れた層間絶縁膜を得ることができる。
【図面の簡単な説明】
【図1】本発明にかかる有機シロキサン共重合体膜を構成する、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2のシロキサンとの付加重合反応過程と、共重合体膜中の網目構造形成過程の一例を模式的に示す図である。
【図2】本発明にかかる有機シロキサン共重合体膜において、環状シロキサンを骨格とする第1の有機シロキサンに対して、直鎖状シロキサンを骨格とする第2のシロキサンの含有比率を増す際、共重合体膜中の網目構造に付加される直鎖状シロキサン由来の架橋構造の一例と、共重合体膜全体の高密度化を模式的に示す図である。
【図3】本発明にかかる有機シロキサン共重合体膜の作製に利用される、独立した二種の有機シロキサンモノマーの気化供給システムを具え、プラズマ励起機構を利用する気相成長装置の構成例を模式的に示す図である。
【図4】常温において、液体状の有機シロキサンモノマーの気化供給に利用可能な、液体流量制御機構を利用する気化制御器の構成を模式的に示す図である。
【図5】常温において、固体状の有機シロキサンモノマーの気化供給に利用可能な、気化器と気体流量制御機構を利用する気化供給システムの構成を模式的に示す図である。
【図6】環状シロキサンであるTVTMCTSモノマーガスと直鎖状シロキサンであるBCBDVSモノマーガスを利用する、本発明の一実施例である有機シロキサン共重合体膜の作製における、プラズマ励起を利用する重合反応を模式的に示す図である。図中、R11V=H,R12V=H,R13V=H,R1a=CH3、R21V=H,R22V=H,R23V=H,R2a=CH3、R31V=H,R32V=H,R33V=H,R3a=CH3、R41V=H,R42V=H,R43V=H,R4a=CH3である。
【図7】本発明にかかる有機シロキサン共重合体膜の形成過程の例であり、選択的なプラズマ励起に伴う、環状シロキサンと直鎖状シロキサンとの重合反応による網目構造の形成を示す模式図である。
【図8】本発明にかかる有機シロキサン共重合体膜の形成過程の例であり、選択的なプラズマ励起に伴う、環状シロキサンと直鎖状シロキサンとの重合反応による網目構造の形成、その後の直鎖状シロキサン相互の架橋形成を示す模式図である。
【図9】本発明にかかる有機シロキサン共重合体膜の形成過程の例であり、選択的なプラズマ励起に伴う、環状シロキサンと直鎖状シロキサンとの重合反応による網目構造の形成、その後の直鎖状シロキサン相互の二次元的な架橋構造形成を示す模式図である。
【図10】本発明にかかる有機シロキサン共重合体膜を、半導体装置中の層間絶縁膜として利用する際に好適な、膜厚方向に組成変調を有する有機シロキサン共重合体膜の構造を模式的に示す図である。
【図11】本発明にかかる有機シロキサン共重合体膜、特に、組成変調型有機シロキサン共重合体膜を配線間絶縁膜に利用した、多層配線構造を半導体デバイス上部に構成する半導体装置の一例を模式的に示す図である。
【図12】環状シロキサンに一般式(11)で示される「3員」環状シロキサン類を、直鎖状シロキサンに一般式(12)で示されるジビニルシロキサン類を利用する、本発明の一実施例である有機シロキサン共重合体膜の作製における、プラズマ励起を利用する重合反応を模式的に示す図である。
【図13】本発明にかかる有機シロキサン共重合体膜の形成過程の例であり、選択的なプラズマ励起に伴う、「3員」環状シロキサン類とジビニルシロキサン類との重合反応による六角格子様網目構造の形成を示す模式図である。
【符号の説明】
1 反応室
2 反応室加熱ヒータ
3 配管加熱ヒータ
4 共重合体膜
5 半導体基板
6 基板加熱部
7 シャワーヘッド
8 真空ポンプ
9 RF電源
10 マッチングボックス
11 RFケーブル
12a、12b アース線
13 気体流量制御器
14 冷却トラップ
15 廃液配管
16 排気配管
17 バルブ
18A、18B バルブ
19A 気化モノマーA
19B 気化モノマーB
20A、20B 排気気化モノマーA、B
21 クリーニングガス
22A、B 有機モノマーA、B
23A、B 有機モノマーA、Bタンク
24A 洗浄溶剤A
25A 洗浄溶剤Aタンク
26A、B キャリアガスA、B
27 圧力送出ガス
28A 有機モノマーA用液体流量指示器
29A 洗浄溶剤A用液体流量指示器
30A 気化制御器A
31A、B 気体流量制御器A、B
32A 気化室
33B 気体流量指示器B
34 ヒータ
35A 気化制御バルブA
36A 洗浄溶剤制御バルブA
37A 気化制御器A内バルブ
38A、B 気化原料A、B供給配管
39A、B 気化原料A、B排気配管
40A、B キャリアガスA、B供給配管
41A、B〜48A、B バルブ
61 気化モノマーA供給システム
62 気化モノマーB供給システム
81 シリコン基板
82 MOSFET
83 タングステン・コンタクトプラグ
84 無機層間絶縁膜
85 第1層目銅配線
86 ビア
87 第2層目銅配線
88 ビア
89 第3層目銅配線
90 銅拡散バリア膜
91 第1層目の配線間絶縁膜
91a,c BCBDVS膜
91b、 BCBDVS/TVTMCTS有機シロキサン共重合体膜
92 第2層目の配線層
92a,c BCBDVS膜
92b、 BCBDVS/TVTMCTS有機シロキサン共重合体膜
92V、93V ビア絶縁膜
93 第3層目の配線層
93a,c BCBDVS膜
93b、 BCBDVS/TVTMCTS有機シロキサン共重合体膜
Claims (7)
- 複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜であって、
前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記環状シロキサンを骨格とする第1の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を少なくとも3つ有しており、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を有しており、
前記環状シロキサンを骨格とする第1の有機シロキサンの有する、付加重合反応が可能な不飽和炭化水素基に対する、前記直鎖状シロキサンを骨格とする第2の有機シロキサンの付加反応を介して、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している
ことを特徴とする有機シロキサン共重合体膜。 - 膜厚方向において、
前記環状シロキサンを骨格とする第1の有機シロキサン由来のユニットと、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットとの含有比率が変化している膜構成を有する
ことを特徴とする請求項1に記載の有機シロキサン共重合体膜。 - 膜厚方向の上下面は、いずれも無機絶縁膜と接する形状を構成し、
前記第1の有機シロキサン由来のユニットと、第2の有機シロキサン由来のユニットとの含有比率は、
前記上下面の、無機絶縁膜との界面近傍においては、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットが主成分であり、膜内部においては、前記第2の有機シロキサン由来のユニットとの含有比率は、前記界面近傍における含有比率より低く、
該界面近傍における密度は、前記膜内部における密度より大きい
ことを特徴とする請求項1または2に記載の有機シロキサン共重合体膜。 - 層間絶縁膜として、有機シロキサン膜を用いる半導体装置であって、
前記有機シロキサン膜として、複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜であって、
前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記環状シロキサンを骨格とする第1の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を少なくとも3つ有しており、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を有しており、
前記環状シロキサンを骨格とする第1の有機シロキサンの有する、付加重合反応が可能な不飽和炭化水素基に対する、前記直鎖状シロキサンを骨格とする第2の有機シロキサンの付加反応を介して、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している膜を具え、
前記有機シロキサン共重合体膜は、無機絶縁膜に挟まれた形態とし、
前記第1の有機シロキサン由来のユニットと、第2の有機シロキサン由来のユニットとの含有比率は、
前記上下面の、無機絶縁膜との界面近傍においては、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットが主成分であり、膜内部においては、前記第2の有機シロキサン由来のユニットとの含有比率は、前記界面近傍における含有比率より低く、
該界面近傍における密度は、前記膜内部における密度より大きくされ、
該有機シロキサン共重合体膜層中に、銅膜が埋め込まれた配線層が形成されている
ことを特徴とする半導体装置。 - 基板上において、複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜を成長する方法であって、
前記有機シロキサン共重合体膜は、前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、環状シロキサンを骨格とする第1の有機シロキサンと、直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記環状シロキサンを骨格とする第1の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を少なくとも3つ有しており、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を有しており、
前記環状シロキサンを骨格とする第1の有機シロキサンの有する、付加重合反応が可能な不飽和炭化水素基に対する、前記直鎖状シロキサンを骨格とする第2の有機シロキサンの付加反応を介して、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している共重合体膜であり、
少なくとも、
前記環状シロキサンを骨格とする第1の有機シロキサンモノマーを気化する工程と、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンモノマーを気化する工程と、
気化された前記第1の有機シロキサンモノマーガスを所定の供給速度で供給する工程と、
気化された前記第2の有機シロキサンモノマーガスを所定の供給速度で供給する工程と、
供給される前記第1の有機シロキサンモノマーガスと前記第2の有機シロキサンモノマーガスとを混合して、混合ガスを構成する工程と、
前記混合ガスを減圧下の反応室に導入する工程と、
導入される前記混合ガスを、該反応室内に形成されたプラズマ雰囲気中を通過させた後、加熱される基板上に吹き付ける工程とを有し、
基板上において、吹き付けられた前記混合ガス中に含まれる、前記第1の有機シロキサンモノマーと第2の有機シロキサンモノマーを反応させて、前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している共重合体膜の成長を行う
ことを特徴とする有機シロキサン共重合体膜の気相成長方法。 - 前記第1の有機シロキサンモノマーガスの供給速度と前記第2の有機シロキサンモノマーガスの供給速度とを、その供給速度比を変化するように、それぞれ変化させ、
前記供給速度比の変化に伴い、膜厚方向において、
前記環状シロキサンを骨格とする第1の有機シロキサン由来のユニットと、前記直鎖状シロキサンを骨格とする第2の有機シロキサン由来のユニットとの含有比率が変化している膜構成とする
ことを特徴とする請求項5に記載の方法。 - 複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜の気相成長用装置であって、
複数種の有機シロキサンモノマーガスを、それぞれの供給量を制御して、個々に供給する、モノマーガス供給ユニット複数と、
クリーニングガス供給ユニットと、
前記複数のモノマーガス供給ユニットから供給されるモノマーガス複数、ならびに、必要に応じて、クリーニングガス供給ユニットから供給されるクリーニングガスを、混合して、混合ガスを形成する手段と、
基板を搭載可能な基板加熱部、前記基板加熱部上に搭載される基板面に前記混合ガスを均一分散して吹き付け可能なシャワーヘッドを具える反応室と、
接地される前記基板加熱部に対して、前記シャワーヘッドにRF電圧を印加する用途の、前記シャワーヘッドに接続されるRF電源と、
前記反応室内を減圧下とするための排気装置とを少なくとも具え、
前記モノマーガス供給ユニット複数は、少なくとも、
環状シロキサンを骨格とする第1の有機シロキサンを気化供給する第1のモノマー供給ユニットと、
直鎖状シロキサンを骨格とする第2の有機シロキサンを気化供給する第2のモノマー供給ユニットとを供えており、
前記環状シロキサンを骨格とする第1の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を少なくとも3つ有しており、
前記直鎖状シロキサンを骨格とする第2の有機シロキサンは、付加重合反応が可能な不飽和炭化水素基を有しており、
前記複数種の有機シロキサンを構成ユニットとする有機シロキサン共重合体膜は、
前記複数種の有機シロキサン由来の構成ユニットとして、
少なくとも、前記環状シロキサンを骨格とする第1の有機シロキサンと、前記直鎖状シロキサンを骨格とする第2の有機シロキサンとを含んでなり、
前記環状シロキサンを骨格とする第1の有機シロキサンの有する、付加重合反応が可能な不飽和炭化水素基に対する、前記直鎖状シロキサンを骨格とする第2の有機シロキサンの付加反応を介して、
前記第1の有機シロキサンに対して、前記第2の有機シロキサンが複数個結合して、架橋構造を形成している
ことを特徴とする有機シロキサン共重合体膜用の気相成長装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002205468A JP4217870B2 (ja) | 2002-07-15 | 2002-07-15 | 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 |
PCT/JP2003/008989 WO2004008517A1 (ja) | 2002-07-15 | 2003-07-15 | 有機シロキサン共重合体膜、その製造方法、及び成長装置、並びに該共重合体膜を用いた半導体装置 |
AU2003281110A AU2003281110A1 (en) | 2002-07-15 | 2003-07-15 | Organic siloxane copolymer film, method and deposition apparatus for producing same, and semiconductor device using such copolymer film |
US10/521,238 US7270849B2 (en) | 2002-07-15 | 2003-07-15 | Organic siloxane copolymer film, method and deposition apparatus for producing same, and semiconductor device using such copolymer film |
CNB038217325A CN100524647C (zh) | 2002-07-15 | 2003-07-15 | 有机硅氧烷共聚物膜、其制造方法以及生长装置和使用该共聚物膜的半导体装置 |
US11/687,871 US20070157884A1 (en) | 2002-07-15 | 2007-03-19 | Organosiloxane copolymer film, production method and deposition apparatus for said copolymer film, and semiconductor device using said copolymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002205468A JP4217870B2 (ja) | 2002-07-15 | 2002-07-15 | 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004047873A JP2004047873A (ja) | 2004-02-12 |
JP4217870B2 true JP4217870B2 (ja) | 2009-02-04 |
Family
ID=30112764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002205468A Expired - Lifetime JP4217870B2 (ja) | 2002-07-15 | 2002-07-15 | 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US7270849B2 (ja) |
JP (1) | JP4217870B2 (ja) |
CN (1) | CN100524647C (ja) |
AU (1) | AU2003281110A1 (ja) |
WO (1) | WO2004008517A1 (ja) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7056584B2 (en) * | 2002-10-11 | 2006-06-06 | General Electric Company | Bond layer for coatings on plastic substrates |
TWI282124B (en) | 2002-11-28 | 2007-06-01 | Tosoh Corp | Insulating film material containing an organic silane compound, its production method and semiconductor device |
JP4434146B2 (ja) | 2003-11-28 | 2010-03-17 | 日本電気株式会社 | 多孔質絶縁膜及びその製造方法並びに多孔質絶縁膜を用いた半導体装置 |
TW200527536A (en) | 2004-02-13 | 2005-08-16 | Matsushita Electric Ind Co Ltd | Method for forming organic/inorganic hybrid insulation film |
JP2005294333A (ja) * | 2004-03-31 | 2005-10-20 | Semiconductor Process Laboratory Co Ltd | 成膜方法及び半導体装置 |
US8513448B2 (en) | 2005-01-31 | 2013-08-20 | Tosoh Corporation | Cyclic siloxane compound, a material for forming Si-containing film, and its use |
EP2256123B1 (en) | 2005-01-31 | 2013-08-14 | Tosoh Corporation | Cyclic siloxane compound, a material for forming Si-containing film, and its use |
JP4900239B2 (ja) * | 2005-02-18 | 2012-03-21 | 日本電気株式会社 | 有機シリコン系膜の形成方法、当該有機シリコン系膜を有する半導体装置及びその製造方法 |
TW200730660A (en) * | 2005-04-08 | 2007-08-16 | Taiyo Nippon Sanso Corp | Materials for an insulation film and a method for forming a film using the same |
FR2887891B1 (fr) * | 2005-07-01 | 2007-09-21 | Commissariat Energie Atomique | Materiau a base de polysiloxane et a faible hysteresis de mouillage et procede de depot d'un tel materiau. |
WO2007032261A1 (ja) * | 2005-09-13 | 2007-03-22 | Nec Corporation | 多孔質絶縁膜の形成方法および半導体装置 |
WO2007032563A1 (ja) | 2005-09-16 | 2007-03-22 | Nec Corporation | 配線構造並びに半導体装置及びその製造方法 |
JP4641922B2 (ja) * | 2005-10-06 | 2011-03-02 | ランテクニカルサービス株式会社 | Cvd膜の製造方法及び電子デバイスの製造方法 |
US7923384B2 (en) * | 2005-11-24 | 2011-04-12 | Nec Corporation | Formation method of porous insulating film, manufacturing apparatus of semiconductor device, manufacturing method of semiconductor device, and semiconductor device |
JP2007258403A (ja) * | 2006-03-23 | 2007-10-04 | United Microelectronics Corp | 多孔性低誘電率薄膜及びその製作方法 |
JP2007266460A (ja) | 2006-03-29 | 2007-10-11 | Rohm Co Ltd | 半導体装置およびその製造方法 |
JP4812838B2 (ja) * | 2006-07-21 | 2011-11-09 | ルネサスエレクトロニクス株式会社 | 多孔質絶縁膜の形成方法 |
JP5043394B2 (ja) * | 2006-09-29 | 2012-10-10 | 東京エレクトロン株式会社 | 蒸着装置およびその運転方法 |
JP2008274365A (ja) * | 2007-05-01 | 2008-11-13 | Shin Etsu Chem Co Ltd | Si含有膜形成材料、Si含有膜及びその製造方法、並びに半導体デバイス |
JP2009212260A (ja) * | 2008-03-04 | 2009-09-17 | Fujifilm Corp | 膜 |
JP5169343B2 (ja) * | 2008-03-14 | 2013-03-27 | 株式会社デンソー | コーティング形成方法、コーティング形成装置および重合方法 |
JP5582710B2 (ja) * | 2009-03-24 | 2014-09-03 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
DE102009047351A1 (de) * | 2009-12-01 | 2011-06-09 | Evonik Goldschmidt Gmbh | Komposit-Siliconmembranen mit hoher Trennwirkung |
JP5671253B2 (ja) * | 2010-05-07 | 2015-02-18 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP6000822B2 (ja) * | 2012-11-26 | 2016-10-05 | 東京エレクトロン株式会社 | 基板洗浄方法および基板洗浄システム |
US9339770B2 (en) * | 2013-11-19 | 2016-05-17 | Applied Membrane Technologies, Inc. | Organosiloxane films for gas separations |
EP2937353A1 (en) * | 2014-04-23 | 2015-10-28 | Henkel AG&Co. KGAA | Method for the preparation of functionalized cyclosiloxanes |
US9799539B2 (en) * | 2014-06-16 | 2017-10-24 | Lam Research Ag | Method and apparatus for liquid treatment of wafer shaped articles |
KR102332415B1 (ko) * | 2014-10-24 | 2021-12-01 | 버슘머트리얼즈 유에스, 엘엘씨 | 실리콘-함유 막을 증착시키기 위한 조성물 및 이를 사용하는 방법 |
CN106496262A (zh) * | 2016-09-11 | 2017-03-15 | 复旦大学 | 一种含苯并环丁烯官能化的有机硅化合物的制备方法 |
CN106866722B (zh) * | 2017-01-12 | 2020-05-12 | 复旦大学 | 一种含苯并环丁烯官能化的有机硅化合物及其制备方法 |
US10774185B2 (en) * | 2018-01-25 | 2020-09-15 | The University Of Akron | Centrally functionalizable living cationic polymer or copolymer and methods of synthesizing the same |
CN110857463B (zh) * | 2018-08-23 | 2021-07-13 | 中国科学院上海硅酸盐研究所 | 一种二氧化钒多孔复合薄膜及其制备方法和应用 |
JP7110090B2 (ja) * | 2018-12-28 | 2022-08-01 | 東京エレクトロン株式会社 | 基板処理方法および基板処理システム |
US11756786B2 (en) * | 2019-01-18 | 2023-09-12 | International Business Machines Corporation | Forming high carbon content flowable dielectric film with low processing damage |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5186120A (en) * | 1989-03-22 | 1993-02-16 | Mitsubishi Denki Kabushiki Kaisha | Mixture thin film forming apparatus |
US5203925A (en) * | 1991-06-20 | 1993-04-20 | Matsushita Electric Industrial Co., Ltd. | Apparatus for producing a thin film of tantalum oxide |
US5431958A (en) * | 1992-03-09 | 1995-07-11 | Sharp Kabushiki Kaisha | Metalorganic chemical vapor deposition of ferroelectric thin films |
JPH0610144A (ja) * | 1992-06-29 | 1994-01-18 | Matsushita Electric Ind Co Ltd | 低蒸気圧材料供給装置 |
JP3207943B2 (ja) * | 1992-11-17 | 2001-09-10 | 忠弘 大見 | 低温酸化膜形成装置および低温酸化膜形成方法 |
US5630878A (en) * | 1994-02-20 | 1997-05-20 | Stec Inc. | Liquid material-vaporizing and supplying apparatus |
JP3601153B2 (ja) * | 1995-12-27 | 2004-12-15 | 東京エレクトロン株式会社 | 処理ガス供給装置のクリーニング方法 |
US6244575B1 (en) * | 1996-10-02 | 2001-06-12 | Micron Technology, Inc. | Method and apparatus for vaporizing liquid precursors and system for using same |
US6030706A (en) * | 1996-11-08 | 2000-02-29 | Texas Instruments Incorporated | Integrated circuit insulator and method |
JP3216799B2 (ja) * | 1996-11-13 | 2001-10-09 | 松下電工株式会社 | 加熱定着ロール |
JPH10306377A (ja) * | 1997-05-02 | 1998-11-17 | Tokyo Electron Ltd | 微量ガス供給方法及びその装置 |
US6107152A (en) * | 1998-02-20 | 2000-08-22 | Micron Technology, Inc. | Method of forming tungsten nitride comprising layers using NF3 as a nitrogen source gas |
US6068884A (en) | 1998-04-28 | 2000-05-30 | Silcon Valley Group Thermal Systems, Llc | Method of making low κ dielectric inorganic/organic hybrid films |
US6268019B1 (en) * | 1998-06-04 | 2001-07-31 | Atofina Chemicals, Inc. | Preparation of fluorine modified, low haze, titanium dioxide films |
US6216708B1 (en) * | 1998-07-23 | 2001-04-17 | Micron Technology, Inc. | On-line cleaning method for CVD vaporizers |
JP3153190B2 (ja) | 1998-09-21 | 2001-04-03 | 日本電気株式会社 | 高分子膜の製造装置とこの装置を用いた成膜方法 |
US6365229B1 (en) * | 1998-09-30 | 2002-04-02 | Texas Instruments Incorporated | Surface treatment material deposition and recapture |
US6454860B2 (en) * | 1998-10-27 | 2002-09-24 | Applied Materials, Inc. | Deposition reactor having vaporizing, mixing and cleaning capabilities |
US6129043A (en) * | 1999-02-25 | 2000-10-10 | United Microelectronics Corp. | Gas tube with heating apparatus |
US6495208B1 (en) * | 1999-09-09 | 2002-12-17 | Virginia Tech Intellectual Properties, Inc. | Near-room temperature CVD synthesis of organic polymer/oxide dielectric nanocomposites |
US6451692B1 (en) * | 2000-08-18 | 2002-09-17 | Micron Technology, Inc. | Preheating of chemical vapor deposition precursors |
US6716770B2 (en) * | 2001-05-23 | 2004-04-06 | Air Products And Chemicals, Inc. | Low dielectric constant material and method of processing by CVD |
US6486082B1 (en) * | 2001-06-18 | 2002-11-26 | Applied Materials, Inc. | CVD plasma assisted lower dielectric constant sicoh film |
JP4997670B2 (ja) | 2001-06-29 | 2012-08-08 | 日本電気株式会社 | 共重合高分子膜の作製方法、前記形成方法で作製される共重合高分子膜、共重合高分子膜を利用する半導体装置 |
US20040247787A1 (en) * | 2002-04-19 | 2004-12-09 | Mackie Neil M. | Effluent pressure control for use in a processing system |
US7456116B2 (en) * | 2002-09-19 | 2008-11-25 | Applied Materials, Inc. | Gap-fill depositions in the formation of silicon containing dielectric materials |
US7098149B2 (en) * | 2003-03-04 | 2006-08-29 | Air Products And Chemicals, Inc. | Mechanical enhancement of dense and porous organosilicate materials by UV exposure |
US7390535B2 (en) * | 2003-07-03 | 2008-06-24 | Aeromet Technologies, Inc. | Simple chemical vapor deposition system and methods for depositing multiple-metal aluminide coatings |
CN1906764B (zh) * | 2004-01-14 | 2010-09-22 | 国际商业机器公司 | 低kCVD材料的梯度沉积 |
-
2002
- 2002-07-15 JP JP2002205468A patent/JP4217870B2/ja not_active Expired - Lifetime
-
2003
- 2003-07-15 CN CNB038217325A patent/CN100524647C/zh not_active Expired - Lifetime
- 2003-07-15 WO PCT/JP2003/008989 patent/WO2004008517A1/ja active Application Filing
- 2003-07-15 AU AU2003281110A patent/AU2003281110A1/en not_active Abandoned
- 2003-07-15 US US10/521,238 patent/US7270849B2/en not_active Expired - Lifetime
-
2007
- 2007-03-19 US US11/687,871 patent/US20070157884A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2003281110A1 (en) | 2004-02-02 |
WO2004008517A1 (ja) | 2004-01-22 |
CN1682356A (zh) | 2005-10-12 |
US7270849B2 (en) | 2007-09-18 |
US20050267253A1 (en) | 2005-12-01 |
CN100524647C (zh) | 2009-08-05 |
US20070157884A1 (en) | 2007-07-12 |
JP2004047873A (ja) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4217870B2 (ja) | 有機シロキサン共重合体膜、その製造方法、成長装置、ならびに該共重合体膜を用いた半導体装置 | |
JP4997670B2 (ja) | 共重合高分子膜の作製方法、前記形成方法で作製される共重合高分子膜、共重合高分子膜を利用する半導体装置 | |
JP4492752B2 (ja) | 多孔質絶縁膜の製造方法、多孔質絶縁膜及び半導体装置 | |
US7504344B2 (en) | Method of forming a carbon polymer film using plasma CVD | |
US20120301706A1 (en) | METHOD OF PE-ALD OF SiNxCy AND INTEGRATION OF LINER MATERIALS ON POROUS LOW K SUBSTRATES | |
US20020160626A1 (en) | Siloxan polymer film on semiconductor substrate | |
JP3190886B2 (ja) | 高分子膜の成長方法 | |
JP2001308082A (ja) | 液体有機原料の気化方法及び絶縁膜の成長方法 | |
TW202012419A (zh) | 矽化合物及使用其沉積膜的方法 | |
JP4139952B2 (ja) | 共重合高分子膜及びその形成方法、並びに共重合高分子膜を用いた半導体装置 | |
TW201025425A (en) | Methods to promote adhesion between barrier layer and porous low-k film deposited from multiple liquid precursors | |
JP3153190B2 (ja) | 高分子膜の製造装置とこの装置を用いた成膜方法 | |
US20060046044A1 (en) | Porous composite polymer dielectric film | |
JP4506953B2 (ja) | 共重合高分子膜およびその作製方法 | |
JP4019258B2 (ja) | 共重合高分子膜の作製方法 | |
JP3384487B2 (ja) | 絶縁膜の形成方法および多層配線 | |
US7585789B2 (en) | Method for forming porous insulation film | |
JP2006503165A (ja) | オルガノシロキサン | |
JP2002329718A (ja) | 半導体基板上のシロキサン重合体膜及びその製造方法 | |
JP2008263022A (ja) | 絶縁膜材料、この絶縁膜材料を用いた成膜方法および絶縁膜 | |
JP4004983B2 (ja) | 絶縁膜形成材料及びそれを用いた絶縁膜 | |
JPH1092802A (ja) | 誘電体膜の製造方法 | |
JP2003297821A (ja) | 半導体基板上のシロキサン重合体膜及びその製造方法 | |
JP2004104026A (ja) | 半導体装置の製造方法 | |
JP2007318070A (ja) | 絶縁膜材料、この絶縁膜材料を用いた成膜方法および絶縁膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20041220 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20041220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050615 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081015 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081028 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4217870 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S131 | Request for trust registration of transfer of right |
Free format text: JAPANESE INTERMEDIATE CODE: R313135 |
|
SZ02 | Written request for trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313Z02 |
|
S131 | Request for trust registration of transfer of right |
Free format text: JAPANESE INTERMEDIATE CODE: R313135 |
|
SZ02 | Written request for trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313Z02 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S131 | Request for trust registration of transfer of right |
Free format text: JAPANESE INTERMEDIATE CODE: R313135 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |