Nothing Special   »   [go: up one dir, main page]

JP4210706B1 - Copper alloy sheet with excellent stress relaxation resistance - Google Patents

Copper alloy sheet with excellent stress relaxation resistance Download PDF

Info

Publication number
JP4210706B1
JP4210706B1 JP2007252037A JP2007252037A JP4210706B1 JP 4210706 B1 JP4210706 B1 JP 4210706B1 JP 2007252037 A JP2007252037 A JP 2007252037A JP 2007252037 A JP2007252037 A JP 2007252037A JP 4210706 B1 JP4210706 B1 JP 4210706B1
Authority
JP
Japan
Prior art keywords
copper alloy
stress relaxation
rolling
less
relaxation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007252037A
Other languages
Japanese (ja)
Other versions
JP2009084595A (en
Inventor
康博 有賀
幸矢 野村
大輔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007252037A priority Critical patent/JP4210706B1/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP13005148.5A priority patent/EP2695957B1/en
Priority to CN200880024723A priority patent/CN101743333A/en
Priority to PCT/JP2008/063320 priority patent/WO2009019990A1/en
Priority to EP13005149.3A priority patent/EP2695958B1/en
Priority to EP08791572.4A priority patent/EP2184371B1/en
Priority to KR1020107002597A priority patent/KR101227315B1/en
Priority to EP13005147.7A priority patent/EP2695956B1/en
Priority to US12/672,092 priority patent/US20110223056A1/en
Application granted granted Critical
Publication of JP4210706B1 publication Critical patent/JP4210706B1/en
Publication of JP2009084595A publication Critical patent/JP2009084595A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

【課題】圧延方向に対して直角方向の耐応力緩和特性を満たし、他の端子・コネクタとしての要求特性にも優れたCu−Ni−Sn−P系銅合金板を提供することを目的とする。
【解決手段】特定組成のCu−Ni−Sn−P系の銅合金板であって、この銅合金板表面のX線回折強度比I(200)/I(220)を一定量以下とするとともに、結晶粒径を微細化させ、端子・コネクタ3としての要求特性である、圧延と直角方向の耐応力緩和特性を向上させ、圧延と平行方向の耐応力緩和特性との差(異方性)を小さくする。
【選択図】図2
An object of the present invention is to provide a Cu—Ni—Sn—P based copper alloy sheet that satisfies stress relaxation characteristics in a direction perpendicular to the rolling direction and is excellent in required characteristics as other terminals and connectors. .
A Cu-Ni-Sn-P-based copper alloy plate having a specific composition, wherein the X-ray diffraction intensity ratio I (200) / I (220) on the surface of the copper alloy plate is set to a predetermined amount or less. Refinement of crystal grain size, improvement of stress relaxation resistance in the direction perpendicular to rolling, which is a required characteristic for terminals / connectors 3, and difference between stress relaxation resistance in parallel with rolling (anisotropy) Make it smaller.
[Selection] Figure 2

Description

本発明は、耐応力緩和特性に優れた銅合金板に関し、特に、自動車用端子・コネクタなどの接続部品用として適する、耐応力緩和特性に優れた銅合金板に関する。   The present invention relates to a copper alloy plate excellent in stress relaxation resistance, and more particularly to a copper alloy plate excellent in stress relaxation resistance suitable for connection parts such as automobile terminals and connectors.

近年の自動車用端子・コネクタなどの接続部品には、エンジンルームのような高温環境下で信頼性を確保できる性能が求められる。この高温環境下での信頼性において最も重要な特性のひとつは、接点嵌合力の維持特性、いわゆる耐応力緩和特性である。   In recent years, connection parts such as automobile terminals and connectors are required to have performance capable of ensuring reliability in a high temperature environment such as an engine room. One of the most important characteristics in reliability under this high temperature environment is a contact fitting force maintaining characteristic, so-called stress relaxation resistance characteristic.

図2に、自動車用端子・コネクタなどの接続部品として、代表的な箱形コネクタ(メス端子3)の構造を示す。図2(a)は正面図、図2(b)は断面図を示す。この図2において、メス端子3は、上側ホルダー部4に押圧片5が片持ち支持されている。そしてホルダー内にオス端子(タブ)6が挿入されると、押圧片5が弾性変形し、その反力によりオス端子(タブ)6が固定される。なお、図2において、7はワイヤ接続部、8は固定用舌片である。   FIG. 2 shows a structure of a typical box connector (female terminal 3) as a connecting part such as an automobile terminal / connector. 2A is a front view, and FIG. 2B is a cross-sectional view. In FIG. 2, in the female terminal 3, a pressing piece 5 is cantilevered by an upper holder part 4. When the male terminal (tab) 6 is inserted into the holder, the pressing piece 5 is elastically deformed, and the male terminal (tab) 6 is fixed by the reaction force. In FIG. 2, 7 is a wire connecting portion, and 8 is a fixing tongue piece.

この図2のように、銅合金板からなるばね形状部品に定常の変位を与え、オス端子(タブ)6 をメス端子のばね形状をした接点(押圧片)5で嵌合しているような場合には、エンジンルームのような高温環境下に保持されていると、時間の経過とともに、その接点嵌合力を失っていく。したがって、耐応力緩和特性とは、これら接続部品が高温環境下に保持されても、銅合金板からなるばね形状部品の接点嵌合力が大きく低下しない、高温に対する抵抗特性である。   As shown in FIG. 2, a constant displacement is applied to a spring-shaped component made of a copper alloy plate, and a male terminal (tab) 6 is fitted with a spring-shaped contact (pressing piece) 5 of a female terminal. In some cases, the contact fitting force is lost with the passage of time if the engine room is maintained in a high temperature environment such as an engine room. Therefore, the stress relaxation resistance is a resistance characteristic against a high temperature at which the contact fitting force of a spring-shaped part made of a copper alloy plate is not greatly reduced even when these connection parts are held in a high temperature environment.

図1(a)、(b)に、この規格による耐応力緩和特性の試験装置を示す。この試験装置を用い、短冊状に切り出した試験片1の一端を剛体試験台2に固定し、他端を片持ち梁式に持ち上げて反らせ(反りの大きさd)、これを所定の温度及び時間で保持した後、室温下で除荷し、除荷後の反りの大きさ(永久歪み)をδとして求める。ここで、応力緩和率(RS)は、RS=(δ/d)×100で表される。   1A and 1B show a stress relaxation resistance test apparatus according to this standard. Using this test apparatus, one end of the test piece 1 cut into a strip shape is fixed to the rigid body test stand 2 and the other end is lifted and bent in a cantilever manner (warping magnitude d). After holding for a period of time, unloading is performed at room temperature, and the magnitude of warpage (permanent strain) after unloading is obtained as δ. Here, the stress relaxation rate (RS) is represented by RS = (δ / d) × 100.

このような耐応力緩和特性に優れる銅合金としては、従来から、Cu−Ni−Si系銅合金、Cu−Ti系銅合金、Cu−Be系銅合金などが広く知られているが、最近では、添加元素量が比較的少ないCu−Ni−Sn−P系銅合金が使用されている。このCu−Ni−Sn−P系銅合金は、大気中への開口部が広く開いた大規模溶解炉であるシャフト炉での造塊が可能で、その高生産性ゆえに大幅な低コスト化が可能となる。   As such copper alloys having excellent stress relaxation resistance, Cu-Ni-Si based copper alloys, Cu-Ti based copper alloys, Cu-Be based copper alloys, and the like have been widely known. Cu-Ni-Sn-P-based copper alloys having a relatively small amount of additive elements are used. This Cu-Ni-Sn-P-based copper alloy can be ingoted in a shaft furnace, which is a large-scale melting furnace with a wide opening to the atmosphere, and its cost is greatly reduced due to its high productivity. It becomes possible.

このCu−Ni−Sn−P系銅合金自体の耐応力緩和特性の向上策も、従来から種々提案されている。例えば、下記特許文献1、2には、Cu−Ni−Sn−P系銅合金マトリックス中にNi−P金属間化合物を均一微細に分散させ、導電率を向上させると同時に耐応力緩和特性等を向上させることが開示されている。   Various measures for improving the stress relaxation resistance of the Cu—Ni—Sn—P based copper alloy itself have been proposed. For example, in Patent Documents 1 and 2 below, Ni-P intermetallic compounds are uniformly and finely dispersed in a Cu-Ni-Sn-P-based copper alloy matrix to improve conductivity and at the same time stress relaxation resistance and the like. It is disclosed to improve.

また、下記特許文献2、3には、Cu−Ni−Sn−P系銅合金のP含有量を下げて、Ni−P化合物の析出を抑えた固溶型銅合金とすることが開示されている。更に、下記特許文献4には、Cu−Ni−Sn−P系銅合金板製造の際の仕上げ焼鈍の実体温度と保持時間とを規定して、導電率を向上させると同時に耐応力緩和特性等を向上させることが開示されている。
特許第2844120号公報 特許第3871064号公報 特開平11−293367号公報 特開2002−294368号公報
Patent Documents 2 and 3 below disclose that a solid solution type copper alloy in which the P content of a Cu—Ni—Sn—P based copper alloy is lowered to suppress precipitation of a Ni—P compound is disclosed. Yes. Furthermore, the following Patent Document 4 specifies the substantial temperature and holding time of finish annealing in the production of a Cu—Ni—Sn—P based copper alloy plate to improve conductivity and at the same time stress relaxation resistance, etc. Is disclosed.
Japanese Patent No. 2844120 Japanese Patent No. 3871064 JP-A-11-293367 JP 2002-294368 A

ところで、圧延された(圧延によって得られた)銅合金板の応力緩和率には異方性があり、前記図2におけるメス端子3の長手方向が、素材銅合金板の圧延方向に対しどの方向を向いているかによって、応力緩和率が異なった値となる。これは、前記応力緩和率測定でも同様で、試験片の長手方向が、素材銅合金板の圧延方向に対しどの方向を向いているかによって、測定応力緩和率が異なった値となる。この点で、銅合金板の圧延方向に対して直角方向の方が、平行方向よりも応力緩和率が低くなりやすい。   By the way, the stress relaxation rate of the rolled (obtained by rolling) copper alloy sheet is anisotropic, and the longitudinal direction of the female terminal 3 in FIG. 2 indicates which direction the rolling direction of the material copper alloy sheet is. Depending on whether it is facing, the stress relaxation rate becomes a different value. The same applies to the stress relaxation rate measurement, and the measured stress relaxation rate varies depending on which direction the longitudinal direction of the test piece is oriented with respect to the rolling direction of the material copper alloy sheet. In this respect, the stress relaxation rate tends to be lower in the direction perpendicular to the rolling direction of the copper alloy sheet than in the parallel direction.

この点、前記図2において、素材銅合金板をプレス加工してメス端子3を製造する際には、メス端子3の長手方向(押圧片5の長手方向)が圧延方向に対し直角方向を向くように板取りされる場合がある。高い耐応力緩和特性が要求されるのは、通常は、押圧片5の長さ方向への曲げ(弾性変形)に対してである。したがって、このように圧延方向に対し直角方向を向くように板取りされる場合には、銅合金板の圧延方向に対しては、平行方向ではなく、直角方向に高い耐応力緩和特性を有することが要求される。   In this regard, in FIG. 2, when the female terminal 3 is manufactured by pressing the material copper alloy plate, the longitudinal direction of the female terminal 3 (longitudinal direction of the pressing piece 5) is perpendicular to the rolling direction. May be chamfered. The high stress relaxation resistance is usually required for bending (elastic deformation) in the length direction of the pressing piece 5. Therefore, when the sheet is cut so as to face the direction perpendicular to the rolling direction, the copper alloy sheet has a high stress relaxation resistance in the perpendicular direction, not in the parallel direction. Is required.

このため、圧延方向に対して平行方向とともに、圧延方向に対して直角方向の応力緩和率が高ければ、素材銅合金板の板取り方向によらず、圧延方向に対して平行方向や直角方向のいずれの方向に板取りされた場合でも、端子・コネクタとしての耐応力緩和特性を満たすことができる。   For this reason, if the stress relaxation rate in the direction perpendicular to the rolling direction as well as the direction parallel to the rolling direction is high, the direction parallel to the rolling direction and the direction perpendicular to the rolling direction can be used regardless of the plate-up direction of the material copper alloy sheet. Even when the plate is cut in any direction, the stress relaxation resistance as a terminal / connector can be satisfied.

この点に鑑み、本発明は、端子・コネクタとして、圧延方向に対して平行方向とともに、圧延方向に対して直角方向の応力緩和率が高い、耐応力緩和特性に優れたCu−Ni−Sn−P系銅合金板を提供することを目的とする。   In view of this point, the present invention provides Cu-Ni-Sn- as a terminal / connector that has a high stress relaxation rate in a direction perpendicular to the rolling direction as well as a direction parallel to the rolling direction and excellent stress relaxation resistance. An object is to provide a P-based copper alloy sheet.

この目的を達成するための、本発明耐応力緩和特性に優れた銅合金板の要旨は、質量%で、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金板であって、板表面の(200)面からのX線回折強度I(200)と、板表面の(220)面からのX線回折強度I(220)との比、I(200)/I(220)が0.25以下であるとともに、平均結晶粒径を5.0μm以下とする。   In order to achieve this object, the gist of the copper alloy sheet excellent in stress relaxation resistance of the present invention is mass%, Ni: 0.1 to 3.0%, Sn: 0.01 to 3.0%, P: A copper alloy plate containing 0.01 to 0.3% each and consisting of the remaining copper and inevitable impurities, the X-ray diffraction intensity I (200) from the (200) plane of the plate surface, and the plate The ratio to the X-ray diffraction intensity I (220) from the (220) plane of the surface, I (200) / I (220) is 0.25 or less, and the average crystal grain size is 5.0 μm or less.

ここで、前記銅合金板が、更に、質量%で、Fe:0.5%以下、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下に抑制することが好ましい。また、前記銅合金が、更に、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの含有量を、これらの元素の合計で1.0質量%以下とすることが好ましい。更に、前記銅合金が、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素の合計で0.1質量%以下とすることが好ましい。   Here, the copper alloy plate is further, in mass%, Fe: 0.5% or less, Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0.3 % Or less is preferable. Moreover, it is preferable that the content of Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt in the copper alloy is 1.0% by mass or less in total of these elements. . Further, the copper alloy is Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi. , Te, B, and the content of misch metal are preferably 0.1% by mass or less in total of these elements.

本発明で、上記X線回折強度比、I(200)/I(220)を規定しているのは、Cu−Ni−Sn−P系銅合金板のCube方位の発達を抑制するとともに、Cube方位以外の特定の結晶方位を発達させるためである。また、本発明では、これと合わせて、平均結晶粒径を5.0μm以下と微細にする。これらによって、本発明では、圧延方向に対して平行方向あるいは直角方向などの特定の方向に対する異方性を小さくして、圧延方向に対して直角方向の耐応力緩和特性を向上させるとともに、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくする。   In the present invention, the X-ray diffraction intensity ratio, I (200) / I (220), is regulated while suppressing the development of the Cube orientation of the Cu—Ni—Sn—P based copper alloy plate and the Cube. This is to develop a specific crystal orientation other than the orientation. In addition, in the present invention, the average crystal grain size is made as fine as 5.0 μm or less together with this. Accordingly, in the present invention, the anisotropy with respect to a specific direction such as a direction parallel to or perpendicular to the rolling direction is reduced, and the stress relaxation property in the direction perpendicular to the rolling direction is improved. The difference in stress relaxation resistance between the parallel direction and the perpendicular direction is reduced.

これに対して、本発明とは逆に、Cube方位を発達させるか、Cube方位以外の特定の結晶方位の発達を抑制するか、平均結晶粒径を粗大化させた場合には、いずれの場合にも、圧延方向に対して平行方向などの特定の方向に対する異方性が強くなって、却って、直角方向の耐応力緩和特性が向上しない。また、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくできず、両方向間の異方性(耐応力緩和特性の差)が大きくなる。   On the other hand, contrary to the present invention, when the Cube orientation is developed, the development of a specific crystal orientation other than the Cube orientation is suppressed, or the average crystal grain size is coarsened, in any case In addition, the anisotropy in a specific direction such as a direction parallel to the rolling direction becomes strong, and on the contrary, the stress relaxation resistance property in the perpendicular direction is not improved. In addition, the difference in stress relaxation resistance between the direction parallel to and perpendicular to the rolling direction cannot be reduced, and the anisotropy (difference in stress relaxation characteristics) between the two directions increases.

(X線回折強度比)
本発明のX線回折強度比は、通常のX線回折法を用いて、板表面における、Cube方位である(200)面からのX線回折強度I(200)と、Cube方位以外の方位である(220)面からのX線回折強度I(220)とを測定する。そして、これらのX線回折強度比(X線回折ピーク比)、I(200)/I(220)から求めることができる。
(X-ray diffraction intensity ratio)
The X-ray diffraction intensity ratio of the present invention is determined by using an ordinary X-ray diffraction method, with the X-ray diffraction intensity I (200) from the (200) plane being the Cube orientation on the plate surface and an orientation other than the Cube orientation. The X-ray diffraction intensity I (220) from a certain (220) plane is measured. And it can obtain | require from these X-ray-diffraction intensity ratio (X-ray-diffraction peak ratio), I (200) / I (220).

通常の銅合金板の集合組織は、かなり多くの方位因子からなるが、これらの構成比率が変化すると、板材の塑性異方性が変化し、耐応力緩和特性が変化する。この中でも、特にCube方位の方位密度〔D(Cube)ともいう〕と、それ以外の特定の結晶方位密度とを適正範囲に制御することにより、圧延方向に対して平行方向あるいは直角方向などの特定の方向に対する異方性を小さくする。   The texture of a normal copper alloy plate is composed of a considerable number of orientation factors. However, when these constituent ratios change, the plastic anisotropy of the plate material changes and the stress relaxation resistance changes. Among these, by controlling the orientation density of Cube orientation [also referred to as D (Cube)] and the other specific crystal orientation density within an appropriate range, it is possible to specify a direction parallel to or perpendicular to the rolling direction. The anisotropy with respect to the direction is reduced.

即ち、Cube方位の発達を抑制するとともに、Cube方位以外の特定の結晶方位の発達を強くする。これによって、圧延方向に対して直角方向の耐応力緩和特性を向上させるとともに、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくする。そして、素材銅合金板の板取り方向によらず、圧延方向に対して平行方向や直角方向のいずれの方向に板取りされた場合でも、圧延方向に対して平行方向とともに、圧延方向に対して直角方向の応力緩和率が高くし、端子・コネクタとしての耐応力緩和特性を満たす。   That is, the development of a specific crystal orientation other than the Cube orientation is strengthened while suppressing the development of the Cube orientation. As a result, the stress relaxation resistance in the direction perpendicular to the rolling direction is improved, and the difference between the stress relaxation characteristics in the direction parallel to and perpendicular to the rolling direction is reduced. And, regardless of the plate direction of the raw material copper alloy plate, even when the plate is cut in a direction parallel to or perpendicular to the rolling direction, along with the direction parallel to the rolling direction and the rolling direction. The stress relaxation rate in the perpendicular direction is increased to satisfy the stress relaxation resistance characteristics of terminals and connectors.

このため、本発明では、板表面における、Cube方位である(200)面からのX線回折強度I(200)と、Cube方位以外の方位である(220)から面のX線回折強度I(220)との比、I(200)/I(220)が0.25以下、好ましくは0.20以下であることとする。   Therefore, in the present invention, the X-ray diffraction intensity I (200) from the (200) plane that is the Cube orientation on the surface of the plate and the X-ray diffraction intensity I (( 220), I (200) / I (220) is 0.25 or less, preferably 0.20 or less.

このI(200)/I(220)が0.25を越えた場合、Cube方位が発達し、Cube方位以外の特定の結晶方位の発達が抑制され、圧延方向に対して平行方向などの特定の方向に対する異方性が強くなって、却って、直角方向の耐応力緩和特性が向上しない。また、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくできず、両方向間の異方性(耐応力緩和特性の差)が大きくなる。   When this I (200) / I (220) exceeds 0.25, the Cube orientation develops, the development of a specific crystal orientation other than the Cube orientation is suppressed, and a specific direction such as a direction parallel to the rolling direction is suppressed. The anisotropy with respect to the direction becomes strong, and on the contrary, the stress relaxation resistance in the perpendicular direction is not improved. In addition, the difference in stress relaxation resistance between the direction parallel to and perpendicular to the rolling direction cannot be reduced, and the anisotropy (difference in stress relaxation characteristics) between the two directions increases.

(平均結晶粒径)
本発明では、Cu−Ni−Sn−P系銅合金板の上記集合組織の制御と、平均結晶粒径を小さくする制御との合わせ技によって、圧延方向に対して平行方向あるいは直角方向などの特定の方向に対する異方性を小さくして、圧延方向に対して直角方向の耐応力緩和特性を向上させるとともに、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくする。
(Average crystal grain size)
In the present invention, the parallel or perpendicular direction to the rolling direction is specified by the combined technique of controlling the texture of the Cu—Ni—Sn—P based copper alloy sheet and controlling the average grain size to be reduced. The anisotropy with respect to the rolling direction is reduced to improve the stress relaxation resistance in the direction perpendicular to the rolling direction, and the difference between the stress relaxation characteristics in the direction parallel to and perpendicular to the rolling direction is reduced.

このために、本発明では、平均結晶粒径を5.0μm以下と微細にする。平均結晶粒径を5.0μmを超えて、平均結晶粒径を粗大化させた場合には、上記集合組織の制御を行っても、圧延方向に対して平行方向などの特定の方向に対する異方性が強くなって、却って、直角方向の耐応力緩和特性が向上しない。また、圧延方向に対して平行方向と直角方向との耐応力緩和特性の差を小さくできず、両方向間の異方性(耐応力緩和特性の差)が大きくなる。   Therefore, in the present invention, the average crystal grain size is made as fine as 5.0 μm or less. When the average crystal grain size exceeds 5.0 μm and the average crystal grain size is increased, even if the texture is controlled, anisotropy with respect to a specific direction such as a direction parallel to the rolling direction On the other hand, the stress relaxation resistance property in the perpendicular direction is not improved. In addition, the difference in stress relaxation resistance between the direction parallel to and perpendicular to the rolling direction cannot be reduced, and the anisotropy (difference in stress relaxation characteristics) between the two directions increases.

この平均結晶粒径は、FESEM/EBSPを用いた結晶方位解析方法による特定方位の方位分布密度測定の中で測定できる。即ち、この結晶方位解析方法は、試料表面に斜めに電子線を当てたときに生じる後方散乱電子回折パターン(菊地パターン)に基づき、結晶方位を解析する。そして、この方法は、高分解能結晶方位解析法(FESEM/EBSP法)として、ダイヤモンド薄膜や銅合金などの結晶方位解析でも公知である。本発明と同じく銅合金の結晶方位解析をこの方法で行なっている例は、特開2005−29857号公報、特開2005−139501号公報などにも開示されている。   This average crystal grain size can be measured in orientation distribution density measurement of a specific orientation by a crystal orientation analysis method using FESEM / EBSP. That is, this crystal orientation analysis method analyzes the crystal orientation based on a backscattered electron diffraction pattern (Kikuchi pattern) generated when an electron beam is obliquely applied to the sample surface. This method is also known as a high resolution crystal orientation analysis method (FESEM / EBSP method) for crystal orientation analysis of diamond thin films, copper alloys, and the like. Examples in which the crystal orientation analysis of a copper alloy is performed by this method as in the present invention are also disclosed in JP-A-2005-29857, JP-A-2005-139501, and the like.

この結晶方位解析方法による解析手順は、まず、測定される材料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から、菊地パターン(特定方位マッピング)を得る。この際、電子線を試料表面に2次元で走査させ、所定ピッチ毎に結晶方位を測定すれば、試料表面の方位分布を測定できる。   Analysis procedure by this crystal orientation analysis method, first, the measurement region of the material to be measured is usually divided into hexagonal regions, etc., and for each divided region, from the reflected electrons of the electron beam incident on the sample surface, Get Kikuchi pattern (specific orientation mapping). At this time, if the electron beam is scanned two-dimensionally on the sample surface and the crystal orientation is measured at every predetermined pitch, the orientation distribution on the sample surface can be measured.

次に、得られた上記菊池パターンを解析して、電子線入射位置の結晶方位を知る。即ち、得られた菊地パターンを既知の結晶構造のデータと比較し、その測定点での結晶方位を求める。同様にして、その測定点に隣接する測定点の結晶方位を求め、これら互いに隣接する結晶の方位差が±10°以内(結晶面から±10°以内のずれ)のものは同一の結晶面に属するものとする(見なす)。また、両方の結晶の方位差が±10°を超える場合には、その間(両方の六角形が接している辺など)を粒界とする。このようにして、試料表面の結晶粒界の分布を求める。   Next, the obtained Kikuchi pattern is analyzed to know the crystal orientation at the electron beam incident position. That is, the obtained Kikuchi pattern is compared with data of a known crystal structure, and the crystal orientation at the measurement point is obtained. Similarly, the crystal orientation of the measurement point adjacent to the measurement point is obtained, and those whose crystal orientation difference is within ± 10 ° (deviation within ± 10 ° from the crystal plane) are located on the same crystal plane. Shall belong. Further, when the orientation difference between both crystals exceeds ± 10 °, the interval (such as the side where both hexagons are in contact) is defined as the grain boundary. In this way, the distribution of grain boundaries on the sample surface is obtained.

より具体的には、製造した銅合金板から組織観察用の試験片を採取し、機械研磨およびバフ研磨を行った後、電解研磨して表面を調整する。このように得られた試験片について、例えば日本電子社製のFESEMと、TSL社製のEBSP測定・解析システムOIM(Orientation Imaging Macrograph)を用い、同システムの解析ソフトと(ソフト名「OIM Analysis」)を用いて、各結晶粒の平均粒径を測定できる。測定視野範囲は、例えば500μm×500μm程度の領域とし、これを試験片の適当箇所数か所で測定を行い平均化する。   More specifically, a specimen for observing the structure is collected from the manufactured copper alloy plate, subjected to mechanical polishing and buffing, and then subjected to electrolytic polishing to adjust the surface. For the specimen obtained in this way, for example, using FESEM manufactured by JEOL Ltd. and EBSP measurement / analysis system OIM (Orientation Imaging Macrograph) manufactured by TSL, analysis software of the system (software name “OIM Analysis”) ) Can be used to measure the average grain size of each crystal grain. The measurement visual field range is, for example, an area of about 500 μm × 500 μm, and this is measured at an appropriate number of places on the test piece and averaged.

(銅合金成分組成)
次に、本発明銅合金の成分組成につき、以下に説明する。本発明では、銅合金の成分組成を、前提として、前記した通り、シャフト炉造塊が可能で、その高生産性ゆえに大幅な低コスト化が可能なCu−Ni−Sn−P系銅合金とする。
(Copper alloy component composition)
Next, the component composition of the copper alloy of the present invention will be described below. In the present invention, based on the premise of the composition of the copper alloy, as described above, the shaft furnace ingot is possible, and the Cu-Ni-Sn-P-based copper alloy that can greatly reduce the cost due to its high productivity and To do.

そして、前記高効率化、高速化した自動車用端子・コネクタなどの接続部品を製造するプレス成形工程に対応し、自動車用端子・コネクタなどの接続部品としての要求特性をも満たす、強度、耐応力緩和特性、導電率にも優れさせるために、基本的に、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金とする。なお、各元素の含有量の%表示は、全て質量%の意味である。以下に銅合金の合金元素につき、その添加理由や抑制理由について説明する。   And it corresponds to the press molding process for manufacturing connection parts such as automobile terminals / connectors with high efficiency and high speed, and also satisfies the required characteristics as connection parts such as automobile terminals / connectors, strength and stress resistance Basically, Ni: 0.1 to 3.0%, Sn: 0.01 to 3.0%, and P: 0.01 to 0.3%, respectively, in order to improve relaxation characteristics and conductivity. A copper alloy containing copper and the inevitable impurities is contained. In addition,% display of content of each element means the mass% altogether. The reasons for addition and suppression of alloy elements of copper alloy will be described below.

(Ni)
Niは、銅合金マトリックス中に固溶あるいはPなどの他の合金元素と微細な析出物や化合物を形成して、強度や耐応力緩和特性を向上させるのに必要な元素である。Niが0.1%未満の含有量では、最適な本発明製造方法によっても、0.1μm 以下の微細なNi化合物量やNiの固溶量の絶対量が不足する。このため、これらNiの効果を有効に発揮させるには、0.1%以上の含有が必要である。
(Ni)
Ni is an element necessary to improve strength and stress relaxation resistance by forming a solid precipitate or a compound with a solid solution or other alloy elements such as P in a copper alloy matrix. If the Ni content is less than 0.1%, the amount of fine Ni compound of 0.1 μm or less or the absolute amount of Ni solid solution is insufficient even by the optimum production method of the present invention. For this reason, in order to exhibit these Ni effects effectively, the content of 0.1% or more is necessary.

但し、3.0%を超えてNiを過剰に含有させると、Niの酸化物、晶出物、析出物などの化合物が粗大化、あるいは粗大なNi化合物が増大する。この結果、却って微細なNi化合物量やNiの固溶量が低下する。また、これらの粗大化したNi化合物は、破壊の起点となるため、強度や曲げ加工性も低下する。したがって、Niの含有量は0.1〜3.0%の範囲、好ましくは、0.3〜2.0%の範囲とする。   However, when Ni is contained excessively exceeding 3.0%, compounds such as Ni oxides, crystallized substances, and precipitates are coarsened or coarse Ni compounds are increased. As a result, the amount of fine Ni compound and the solid solution amount of Ni are reduced. Moreover, since these coarsened Ni compounds serve as starting points for fracture, the strength and bending workability also deteriorate. Therefore, the Ni content is in the range of 0.1 to 3.0%, preferably in the range of 0.3 to 2.0%.

(Sn)
Snは、銅合金マトリックス中に固溶して強度を向上させる。更に固溶しているSnは焼鈍中の再結晶による軟化を抑制する。Sn含有量が0.01%未満では、Snが少な過ぎて、強度を向上できない。一方、Sn含有量が3.0%を超えると、導電率が著しく低下するだけでなく、前記固溶しているSnが結晶粒界に偏析して、強度や曲げ加工性も低下する。したがって、Snの含有量は0.01〜3.0%の範囲、好ましくは0.1〜2.0%の範囲とする。
(Sn)
Sn is dissolved in the copper alloy matrix to improve the strength. Further, Sn that is in solid solution suppresses softening due to recrystallization during annealing. If the Sn content is less than 0.01%, the amount of Sn is too small to improve the strength. On the other hand, when the Sn content exceeds 3.0%, not only the electrical conductivity is remarkably lowered, but also the solid solution of Sn is segregated at the grain boundaries, and the strength and bending workability are also lowered. Therefore, the Sn content is in the range of 0.01 to 3.0%, preferably 0.1 to 2.0%.

(P)
Pは、Niと微細な析出物を形成して、強度や耐応力緩和特性を向上させるのに必要な元素である。また、Pは脱酸剤としても作用する。0.01%未満の含有ではP系の微細な析出物粒子が不足するため、0.01%以上の含有が必要である。但し、0.3%を超えて過剰に含有させると、Ni−P金属間化合物析出粒子が粗大化し、強度や耐応力緩和特性だけでなく、熱間加工性も低下する。したがって、Pの含有量は0.01〜0.3%の範囲とする。好ましくは、0.02〜0.2%の範囲とする。
(P)
P is an element necessary for forming fine precipitates with Ni and improving strength and stress relaxation resistance. P also acts as a deoxidizer. If the content is less than 0.01%, the P-based fine precipitate particles are insufficient, so the content must be 0.01% or more. However, when it exceeds 0.3% and contains excessively, the Ni-P intermetallic compound precipitation particle | grains will coarsen and not only the intensity | strength and stress relaxation characteristics but hot workability will also fall. Therefore, the P content is in the range of 0.01 to 0.3%. Preferably, it is set as 0.02 to 0.2% of range.

(Fe、Zn、Mn、Si、Mg)
Fe、Zn、Mn、Si、Mgは、スクラップなどの溶解原料から混入しやすい不純物である。これらの元素は、各々の含有効果があるものの、総じて導電率を低下させる。また、含有量が多くなると、シャフト炉で造塊しにくくなる。したがって、高い導電率を得る場合には、各々、Fe:0.5%以下、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下と規制する。言い換えると、本発明では、これら上限値以下の含有は許容する。
(Fe, Zn, Mn, Si, Mg)
Fe, Zn, Mn, Si, and Mg are impurities that are easily mixed from melting raw materials such as scrap. Although these elements have their respective effects, they generally lower the electrical conductivity. Moreover, when content increases, it will become difficult to agglomerate with a shaft furnace. Therefore, when obtaining high conductivity, Fe: 0.5% or less, Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0.3% or less And regulate. In other words, in this invention, content below these upper limits is permitted.

Feは、Snと同様に、銅合金の再結晶温度を高める。しかし、0.5%を超えると導電率が低下する。好ましくは、0.3%以下とする。   Fe raises the recrystallization temperature of a copper alloy like Sn. However, if it exceeds 0.5%, the electrical conductivity decreases. Preferably, it is 0.3% or less.

Znは、錫めっきの剥離を防止する。しかし、1%を超えると導電率が低下して高導電率を得られない。また、シャフト炉で造塊する場合は0.05%以下が望ましい。そして、自動車用端子として使用する温度領域(約150〜180℃)であれば、0.05%以下の含有でも錫めっきの剥離を防止できる効果がある。   Zn prevents peeling of tin plating. However, if it exceeds 1%, the conductivity is lowered and high conductivity cannot be obtained. Moreover, when ingot-making with a shaft furnace, 0.05% or less is desirable. And if it is a temperature range (about 150-180 degreeC) used as a terminal for motor vehicles, even if it contains 0.05% or less, there exists an effect which can prevent peeling of tin plating.

Mn、Siには脱酸剤としての効果がある。しかし、0.1%を超えると、導電率が低下して高導電率を得られない。また、シャフト炉で造塊する場合には、更に、Mn:0.001%以下、Si:0.002%以下と各々することが望ましい。   Mn and Si have an effect as a deoxidizer. However, if it exceeds 0.1%, the electrical conductivity is lowered and high electrical conductivity cannot be obtained. Further, when ingot forming is performed in a shaft furnace, it is further preferable to set Mn: 0.001% or less and Si: 0.002% or less.

Mgは耐応力緩和特性を向上させる作用がある。しかし、0.3%を超えると、導電率が低下して高導電率を得られない。また、シャフト炉で造塊する場合には、0.001%以下が望ましい。   Mg has the effect of improving the stress relaxation resistance. However, if it exceeds 0.3%, the electrical conductivity is lowered and a high electrical conductivity cannot be obtained. Moreover, when ingot-making with a shaft furnace, 0.001% or less is desirable.

(Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Pt)
本発明銅合金は、更に、不純物として、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptを、これらの元素の合計で1.0%以下含有することを許容する。これらの元素は、結晶粒の粗大化を防止する作用があるが、これらの元素の合計で1.0%を越えた場合、導電率が低下して高導電率を得られない。また、シャフト炉で造塊しにくくなる。
(Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, Pt)
The copper alloy of the present invention further allows Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt to be contained as impurities in an amount of 1.0% or less in total. These elements have the effect of preventing the coarsening of crystal grains, but when the total of these elements exceeds 1.0%, the conductivity is lowered and high conductivity cannot be obtained. Moreover, it becomes difficult to ingot in a shaft furnace.

この他、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルも不純物であり、これらの元素の合計で0.1%以下に制限することが好ましい。   In addition, Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B Misch metal is also an impurity, and the total of these elements is preferably limited to 0.1% or less.

(銅合金板製造方法)
次に、本発明銅合金板の製造方法について以下に説明する。本発明銅合金板の製造工程自体は、仕上げ焼鈍工程の条件を除き、常法により製造できる。即ち、成分組成を調整した銅合金溶湯の鋳造、鋳塊面削、均熱、熱間圧延、そして冷間圧延と焼鈍の繰り返しにより最終(製品)板を得る。但し、本発明銅合金板が、強度、耐応力緩和特性などの必要な特性を得るためには、好ましい製造条件があり、以下に各々説明する。また、本発明銅合金板の組織とするためには、後述する通り、最終の冷間圧延と、この後の最終の低温焼鈍とを組み合わせて行う必要があり、かつ、これら各工程の条件を制御する必要がある。
(Copper alloy plate manufacturing method)
Next, the manufacturing method of this invention copper alloy board is demonstrated below. The manufacturing process itself of the copper alloy sheet of the present invention can be manufactured by a conventional method except for the conditions of the finish annealing process. That is, a final (product) plate is obtained by casting a molten copper alloy with an adjusted composition, ingot chamfering, soaking, hot rolling, and repeating cold rolling and annealing. However, in order for the copper alloy sheet of the present invention to obtain necessary characteristics such as strength and stress relaxation characteristics, there are preferable production conditions, which will be described below. Moreover, in order to make the structure of the copper alloy sheet of the present invention, as described later, it is necessary to carry out a combination of the final cold rolling and the subsequent low temperature annealing, and the conditions of these steps are as follows. Need to control.

先ず、前記した本発明銅合金組成の鋳造の際には、大規模溶解炉であるシャフト炉での高生産性な造塊が可能である。但し、銅合金溶解炉での合金元素の添加完了から鋳造開始までの所要時間を1200秒以内とし、更に、鋳塊の加熱炉より鋳塊を抽出してから熱延終了までの所要時間を1200秒以下と、できるだけ短時間とすることが好ましい。   First, when casting the above-described copper alloy composition of the present invention, a highly productive ingot is possible in a shaft furnace which is a large-scale melting furnace. However, the time required from the completion of addition of the alloy element in the copper alloy melting furnace to the start of casting is set to within 1200 seconds, and further, the time required from the ingot extraction from the ingot heating furnace to the end of hot rolling is set to 1200 seconds. It is preferable to make it as short as possible, such as less than a second.

このような、銅合金溶解炉での合金元素の添加完了から鋳造開始までの短時間化と、更に、鋳塊の加熱炉より鋳塊を抽出してから熱間圧延終了までの短時間化によって、粗大なNi化合物を抑制するとともに、微細なNi化合物量やNiの固溶量を確保することができる。この結果、銅合金板の、導電率、耐応力緩和特性、強度を確保できる。   By shortening the time from the completion of addition of the alloy element in the copper alloy melting furnace to the start of casting, and further shortening the time from extraction of the ingot from the ingot heating furnace to the end of hot rolling. In addition to suppressing coarse Ni compounds, a fine Ni compound amount and a solid solution amount of Ni can be secured. As a result, the conductivity, stress relaxation resistance, and strength of the copper alloy plate can be ensured.

なお、後段の主に冷延条件、焼鈍条件により、微細なNi化合物量やNiの固溶量を制御しようとしても、熱間圧延終了までの上記前段の工程において、微細なNi化合物量やNiの固溶量の絶対量が少なくなっている。更に、上記前段の工程において生成した粗大なNi化合物が多い場合には、冷延、焼鈍工程で析出した微細生成物は、この粗大生成物にトラップされてしまい、マトリックス中に独立して存在する微細生成物はますます少なくなる。このため、Niの添加量が多い割には、十分な強度と優れた耐応力緩和特性を得ることができなくなる可能性がある。   Even if it is intended to control the amount of fine Ni compound and the solid solution amount of Ni mainly by the cold rolling conditions and annealing conditions in the latter stage, the fine Ni compound amount and Ni in the preceding stage until the end of hot rolling. The absolute amount of the solid solution is less. Furthermore, when there are many coarse Ni compounds produced | generated in the process of the said front | former stage, the fine product which precipitated in the cold rolling and annealing process will be trapped by this coarse product, and will exist independently in a matrix. There are fewer and fewer fine products. For this reason, there is a possibility that sufficient strength and excellent stress relaxation resistance cannot be obtained for a large amount of Ni added.

熱間圧延については、常法に従えばよく、熱間圧延の入り側温度は600〜1000℃程度、終了温度は600〜850℃程度とされる。熱間圧延後は水冷又は放冷する。   About hot rolling, what is necessary is just to follow a usual method, the entrance temperature of hot rolling is about 600-1000 degreeC, and end temperature shall be about 600-850 degreeC. After hot rolling, it is cooled with water or allowed to cool.

その後、冷間圧延と焼鈍とを繰り返し行なって、製品板厚の銅合金板などとする。焼鈍と冷間圧延は、最終(製品)板厚に応じて繰り返されても良い。冷間圧延は最終仕上げ圧延において30〜80%程度の加工率が得られるように、加工率を選択する。冷間圧延の途中に適宜中間の再結晶焼鈍を挟むことができる。   Thereafter, cold rolling and annealing are repeated to obtain a copper alloy plate having a product thickness. Annealing and cold rolling may be repeated depending on the final (product) plate thickness. In cold rolling, the processing rate is selected so that a processing rate of about 30 to 80% is obtained in the final finish rolling. An intermediate recrystallization annealing can be appropriately sandwiched during the cold rolling.

仕上げ焼鈍温度は、板の実体温度として、最高到達温度が500〜800℃の範囲で行い、この温度範囲での保持時間は好ましくは10〜60秒とすることが好ましい。   The final annealing temperature is set in a range where the maximum temperature is 500 to 800 ° C. as the actual temperature of the plate, and the holding time in this temperature range is preferably 10 to 60 seconds.

(最終冷間圧延)
最終冷間圧延では、圧延速度を200m/min以上に大きくする。また、これと合わせて、後述する通り、低温での最終焼鈍を行なう。最終冷間圧延での圧延速度を増加することによって、Cu−Ni−Sn−P系銅合金板に導入される歪み速度が大きくなる。これにより、Cube方位以外の結晶方位が発達しやすくなり、Cube方位の発達が抑制されるため、耐応力緩和特性の異方性を小さくできる。また、結晶方位のランダム化が促進され、同一方位粒群(結晶方位が近い結晶粒が隣接して群をなす)が低減するため、個々の結晶粒径も微細化する。したがって、Cu−Ni−Sn−P系銅合金板の、表面の前記X線回折強度比I(200)/I(220)を0.25以下とでき、平均結晶粒径を5.0μm以下と微細にできる。この結果、圧延方向に対して直角方向の耐応力緩和特性を向上させることができ、圧延方向に対して平行方向の応力緩和率との差も小さくできる。
(Final cold rolling)
In the final cold rolling, the rolling speed is increased to 200 m / min or more. In addition to this, as will be described later, final annealing at a low temperature is performed. By increasing the rolling speed in the final cold rolling, the strain rate introduced into the Cu—Ni—Sn—P based copper alloy sheet is increased. Thereby, the crystal orientation other than the Cube orientation is easily developed, and the development of the Cube orientation is suppressed, so that the anisotropy of the stress relaxation resistance can be reduced. Further, randomization of crystal orientation is promoted, and a group of grains having the same orientation (crystal grains having similar crystal orientations form a group adjacent to each other) is reduced, so that individual crystal grain sizes are also refined. Therefore, the surface X-ray diffraction intensity ratio I (200) / I (220) of the Cu—Ni—Sn—P based copper alloy plate can be 0.25 or less, and the average crystal grain size is 5.0 μm or less. Can be fine. As a result, the stress relaxation resistance in the direction perpendicular to the rolling direction can be improved, and the difference from the stress relaxation rate in the direction parallel to the rolling direction can be reduced.

一方、最終冷間圧延における圧延速度が200m/min未満と小さ過ぎると、歪み速度が小さいため、本発明のようなCu−Ni−Sn−P系銅合金板では、特に、Cube方位以外の結晶方位の発達が抑制され、また、同一方位粒群が形成されやすく、個々の結晶粒径が大きくなる。このため、上記X線回折強度比I(200)/I(220)を0.25以下とできなくなり、平均結晶粒径も5.0μmを超えて粗大化しやすくなる。   On the other hand, if the rolling speed in the final cold rolling is too small as less than 200 m / min, the strain rate is small, so in the Cu—Ni—Sn—P based copper alloy plate as in the present invention, in particular, crystals other than the Cube orientation. The development of the orientation is suppressed, the same orientation grain group is easily formed, and the individual crystal grain size is increased. For this reason, the X-ray diffraction intensity ratio I (200) / I (220) cannot be made 0.25 or less, and the average crystal grain size easily exceeds 5.0 μm.

最終冷間圧延のパス数は、過少や過多のパス数を避けて、通常の3〜4回のパス数で行なうことが好ましい。また、1パス当たりの圧下率は50%を超える必要は無く、1パス当たりの各圧下率は、元の板厚、冷延後の最終板厚、パス数、この最大圧下率を考慮して決定される。   The number of final cold rolling passes is preferably 3 to 4 times as usual, avoiding too few or too many passes. Also, the rolling reduction per pass need not exceed 50%, and each rolling reduction per pass takes into account the original plate thickness, the final plate thickness after cold rolling, the number of passes, and this maximum rolling reduction. It is determined.

(最終焼鈍)
本発明では、最終冷間圧延後に、連続的な熱処理炉で、低温での最終焼鈍を行なう。連続的な熱処理炉における連続焼鈍工程では、炉内を通過する板の通板速度を制御して、最高到達温度が100〜400℃の範囲での低温の焼鈍を短時間行うことが可能となる。この点、前記最高到達温度が100〜400℃の範囲で、板の通板速度を10〜100m/minの範囲とすることで、Cu−Ni−Sn−P系銅合金板のCube方位の発達を抑制するとともに、Cube方位以外の特定の結晶方位の発達を強くして、異方性を小さくできる。また、結晶粒の成長も抑制できる。したがって、Cu−Ni−Sn−P系銅合金板の、表面の前記X線回折強度比I(200)/I(220)を0.25以下とでき、平均結晶粒径を5.0μm以下と微細にできる。この結果、圧延方向に対して直角方向の耐応力緩和特性を向上させることができ、圧延方向に対して平行方向の応力緩和率との差も小さくできる。
(Final annealing)
In the present invention, final annealing at a low temperature is performed in a continuous heat treatment furnace after the final cold rolling. In the continuous annealing process in the continuous heat treatment furnace, it is possible to perform the low temperature annealing in the range of the maximum temperature of 100 to 400 ° C. for a short time by controlling the plate passing speed of the plate passing through the furnace. . In this respect, the development of the Cube orientation of the Cu—Ni—Sn—P-based copper alloy plate is achieved by setting the plate reaching speed in the range of 10 to 100 m / min in the range where the maximum temperature reaches 100 to 400 ° C. In addition, the anisotropy can be reduced by strengthening the development of a specific crystal orientation other than the Cube orientation. Further, the growth of crystal grains can be suppressed. Therefore, the surface X-ray diffraction intensity ratio I (200) / I (220) of the Cu—Ni—Sn—P based copper alloy plate can be 0.25 or less, and the average crystal grain size is 5.0 μm or less. Can be fine. As a result, the stress relaxation resistance in the direction perpendicular to the rolling direction can be improved, and the difference from the stress relaxation rate in the direction parallel to the rolling direction can be reduced.

板の通板速度が100m/minを超えた場合には、室温から前記最高到達温度範囲100〜400℃まで、板の温度変化が急激に生じるため、通板後の板に残る残留歪み量が増加して、転位の再配列や回復現象が起こりやすくなる。すなわち、圧延方向に対して直角方向および平行方向の両方とも耐応力緩和特性が低下する。一方、板の通板速度が10m/min未満の場合には、前記最高到達温度範囲100〜400℃では、処理時間が長すぎるだけでなく、昇温および降温速度が小さいため、本発明のようなCu−Ni−Sn−P系銅合金板では、特に、Cube方位以外の結晶方位の発達が抑制され、また、結晶粒の成長が促進される。このため、耐応力緩和特性の異方性が強まり、上記X線回折強度比I(200)/I(220)を0.25以下とできなくなり、平均結晶粒径も5.0μmを超えて粗大化しやすくなる。   When the plate passing speed exceeds 100 m / min, the temperature change of the plate suddenly occurs from room temperature to the maximum temperature range of 100 to 400 ° C. Therefore, the residual strain remaining on the plate after the plate passing is Increasing, rearrangement of dislocations and recovery phenomenon are likely to occur. That is, the stress relaxation resistance decreases in both the direction perpendicular to the rolling direction and in the parallel direction. On the other hand, when the plate passing speed is less than 10 m / min, not only is the treatment time too long in the maximum temperature range of 100 to 400 ° C., but also the temperature rise and temperature drop rates are small. In such a Cu—Ni—Sn—P based copper alloy plate, the development of crystal orientations other than the Cube orientation is suppressed, and the growth of crystal grains is promoted. For this reason, the anisotropy of the stress relaxation resistance is increased, the X-ray diffraction intensity ratio I (200) / I (220) cannot be made 0.25 or less, and the average crystal grain size is too large exceeding 5.0 μm. It becomes easy to become.

また、焼鈍温度が100℃よりも低い温度や、この低温焼鈍をしない条件では、銅合金板の組織・特性は、最終冷延後の状態からほとんど変化しない可能性が高い。逆に、焼鈍温度が400℃を超える温度では、再結晶が生じ、転位の再配列や回復現象が過度に生じ、析出物も粗大化するため、強度が低下する可能性が高い。   Moreover, in the temperature which annealing temperature is lower than 100 degreeC, or the conditions which do not perform this low-temperature annealing, possibility that the structure | tissue and characteristic of a copper alloy plate will hardly change from the state after the last cold rolling is high. On the other hand, when the annealing temperature exceeds 400 ° C., recrystallization occurs, dislocation rearrangement and recovery phenomenon occur excessively, and precipitates also become coarser, so the strength is likely to decrease.

以下に本発明の実施例を説明する。最終冷間圧延における圧延速度、この最終冷間圧延後の連続的な熱処理炉における低温最終焼鈍の際の通板速度、焼鈍温度を各々制御して、前記X線回折強度比I(200)/I(220)が種々異なる銅合金薄板を製造した。そして、これら各銅合金薄板の、導電率、引張強度、0.2%耐力、耐応力緩和特性などの諸特性を評価した。   Examples of the present invention will be described below. By controlling the rolling speed in the final cold rolling, the sheet feeding speed in the low-temperature final annealing in the continuous heat treatment furnace after the final cold rolling, and the annealing temperature, the X-ray diffraction intensity ratio I (200) / Copper alloy sheets with different I (220) were produced. Then, various properties such as electrical conductivity, tensile strength, 0.2% proof stress and stress relaxation resistance of each of these copper alloy thin plates were evaluated.

具体的には、表1に示す各化学成分組成の銅合金(記載元素量を除いた残部組成はCu)を、それぞれコアレス炉にて溶製した後、半連続鋳造法(鋳造の冷却凝固速度2℃/sec)で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。これら各鋳塊を、共通して、以下の条件にて圧延して銅合金薄板を製造した。各鋳塊の表面を面削して加熱後、加熱炉で960℃で加熱した後、直ちに熱延終了温度750℃で熱間圧延を行って厚さ16mmの板とし、650℃以上の温度から水中に急冷した。   Specifically, after each copper alloy having the chemical composition shown in Table 1 (the remaining composition excluding the element amount is Cu) is melted in a coreless furnace, a semi-continuous casting method (cooling solidification rate of casting). (2 ° C./sec) to obtain an ingot having a thickness of 70 mm, a width of 200 mm, and a length of 500 mm. These ingots were commonly rolled under the following conditions to produce a copper alloy sheet. After chamfering and heating the surface of each ingot, it is heated at 960 ° C. in a heating furnace, and immediately hot-rolled at a hot rolling end temperature of 750 ° C. to form a plate having a thickness of 16 mm. Quenched into water.

この際、溶解炉での合金元素添加完了から鋳造開始までの所要時間は、各例とも共通して1200秒以下とし、加熱炉抽出から熱延終了までの所要時間は、各例とも共通して1200秒以下とした。   At this time, the time required from the completion of addition of the alloy element in the melting furnace to the start of casting is 1200 seconds or less in common with each example, and the time required from the heating furnace extraction to the end of hot rolling is common with each example. It was set to 1200 seconds or less.

この板を、酸化スケールを除去した後、冷延→連続仕上げ焼鈍→冷延→歪み取り焼鈍を行なって、銅合金薄板を製造した。即ち、一次冷間圧延(粗冷間圧延、中延べ冷間圧延)後の板を面削した。この板の仕上げ焼鈍を、焼鈍炉にて、板の実体温度として、最高到達温度が600℃、この温度での保持時間60秒として行った。   After removing the oxide scale, this plate was subjected to cold rolling → continuous finish annealing → cold rolling → strain relief annealing to produce a copper alloy thin plate. That is, the plate after primary cold rolling (rough cold rolling, intermediate cold rolling) was faced. The final annealing of this plate was performed in an annealing furnace with a maximum temperature of 600 ° C. and a holding time of 60 seconds at this temperature as the actual temperature of the plate.

この仕上げ焼鈍後に、圧下率を60%とした最終冷間圧延を行った。この最終冷間圧延における圧延速度を各々制御した。なお、最終冷間圧延では4パスとも同じロール径(60mm)、ロール長さ(500mm)のロールを使用し、1パス当たりの圧下率も30%と同じとした。   After this finish annealing, final cold rolling with a rolling reduction of 60% was performed. The rolling speed in this final cold rolling was controlled respectively. In the final cold rolling, rolls having the same roll diameter (60 mm) and roll length (500 mm) were used for all four passes, and the rolling reduction per pass was the same as 30%.

この最終冷間圧延後に、実体温度(最高到達温度)は350℃と一定にして、板の通板速度を表2に示すような値に種々変えた、低温の焼鈍を連続焼鈍炉で行って、厚さ0.25mmの銅合金薄板を得た。   After this final cold rolling, the solid temperature (maximum temperature reached) was kept constant at 350 ° C., and the low-speed annealing was performed in a continuous annealing furnace with various plate feeding speeds changed to the values shown in Table 2. A copper alloy thin plate having a thickness of 0.25 mm was obtained.

なお、表1に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Aグループの元素である、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの含有量は、表1の発明例9(表2の発明例10)を除き、これらの元素の合計で1.0質量%以下であった。   In addition, in each copper alloy shown in Table 1, the balance composition excluding the element amount described is Cu, and as other impurity elements, elements of group A, Ca, Zr, Ag, Cr, Cd, Be, Ti The content of Co, Au, and Pt was 1.0% by mass or less in total of these elements, except for Invention Example 9 in Table 1 (Invention Example 10 in Table 2).

また、Bグループの元素である、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、表1の発明例10(表2の発明例11)を除いて、これらの元素全体の合計で0.1質量%以下であった。   Further, B group elements Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As , Sb, Bi, Te, B, misch metal content was 0.1% by mass or less in total of these elements except for Invention Example 10 in Table 1 (Invention Example 11 in Table 2). .

このようにして得た銅合金板に対して、各例とも、銅合金板から試料を切り出し、各試料の導電率、引張強度、0.2%耐力、耐応力緩和特性などの諸特性を評価した。これらの結果を表2に各々示す。   With respect to the copper alloy plate thus obtained, in each example, a sample was cut out from the copper alloy plate, and various properties such as conductivity, tensile strength, 0.2% proof stress, and stress relaxation resistance of each sample were evaluated. did. These results are shown in Table 2, respectively.

(組織の測定)
銅合金板試料について、理学電機製X線回折分析装置(型式:RINT1500)を用いて、ターゲットにCoを用い、管電圧40kV、管電流200mA 、走査速度2°/min、サンプリング幅0.02°、測定範囲(2θ)30°〜115°の条件で、板表面の(200)面からのX線回折強度I(200)と、(220)面からのX線回折強度I(220)とを測定し、これらのX線回折強度比I(200)/I(220)を求めた。測定は2箇所行い、I(200)/I(220)はそれらの平均値とした。
(Tissue measurement)
For a copper alloy plate sample, using an X-ray diffraction analyzer (model: RINT1500) manufactured by Rigaku Corporation, using Co as the target, tube voltage 40 kV, tube current 200 mA, scanning speed 2 ° / min, sampling width 0.02 °, measurement The X-ray diffraction intensity I (200) from the (200) plane of the plate surface and the X-ray diffraction intensity I (220) from the (220) plane are measured in the range (2θ) of 30 ° to 115 °. The X-ray diffraction intensity ratio I (200) / I (220) was determined. Measurement was performed at two locations, and I (200) / I (220) was an average value thereof.

(平均結晶粒径の測定)
前記したFESEM/EBSPを用いた結晶方位解析方法により、平均結晶粒径を測定した。試験片の測定箇所は、共通して、任意の五箇所として、これら五箇所の各平均結晶粒径の測定値を平均化して、平均結晶粒径とした。
(Measurement of average crystal grain size)
The average crystal grain size was measured by the crystal orientation analysis method using FESEM / EBSP described above. The measurement points of the test pieces were commonly used as arbitrary five points, and the average crystal grain sizes measured at these five points were averaged to obtain the average crystal grain size.

(引張試験)
前記銅合金薄板から試験片を採取し、試験片長手方向が板材の圧延方向に対し直角方向となるように、機械加工にてJIS5号引張試験片を作製した。そして、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、伸びを含めた、機械的な特性を測定した。なお、耐力は永久伸び0.2%に相当する引張り強さである。
(Tensile test)
A test piece was collected from the copper alloy thin plate, and a JIS No. 5 tensile test piece was prepared by machining so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the plate. Then, mechanical characteristics including elongation were measured with a universal testing machine manufactured by Instron, Inc., 5882 type under the conditions of room temperature, a test speed of 10.0 mm / min, and GL = 50 mm. The proof stress is a tensile strength corresponding to a permanent elongation of 0.2%.

(導電率測定)
前記銅合金薄板から試料を採取し、導電率を測定した。銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により導電率を算出した。
(Conductivity measurement)
A sample was taken from the copper alloy thin plate and the conductivity was measured. The electrical conductivity of the copper alloy plate sample is a double-bridge type in accordance with the nonferrous metal material conductivity measurement method specified in JIS-H0505 by processing a strip-shaped test piece of width 10 mm x length 300 mm by milling. The electrical resistance was measured with a resistance measuring device, and the conductivity was calculated by the average cross section method.

(応力緩和特性)
前記銅合金薄板の、圧延方向に対して、平行方向と、平行方向より厳しい直角方向の応力緩和率を各々測定し、この方向の耐応力緩和特性を評価した。下記応力緩和率測定試験において、圧延方向に対して平行方向と直角方向の応力緩和率がいずれも10%未満で、この平行方向と直角方向の応力緩和率の差が3%以内のものが、耐応力緩和特性として合格となる。
(Stress relaxation characteristics)
The stress relaxation rate of the copper alloy sheet was measured in the parallel direction with respect to the rolling direction and in a direction perpendicular to the direction perpendicular to the parallel direction, and the stress relaxation resistance in this direction was evaluated. In the stress relaxation rate measurement test below, the stress relaxation rate in the direction perpendicular to the direction parallel to the rolling direction is less than 10%, and the difference between the stress relaxation rates in the direction parallel to the direction perpendicular to the rolling direction is within 3%. Passed as stress relaxation resistance.

応力緩和率は、具体的には、前記銅合金薄板から試験片を採取し、図1に示す片持ち梁方式を用いて測定した。幅10mmの短冊状試験片1(長さ方向が板材の圧延方向に対し直角方向になるもの)を切り出し、その一端を剛体試験台2に固定し、試験片1のスパン長Lの部分にd(=10mm)の大きさのたわみ量を与える。このとき、材料耐力の80%に相当する表面応力が材料に負荷されるようにLを決める。これを120℃のオーブン中に3000時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、RS=(δ/d)×100で応力緩和率(RS)を計算する。   Specifically, the stress relaxation rate was measured using a cantilever system shown in FIG. 1 by collecting a test piece from the copper alloy thin plate. A strip-shaped test piece 1 having a width of 10 mm (with the length direction perpendicular to the rolling direction of the plate material) is cut out, one end thereof is fixed to the rigid body test stand 2, and the span length L of the test piece 1 is d. A deflection amount having a size of (= 10 mm) is given. At this time, L is determined so that a surface stress corresponding to 80% of the material yield strength is applied to the material. This is held in an oven at 120 ° C. for 3000 hours and then taken out. The permanent distortion δ when the deflection amount d is removed is measured, and the stress relaxation rate (RS) is calculated by RS = (δ / d) × 100.

表2から明らかな通り、表1の本発明組成内の銅合金(合金番号1〜10)である発明例1〜11は、最終冷間圧延における圧延速度と最終焼鈍における通板速度などの製造方法も各々好ましい条件内で製造されている。このため、表2の発明例は、Cu−Ni−Sn−P系銅合金板表面の前記X線回折強度比I(200)/I(220)が0.25以下である。また、平均結晶粒径も5.0μm以下と微細である。   As is apparent from Table 2, Invention Examples 1 to 11 which are copper alloys (alloy numbers 1 to 10) within the composition of the present invention in Table 1 are manufactured such as rolling speed in final cold rolling and sheet passing speed in final annealing. Each of the methods is also manufactured within preferred conditions. For this reason, as for the invention example of Table 2, the said X-ray-diffraction intensity ratio I (200) / I (220) of the Cu-Ni-Sn-P type copper alloy plate surface is 0.25 or less. Also, the average crystal grain size is as fine as 5.0 μm or less.

また、この他、発明例は、組成範囲が適切で、また上記した好ましい条件内で製造されているために、粗大なNiの酸化物、晶出物、析出物などのNi化合物が抑制され、微細なNi化合物などの量や、Niの固溶量を確保できているものと推考される。   In addition, since the composition of the invention example is suitable and manufactured under the above-mentioned preferable conditions, Ni compounds such as coarse Ni oxides, crystallized substances, and precipitates are suppressed, It is presumed that the amount of fine Ni compound and the like and the solid solution amount of Ni can be secured.

この結果、発明例1〜9は、導電率が30%IACS以上で、圧延方向に対し直角方向のより厳しい応力緩和率が10%未満である端子・コネクタ特性を有している。また、圧延方向に対し直角方向と平行方向の応力緩和率の差も2〜3%程度と少ない。そして、その上で、更に、0.2%耐力が500MPa以上である機械的特性を有する。即ち、発明例は、導電率、強度が高く、特に耐応力緩和特性に優れ、これら特性を兼備した銅合金板となっている。   As a result, Invention Examples 1 to 9 have terminal / connector characteristics in which the electrical conductivity is 30% IACS or more and the stricter stress relaxation rate in the direction perpendicular to the rolling direction is less than 10%. Further, the difference in stress relaxation rate between the direction perpendicular to the rolling direction and the direction parallel to the rolling direction is as small as about 2-3%. And it has further the mechanical characteristic that 0.2% yield strength is 500 Mpa or more. That is, the inventive example is a copper alloy plate having high electrical conductivity and strength, particularly excellent in stress relaxation resistance, and having these characteristics.

ただ、表2の発明例の中でも、その他の元素量が前記した好ましい上限を越える発明例10、11(表1の合金番号9、10)は、導電率が比較的高い他の発明例に比して、導電率が低くなっている。発明例10は、元素Aグループ:Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの元素の合計が、表1の合金番号9の通り、前記した好ましい上限1.0質量%を越えて高い。発明例11は、元素Bグループ:Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの合計が、表1の合金番号10の通り、前記した好ましい上限0.1質量%を越えて高い。   However, among Invention Examples in Table 2, Invention Examples 10 and 11 (alloy numbers 9 and 10 in Table 1) in which the amount of other elements exceeds the above-described preferable upper limit are compared with other Invention Examples having relatively high conductivity. Thus, the conductivity is low. Invention Example 10 shows that the total of the elements A group: Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt is as shown in Alloy No. 9 in Table 1, and the preferable upper limit is 1.0. Higher than mass%. Invention Example 11 includes element B group: Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb , Bi, Te, B, and the misch metal are higher than the preferable upper limit of 0.1% by mass as described in Alloy No. 10 of Table 1.

表2の発明例4(表1の合金番号3)はNi含有量が下限値0.1%である。発明例5(表1の合金番号4)はNi含有量が上限値3.0%である。発明例6(表1の合金番号5)はSn含有量が下限値0.01%である。発明例7(表1の合金番号6)はSn含有量が上限値3.0%である。発明例8(表1の合金番号7)はP含有量が下限値0.01%である。発明例9(表1の合金番号8)はP含有量が上限値0.3%である。   Invention Example 4 in Table 2 (Alloy No. 3 in Table 1) has a Ni content of a lower limit of 0.1%. Invention Example 5 (Alloy No. 4 in Table 1) has an upper limit of 3.0% for the Ni content. Invention Example 6 (Alloy No. 5 in Table 1) has a Sn content of 0.01%. Invention Example 7 (Alloy No. 6 in Table 1) has an Sn content of 3.0% as the upper limit. Invention Example 8 (Alloy No. 7 in Table 1) has a lower P content of 0.01%. Invention Example 9 (Alloy No. 8 in Table 1) has an upper limit of 0.3% for the P content.

また、最終冷間圧延における圧延速度と最終焼鈍における通板速度などの製造条件が、下限側である発明例2は、発明例1よりも耐応力緩和特性、強度が比較的低い。   Inventive Example 2 in which the production conditions such as the rolling speed in the final cold rolling and the sheet passing speed in the final annealing are on the lower limit side have relatively lower stress relaxation resistance and strength than Inventive Example 1.

表2の比較例12〜17は、最終冷間圧延における圧延速度と最終焼鈍における通板速度などの製造方法も好ましい条件内で製造されている。このため、比較例12〜17は、Cu−Ni−Sn−P系銅合金板表面の前記X線回折強度比I(200)/I(220)が0.25以下である異方性を有する。にもかかわらず、これら比較例は、表1の合金番号11〜16の本発明組成外の銅合金を用いているために、導電率、強度、耐応力緩和特性のいずれかが、発明例に比して著しく劣る。   In Comparative Examples 12 to 17 in Table 2, the production methods such as the rolling speed in the final cold rolling and the sheet feeding speed in the final annealing are also produced within preferable conditions. For this reason, Comparative Examples 12 to 17 have anisotropy in which the X-ray diffraction intensity ratio I (200) / I (220) on the surface of the Cu—Ni—Sn—P based copper alloy plate is 0.25 or less. . Nevertheless, since these comparative examples use copper alloys outside the composition of the present invention of alloy numbers 11 to 16 in Table 1, any one of the conductivity, strength, and stress relaxation resistance characteristics is the invention example. Remarkably inferior.

比較例12はNiの含有量が下限を低めに外れている(表1の合金番号11)。このため、強度や耐応力緩和特性が低い。比較例13はNiの含有量が上限を高めに外れている(表1の合金番号12)。このため、強度と導電率のバランスが低い。   In Comparative Example 12, the Ni content deviates from the lower limit (alloy number 11 in Table 1). For this reason, strength and stress relaxation resistance are low. In Comparative Example 13, the Ni content is higher than the upper limit (Alloy No. 12 in Table 1). For this reason, the balance between strength and conductivity is low.

比較例14はSnの含有量が下限を低めに外れている(表1の合金番号13)ため、強度、耐応力緩和特性が低すぎる。比較例15の銅合金はSnの含有量が上限を高めに外れている(表1の合金番号14)ため、導電率が低い。   In Comparative Example 14, the Sn content is slightly lower than the lower limit (Alloy No. 13 in Table 1), so the strength and stress relaxation resistance are too low. In the copper alloy of Comparative Example 15, the Sn content is higher than the upper limit (alloy number 14 in Table 1), and thus the conductivity is low.

比較例16はPの含有量が下限を低めに外れている(表1の合金番号15)ため、強度、耐応力緩和特性が低い。比較例17はPの含有量が上限を高めに外れている(表1の合金番号16)ため、熱間圧延中に割れを生じて、特性評価ができなかった。   In Comparative Example 16, since the P content deviates from the lower limit (alloy number 15 in Table 1), the strength and the stress relaxation resistance are low. In Comparative Example 17, since the P content was higher than the upper limit (Alloy No. 16 in Table 1), cracking occurred during hot rolling, and the characteristics could not be evaluated.

表2の比較例18、19は、表1の本発明組成内の銅合金(合金番号1、2)であり、他の製造条件も発明例と同じく好ましい範囲内である。にもかかわらず、最終冷間圧延における圧延速度と最終焼鈍における通板速度が好ましい範囲から外れる。比較例18は最終冷間圧延における圧延速度が遅すぎる。比較例19は最終冷間圧延における圧延速度が遅すぎ、かつ最終焼鈍における通板速度が遅すぎる。   Comparative Examples 18 and 19 in Table 2 are copper alloys (Alloy Nos. 1 and 2) within the composition of the present invention in Table 1, and other production conditions are also in the preferred range as in the inventive examples. Nevertheless, the rolling speed in the final cold rolling and the sheeting speed in the final annealing are out of the preferred ranges. In Comparative Example 18, the rolling speed in the final cold rolling is too slow. In Comparative Example 19, the rolling speed in the final cold rolling is too slow, and the sheet passing speed in the final annealing is too slow.

この結果、比較例18、19は、Cu−Ni−Sn−P系銅合金板表面の前記X線回折強度比I(200)/I(220)が0.25を超えている。また、平均結晶粒径も5.0μmを超えて粗大化している。この結果、これら比較例は圧延方向に対して直角方向の耐応力緩和特性が発明例に比して著しく劣る。また、圧延方向に対して直角方向の応力緩和率と、圧延方向に対して平行方向の応力緩和率との差も大きい。更に、強度も、発明例に比して低い。   As a result, in Comparative Examples 18 and 19, the X-ray diffraction intensity ratio I (200) / I (220) on the surface of the Cu—Ni—Sn—P-based copper alloy plate exceeds 0.25. Also, the average crystal grain size is coarsened exceeding 5.0 μm. As a result, these comparative examples are remarkably inferior in stress relaxation resistance in the direction perpendicular to the rolling direction as compared with the inventive examples. Moreover, the difference between the stress relaxation rate in the direction perpendicular to the rolling direction and the stress relaxation rate in the direction parallel to the rolling direction is also large. Furthermore, the strength is also lower than that of the inventive examples.

以上の結果から、圧延方向に対して直角方向の耐応力緩和特性を満たし、圧延方向に対して平行方向の耐応力緩和特性とに差があまりなく、他の端子・コネクタとしての要求特性にも優れたCu−Ni−Sn−P系銅合金板を得るための、本発明銅合金板の成分組成、組織、更には、この組織を得るための好ましい製造条件の意義が裏付けられる。   From the above results, the stress relaxation characteristics in the direction perpendicular to the rolling direction are satisfied, there is not much difference between the stress relaxation characteristics in the direction parallel to the rolling direction, and the required characteristics as other terminals and connectors. The component composition and structure of the copper alloy sheet of the present invention for obtaining an excellent Cu—Ni—Sn—P based copper alloy sheet, and the significance of preferable production conditions for obtaining this structure are supported.

Figure 0004210706
Figure 0004210706

Figure 0004210706
Figure 0004210706

以上説明したように、本発明によれば、圧延方向に対して直角方向の耐応力緩和特性を満たし、圧延方向に対して平行方向の耐応力緩和特性とに差があまりなく、他の端子・コネクタとしての要求特性にも優れたCu−Ni−Sn−P系銅合金板を提供することができる。この結果、特に自動車用端子・コネクタなどの接続部品用として好適である。   As described above, according to the present invention, the stress relaxation characteristics in the direction perpendicular to the rolling direction are satisfied, and there is not much difference between the stress relaxation characteristics in the direction parallel to the rolling direction. It is possible to provide a Cu—Ni—Sn—P based copper alloy plate that is excellent in required characteristics as a connector. As a result, it is particularly suitable for connection parts such as automobile terminals and connectors.

銅合金板の耐応力緩和試験を説明する断面図である。It is sectional drawing explaining the stress relaxation test of a copper alloy plate. 箱形コネクタの構造を示す断面図である。It is sectional drawing which shows the structure of a box-type connector.

符号の説明Explanation of symbols

1:試験片、2:試験台、3:箱形コネクタ(メス端子)、4:上側ホルダー部、5:押圧片、6:オス端子、7:ワイヤ接続部、8:固定用舌片 1: Test piece, 2: Test stand, 3: Box-shaped connector (female terminal), 4: Upper holder part, 5: Press piece, 6: Male terminal, 7: Wire connection part, 8: Fixing tongue

Claims (4)

質量%で、Ni:0.1〜3.0%、Sn:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部銅および不可避的不純物からなる銅合金板であって、板表面の(200)面からのX線回折強度I(200)と、板表面の(220)面からのX線回折強度I(220)との比、I(200)/I(220)が0.25以下であるとともに、平均結晶粒径を5.0μm以下とすることを特徴とする耐応力緩和特性に優れた銅合金板。   In mass%, Ni: 0.1-3.0%, Sn: 0.01-3.0%, P: 0.01-0.3%, respectively, the balance copper and copper consisting of inevitable impurities The ratio of the X-ray diffraction intensity I (200) from the (200) plane of the plate surface to the X-ray diffraction intensity I (220) from the (220) plane of the plate surface, I (200) A copper alloy sheet excellent in stress relaxation resistance, wherein / I (220) is 0.25 or less and the average crystal grain size is 5.0 μm or less. 前記銅合金板が、更に、質量%で、Fe:0.5%以下、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下とした請求項1に記載の耐応力緩和特性に優れた銅合金板。   The copper alloy plate is further, in mass%, Fe: 0.5% or less, Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0.3% or less The copper alloy plate excellent in stress relaxation resistance according to claim 1. 前記銅合金板が、更に、Ca、Zr、Ag、Cr、Cd、Be、Ti、Co、Au、Ptの含有量を、これらの元素の合計で1.0質量%以下とした請求項1または2に記載の耐応力緩和特性に優れた銅合金板。   2. The copper alloy plate according to claim 1, wherein the content of Ca, Zr, Ag, Cr, Cd, Be, Ti, Co, Au, and Pt is 1.0% by mass or less in total of these elements. 2. A copper alloy sheet excellent in stress relaxation resistance as described in 2. 前記銅合金板が、Hf、Th、Li、Na、K、Sr、Pd、W、S、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素の合計で0.1質量%以下とした請求項1乃至3のいずれか1項に記載の耐応力緩和特性に優れた銅合金板。   The copper alloy plate is Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, The copper alloy sheet excellent in stress relaxation resistance according to any one of claims 1 to 3, wherein the content of Te, B, and misch metal is 0.1% by mass or less in total of these elements.
JP2007252037A 2007-08-07 2007-09-27 Copper alloy sheet with excellent stress relaxation resistance Active JP4210706B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007252037A JP4210706B1 (en) 2007-09-27 2007-09-27 Copper alloy sheet with excellent stress relaxation resistance
CN200880024723A CN101743333A (en) 2007-08-07 2008-07-24 copper alloy sheet
PCT/JP2008/063320 WO2009019990A1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
EP13005149.3A EP2695958B1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
EP13005148.5A EP2695957B1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
EP08791572.4A EP2184371B1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
KR1020107002597A KR101227315B1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
EP13005147.7A EP2695956B1 (en) 2007-08-07 2008-07-24 Copper alloy sheet
US12/672,092 US20110223056A1 (en) 2007-08-07 2008-07-24 Copper alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252037A JP4210706B1 (en) 2007-09-27 2007-09-27 Copper alloy sheet with excellent stress relaxation resistance

Publications (2)

Publication Number Publication Date
JP4210706B1 true JP4210706B1 (en) 2009-01-21
JP2009084595A JP2009084595A (en) 2009-04-23

Family

ID=40361278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252037A Active JP4210706B1 (en) 2007-08-07 2007-09-27 Copper alloy sheet with excellent stress relaxation resistance

Country Status (1)

Country Link
JP (1) JP4210706B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756221A (en) * 2016-12-15 2017-05-31 广东伟强铜业科技有限公司 A kind of free machining bismuth silicon one-ton brass remelting polishing copper ingot and its manufacture method
CN108118180A (en) * 2017-12-25 2018-06-05 浙江力博实业股份有限公司 A kind of preparation method of Cu-Cr-Zr alloy band used for lead frame

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466879B2 (en) * 2009-05-19 2014-04-09 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
CN105940463B (en) * 2014-02-05 2018-01-02 古河电气工业株式会社 Electric contact material and its manufacture method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756221A (en) * 2016-12-15 2017-05-31 广东伟强铜业科技有限公司 A kind of free machining bismuth silicon one-ton brass remelting polishing copper ingot and its manufacture method
CN106756221B (en) * 2016-12-15 2019-03-26 广东伟强铜业科技有限公司 A kind of free machining bismuth silicon one-ton brass remelting polishing copper ingot and its manufacturing method
CN108118180A (en) * 2017-12-25 2018-06-05 浙江力博实业股份有限公司 A kind of preparation method of Cu-Cr-Zr alloy band used for lead frame

Also Published As

Publication number Publication date
JP2009084595A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
EP2695958B1 (en) Copper alloy sheet
JP4680765B2 (en) Copper alloy with excellent stress relaxation resistance
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
US20130056116A1 (en) Copper alloy for electronic device, method of producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
CN103502487B (en) The manufacture method of copper alloy for electronic apparatus, copper alloy for electronic apparatus, copper alloy for electronic apparatus plastic working material and electronics assembly
CN103842551B (en) The manufacture method of copper alloy for electronic apparatus, copper alloy for electronic apparatus, copper alloy for electronic apparatus stocking and electronics assembly
WO2006132317A1 (en) Copper alloy, copper alloy plate, and process for producing the same
JP3838521B1 (en) Copper alloy having high strength and excellent bending workability and method for producing the same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP5703975B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP4210703B1 (en) Copper alloy sheet with excellent stress relaxation resistance and bending workability
JP4210706B1 (en) Copper alloy sheet with excellent stress relaxation resistance
JP4164517B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
CN111971406B (en) Copper alloy sheet material, method for producing copper alloy sheet material, and connector using copper alloy sheet material
JP4324627B2 (en) Copper alloy sheet with excellent strength-ductility balance
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4210705B1 (en) Copper alloy sheet with excellent stress relaxation resistance and press punchability
JP3766051B2 (en) Copper alloy having excellent heat resistance and method for producing the same
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Ref document number: 4210706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5