Nothing Special   »   [go: up one dir, main page]

JP4299212B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4299212B2
JP4299212B2 JP2004253421A JP2004253421A JP4299212B2 JP 4299212 B2 JP4299212 B2 JP 4299212B2 JP 2004253421 A JP2004253421 A JP 2004253421A JP 2004253421 A JP2004253421 A JP 2004253421A JP 4299212 B2 JP4299212 B2 JP 4299212B2
Authority
JP
Japan
Prior art keywords
cell
mounting member
particle size
size distribution
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004253421A
Other languages
Japanese (ja)
Other versions
JP2006071379A (en
Inventor
拓司 黒住
孝夫 南井
誠 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004253421A priority Critical patent/JP4299212B2/en
Publication of JP2006071379A publication Critical patent/JP2006071379A/en
Application granted granted Critical
Publication of JP4299212B2 publication Critical patent/JP4299212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、セル内に分散させた粒子群に光を照射し、そのときに発生する回折及び/又は散乱光(以下回折散乱光という。)の強度分布に基づいて前記粒子群の粒径分布を測定するいわゆる回折/散乱式粒径分布測定装置に関するものである。   In the present invention, the particle group dispersed in the cell is irradiated with light, and the particle size distribution of the particle group based on the intensity distribution of diffraction and / or scattered light (hereinafter referred to as diffraction scattered light) generated at that time. The present invention relates to a so-called diffraction / scattering type particle size distribution measuring apparatus for measuring the above.

この種の粒径分布測定装置に用いられるセルには測定方式毎に複数タイプあり、その代表的なものとして、バッチ式セル、湿式フローセルあるいは乾式セル等が知られている。そして従来、粒径分布測定装置には通常1つのセルのみが装置本体にネジ止めされたセルホルダに交換可能に保持されている。   There are a plurality of types of cells used in this type of particle size distribution measuring apparatus for each measurement method, and representative examples thereof include batch cells, wet flow cells, and dry cells. Conventionally, in a particle size distribution measuring apparatus, usually only one cell is held exchangeably in a cell holder screwed to the apparatus main body.

しかし異なるタイプのセルに交換するには、セルホルダ毎交換しなければならず、その交換にあたっては予め固定されているセルホルダのネジを緩める又は外す等して装置本体外に取り出すか、又はセルを収容している試料室内に邪魔にならないように退避させた後、測定に用いるセルホルダを再びネジを用いて固定する必要があり、その作業にかなりの手間がかかる。特に湿式フロータイプのセルホルダは装置本体内の別箇所に配置してある分散用超音波プローブ、攪拌翼、循環ポンプ等の前処理機構を伴ってパイプにより結合されており、このセルホルダを装置本体外へ取り除く際にはパイプを取り外し、さらにセルホルダを装置に固定しているネジを外す必要があるため、その手間は極めて煩雑である。   However, in order to replace the cell with a different type, the cell holder must be replaced, and when replacing the cell holder, the cell holder can be taken out of the main body by loosening or unscrewing the cell holder, or the cell can be accommodated. It is necessary to fix the cell holder used for the measurement again with screws after being retracted in the sample chamber so that it does not get in the way, which requires considerable work. In particular, a wet flow type cell holder is connected by a pipe with a pretreatment mechanism such as an ultrasonic probe for dispersion, a stirring blade, a circulation pump, etc., which is arranged at a different location in the apparatus body. When removing it, it is necessary to remove the pipe and remove the screw that fixes the cell holder to the apparatus, which is very troublesome.

これに対して、特許文献1に示すように、前記パイプにシリコンチューブ等の柔軟な材質若しくは屈曲又は伸縮可能な管を使用して、パイプとセルホルダとを繋いだままセルホルダを試料室内部の邪魔にならない位置に退避させるようにしたものがある。しかし、これは、他のタイプのセルホルダ(乾式タイプのセルホルダ又はバッチ式セルホルダ等)は不要時に装置本体外へ取り出す必要があるため、やはりセルホルダの交換時には装置本体への固定ネジを外す必要がある。このようにセルの交換、特に違うタイプのセルと交換を行う際に多くの手間を必要とする。   On the other hand, as shown in Patent Document 1, a flexible material such as a silicon tube or a tube that can be bent or stretched is used for the pipe, and the cell holder is held in the sample chamber while the pipe and the cell holder are connected. Some are designed to be evacuated to a position that does not. However, since other types of cell holders (dry type cell holders, batch type cell holders, etc.) need to be taken out of the apparatus main body when not needed, it is also necessary to remove the fixing screw to the apparatus main body when replacing the cell holder. . Thus, a lot of labor is required when exchanging cells, particularly when exchanging with a different type of cell.

このような現状の下で、複数の異なるタイプのセルを1つのセル保持部材に直接あるいはセルホルダを介して着脱可能に固定して、そのセル保持部材を移動させることにより、作業の省力化を図る試みがなされている。   Under such circumstances, a plurality of different types of cells are detachably fixed directly or via a cell holder to a single cell holding member, and the cell holding member is moved to save labor. Attempts have been made.

ところが、複数のセルを1つのセル保持部材に載せて移動させるようにすると、セルの位置再現性の問題で難が生じ、例えば測定時にセル保持部材が移動毎に位置が異なると測定結果に影響を与えるなどのおそれがある。
特開2002−243622
However, if a plurality of cells are placed on one cell holding member and moved, difficulty arises due to the problem of cell position reproducibility. For example, if the position of the cell holding member is different for each movement during measurement, the measurement result is affected. There is a risk of giving.
JP 2002-243622 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、この種の粒径分布測定装置においてセルの交換に要する作業を省力化しつつ、セルの位置再現性を確保することをその所期課題としたものである。   Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and in this type of particle size distribution measuring apparatus, it saves the work required for cell replacement and ensures cell position reproducibility. Is the intended task.

すなわち本発明に係る粒径分布測定装置は、一定方向に光を照射する光源と、粒子群を収容する複数のセルと、それらセルを前記光が照射される光照射位置及びその光照射位置とは異なる位置に設定された退避位置間でスライド移動可能に保持するセル保持機構と、前記光照射位置にあるセルに収容された粒子群から発生する回折散乱光の光強度に基づいて当該粒子群の粒径分布を算出する演算装置とを備えたものであって、前記セル保持機構が、前記セルの移動方向に沿って延伸するレール部材と、前記各セルを搭載するセル搭載部材と、狭持体と、前記セル搭載部材及び狭持体間に配置した弾性部材とを備えてなり、前記セル搭載部材に設けた第1接触面と、前記狭持体に設けた第2接触面とを前記レール部材を挟んで対向する位置に配置するとともに、前記弾性部材の弾性復帰力により前記接触面同士を互いに引きつけ、それら接触面を前記レール部材に移動可能に押圧接触させるように構成したものである。   That is, the particle size distribution measuring apparatus according to the present invention includes a light source that irradiates light in a certain direction, a plurality of cells that contain a group of particles, a light irradiation position at which the light is irradiated, and the light irradiation position. Is a cell holding mechanism that is slidably held between retraction positions set at different positions, and the particle group based on the light intensity of diffracted scattered light generated from the particle group accommodated in the cell at the light irradiation position The cell holding mechanism includes a rail member extending along a moving direction of the cell, a cell mounting member for mounting each cell, and a narrower member. A holding body and an elastic member disposed between the cell mounting member and the holding body, and a first contact surface provided on the cell mounting member and a second contact surface provided on the holding body. Arranged at the opposite position across the rail member As well as, the attracting said contact faces by elastic restoring force of the elastic member with each other, which is constituted them contact surface so as to be movable in pressure contact with the rail member.

このようなものであれば、セル保持機構によって進退移動させるだけで、異なるタイプのセルに交換できるので、測定を変更するのに要する時間を短縮することができ、オペレータの負担の軽減を図ることができる。さらに、セル搭載部材をレール部材に押圧接触させているので、セルの位置再現性を確保することができる。例えば移動毎に位置ずれが生じることを防ぐことができ、測定精度を確保することができる。   If this is the case, the cell can be exchanged for a different type of cell by simply moving it forward and backward with the cell holding mechanism, so the time required to change the measurement can be shortened and the burden on the operator can be reduced. Can do. Furthermore, since the cell mounting member is pressed against the rail member, the cell position reproducibility can be ensured. For example, it is possible to prevent a positional shift from occurring every movement, and to ensure measurement accuracy.

ここでセルの交換というのは、異なるタイプのセルに交換することはもちろん、同じタイプのセルであって別のセルに交換することも含む。   Here, the replacement of cells includes not only switching to a different type of cell but also switching to a different cell of the same type.

オペレータが、所望のセルを光照射位置に正確にかつ容易に移動可能にするためには、前記レール部材及びセル搭載部材のいずれか一方に設けた嵌合孔と、他方に設けた嵌合ピンとの嵌合により前記各セルの光照射位置を規定する位置決め機構をさらに備えたものであって、前記第1接触面を下向き面として前記レール部材の上向き面に接触させるとともに、前記第2接触面を上向き面として前記レール部材の下向き面に接触させるようにして、前記セル搭載部材における移動方向側の一方を前記弾性体の弾性力に逆らって持ち上げ傾斜させ得るように構成し、その傾斜状態において前記嵌合が解除されセル搭載部材をスライド移動させ得るようにしていることが望ましい。   In order for the operator to accurately and easily move a desired cell to the light irradiation position, a fitting hole provided in one of the rail member and the cell mounting member, and a fitting pin provided in the other, And further comprising a positioning mechanism for defining the light irradiation position of each cell by fitting the first contact surface to the upward surface of the rail member with the first contact surface as a downward surface, and the second contact surface In such a manner that one of the cell mounting members on the moving direction side can be lifted and inclined against the elastic force of the elastic body. It is desirable that the fitting is released and the cell mounting member can be slid.

オペレータが前記セル保持機構による移動を一層容易に行うことができるようにするためには、前記セル搭載部材の一端部に取っ手を設けていることが望ましい。   In order to allow an operator to move the cell holding mechanism more easily, it is desirable to provide a handle at one end of the cell mounting member.

前記セル保持機構による移動に要する力を軽減するためには、前記接触面の少なくともいずれかが転動体の外周面であることが望ましい。   In order to reduce the force required for movement by the cell holding mechanism, it is desirable that at least one of the contact surfaces is an outer peripheral surface of the rolling element.

セル搭載部材がレール部材上で左右運動をしないようにして測定精度の確保を図るためには、前記レール部材が前記移動方向と平行な案内面を有し、前記セル搭載部材が前記案内面に接触する被案内面を有したものであって、前記案内面と前記被案内面とを押圧接触させる押圧部材をさらに備えていることが望ましい。   In order to ensure measurement accuracy so that the cell mounting member does not move left and right on the rail member, the rail member has a guide surface parallel to the moving direction, and the cell mounting member is placed on the guide surface. It is desirable to further include a pressing member that has a guided surface that comes into contact, and that presses and contacts the guiding surface and the guided surface.

具体的には、前記押圧部材が前記セル搭載部材とレール部材との間に設けた第2弾性部材であり、その弾性復帰力により前記被案内面が前記案内面にスライド可能に押圧接触するように構成していることが望ましい。   Specifically, the pressing member is a second elastic member provided between the cell mounting member and the rail member, and the guided surface is slidably pressed against the guiding surface by the elastic return force. It is desirable to configure.

このように本発明によれば、セル保持部機構による進退移動を行うだけで、異なるタイプのセルに交換できるので、測定を変更するのに要する時間を短縮することができ、オペレータの負担の軽減を図ることができる。さらに、セル搭載部材をレール部材に押圧接触させているので、セルの位置再現性を確保することができる。故に、例えば移動毎に位置ずれが生じることを防ぐことができ、測定精度の確保を図ることができる。   As described above, according to the present invention, since the cell can be replaced with a different type of cell simply by moving forward and backward by the cell holding unit mechanism, the time required to change the measurement can be shortened and the burden on the operator can be reduced. Can be achieved. Furthermore, since the cell mounting member is pressed against the rail member, the cell position reproducibility can be ensured. Therefore, for example, it is possible to prevent a positional deviation from occurring every movement, and to ensure measurement accuracy.

以下に本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施形態に係る粒径分布測定装置1は、粒子群Sに照射光Lを照射した際に生じる回折散乱光LSの散乱パターン(回折散乱光強度の角度分布)が、粒子径によって定まることを利用し、前記散乱パターンを検出することによってMIE散乱理論から粒径分布を測定するようにしたものである。この粒径分布測定装置1の模式的概要を図1及び図2に示す。同図中、符号C1、C2は、測定対象粒子群Sを分散媒中に分散させてなる試料を収容するセルである。前記分散媒は、湿式の場合は水、乾式の場合は空気が一般的である。符号2は、前記セルC1、C2、に照射光Lを照射する光源である。この実施形態ではこの光源として例えばコーヒレントなレーザ光を照射する半導体レーザを用いている。符号31、32は、前記セルC1、C2の周囲に配置した光検出器である。そして光Lを照射された粒子群Sから発生する回折散乱光LSの光強度を検出する。符号4は、前記光検出器31、32から出力される各回折散乱光強度信号を受信し変換等の処理を行うバッファ、増幅器等で構成されている信号処理部である。符号5は、信号処理部4で処理された各散乱強度信号の値に基づいて前記粒子群Sの粒径分布を算出する演算装置である。符号6は、光検出器32の受光面中央に透過光Lが収斂するように設定された凸レンズである。   In the particle size distribution measuring apparatus 1 according to the present embodiment, the scattering pattern of the diffracted scattered light LS (angular distribution of diffracted scattered light intensity) generated when the particle group S is irradiated with the irradiation light L is determined by the particle diameter. The particle size distribution is measured from the MIE scattering theory by using and detecting the scattering pattern. A schematic overview of the particle size distribution measuring apparatus 1 is shown in FIGS. In the figure, reference numerals C1 and C2 denote cells that contain samples in which the measurement target particle group S is dispersed in a dispersion medium. The dispersion medium is generally water in the case of wet and air in the case of dry. Reference numeral 2 denotes a light source that irradiates the cells C1 and C2 with irradiation light L. In this embodiment, for example, a semiconductor laser that emits coherent laser light is used as the light source. Reference numerals 31 and 32 are photodetectors arranged around the cells C1 and C2. Then, the light intensity of the diffraction scattered light LS generated from the particle group S irradiated with the light L is detected. Reference numeral 4 denotes a signal processing unit configured by a buffer, an amplifier, and the like that receive the diffraction scattered light intensity signals output from the photodetectors 31 and 32 and perform processing such as conversion. Reference numeral 5 denotes an arithmetic unit that calculates the particle size distribution of the particle group S based on the value of each scattering intensity signal processed by the signal processing unit 4. Reference numeral 6 denotes a convex lens that is set so that the transmitted light L converges at the center of the light receiving surface of the photodetector 32.

セルC1は、湿式フロータイプのものであり、図2に示すように、上下を湿式セルホルダC1hでセル搭載部材72に保持するようにしている。このセルホルダC1hは、セルC1を挿入するための取付部C1h1とコイルバネを用いたラッチ機構C1h3によってセルC1を固定する蓋部C1h2とからなる。蓋部C1h2には試料液を導入するための導入ポートが設けられている。そしてセルC1は粒子群Sを水などの液体溶媒中で分散させておくため図示しない循環ポンプ及び超音波プローブ等の粒子攪拌装置とともに液体循環流路上に設けてある。なお、同図中、符号C1a、C1bは前記液体循環流路を形成するものであって、セルC1の導出入ポートにそれぞれ接続されているパイプC1a、C1bである。   The cell C1 is of a wet flow type, and as shown in FIG. 2, the upper and lower sides are held by the cell mounting member 72 with a wet cell holder C1h. The cell holder C1h includes an attachment portion C1h1 for inserting the cell C1 and a lid portion C1h2 for fixing the cell C1 by a latch mechanism C1h3 using a coil spring. The lid C1h2 is provided with an introduction port for introducing the sample solution. The cell C1 is provided on a liquid circulation channel together with a particle agitation device such as a circulation pump and an ultrasonic probe (not shown) in order to disperse the particle group S in a liquid solvent such as water. In the figure, reference numerals C1a and C1b form the liquid circulation flow paths and are pipes C1a and C1b respectively connected to the lead-in / out ports of the cell C1.

セルC2は、微量試料を測定する際に好適に用いられるいわゆるバッチ式のもので、図2に示すように、その下部をバッチ式用セルホルダC2hによってセル搭載部材72に保持するようにしている。   The cell C2 is a so-called batch type that is suitably used when measuring a small amount of sample. As shown in FIG. 2, the lower part of the cell C2 is held on the cell mounting member 72 by a batch type cell holder C2h.

しかして本実施形態では、図3,6に示すように、図示しないセル収容室内において、種類の異なる複数のセルC1、C2を前後方向(セル収容室の貫通方向で光軸12と交差(直交)する方向)に沿って進退移動可能に保持し、いずれか1つのセルC1、C2を前記光源2からの光Lが照射される光照射位置Pに選択的に位置づけるセル保持機構7と、このセル保持機構7を搭載するトレイ8を設けている。   In this embodiment, as shown in FIGS. 3 and 6, a plurality of different types of cells C1 and C2 are crossed with the optical axis 12 in the front-rear direction (through direction of the cell storage chamber (orthogonal) in a cell storage chamber (not shown). A cell holding mechanism 7 that holds the cell C1 and C2 selectively at a light irradiation position P to which the light L from the light source 2 is irradiated. A tray 8 on which the cell holding mechanism 7 is mounted is provided.

セル保持機構7は、図3に示すように、前後方向に沿って延伸するレール部材71と、前記各セルC1、C2を搭載するセル搭載部材72と、狭持体73と、前記セル搭載部材72及び狭持体73間に配置した弾性部材74とを備えてなり、前記弾性体74の引っ張り力によって、セル搭載部材72と狭持体73とによりレール部材71を挟み込みながら、このレール部材71に沿ってセル搭載部材72が前後に進退するように構成したものである。   As shown in FIG. 3, the cell holding mechanism 7 includes a rail member 71 extending in the front-rear direction, a cell mounting member 72 for mounting the cells C1 and C2, a holding member 73, and the cell mounting member. 72 and an elastic member 74 disposed between the holding member 73, and the rail member 71 is sandwiched between the cell mounting member 72 and the holding member 73 by the tensile force of the elastic member 74. The cell mounting member 72 is configured to move forward and backward along the line.

詳述すれば、レール部材71は、光軸12と直交する軌道10(図2)に沿って前記セル収容室の床面に配置した一対の平行なレール要素711を備えており、各レール要素711は、後述するトレイ8の底板81から鉛直に起立する起立板712とその起立板712の上面に取り付けた水平板713とからなる。   More specifically, the rail member 71 includes a pair of parallel rail elements 711 disposed on the floor surface of the cell storage chamber along a track 10 (FIG. 2) orthogonal to the optical axis 12. Reference numeral 711 includes an upright plate 712 that stands vertically from a bottom plate 81 of the tray 8 described later, and a horizontal plate 713 that is attached to the upper surface of the upright plate 712.

セル搭載部材72は、矩形板状をなすもので、前記レール部材71の水平板713上に配置されている。そしてこのセル搭載部材72の上面に前記各セルC1、C2を前後方向(進退方向)に沿って一列に保持する。各セルC1、C2は、直接又はセルホルダC1h、C2hを介してこのセル搭載部材72に着脱可能に、かつ光軸12に対してブリュースター角など所定の角度をもって斜めに保持される。これはセルC1、C2の表面での反射の影響を減らすためである。また、このセル搭載部材72の少なくとも前端部には取っ手721が設けられて移動の便を図っている。さらに、図2、図8に示すように、セル搭載部材72の後端部724は、レール部材71上を滑りやすいように円弧状に加工している。   The cell mounting member 72 has a rectangular plate shape and is disposed on the horizontal plate 713 of the rail member 71. The cells C1 and C2 are held on the upper surface of the cell mounting member 72 in a line along the front-rear direction (back and forth direction). Each of the cells C1 and C2 is detachably attached to the cell mounting member 72 directly or via the cell holders C1h and C2h, and is held obliquely with a predetermined angle such as a Brewster angle with respect to the optical axis 12. This is to reduce the influence of reflection on the surfaces of the cells C1 and C2. A handle 721 is provided at least at the front end of the cell mounting member 72 to facilitate movement. Further, as shown in FIGS. 2 and 8, the rear end portion 724 of the cell mounting member 72 is processed into an arc shape so as to easily slide on the rail member 71.

狭持体73は、上面を開口させた箱形の狭持体本体731と、その狭持体本体731の側板上端部外側に、左右(セル進退方向と直交する方向)に延びる水平軸731aに回転可能に取り付けた円盤状の転動体732とを備えている。この転動体732は、前後部の左右にそれぞれ設けてあり、前記レール部材71の水平板713よりも下に配置される。   The sandwiching body 73 has a box-shaped sandwiching body main body 731 having an open upper surface, and a horizontal shaft 731a extending laterally (in a direction perpendicular to the cell advance / retreat direction) to the outside of the upper end of the side plate of the sandwiching body main body 731 And a disk-shaped rolling element 732 attached rotatably. The rolling elements 732 are provided on the left and right sides of the front and rear portions, respectively, and are disposed below the horizontal plate 713 of the rail member 71.

弾性部材74は、前記狭持体73とセル搭載部材72との間に設けた引っ張りコイルバネであり、狭持体73の側板間に架け渡した横架軸733にその下端を取り付けられるとともに、セル搭載部材72に設けた係止部723にその上端を取り付けられて、前記狭持体73とセル搭載部材72とを上下方向に引きつけるものである。この実施形態では引っ張りコイルバネを後部に2つ、前部に2つ設けている。後部の引っ張りコイルバネ74は、後部転動体732の内側であって前後方向にはほぼ同じ位置に配置してある。また前部の引っ張りコイルバネ74は、前部転動体732よりも前側に配置してある。そしてこれら弾性部材74の引っ張り力により、前記セル搭載部材72に設けた第1接触面72a(具体的には側縁部下面)と、前記狭持体73に設けた第2接触面732a(具体的には転動体732の外周面)とが、レール部材31の各水平板713を上下から挟みこんで移動可能に押圧接触する。   The elastic member 74 is a tension coil spring provided between the holding body 73 and the cell mounting member 72, and its lower end is attached to a horizontal shaft 733 spanned between the side plates of the holding body 73, and the cell The upper end is attached to a locking portion 723 provided on the mounting member 72 to attract the holding body 73 and the cell mounting member 72 in the vertical direction. In this embodiment, two tension coil springs are provided at the rear and two at the front. The rear tension coil spring 74 is disposed inside the rear rolling element 732 and at substantially the same position in the front-rear direction. The front tension coil spring 74 is disposed on the front side of the front rolling element 732. Then, due to the pulling force of these elastic members 74, the first contact surface 72a (specifically, the lower surface of the side edge) provided on the cell mounting member 72 and the second contact surface 732a (specifically, provided on the holding member 73). Specifically, the outer peripheral surface of the rolling element 732 is in press contact with each horizontal plate 713 of the rail member 31 so as to be movable from above and below.

また、このセル保持機構7は、前記各セルC1、C2を前記光照射位置Pに規定する位置決め機構75を備えている。この位置決め機構75は、前記レール部材71及びセル搭載部材72のいずれか一方(ここではレール部材71の水平板713)に設けた複数の嵌合孔751と、図4に示すように他方(ここではセル搭載部材72の下面)に設けた嵌合ピン752とを備えており、いずれかの嵌合孔751に嵌合ピン752をがたなく嵌合させることにより、いずれか1つのセルC1、C2を選択的に光照射位置Pに配置することができるようにしている。なお、セル搭載部材72の移動は、当該セル搭載部材72の前側の取っ手721を上方に持ち上げてこれを傾斜させ、嵌合孔751と嵌合ピン752との嵌合を解除した状態で行う。   The cell holding mechanism 7 includes a positioning mechanism 75 that defines the cells C1 and C2 at the light irradiation position P. The positioning mechanism 75 includes a plurality of fitting holes 751 provided in one of the rail member 71 and the cell mounting member 72 (here, the horizontal plate 713 of the rail member 71), and the other (here Then, a fitting pin 752 provided on the lower surface of the cell mounting member 72 is provided. By fitting the fitting pin 752 into one of the fitting holes 751, the one of the cells C1, C2 can be selectively disposed at the light irradiation position P. The cell mounting member 72 is moved in a state in which the handle 721 on the front side of the cell mounting member 72 is lifted upward to be inclined and the fitting between the fitting hole 751 and the fitting pin 752 is released.

さらにこのセル保持機構7は、セル搭載部材72の左右方向の移動を禁止する左右移動抑制機構76を備えている。この左右移動抑制機構76は、前記レール部材71に設けた前後方向(セル進退方向)と平行な案内面76a(具体的には一方のレール要素711の外側面から起立させた当たり板714の内側面)に、セル搭載部材72に設けた被案内面76b(具体的にはセル搭載部材72の一方の外側面)を押圧部材761により押しつけることにより、セル搭載部材72の左右方向の移動を抑制するものであり、そのために、セル搭載部材72とレール部材71との間に、押圧部材761として左右方向に弾性復帰力を作用させる第2弾性部材761を設けている。この第2弾性部材761は、例えばセル搭載部材72の側縁部下面から垂下させた支持板722に設けた板バネである。この板バネ761は、レール部材71における他方の起立板712の内面を押圧し、その反力でセル搭載部材72の一方の外側面76bを当たり板714の内側面76aに押しつける。   The cell holding mechanism 7 further includes a left / right movement suppression mechanism 76 that prohibits movement of the cell mounting member 72 in the left / right direction. The left / right movement restraining mechanism 76 has a guide surface 76a (specifically, a contact plate 714 raised from the outer surface of one rail element 711) parallel to the front / rear direction (cell advance / retreat direction) provided on the rail member 71. The lateral movement of the cell mounting member 72 is suppressed by pressing the guided surface 76b (specifically, one outer surface of the cell mounting member 72) provided on the cell mounting member 72 against the side surface by the pressing member 761. For this purpose, a second elastic member 761 is provided between the cell mounting member 72 and the rail member 71 as a pressing member 761 for applying an elastic return force in the left-right direction. The second elastic member 761 is a leaf spring provided on the support plate 722 suspended from the lower surface of the side edge portion of the cell mounting member 72, for example. The leaf spring 761 presses the inner surface of the other upright plate 712 in the rail member 71 and presses one outer surface 76b of the cell mounting member 72 against the inner surface 76a of the contact plate 714 by the reaction force.

かかるセル保持機構7は、セル収容室に固定したトレイ8の上に載置固定してある。トレイ8は、図6、図7に示すように、セル保持機構7を載置する底板81と、左右側板82と、後板83とを有して前面を開口させた高さの低い箱体であり、前端縁の下部には左右に延びる樋85をさらに備えている。このトレイ8は、セルC1、C2の交換時等に誤ってこぼした試料液を受け取るもので、トレイ8にこぼれた試料液は、前記樋85を伝って、その端部に設けた排出口85aから、その下方の循環トレイに導かれ、最終的には循環トレイのドレンから外部に排出される。   The cell holding mechanism 7 is mounted and fixed on a tray 8 fixed in the cell storage chamber. As shown in FIGS. 6 and 7, the tray 8 has a bottom plate 81 on which the cell holding mechanism 7 is placed, a left and right side plate 82, and a rear plate 83. In addition, a lower portion of the front edge is further provided with a flange 85 extending left and right. The tray 8 receives sample liquid that has been accidentally spilled when the cells C1 and C2 are replaced. The sample liquid spilled on the tray 8 travels along the bowl 85 and has a discharge port 85a provided at the end thereof. Then, it is guided to the circulation tray below and finally discharged from the drain of the circulation tray to the outside.

次に本装置1を用いた粒径分布測定手順の一例について以下に述べる。   Next, an example of a particle size distribution measurement procedure using the apparatus 1 will be described below.

まずオペレータが、セル搭載部材72の前端部の取っ手721を持ち上げることにより位置決め機構75を解除した状態(図7)で、レール部材71上でスライドさせ、所望のセル(例えばC1)を光照射位置Pに移動する。この状態が図2に示す状態である。このとき、セル搭載部材72の後端部724が円弧状に加工しているのでセルC1、C2の移動をスムーズに行うことができる。また、光照射位置PにセルC1があるかどうかはセル搭載部材72とレール部材71とに設けた位置決め機構75のクリックストップ感で判断できる。そして、図示しないセル識別手段がセルを識別しセル識別信号を演算装置5に出力する。この出力されたセル識別信号を演算装置5が受信して、そのセルC1に対応したプログラムを選択し起動する。そして、選択したプログラムに基づいて演算装置5が条件設定画面を表示し、処理条件等を設定(変更)する。その後、従来通りに測定を開始すれば、セルC1に収容された粒子群Sの粒径分布が得られる。   First, the operator slides on the rail member 71 in a state where the positioning mechanism 75 is released by lifting the handle 721 at the front end of the cell mounting member 72 (FIG. 7), and a desired cell (for example, C1) is irradiated with the light irradiation position. Move to P. This state is the state shown in FIG. At this time, since the rear end portion 724 of the cell mounting member 72 is processed into an arc shape, the cells C1 and C2 can be moved smoothly. Further, whether or not the cell C1 exists at the light irradiation position P can be determined by a click stop feeling of the positioning mechanism 75 provided on the cell mounting member 72 and the rail member 71. Then, cell identification means (not shown) identifies the cell and outputs a cell identification signal to the arithmetic unit 5. The arithmetic unit 5 receives the output cell identification signal, selects a program corresponding to the cell C1, and starts it. Then, the arithmetic unit 5 displays a condition setting screen based on the selected program, and sets (changes) the processing conditions and the like. Then, if measurement is started as usual, the particle size distribution of the particle group S accommodated in the cell C1 is obtained.

別のセルC1の粒子群Sを測定する場合は、前記同様セル搭載部材72をスライドさせればよい。   When measuring the particle group S of another cell C1, the cell mounting member 72 may be slid as described above.

なお、セルC1にはパイプC1a、C1bがそれぞれ連結されているが、前述したようにそれらのパイプC1a、C1bは、その一部又は全部が柔軟性を有するため、セルC1の移動に伴って変形することから着脱が容易で、セルC1、C2の移動(セル搭載部材72の移動)を阻害したりすることはない。   Note that pipes C1a and C1b are connected to the cell C1, respectively. However, as described above, some or all of the pipes C1a and C1b have flexibility, so that they deform as the cell C1 moves. Therefore, it is easy to attach and detach, and does not hinder the movement of the cells C1 and C2 (movement of the cell mounting member 72).

このように構成した本実施形態によれば、複数のセルC1、C2を、セル保持機構7により進退移動させて切替可能に構成しているので、測定を変更するのに要する時間を短縮することができ、さらにオペレータの負担の軽減を図ることができる。その上、測定時セル搭載部材72のレール部材71上での上下及び左右の位置決めの再現性を確保でき、また振動することを抑制することができるので、測定精度の向上を図ることができる。   According to the present embodiment configured as described above, the plurality of cells C1 and C2 are configured to be switched by being moved forward and backward by the cell holding mechanism 7, thereby reducing the time required for changing the measurement. In addition, the burden on the operator can be reduced. In addition, it is possible to ensure the reproducibility of the positioning of the cell mounting member 72 on the rail member 71 in the vertical and horizontal directions on the rail member 71 and to suppress the vibration, so that the measurement accuracy can be improved.

また、位置決め機構75を有しており、各セルC1、C2を確実且つ簡単に光照射位置Pに位置決めできるので、測定精度の向上を図ることができる。   Moreover, since the positioning mechanism 75 is provided and each cell C1, C2 can be positioned reliably and easily at the light irradiation position P, the measurement accuracy can be improved.

さらに、取っ手721を設けているのでオペレータの作業を容易にすることができる。   Further, since the handle 721 is provided, the operator's work can be facilitated.

上記に加えて本実施形態では、第2接触面を転動体の外周面としているので、セル搭載部材72及び挟持体73の移動をスムーズに行うことができる。よってオペレータの負担を軽減でき、さらに測定準備に要する時間を短縮することができる。   In addition to the above, in the present embodiment, since the second contact surface is the outer peripheral surface of the rolling element, the cell mounting member 72 and the sandwiching body 73 can be moved smoothly. Therefore, the burden on the operator can be reduced, and the time required for measurement preparation can be shortened.

その上、レール部材71が移動方向と平行な案内面76aを有したものであり、セル搭載部材72とレール部材71との間に設けた板バネ761の弾性復帰力により、セル搭載部材72に設けた被案内面76bが案内面76aにスライド可能に押圧接触するように構成しているので、セル搭載部材72がレール部材71上で左右に振動することを防ぐことができ、粒径分布の測定精度を高めることができる。   In addition, the rail member 71 has a guide surface 76a parallel to the moving direction. The elastic force of the leaf spring 761 provided between the cell mounting member 72 and the rail member 71 causes the cell mounting member 72 to move. Since the provided guided surface 76b is configured so as to be slidably pressed against the guide surface 76a, the cell mounting member 72 can be prevented from vibrating left and right on the rail member 71, and the particle size distribution can be reduced. Measurement accuracy can be increased.

なお、各部の具体的構成は、上述した実施形態のみの限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前記実施形態では、押圧部材をセル搭載部材とレール部材との間に設けた板バネとしたがこれに限られることはなく、被案内面を案内面に押圧接触させるようなものであればよいので、例えばレール部材に挟持体(あるいはセル搭載部材)を押圧するための1乃至複数の棒を設けるようにしても良い。   For example, in the above-described embodiment, the pressing member is a leaf spring provided between the cell mounting member and the rail member. However, the pressing member is not limited to this, and any member that presses the guided surface against the guiding surface may be used. Therefore, for example, one or a plurality of bars for pressing the sandwiching body (or cell mounting member) may be provided on the rail member.

また、位置決め機構は嵌合孔と嵌合ピンとからなるものでなくとも良く、ラッチ機構を用いたものであれば何でも良い。   In addition, the positioning mechanism does not have to be composed of a fitting hole and a fitting pin, and may be anything as long as it uses a latch mechanism.

さらに、セル搭載部材の後端部は円弧状に加工していなくても良く、その後端部にベアリングを設け、スライド移動を容易にしても良い。あるいは、その後端部を滑りやすい材料にしても良い。   Furthermore, the rear end portion of the cell mounting member may not be processed into an arc shape, and a bearing may be provided at the rear end portion to facilitate sliding movement. Alternatively, the rear end portion may be made of a slippery material.

前記実施形態では湿式フローセル及びバッチ式セルを用いた粒径分布測定装置を示したが、セルの組み合わせはこれらに限るものではなく、例えば湿式フローセルを2つ用いたものでも良い。あるいは、湿式フローセルとバッチ式セルの2種類を用いたものでも構わない。   In the embodiment, the particle size distribution measuring apparatus using the wet flow cell and the batch type cell is shown. However, the combination of the cells is not limited to these, and for example, two wet flow cells may be used. Or what used two kinds, a wet flow cell and a batch type cell, may be used.

また、前記実施形態では、セル識別手段がセルを識別することにより自動的に粒径分布測定装置がそのセルに対応する測定画面や測定条件等に変更するようにしたが、オペレータが手動で変更するようにしても構わない。   In the above embodiment, the cell identification means automatically identifies the cell, and the particle size distribution measuring device automatically changes the measurement screen or measurement condition corresponding to the cell. You may make it.

本発明の一実施形態における粒径分布測定装置の構成を示す模式的全体図。1 is a schematic overall view showing a configuration of a particle size distribution measuring apparatus according to an embodiment of the present invention. 同実施形態におけるセル保持機構近傍を示した斜視図。The perspective view which showed the cell holding | maintenance mechanism vicinity in the same embodiment. 同実施形態におけるセル保持機構の模式的断面図。The typical sectional view of the cell holding mechanism in the embodiment. 同実施形態におけるセル搭載部材と挟持体を示す模式図。The schematic diagram which shows the cell mounting member and clamping body in the embodiment. 同実施形態におけるセル搭載部材と挟持体を示す模式図。The schematic diagram which shows the cell mounting member and clamping body in the embodiment. 同実施形態におけるセル保持機構及びトレイを示す模式図。The schematic diagram which shows the cell holding mechanism and tray in the same embodiment. 同実施形態におけるレール部材及びトレイを示す模式図。The schematic diagram which shows the rail member and tray in the embodiment. 同実施形態におけるセル搭載部材の後端部の拡大図。The enlarged view of the rear-end part of the cell mounting member in the embodiment.

符号の説明Explanation of symbols

1・・・粒径分布測定装置
C1、C2・・・セル
L・・・光
LS・・・回折及び/又は散乱光
P・・・光照射位置
2・・・光源
31、32・・・光検出器
5・・・演算装置
7・・・セル保持機構
71・・・レール部材
72・・・セル搭載部材
73・・・挟持体
74・・・弾性部材
75・・・位置決め機構
751・・・嵌合孔
752・・・嵌合ピン
721・・・取っ手
732・・・転動体
761・・・第2弾性部材(板バネ)
76a・・・案内面
76b・・・被案内面
DESCRIPTION OF SYMBOLS 1 ... Particle size distribution measuring apparatus C1, C2 ... Cell L ... Light LS ... Diffraction and / or scattered light P ... Light irradiation position 2 ... Light source 31, 32 ... Light Detector 5 ... arithmetic device 7 ... cell holding mechanism 71 ... rail member 72 ... cell mounting member 73 ... clamping body 74 ... elastic member 75 ... positioning mechanism 751 ... Fitting hole 752 ... fitting pin 721 ... handle 732 ... rolling element 761 ... second elastic member (leaf spring)
76a ... Guide surface 76b ... Guide surface

Claims (6)

一定方向に光を照射する光源と、粒子群を収容する複数のセルと、それらセルを前記光が照射される光照射位置及びその光照射位置とは異なる位置に設定された退避位置間でスライド移動可能に保持するセル保持機構と、前記光照射位置にあるセルに収容された粒子群から発生する回折光及び/又は散乱光(以下回折散乱光という。)の光強度に基づいて当該粒子群の粒径分布を算出する演算装置とを備えたものであって、
前記セル保持機構が、前記セルの移動方向に沿って延伸するレール部材と、前記各セルを搭載するセル搭載部材と、狭持体と、前記セル搭載部材及び狭持体間に配置した弾性部材とを備えてなり、前記セル搭載部材に設けた第1接触面と、前記狭持体に設けた第2接触面とを前記レール部材を挟んで対向する位置に配置するとともに、前記弾性部材の弾性復帰力により前記接触面同士を互いに引きつけ、それら接触面を前記レール部材に移動可能に押圧接触させるように構成したものであることを特徴とする粒径分布測定装置。
A light source that emits light in a certain direction, a plurality of cells that contain particles, and a light irradiation position where the light is irradiated and a retreat position that is set to a position different from the light irradiation position The particle group based on the light holding intensity of the cell holding mechanism that holds the movable body and the diffracted light and / or scattered light (hereinafter referred to as diffracted scattered light) generated from the particle group accommodated in the cell at the light irradiation position. An arithmetic device for calculating the particle size distribution of
The cell holding mechanism includes a rail member extending along the moving direction of the cell, a cell mounting member for mounting each cell, a holding member, and an elastic member disposed between the cell mounting member and the holding member. The first contact surface provided on the cell mounting member and the second contact surface provided on the holding body are arranged at positions facing each other with the rail member interposed therebetween, and the elastic member A particle size distribution measuring apparatus characterized in that the contact surfaces are attracted to each other by an elastic restoring force, and the contact surfaces are movably pressed into contact with the rail member.
前記レール部材及び前記セル搭載部材のいずれか一方に設けた嵌合孔と、他方に設けた嵌合ピンとの嵌合により前記各セルの光照射位置を規定する位置決め機構をさらに備えたものであって、
前記第1接触面を下向き面として前記レール部材の上向き面に接触させるとともに、前記第2接触面を上向き面として前記レール部材の下向き面に接触させるようにして、前記セル搭載部材における移動方向側の一方を前記弾性体の弾性力に逆らって持ち上げ傾斜させ得るように構成し、その傾斜状態において前記嵌合が解除され前記セル搭載部材をスライド移動させ得るようにしている請求項1記載の粒径分布測定装置。
It further includes a positioning mechanism that defines the light irradiation position of each cell by fitting a fitting hole provided in one of the rail member and the cell mounting member and a fitting pin provided in the other. And
The first mounting surface is brought into contact with the upward surface of the rail member as a downward surface, and the second contact surface is brought into contact with the downward surface of the rail member as the upward surface, so that the cell mounting member moves in the moving direction. 2. The grain according to claim 1, wherein one of the two is configured to be lifted and inclined against the elastic force of the elastic body, and the fitting is released and the cell mounting member can be slid in the inclined state. Diameter distribution measuring device.
前記セル搭載部材の持ち上げる側に取っ手を設けている請求項2記載の粒径分布測定装置   The particle size distribution measuring apparatus according to claim 2, wherein a handle is provided on a lifting side of the cell mounting member. 前記接触面の少なくともいずれかが転動体の外周面である請求項1、2又は3記載の粒径分布測定装置。   4. The particle size distribution measuring apparatus according to claim 1, wherein at least one of the contact surfaces is an outer peripheral surface of a rolling element. 前記レール部材が前記移動方向と平行な案内面を有し、前記セル搭載部材が前記案内面に接触する被案内面を有したものであって、
前記案内面と前記被案内面とを押圧接触させる押圧部材をさらに備えている請求項1、2、3又は4記載の粒径分布測定装置。
The rail member has a guide surface parallel to the moving direction, and the cell mounting member has a guided surface in contact with the guide surface;
The particle size distribution measuring apparatus according to claim 1, 2, 3, or 4, further comprising a pressing member that presses and contacts the guide surface and the guided surface.
前記押圧部材が、前記セル搭載部材とレール部材との間に設けた第2弾性部材であり、その弾性復帰力により、前記被案内面が前記案内面にスライド可能に押圧接触するように構成している請求項記載の粒径分布測定装置。 The pressing member is a second elastic member provided between the cell mounting member and the rail member, and is configured so that the guided surface is slidably pressed against the guiding surface by its elastic restoring force. The particle size distribution measuring apparatus according to claim 5 .
JP2004253421A 2004-08-31 2004-08-31 Particle size distribution measuring device Expired - Fee Related JP4299212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253421A JP4299212B2 (en) 2004-08-31 2004-08-31 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253421A JP4299212B2 (en) 2004-08-31 2004-08-31 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2006071379A JP2006071379A (en) 2006-03-16
JP4299212B2 true JP4299212B2 (en) 2009-07-22

Family

ID=36152181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253421A Expired - Fee Related JP4299212B2 (en) 2004-08-31 2004-08-31 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4299212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097175B2 (en) * 2017-12-04 2022-07-07 株式会社堀場製作所 A cell for measuring particle physical properties and a particle physical property measuring device using the cell.
JP6958448B2 (en) * 2018-03-19 2021-11-02 株式会社島津製作所 Particle size distribution measuring device

Also Published As

Publication number Publication date
JP2006071379A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4146642B2 (en) Sample laser cutting device and microscope
US20060133965A1 (en) Monitoring function-equipped dispensing system and method of monitoring dispensing device
JP4354361B2 (en) Particle size distribution measuring device
US20090073435A1 (en) Optical measurement device for trace liquid sample
JP6619133B2 (en) Installation of analyzer
JP4299212B2 (en) Particle size distribution measuring device
JP5748782B2 (en) Automatic analyzer
US20170102402A1 (en) Test piece mounting body, transport unit, and test piece analyzer
JP4909803B2 (en) Probe assembly and inspection device
WO2022251314A1 (en) Systems and methods for non-destructive isolation, concentration, and detection for unbiased characterization of nano- and bio-particles
US10983051B2 (en) Reaction system and reaction method
JP5087486B2 (en) Diffraction / scattering particle size distribution analyzer
JP2005017119A (en) Particle size distribution measuring device
JP4439765B2 (en) Particle size distribution measuring device
KR102272183B1 (en) Light-irradiation device for real-time observation of cell activity
RU174054U1 (en) Inverted Nanoparticle Trajectory Analyzer
JP2005006553A (en) Apparatus for cell culture detection
US20200400582A1 (en) Fluid analysis apparatus and method for controlling fluid analysis apparatus
JP2009002842A (en) Apparatus, method, and culture vessel for spectral inspection
JP4798123B2 (en) Cell fixing device and particle measuring device using the same
JP3790411B2 (en) Particle size distribution measuring device
JP2025035386A (en) Reaction vessel, automatic analysis device, and automatic analysis system
JP2013160633A (en) Particle size distribution measuring apparatus
JP2002181690A (en) Particle diameter distribution measuring apparatus
JP4464771B2 (en) Particle size distribution measuring apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4299212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees