Nothing Special   »   [go: up one dir, main page]

JP2009002842A - Apparatus, method, and culture vessel for spectral inspection - Google Patents

Apparatus, method, and culture vessel for spectral inspection Download PDF

Info

Publication number
JP2009002842A
JP2009002842A JP2007165166A JP2007165166A JP2009002842A JP 2009002842 A JP2009002842 A JP 2009002842A JP 2007165166 A JP2007165166 A JP 2007165166A JP 2007165166 A JP2007165166 A JP 2007165166A JP 2009002842 A JP2009002842 A JP 2009002842A
Authority
JP
Japan
Prior art keywords
culture
sample
infrared light
spectroscopic
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165166A
Other languages
Japanese (ja)
Other versions
JP5148935B2 (en
Inventor
Hiroshi Fukuda
宏 福田
Yoshimizu Sakamoto
宣端 坂本
Masayuki Kobayashi
雅之 小林
Yoshiaki Okazaki
善朗 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007165166A priority Critical patent/JP5148935B2/en
Publication of JP2009002842A publication Critical patent/JP2009002842A/en
Application granted granted Critical
Publication of JP5148935B2 publication Critical patent/JP5148935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analytical Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform spectral analysis of an sample without being affected by a culture medium, without sucking out the culture medium from a culture vessel. <P>SOLUTION: A device for spectral inspection comprises a stage 5 for mounting the culture vessel 4 which accommodates the sample 3 with the culture medium; a light source for generating near infrared light L which irradiate the sample 3 mounted on the stage 5; a sensor 7 for receiving the near infrared light L which is received by the sensor 7, and a section 8 for measuring spectroscopy by dispersing the near infrared light L received by the sensor 7, in which the stage 5 has the culture vessel 4 being inclined from the horizontal direction mountably. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分光検査装置、分光検査方法および分光検査用培養容器に関するものである。   The present invention relates to a spectroscopic inspection apparatus, a spectroscopic inspection method, and a culture container for spectroscopic inspection.

従来、測定対象の細胞を含有する培養液に近赤外光を照射して、培養液からの反射光または透過光を受光して分析する分光分析装置が知られている(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, a spectroscopic analyzer is known that irradiates a culture solution containing cells to be measured with near-infrared light, and receives and analyzes reflected light or transmitted light from the culture solution (for example, Patent Document 1). reference.).

特開2004−149144号公報JP 2004-149144 A

しかしながら、特許文献1の分光分析装置では、培養液内に存在する細胞に光を照射するために、細胞の周囲に満たされている培養液(主として水)が光を強く吸収してしまうという不都合がある。その結果、細胞そのものからの信号が培養液からの信号に比較して非常に小さくなり、定量化することが困難であるという不都合がある。   However, in the spectroscopic analysis apparatus of Patent Document 1, in order to irradiate the cells existing in the culture solution with light, the culture solution (mainly water) filled around the cells strongly absorbs light. There is. As a result, the signal from the cell itself is very small compared to the signal from the culture medium, which makes it difficult to quantify.

この不都合を回避するために、検査に先立って、培養容器内から培養液をピペットで吸い出し、細胞を露出させることが考えられるが、この作業においては培養液にピペットを接触させる必要があり、コンタミネーションの可能性が増加するうえ、吸い出し作業が必要となって作業性が悪いという不都合がある。   In order to avoid this inconvenience, it is conceivable that the culture solution is sucked out from the culture vessel with a pipette to expose the cells prior to the examination. There is an inconvenience that the possibility of the nation increases and the workability is poor because the sucking work is required.

本発明は上述した問題に鑑みてなされたものであって、培養容器内から培養液を吸い出す作業を行うことなく、培養液の影響を受けずに試料の分光分析を行うことができる分光検査装置、分光検査方法および分光検査用培養容器を提供することを目的としている。   The present invention has been made in view of the above-described problems, and is a spectroscopic inspection apparatus capable of performing spectroscopic analysis of a sample without being influenced by the culture solution without performing an operation of sucking out the culture solution from the inside of the culture vessel. An object of the present invention is to provide a spectroscopic inspection method and a culture container for spectroscopic inspection.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、培養液とともに試料を収容する培養容器を載置するステージと、該ステージに載置された培養容器内の試料に対して照射する近赤外光を発生する光源と、該光源から照射され、前記試料において反射または透過した近赤外光を受光するセンサと、該センサにより受光された近赤外光を分光して波長特性を測定する分光測定部とを備え、前記ステージが、前記培養容器を水平方向に対して傾けて載置可能に構成されている分光検査装置を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention includes a stage for placing a culture container that contains a sample together with a culture solution, a light source that generates near-infrared light for irradiating the sample in the culture container placed on the stage, and the light source A sensor that receives near-infrared light that is irradiated and reflected or transmitted from the sample, and a spectroscopic measurement unit that measures near-infrared light received by the sensor to measure wavelength characteristics, and the stage includes: Provided is a spectroscopic inspection apparatus configured such that the culture container can be placed while being inclined with respect to a horizontal direction.

本発明によれば、培養液および試料を収容した培養容器をステージに載置すると、ステージが培養容器を水平方向に対して傾けて載置可能に構成されているので、ステージに搭載された培養容器内に貯留されている培養液は、培養容器が傾けられることによって、底面に沿って下側に移動し、底面に接着して成長している試料が培養液から露出することになる。この状態で、光源から近赤外光を出射させると、出射された近赤外光が培養液を介することなく試料に照射され、試料において反射または透過した近赤外光がセンサにより受光され、分光測定部において分光されて波長特性が測定される。すなわち、培養容器内に貯留されている培養液の影響を受けることなく波長特性を取得することができる。したがって、培養容器からの培養液の吸い出し作業を行うことなく、試料からの信号を簡易に定量化することができる。   According to the present invention, when the culture vessel containing the culture medium and the sample is placed on the stage, the stage is configured so that the culture vessel can be placed with the culture vessel tilted with respect to the horizontal direction. When the culture vessel is tilted, the culture solution stored in the container moves downward along the bottom surface, and the sample growing while adhering to the bottom surface is exposed from the culture solution. In this state, when the near-infrared light is emitted from the light source, the emitted near-infrared light is irradiated onto the sample without passing through the culture solution, and the near-infrared light reflected or transmitted by the sample is received by the sensor, The wavelength characteristic is measured by spectroscopic measurement in the spectroscopic measurement unit. That is, the wavelength characteristic can be acquired without being affected by the culture solution stored in the culture vessel. Therefore, the signal from the sample can be easily quantified without performing the work of sucking out the culture solution from the culture vessel.

上記発明においては、前記光源が、前記培養容器内の試料の厚さ方向に近赤外光を照射するよう配置されていてもよい。
このようにすることで、成長に伴って厚さの増加する試料の分光分析を精度よく行うことができる。
In the said invention, the said light source may be arrange | positioned so that near infrared light may be irradiated to the thickness direction of the sample in the said culture container.
By doing so, it is possible to accurately perform spectroscopic analysis of a sample whose thickness increases with growth.

また、上記発明においては、前記光源、センサおよびステージが、略水平な軸線回りに、一体的に揺動可能に設けられていてもよい。
このようにすることで、ステージを水平な状態に設定して培養容器を載置し、ステージを略水平な軸線回りに揺動させることにより、培養容器内の培養液から試料を露出させることができる。この場合に、ステージと一体的に光源およびセンサが揺動するので、ステージを傾斜させて培養液から露出した状態の試料に近赤外光を照射し、反射または透過した近赤外光をセンサにより受光することができる。
Moreover, in the said invention, the said light source, a sensor, and a stage may be provided so that rocking | fluctuation integrally is possible around the substantially horizontal axis line.
In this way, the stage can be set in a horizontal state, the culture vessel can be placed, and the sample can be exposed from the culture solution in the culture vessel by swinging the stage around a substantially horizontal axis. it can. In this case, since the light source and the sensor are swung integrally with the stage, near infrared light is irradiated to the sample exposed from the culture solution by tilting the stage, and the reflected or transmitted near infrared light is detected by the sensor. Can be received.

また、本発明は、培養液とともに試料を収容する培養容器を傾斜させることにより試料を培養液から露出させる露出ステップと、培養液から露出した試料に対して近赤外光を照射する照射ステップと、試料において反射または透過した近赤外光を受光する受光ステップと、受光された近赤外光を分光して波長特性を測定する測定ステップとを備える分光検査方法を提供する。   The present invention also includes an exposure step of exposing the sample from the culture solution by tilting a culture vessel that contains the sample together with the culture solution, and an irradiation step of irradiating the sample exposed from the culture solution with near infrared light. Provided is a spectroscopic inspection method comprising a light receiving step for receiving near-infrared light reflected or transmitted from a sample and a measurement step for measuring wavelength characteristics by splitting the received near-infrared light.

本発明によれば、培養容器を傾斜させて培養液から露出した試料に近赤外光を照射して受光し、波長特性を測定するので、培養液の影響を受けることなく、試料の分光分析を精度よく行うことができる。   According to the present invention, since the sample exposed from the culture medium is tilted and irradiated with near-infrared light to receive and measure the wavelength characteristics, the spectral analysis of the sample is not affected by the culture liquid. Can be performed with high accuracy.

上記発明においては、前記照射ステップが、培養容器を傾斜させることにより、鉛直方向に対して傾斜した試料の厚さ方向に沿う光軸に沿って近赤外光を照射することとしてもよい。
このようにすることで、成長に伴って厚さの増加する試料の分光分析を精度よく行うことができる。
In the said invention, the said irradiation step is good also as irradiating a near-infrared light along the optical axis along the thickness direction of the sample inclined with respect to the perpendicular direction by inclining a culture container.
By doing so, it is possible to accurately perform spectroscopic analysis of a sample whose thickness increases with growth.

また、本発明は、培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、前記凹部が、試料を接着させて培養可能な平坦な底面を有し、該底面が、その重心位置を通過する直線を挟んで異なる面積を有する形状からなる分光検査用培養容器を提供する。   Further, the present invention provides a spectroscopic examination culture container having a recess capable of accommodating a sample together with a culture solution, wherein the recess has a flat bottom surface on which the sample can be adhered and cultured, Provided is a spectroscopic culture container having a shape having different areas across a straight line passing through the position of the center of gravity.

本発明によれば、凹部内に培養液および試料を収容し、底面を略水平に設定して培養することにより、試料が凹部内の平坦な底面に接着して成長する。そして、分光検査を行う際には、底面を傾斜させることにより、凹部内の培養液を下側に移動させて、底面に接着している試料を露出させることができる。この場合において、凹部の底面がその重心位置を通過する直線を挟んで異なる面積を有する形状からなるので、面積が大きい側が下側になるように傾斜させることにより、培養液の液面をより下側に移動させて、簡易に試料を露出させることができる。したがって、培養液の影響を受けることなく試料の分光分析を行うことが可能となる。   According to the present invention, the culture medium and the sample are accommodated in the recess, and the bottom surface is set to be approximately horizontal, and the sample grows by being adhered to the flat bottom surface in the recess. When performing spectroscopic inspection, by inclining the bottom surface, the culture solution in the recess can be moved downward to expose the sample adhered to the bottom surface. In this case, since the bottom surface of the recess has a shape having different areas across the straight line passing through the center of gravity, the liquid surface of the culture solution is further lowered by inclining so that the larger area is on the lower side. The sample can be easily exposed by moving to the side. Therefore, it is possible to perform spectroscopic analysis of the sample without being affected by the culture solution.

また、本発明は、培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、前記凹部が、試料を接着させて培養可能な平坦な培養面を有する培養部と、該培養部の培養面に対して傾斜し、前記培養面に隣接する平坦な観察面を有する観察部と、該観察部を挟んで前記培養部とは反対側に配置され、前記観察面が略水平に配されたときに、前記培養部に貯留されていた培養液を収容する容積を有する培養液収容部とを備える分光検査用培養容器を提供する。   The present invention also relates to a spectroscopic culture container having a recess capable of accommodating a sample together with a culture solution, wherein the recess has a flat culture surface on which a sample can be adhered and cultured, and the culture An observation portion having a flat observation surface adjacent to the culture surface and disposed on the opposite side of the culture portion across the observation portion, the observation surface being substantially horizontal A culture container for spectroscopic examination is provided, comprising: a culture solution storage unit having a volume for storing the culture solution stored in the culture unit when arranged.

本発明によれば、凹部内に設けられた培養部に、試料および培養液を収容して培養することにより、培養部の略水平に配された平坦な培養面に試料を接着させて成長させることができる。そして、試料の分光検査を行う際には、培養部が観察部よりも上側に配されるように、培養面を傾斜させ、培養面に隣接する観察面を略水平にすることにより、培養部に貯留されていた培養液を培養部から流出させるとともに、培養面に接着していた試料を観察面まで徐々に移動させることができる。このとき、観察部の下側には培養液収容部が隣接しているので、培養部から流出した培養液は、観察部を通過して培養液収容部に流入し収容される。これにより、観察部に移動した試料が、培養液から露出するので、培養液の影響を受けることなく分光検査を行うことが可能となる。   According to the present invention, a sample and a culture solution are accommodated and cultured in a culture part provided in the recess, so that the sample is grown on a flat culture surface arranged substantially horizontally in the culture part. be able to. When performing spectroscopic inspection of the sample, the culture surface is inclined so that the culture portion is arranged above the observation portion, and the observation surface adjacent to the culture surface is made substantially horizontal, so that the culture portion As a result, the sample stored on the culture surface is allowed to flow out from the culture unit, and the sample adhered to the culture surface can be gradually moved to the observation surface. At this time, since the culture solution storage unit is adjacent to the lower side of the observation unit, the culture solution flowing out from the culture unit passes through the observation unit and flows into the culture solution storage unit. Thereby, since the sample moved to the observation part is exposed from the culture solution, the spectroscopic inspection can be performed without being influenced by the culture solution.

また、本発明は、培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、前記凹部が、試料を接着させて培養可能な平坦な培養面を有する培養部と、該培養部の培養面に対して傾斜する傾斜面を挟んで培養面に隣接し培養面と略平行な平坦な観察面を有する観察部と、該観察部を挟んで前記培養部とは反対側に配置され、前記傾斜面が略水平に配されたときに、前記培養部に貯留されていた培養液を収容する容積を有する培養液収容部とを備え、前記観察部の観察面と、前記培養液収容部との間に、試料の通過を禁止し、培養液の通過を許容する仕切壁が設けられている分光検査用培養容器を提供する。   The present invention also relates to a spectroscopic culture container having a recess capable of accommodating a sample together with a culture solution, wherein the recess has a flat culture surface on which a sample can be adhered and cultured, and the culture An observation part having a flat observation surface adjacent to the culture surface across the inclined surface that is inclined with respect to the culture surface of the part, and disposed on the opposite side of the culture unit across the observation part And a culture medium storage part having a volume for storing the culture medium stored in the culture part when the inclined surface is arranged substantially horizontally, the observation surface of the observation part, and the culture medium Provided is a spectroscopic examination culture vessel provided with a partition wall that prohibits the passage of a sample and allows the passage of a culture solution between the container and the container.

本発明によれば、凹部内に設けられた培養部に、試料および培養液を収容して培養することにより、培養部の略水平に配された平坦な培養面に試料を接着させて成長させることができる。そして、試料の分光検査を行う際には、培養部が観察部よりも上側に配されるように培養面を傾斜させ、培養面に接着している試料を培養面に隣接する傾斜面を介して観察面まで徐々に移動させる。観察部の観察面と培養液収容部との間には仕切壁が設けられているので、該仕切壁によって試料が堰き止められ、培養液が観察部の下側に配される培養液収容部に流入し収容される。この状態で、観察面が略水平になるように傾斜を戻すことにより、試料が観察面に培養液から露出して載置された状態となるので、培養液の影響を受けることなく分光検査を行うことが可能となる。   According to the present invention, a sample and a culture solution are accommodated and cultured in a culture part provided in the recess, so that the sample is grown on a flat culture surface arranged substantially horizontally in the culture part. be able to. Then, when performing spectroscopic inspection of the sample, the culture surface is inclined so that the culture part is arranged above the observation part, and the sample adhered to the culture surface is passed through the inclined surface adjacent to the culture surface. And gradually move to the observation surface. Since a partition wall is provided between the observation surface of the observation unit and the culture solution storage unit, the sample is blocked by the partition wall, and the culture solution storage unit is arranged below the observation unit. Into the house. In this state, the sample is exposed to and placed on the observation surface from the culture medium by returning the tilt so that the observation surface is substantially horizontal. Can be done.

本発明によれば、培養容器内から培養液を吸い出す作業を行うことなく、培養液の影響を受けずに試料の分光分析を行うことができるという効果を奏する。   According to the present invention, there is an effect that it is possible to perform spectroscopic analysis of a sample without being influenced by the culture solution without performing an operation of sucking out the culture solution from the inside of the culture vessel.

本発明の一実施形態に係る分光検査装置1について、図1を参照して以下に説明する。
本実施形態に係る分光検査装置1は、図1に示されるように、培養液2とともに試料3を収容する培養容器4を載置するステージ5と、該ステージ5に載置された培養容器4内の試料3に対して近赤外光Lを照射する光源6と、該光源6から照射され、試料3を透過した近赤外光Lを検出するセンサ7と、該センサ7により検出された近赤外光Lを分光して波長特性を取得する分光測定部8とを備えている。
A spectroscopic inspection apparatus 1 according to an embodiment of the present invention will be described below with reference to FIG.
As shown in FIG. 1, the spectroscopic inspection apparatus 1 according to this embodiment includes a stage 5 on which a culture vessel 4 that houses a sample 3 together with a culture solution 2 is placed, and a culture vessel 4 that is placed on the stage 5. A light source 6 that irradiates the near-infrared light L to the sample 3 in the inside, a sensor 7 that detects the near-infrared light L irradiated from the light source 6 and transmitted through the sample 3, and the sensor 7 detects And a spectroscopic measurement unit 8 that obtains wavelength characteristics by splitting the near-infrared light L.

培養容器4は、例えば、略円形の底面4aを有するシャーレ状の容器であって、近赤外光Lを透過可能な透明な石英やプラスチック等の材料により構成されている。培養される試料3は、例えば、底面4aに接着して成長する軟骨組織等である。   The culture container 4 is, for example, a petri dish-like container having a substantially circular bottom surface 4a, and is made of a material such as transparent quartz or plastic that can transmit near-infrared light L. The sample 3 to be cultured is, for example, cartilage tissue that grows by adhering to the bottom surface 4a.

前記ステージ5は、水平方向に対して一方向に傾斜して配置されている。また、ステージ5の略中央位置には、その板厚方向に貫通する貫通孔5aが設けられている。さらに、ステージ5の載置面5bの下側には、載置される培養容器4を突き当てるストッパ5cが設けられている。   The stage 5 is arranged to be inclined in one direction with respect to the horizontal direction. A through hole 5a that penetrates in the thickness direction is provided at a substantially central position of the stage 5. Furthermore, a stopper 5c that abuts the culture vessel 4 to be placed is provided below the placement surface 5b of the stage 5.

前記光源6は、前記ステージ5の下方から、前記ステージ5の貫通孔5aを介して斜め上方に向けて近赤外光Lを出射するように配置されている。また、前記センサ7は、ステージ5を挟んで前記光源6に対向する位置に配置されている。   The light source 6 is disposed so as to emit near-infrared light L from below the stage 5 through the through hole 5a of the stage 5 obliquely upward. The sensor 7 is disposed at a position facing the light source 6 with the stage 5 interposed therebetween.

ステージ5の載置面5b上に培養容器4を載置して、その下部をストッパ5cに突き当てると、培養容器4によって前記貫通孔5aが閉塞された状態となり、光源6から出射された近赤外光Lが、ステージ5の貫通孔5aを通過して培養容器4に照射され、培養容器4および該培養容器4内に収容されている試料3を透過してセンサ7により受光されるようになっている。   When the culture vessel 4 is placed on the placement surface 5 b of the stage 5 and the lower part of the culture vessel 4 is abutted against the stopper 5 c, the through-hole 5 a is closed by the culture vessel 4. The infrared light L passes through the through-hole 5a of the stage 5 and is irradiated to the culture vessel 4 so that it passes through the culture vessel 4 and the sample 3 accommodated in the culture vessel 4 and is received by the sensor 7. It has become.

このように構成された本実施形態に係る分光検査装置1を用いた分光検査方法について、以下に説明する。
本実施形態に係る分光検査装置1を用いて試料3の分光分析を行うには、培養容器4内に培養液2とともに試料3を収容し、図示しないインキュベータ内で、所定の培養条件下において培養を行うことにより試料3を成長させ、その成長の過程の所定の時点において、培養容器4をインキュベータ内から取り出してステージ5の載置面5bに載置する。
A spectroscopic inspection method using the spectroscopic inspection apparatus 1 according to this embodiment configured as described above will be described below.
In order to perform spectroscopic analysis of the sample 3 using the spectroscopic inspection apparatus 1 according to the present embodiment, the sample 3 is accommodated in the culture vessel 4 together with the culture solution 2 and cultured under predetermined culture conditions in an incubator (not shown). The sample 3 is grown by performing the above, and the culture container 4 is taken out from the incubator and placed on the placement surface 5 b of the stage 5 at a predetermined point in the growth process.

ステージ5の載置面5bは傾斜して配置されているが、載置面5bにストッパ5cが設けられているので、培養容器4の下端部がストッパ5cに突き当たって固定される。これにより、培養液2および試料3が収容された培養容器4をステージ5の載置面5bに載置すると、図1に示されるように、培養容器4内の試料3は、培養容器4の底面4aに接着状態に維持される一方、培養液2は培養容器4内を下側に流れて下部に溜まるようになる。その結果、培養容器4内の試料3が培養液2から露出する。   Although the placement surface 5b of the stage 5 is disposed to be inclined, since the stopper 5c is provided on the placement surface 5b, the lower end of the culture vessel 4 abuts against the stopper 5c and is fixed. As a result, when the culture vessel 4 containing the culture solution 2 and the sample 3 is placed on the placement surface 5b of the stage 5, the sample 3 in the culture vessel 4 is stored in the culture vessel 4 as shown in FIG. While maintaining the adhesive state on the bottom surface 4a, the culture solution 2 flows downward in the culture vessel 4 and accumulates in the lower part. As a result, the sample 3 in the culture vessel 4 is exposed from the culture solution 2.

この状態で、光源6を作動させることにより、光源6からの近赤外光Lがステージ5の貫通孔5aを介して斜め上方に出射され、培養容器4を透過して培養容器4内の試料3に照射される。試料3は培養液2から露出させられているので、近赤外光Lは試料3を透過した後、培養液2を介することなくセンサ7により受光される。センサ7からの信号は分光測定部8に送られて、波長特性が測定されることにより、試料3に含有される成分を定量的に分析することができる。   In this state, by operating the light source 6, the near-infrared light L from the light source 6 is emitted obliquely upward through the through hole 5 a of the stage 5, passes through the culture vessel 4 and passes through the sample in the culture vessel 4. 3 is irradiated. Since the sample 3 is exposed from the culture solution 2, the near-infrared light L passes through the sample 3 and is received by the sensor 7 without passing through the culture solution 2. The signal from the sensor 7 is sent to the spectroscopic measurement unit 8 to measure the wavelength characteristics, whereby the components contained in the sample 3 can be analyzed quantitatively.

このように、本実施形態に係る分光検査装置1によれば、ステージ5の載置面5bに培養液2および試料3が収容された培養容器4を載置するだけで、試料3を培養液2から露出させて、培養液2の影響を受けることなく試料3の分光分析を行うことができる。したがって、分光検査に先立ってピペット等を用いて培養液2を排除する等の作業を行う必要がなく、コンタミネーションの可能性を低減できるとともに、作業を簡略化することができるという利点がある。   As described above, according to the spectroscopic inspection apparatus 1 according to the present embodiment, the sample 3 is removed from the culture medium 4 simply by placing the culture vessel 2 containing the culture solution 2 and the sample 3 on the placement surface 5 b of the stage 5. The sample 3 can be subjected to spectroscopic analysis without being influenced by the culture solution 2. Therefore, there is no need to perform an operation such as removing the culture solution 2 using a pipette or the like prior to the spectroscopic inspection, and there is an advantage that the possibility of contamination can be reduced and the operation can be simplified.

なお、本実施形態においては、ステージ5が傾斜した状態に固定されている場合について説明したが、これに代えて、図2(a)に示されるように、水平状態に配置されたステージ5と、鉛直方向に対向して配置された光源6およびセンサ7とが、図2(b)に示されるように、一体的に所定角度だけ揺動させられるように構成されていてもよい。このようにすることで、図2(a)に示されるように水平状態に配置されたステージ5上に培養容器4を水平な状態のまま載置して、ステージ5、光源6およびセンサ7を揺動させるだけで、図1と同様に、培養液2を排除して試料3の分光分析を行うことができる。
また、このような構成にすることにより、培養液を有しない試料3に対しては、図2(a)に示されるように、ステージ5を水平な状態に配置したまま検査を行うことができるという利点がある。
In the present embodiment, the case where the stage 5 is fixed in an inclined state has been described. Instead of this, as shown in FIG. Further, the light source 6 and the sensor 7 disposed so as to face each other in the vertical direction may be configured to be integrally swung by a predetermined angle as shown in FIG. By doing so, the culture vessel 4 is placed in a horizontal state on the stage 5 arranged in a horizontal state as shown in FIG. 2A, and the stage 5, the light source 6 and the sensor 7 are placed. Just by rocking, the sample 3 can be analyzed spectroscopically by removing the culture solution 2 as in FIG.
Further, with such a configuration, the sample 3 having no culture solution can be inspected with the stage 5 placed in a horizontal state as shown in FIG. 2 (a). There is an advantage.

また、本実施形態においては、培養液2および試料3を収容する培養容器4として、略円形の底面4aを有するものを例示したが、これに代えて、図3および図4に示されるように、底面4aの形状が、その重心位置を通過する直線を挟んで異なる面積を有する形状、例えば、三角形のものを使用することが好ましい。すなわち、図3に示される例では、重心Pを通過する直線Qを挟んだ2つの領域R1と領域R2(斜線部)の面積の関係は、R1<R2となっている。   In the present embodiment, the culture vessel 4 containing the culture solution 2 and the sample 3 is illustrated as having a substantially circular bottom surface 4a. Instead, as shown in FIGS. The shape of the bottom surface 4a is preferably a shape having a different area across a straight line passing through the center of gravity, for example, a triangular shape. That is, in the example shown in FIG. 3, the area relationship between the two regions R1 and R2 (shaded portions) across the straight line Q passing through the center of gravity P is R1 <R2.

このようにすることで、図4に示されるように、底面4aの面積が大きい側の領域R2が下側となるように培養容器4を傾斜させると、重心位置よりも下側の容積が大きくなるので、少ない角度で培養液の液面を試料よりも下側に移動させることができる。その結果、培養容器4の傾斜角度を大きくしなくても試料を培養液から露出させることができ、培養液の影響を受けずに分光検査を行うことが可能となる。傾斜角度を小さくすることで、試料が培養容器内でずれてしまうことを防止できる。なお、三角形に限定されるものではなく、他の任意の形状を採用してもよい。   In this way, as shown in FIG. 4, when the culture vessel 4 is tilted so that the region R2 on the side with the larger area of the bottom surface 4a is on the lower side, the volume below the center of gravity is larger. Therefore, the liquid level of the culture solution can be moved below the sample at a small angle. As a result, the sample can be exposed from the culture solution without increasing the tilt angle of the culture vessel 4, and spectroscopic inspection can be performed without being affected by the culture solution. By making the inclination angle small, it is possible to prevent the sample from shifting in the culture vessel. In addition, it is not limited to a triangle, You may employ | adopt other arbitrary shapes.

また、このような構成の培養容器4としては、培養液2および試料3を収容する凹部4bを1個有するものに限定されるものではなく、図5に示されるように、縦横に複数配列されているものを採用してもよい。この場合においても、各凹部が上述したように、例えば、三角形の底面4aを有することとすればよい。   Further, the culture vessel 4 having such a configuration is not limited to one having one recess 4b for accommodating the culture medium 2 and the sample 3, and a plurality of them are arranged vertically and horizontally as shown in FIG. You may adopt what is. Also in this case, as described above, each recess may have, for example, a triangular bottom surface 4a.

また、図6に示されるように、培養容器4の凹部4bが、試料3を培養液2内に浸漬させて培養する培養部Aと、該培養部Aの底面(培養面)4aに隣接して傾斜する観察面4cを有する観察部Bと、該観察部Bを挟んで培養部Aとは反対側に配置される培養液収容部Cとを備える構造としてもよい。   In addition, as shown in FIG. 6, the recess 4b of the culture vessel 4 is adjacent to the culture part A where the sample 3 is immersed in the culture solution 2 and the bottom surface (culture surface) 4a of the culture part A. The observation part B having the observation surface 4c inclined and the culture solution storage part C arranged on the opposite side of the culture part A across the observation part B may be adopted.

このようにすることで、図6(a)に示されるように、培養部Aの底面4aを略水平に配置して、培養液2を貯留し、試料3を培養した後に、分光検査を行う際には、図6(b)に示されるように、培養部Aが上側に、培養液回収部Cが下側になるように培養容器4を傾斜させることにより、培養部A内に貯留されていた培養液を培養液回収部Cに流し、底面4aに接着して成長していた試料3を水平な観察面4cまで徐々に移動させることができる。この状態で、鉛直方向上方に向けて近赤外光Lを照射することにより、培養液の影響を受けることなく、試料の分光検査を行うことができる。
このような培養容器4によれば、鉛直方向上方に向けて近赤外光Lを照射する市販の分光検査装置を使用することができる。
In this way, as shown in FIG. 6A, the bottom surface 4a of the culture part A is disposed substantially horizontally, the culture solution 2 is stored, and the sample 3 is cultured, and then the spectroscopic inspection is performed. In this case, as shown in FIG. 6 (b), the culture vessel 4 is tilted so that the culture part A is on the upper side and the culture medium recovery part C is on the lower side, thereby being stored in the culture part A. The culture medium which has been flowing is allowed to flow into the culture medium recovery section C, and the sample 3 that has grown by adhering to the bottom surface 4a can be gradually moved to the horizontal observation surface 4c. In this state, by irradiating the near-infrared light L upward in the vertical direction, the spectroscopic inspection of the sample can be performed without being affected by the culture solution.
According to such a culture vessel 4, a commercially available spectroscopic inspection device that irradiates the near infrared light L upward in the vertical direction can be used.

また、図7に示されるように、培養容器4の凹部4bが、試料3を培養液内に浸漬させて培養する培養部Aと、該培養部Aの底面(培養面)4aに傾斜面4dを挟んで隣接し、底面4aと略平行な観察面4cを有する観察部Bと、該観察部Bを挟んで培養部Aとは反対側に配置される培養液収容部Cとを備える構造としてもよい。観察部Bと培養液回収部Cとの間には、培養液2の流通を許容し、試料3の通過を禁止するメッシュ等からなる仕切壁4eが設けられている。   Further, as shown in FIG. 7, the recess 4b of the culture vessel 4 includes a culture part A in which the sample 3 is immersed in the culture medium and the inclined surface 4d on the bottom surface (culture surface) 4a of the culture part A. As a structure comprising an observation part B having an observation surface 4c adjacent to each other with the observation surface 4c substantially parallel to the bottom surface 4a, and a culture solution storage part C disposed on the opposite side of the culture part A across the observation part B Also good. Between the observation part B and the culture solution recovery part C, a partition wall 4e made of a mesh or the like that allows the culture solution 2 to flow and prohibits the passage of the sample 3 is provided.

このようにすることで、図7(a)に示されるように、培養部Aの底面4aを略水平に配置して、培養液2を貯留し、試料3を培養した後に、分光検査を行う際には、図7(b)に示されるように、培養部Aが上側に、培養液回収部Cが下側になるように培養容器4を傾斜させることにより、培養部A内に貯留されていた培養液を培養液回収部Cに流し、底面4aに接着して成長していた試料3を仕切壁4eによって捕捉する。   By doing in this way, as shown in FIG. 7A, the bottom surface 4a of the culture part A is arranged substantially horizontally, the culture solution 2 is stored, the sample 3 is cultured, and then the spectroscopic inspection is performed. In this case, as shown in FIG. 7 (b), the culture vessel 4 is tilted so that the culture part A is on the upper side and the culture medium recovery part C is on the lower side, thereby being stored in the culture part A. The culture medium which has been flowing is poured into the culture medium recovery section C, and the sample 3 which has grown by adhering to the bottom surface 4a is captured by the partition wall 4e.

この後に、培養容器4を観察面4cが略水平になるまで戻すことにより、図7(c)に示されるように、観察面4cに試料3を載置した状態にすることができる。この状態で、鉛直方向上方に向けて近赤外光Lを照射することにより、培養液の影響を受けることなく、試料の分光検査を行うことができる。
このような培養容器4によっても、鉛直方向上方に向けて近赤外光Lを照射する市販の分光検査装置を使用することができる。
Thereafter, by returning the culture vessel 4 until the observation surface 4c becomes substantially horizontal, the sample 3 can be placed on the observation surface 4c as shown in FIG. 7C. In this state, by irradiating the near-infrared light L upward in the vertical direction, the spectroscopic inspection of the sample can be performed without being affected by the culture solution.
Also with such a culture vessel 4, a commercially available spectroscopic inspection device that irradiates the near infrared light L upward in the vertical direction can be used.

また、本実施形態においては、光源6から出射された近赤外光Lを試料3に照射し、試料3を透過した近赤外光Lをセンサ7により検出することとしたが、これに代えて、試料3において反射した近赤外光Lを光源6と同じ側に配置されたセンサ7により検出することとしてもよい。   In the present embodiment, the sample 3 is irradiated with the near infrared light L emitted from the light source 6, and the near infrared light L transmitted through the sample 3 is detected by the sensor 7. Thus, the near infrared light L reflected from the sample 3 may be detected by the sensor 7 disposed on the same side as the light source 6.

本発明の一実施形態に係る分光検査装置を示す模式的な全体構成図である。It is a typical whole lineblock diagram showing the spectroscopic inspection device concerning one embodiment of the present invention. 図1の分光検査装置の第1の変形例であって、(a)培養容器を水平に載置した状態、(b)培養容器を傾斜させた状態をそれぞれ示す図である。It is the 1st modification of the spectroscopic inspection device of Drawing 1, and is a figure showing the state where (a) the culture container was mounted horizontally, and (b) the state where the culture container was inclined, respectively. 図1の分光検査装置に適用して好適な本実施形態に係る培養容器の一例を示す平面図である。It is a top view which shows an example of the culture container which concerns on this embodiment suitable for applying to the spectroscopic inspection apparatus of FIG. 図3の培養容器であって、(a)水平な状態、(b)傾斜させた状態をそれぞれ示す斜視図である。FIG. 4 is a perspective view showing the culture container of FIG. 3, (a) a horizontal state and (b) an inclined state. 図4と同様の複数の凹部を有する培養容器であって、(a)水平な状態、(b)傾斜させた状態をそれぞれ示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a culture vessel having a plurality of recesses similar to FIG. 4, (a) a horizontal state and (b) an inclined state. 図3の培養容器の変形例であって(a)水平な状態、(b)傾斜させた状態をそれぞれ示す縦断面図である。It is a longitudinal cross-sectional view which is a modification of the culture container of FIG. 3, (a) is in a horizontal state, and (b) is in an inclined state. 図3の培養容器の他の変形例であって(a)水平な状態、(b)傾斜させた状態をそれぞれ示す縦断面図である。FIG. 4 is a longitudinal sectional view showing another modification of the culture container of FIG. 3, (a) a horizontal state and (b) an inclined state.

符号の説明Explanation of symbols

A 培養部
B 観察部
C 培養液収容部
L 近赤外光
P 重心
Q 直線
1 分光検査装置
2 培養液
3 試料
4 培養容器(分光検査用培養容器)
4a 底面(培養面)
4b 凹部
4c 観察面
4d 傾斜面
4e 仕切壁
5 ステージ
6 光源
7 センサ
8 分光測定部
A culture part B observation part C culture solution storage part L near infrared light P center of gravity Q straight line 1 spectroscopic inspection device 2 culture solution 3 sample 4 culture vessel (culture vessel for spectroscopic inspection)
4a Bottom (culture surface)
4b Recessed part 4c Observation surface 4d Inclined surface 4e Partition wall 5 Stage 6 Light source 7 Sensor 8 Spectrometer

Claims (8)

培養液とともに試料を収容する培養容器を載置するステージと、
該ステージに載置された培養容器内の試料に対して照射する近赤外光を発生する光源と、
該光源から照射され、前記試料において反射または透過した近赤外光を受光するセンサと、
該センサにより受光された近赤外光を分光して波長特性を測定する分光測定部とを備え、
前記ステージが、前記培養容器を水平方向に対して傾けて載置可能に構成されている分光検査装置。
A stage for placing a culture vessel containing a sample together with the culture solution;
A light source that generates near-infrared light for irradiating the sample in the culture vessel placed on the stage;
A sensor for receiving near-infrared light irradiated from the light source and reflected or transmitted by the sample;
A spectroscopic measurement unit that measures near-infrared light received by the sensor and measures wavelength characteristics;
The spectroscopic inspection apparatus in which the stage is configured so that the culture container can be placed with an inclination relative to a horizontal direction.
前記光源が、前記培養容器内の試料の厚さ方向に近赤外光を照射するよう配置されている請求項1に記載の分光検査装置。   The spectroscopic inspection apparatus according to claim 1, wherein the light source is arranged to irradiate near infrared light in a thickness direction of a sample in the culture vessel. 前記光源、センサおよびステージが、略水平な軸線回りに、一体的に揺動可能に設けられている請求項1または請求項2に記載の分光検査装置。   The spectroscopic inspection apparatus according to claim 1, wherein the light source, the sensor, and the stage are provided so as to be integrally swingable about a substantially horizontal axis. 培養液とともに試料を収容する培養容器を傾斜させることにより試料を培養液から露出させる露出ステップと、
培養液から露出した試料に対して近赤外光を照射する照射ステップと、
試料において反射または透過した近赤外光を受光する受光ステップと、
受光された近赤外光を分光して波長特性を測定する測定ステップとを備える分光検査方法。
An exposure step of exposing the sample from the culture solution by tilting the culture vessel containing the sample with the culture solution;
An irradiation step of irradiating the sample exposed from the culture with near infrared light;
A light receiving step for receiving near-infrared light reflected or transmitted by the sample;
A spectroscopic inspection method comprising: a measuring step of measuring wavelength characteristics by spectrally analyzing received near-infrared light.
前記照射ステップが、培養容器を傾斜させることにより、鉛直方向に対して傾斜した試料の厚さ方向に沿う光軸に沿って近赤外光を照射する請求項4に記載の分光検査方法。   The spectroscopic inspection method according to claim 4, wherein the irradiation step irradiates near-infrared light along the optical axis along the thickness direction of the sample inclined with respect to the vertical direction by inclining the culture vessel. 培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、
前記凹部が、試料を接着させて培養可能な平坦な底面を有し、
該底面が、その重心位置を通過する直線を挟んで異なる面積を有する形状からなる分光検査用培養容器。
A culture container for spectroscopic inspection having a recess capable of accommodating a sample together with a culture solution,
The recess has a flat bottom surface on which the sample can be adhered and cultured;
A culture container for spectroscopic examination, wherein the bottom surface has a shape having different areas across a straight line passing through the center of gravity.
培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、
前記凹部が、試料を接着させて培養可能な平坦な培養面を有する培養部と、該培養部の培養面に対して傾斜し、前記培養面に隣接する平坦な観察面を有する観察部と、該観察部を挟んで前記培養部とは反対側に配置され、前記観察面が略水平に配されたときに、前記培養部に貯留されていた培養液を収容する容積を有する培養液収容部とを備える分光検査用培養容器。
A culture container for spectroscopic inspection having a recess capable of accommodating a sample together with a culture solution,
A culture part having a flat culture surface on which the concave portion can be cultured by adhering a sample; an observation part having a flat observation surface that is inclined with respect to the culture surface of the culture part and is adjacent to the culture surface; A culture solution storage unit that is disposed on the opposite side of the culture unit across the observation unit and has a volume for storing the culture solution stored in the culture unit when the observation surface is arranged substantially horizontally. A culture vessel for spectroscopic inspection.
培養液とともに試料を収容可能な凹部を有する分光検査用培養容器であって、
前記凹部が、試料を接着させて培養可能な平坦な培養面を有する培養部と、該培養部の培養面に対して傾斜する傾斜面を挟んで培養面に隣接し培養面と略平行な平坦な観察面を有する観察部と、該観察部を挟んで前記培養部とは反対側に配置され、前記傾斜面が略水平に配されたときに、前記培養部に貯留されていた培養液を収容する容積を有する培養液収容部とを備え、
前記観察部の観察面と、前記培養液収容部との間に、試料の通過を禁止し、培養液の通過を許容する仕切壁が設けられている分光検査用培養容器。
A culture container for spectroscopic inspection having a recess capable of accommodating a sample together with a culture solution,
The concave portion has a flat culture surface on which a sample can be adhered and can be cultured, and a flat surface that is adjacent to the culture surface and is substantially parallel to the culture surface across an inclined surface that is inclined with respect to the culture surface of the culture portion. An observation part having a proper observation surface, and the culture solution stored in the culture part when the inclined surface is arranged substantially horizontally, with the observation part being sandwiched between the culture part and the inclined part. A culture medium storage unit having a volume to store,
A culture container for spectroscopic examination, in which a partition wall is provided between the observation surface of the observation unit and the culture solution storage unit, and a partition wall that prohibits the passage of the sample and allows the culture solution to pass therethrough.
JP2007165166A 2007-06-22 2007-06-22 Spectroscopic inspection apparatus and spectral inspection method Expired - Fee Related JP5148935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165166A JP5148935B2 (en) 2007-06-22 2007-06-22 Spectroscopic inspection apparatus and spectral inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165166A JP5148935B2 (en) 2007-06-22 2007-06-22 Spectroscopic inspection apparatus and spectral inspection method

Publications (2)

Publication Number Publication Date
JP2009002842A true JP2009002842A (en) 2009-01-08
JP5148935B2 JP5148935B2 (en) 2013-02-20

Family

ID=40319379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165166A Expired - Fee Related JP5148935B2 (en) 2007-06-22 2007-06-22 Spectroscopic inspection apparatus and spectral inspection method

Country Status (1)

Country Link
JP (1) JP5148935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231764A (en) * 2011-05-08 2012-11-29 Kyokko Denki Kk Apparatus and method for sorting and acquiring cell aggregate
WO2019226780A1 (en) * 2018-05-22 2019-11-28 Nirrin Bioprocess Analytics, Inc. Near infrared spectroscopy of culture media in micro-physiological systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811835A (en) * 1981-07-16 1983-01-22 Olympus Optical Co Ltd Apparatus and vessel for deciding particle flocculation
JP2003149144A (en) * 2001-11-13 2003-05-21 Takaaki Maekawa Method for determining intracellular anti-disruption response attributable to endocrine disrupting chemical by using near infrared spectrochemical analysis
JP2006317406A (en) * 2005-05-16 2006-11-24 Olympus Corp Cell imaging device, method, and program, and cell observation device
JP2007110996A (en) * 2005-10-21 2007-05-10 Hitachi Medical Corp Cell culture container and cell culture device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811835A (en) * 1981-07-16 1983-01-22 Olympus Optical Co Ltd Apparatus and vessel for deciding particle flocculation
JP2003149144A (en) * 2001-11-13 2003-05-21 Takaaki Maekawa Method for determining intracellular anti-disruption response attributable to endocrine disrupting chemical by using near infrared spectrochemical analysis
JP2006317406A (en) * 2005-05-16 2006-11-24 Olympus Corp Cell imaging device, method, and program, and cell observation device
JP2007110996A (en) * 2005-10-21 2007-05-10 Hitachi Medical Corp Cell culture container and cell culture device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231764A (en) * 2011-05-08 2012-11-29 Kyokko Denki Kk Apparatus and method for sorting and acquiring cell aggregate
WO2019226780A1 (en) * 2018-05-22 2019-11-28 Nirrin Bioprocess Analytics, Inc. Near infrared spectroscopy of culture media in micro-physiological systems

Also Published As

Publication number Publication date
JP5148935B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US7576855B2 (en) Spectrophotometric method and apparatus
JP3330929B2 (en) Pipette adapter, pipette for absorbance measurement, tip, absorbance measurement device and absorbance measurement method
JP4853518B2 (en) Spectrophotometer
US7817277B2 (en) Fiber optic probe and related apparatus, systems and methods for making optics-based measurements of liquid samples
US20110024630A1 (en) System, Device, and Methods for Real-Time Screening of Live Cells, Biomarkers, and Chemical Signatures
BR112017006363B1 (en) APPARATUS FOR OPTICAL INSPECTION OF SMALL VOLUMES OF LIQUID SAMPLES AND BOWLS FOR THE SAME
US20120040331A1 (en) Noninvasive Bioreactor Monitoring
CN103079706A (en) Pipette tip, pipette system and method for performing analysis with the pipette tip and system
JP5442447B2 (en) Sample analysis method and apparatus
JP2005147826A (en) Fluorescence measurement instrument
JP5148935B2 (en) Spectroscopic inspection apparatus and spectral inspection method
KR100923461B1 (en) A sample analysis appparatus for a micro-plate
CN116209746A (en) Biomass measurement system for fixed bed bioreactor and related methods
JP2011064702A (en) Specimen optical information recognizing device and method of recognizing the same
JP6991436B2 (en) Porous optical fiber for detecting specimens in fluids
JP7275016B2 (en) Spectrum measuring device and spectrum measuring method
JP5769805B2 (en) Cell observation device
RU174054U1 (en) Inverted Nanoparticle Trajectory Analyzer
JP2009053078A (en) Container for spectral inspection, spectral inspection device and spectral inspection method
JP4861042B2 (en) Spectrophotometer
JP2007170984A (en) Sample cell and spectrophotometer using the same
RU2788317C1 (en) Optoelectronic photocolorimeter
JP2015052593A (en) Analyzer, specimen sampling tool, analytic method and analytic program
JP2008500522A (en) container
RU2006116548A (en) METHOD AND DEVICE FOR ANALYSIS OF LIQUID SAMPLES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R151 Written notification of patent or utility model registration

Ref document number: 5148935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees