JP4260772B2 - レジスト組成物の評価方法 - Google Patents
レジスト組成物の評価方法 Download PDFInfo
- Publication number
- JP4260772B2 JP4260772B2 JP2005151253A JP2005151253A JP4260772B2 JP 4260772 B2 JP4260772 B2 JP 4260772B2 JP 2005151253 A JP2005151253 A JP 2005151253A JP 2005151253 A JP2005151253 A JP 2005151253A JP 4260772 B2 JP4260772 B2 JP 4260772B2
- Authority
- JP
- Japan
- Prior art keywords
- exposure
- resist
- component
- resist composition
- immersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
現在では、リソグラフィー法により、例えば、ArFエキシマレーザーを用いた最先端の領域では、線幅が90nm程度の微細なレジストパターンを形成することが可能となっているが、今後はさらに微細なパターン形成が要求される。
このような90nmより微細なパターン形成を達成させるためには、露光装置とそれに対応するレジストの開発が第1となる。露光装置においては、F2レーザー、EUV(極端紫外光)、電子線、X線等の光源波長の短波長化やレンズの開口数(NA)大口径化等が一般的である。
しかしながら、光源波長の短波長化は高額な新たな露光装置が必要となるし、また、高NA化では、解像度と焦点深度幅がトレードオフの関係にあるため、解像度を上げても焦点深度幅が低下するという問題がある。
このようなイマージョンリソグラフィーを用いれば、現在ある装置に実装されているレンズを用いて、低コストで、より高解像性に優れ、かつ焦点深度にも優れるレジストパターンの形成を実現できるため、大変注目されている。
ジャーナルオブバキュームサイエンステクノロジー(Journal of Vacuum Science & Technology B)(米国)、1999年、第17巻、6号、3306−3309頁. ジャーナルオブバキュームサイエンステクノロジー(Journal of Vacuum Science & Technology B)(米国)、2001年、第19巻、6号、2353−2356頁. プロシーディングスオブエスピーアイイ(Proceedings of SPIE)(米国)2002年、第4691巻、459−465頁.
本発明は、かかる従来技術の問題点に鑑みてなされたものであり、イマージョンリソグラフィーの長所である解像度および焦点深度の向上を損なうことなく、イマージョンリソグラフィー工程において使用される溶媒の悪影響を受けにくく、感度、レジストパターンプロファイル形状に優れる、イマージョンリソグラフィー工程を含むレジストパターン形成方法に用いられるポジ型又はネガ型レジスト組成物の評価方法を提供することを課題とする。
第1の態様は、浸漬露光する工程を含むレジストパターン形成方法に用いられるポジ型レジスト組成物として好適か否かを評価する評価方法であって、
波長193nmの光源を用いた通常露光のリソグラフィー工程により130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1とし、
他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2としたとき、
[(X2/X1)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法である。
第2の態様は、浸漬露光する工程を含むレジストパターン形成方法に用いられるネガ型レジスト組成物として好適か否かを評価する評価方法であって、
波長193nmの光源を用いた通常露光のリソグラフィー工程により160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1’とし、
他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2’としたとき、
[(X2’/X1’)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法である。
なお、本発明者らは、本発明をなすに当たって、浸漬露光工程を含むレジストパターン形成方法に用いるレジスト膜の適性性を評価する方法について、以下のように分析し、その分析結果に基づいて、レジスト組成物およびこの組成物を用いたレジストパターン形成方法を評価した。
すなわち、浸漬露光によるレジストパターン形成性能を評価するには、(i)浸漬露光法による光学系の性能、(ii)浸漬溶媒に対するレジスト膜からの影響、(iii)浸漬溶媒によるレジスト膜の変質、の3点が確認できれば、必要十分であると、判断される。
(i)の光学系の性能については、例えば、表面耐水性の写真用の感光板を水中に沈めて、その表面にパターン光を照射する場合を想定すれば明らかなように、水面と、水と感光板表面との界面とにおいて反射等の光伝搬損失がなければ、後は問題が生じないことは、原理上、疑いがない。この場合の光伝搬損失は、露光光の入射角度の適正化により容易に解決できる。したがって、露光対象であるものがレジスト膜であろうと、写真用の感光版であろうと、あるいは結像スクリーンであろうと、それらが浸漬溶媒に対して不活性であるならば、すなわち、浸漬溶媒から影響も受けず、浸漬溶媒に影響も与えないものであるならば、光学系の性能には、なんら変化は生じないと考え得る。したがって、この点については、新たに確認実験するには及ばない。
(ii)の浸漬溶媒に対するレジスト膜からの影響は、具体的には、レジスト膜の成分が液中に溶け出し、浸漬溶媒の屈折率を変化させることである。浸漬溶媒の屈折率が変化すれば、パターン露光の光学的解像性は、変化を受けるのは、実験するまでもなく、理論から確実である。この点については、単に、レジスト膜を浸漬溶媒に浸漬した場合、ある成分が溶け出して、浸漬溶媒の組成が変化していること、もしくは屈折率が変化していることを確認できれば、十分であり、実際にパターン光を照射し、現像して解像度を確認するまでもない。
これと逆に、浸漬溶媒中のレジスト膜にパターン光を照射し、現像して解像性を確認した場合には、解像性の良否は確認可能でも、浸漬溶媒の変質による解像性への影響なのか、レジスト膜の変質による解像性の影響なのか、あるいは両方なのかが、区別できなくなる。
(iii)の浸漬溶媒によるレジスト膜の変質によって解像性が劣化する点については、「選択的露光と露光後加熱(PEB)の間に浸漬溶媒を、例えば、シャワーのようにレジスト膜にかけて接触させる処理を行い、その後、現像し、得られたレジストパターンの解像性を検査する」という評価試験で十分である。しかも、この評価方法では、レジスト膜に浸漬溶媒を直に振りかけることになり、浸漬条件としては、より過酷となる。かかる点についても、完全浸漬状態で露光を行う試験の場合には、浸漬溶媒の変質による影響なのか、レジスト組成物の浸漬溶媒による変質が原因なのか、あるいは双方の影響により、解像性が変化したのかが判然としない。
前記現象(ii)と(iii)とは、表裏一体の現象であり、レジスト膜の浸漬溶媒によるパターン形状の悪化や感度劣化などの変質程度を確認することによって、把握できる。従って、(iii)の点についてのみ検証行なえば(ii)の点に係る検証も含まれる。
このような分析に基づき、浸漬露光プロセスに好適な新たなレジスト組成物から形成されるレジスト膜の浸漬露光適性を、「選択的露光と露光後加熱(PEB)の間に浸漬溶媒を、例えば、シャワーのようにレジスト膜にかけて接触させる処理を行い、その後、現像し、得られたレジストパターンの解像性を検査する」という評価試験(以下、「評価試験1」という(本発明の評価方法))により、確認した。
さらに、一段と評価試験1を進展させた他の評価方法として、実際の製造工程をシミュレートした「露光のパターン光をプリズムによる干渉光をもって代用させて、試料を実際浸漬状態に置き、露光させる構成の(2光束干渉露光法)」という評価試験(以下、「評価試験2」という)も行なって確認した。
さらにレジスト膜と浸漬溶媒の関係について、極微量な膜厚変化を測定する方法として、水晶振動子法(水晶天秤:Quarts Crystal Microbalanceを用いた膜厚測定法)による「評価試験3」により、確認した。
[評価方法例(評価試験3による評価方法)]
この評価方法例(以下、評価方法3という)は、浸漬露光する工程を含むレジストパターン形成方法に用いられるレジスト組成物として好適か否かを評価する評価方法であって、
レジスト組成物を用いて形成した塗膜を露光して又は未露光のまま水に浸漬し、次いで該浸漬状態で水晶振動子法により該塗膜の膜厚の変化を測定したとき、露光後塗膜と未露光後塗膜の両方において、それらの塗膜の測定開始から10秒間以内の最大の膜厚増加量が1.0nm以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法である。
「該レジスト組成物を用いて形成した塗膜」とは、シリコンウェーハのような基板にレジスト組成物を回転塗布法などによって、所定膜厚に塗布し、乾燥させた塗膜をいう。ここで言う「乾燥」とは、レジスト組成物中の溶媒を加熱して揮発させたもので、リソグラフィープロセスにおけるプレベークと同じである。所定膜厚は特に限定されるものではないが、下記実施例では150nmとして評価した。
光源としては各レジストに好適な光源を用いる、例えば、KrF用レジストであれば、KrFエキシマレーザー(248nm)を、ArF用レジストであれば、ArFエキシマレーザー(193nm)を、F2用レジストであれば、F2エキシマレーザー(157nm)等を用いる。露光する場合の露光量としては、特に限定されるものではないが、一つの指標として、リソグラフィー法において、目視で確認できる大面積を露光、現像し、その大面積のレジスト膜が現像により消失し基板が確認できる最低の露光量を用いればよい。
水晶振動子法とは、公知の水晶天秤(Quarts Crystal Microbalance)を用いた膜厚測定法である。この方法により、露光部と未露光部における水に対するレジスト膜のnmオーダーのわずかな膜厚の変化を測定できる。本発明においては、その測定装置としては、リソテックジャパン社製「RDA−QZ3」を用いた。
対して、上記した塗膜の両方において、測定開始から10秒間以内の最大の膜厚増加量が1.0nm以下となる第一の発明のレジストにおいては、最も微細なレジストパターンで45nmのパターンが形成されることが確認されている。
また、膜厚増加量とは、上記グラフが0を基準にしてこれより上方に位置することからわかり、逆に膜厚減少量とは、0より下方に位置することからわかる。
このようなグラフから、露光後塗膜と未露光後塗膜の膜厚増加量又は減少量が小さく、時間軸に対しなるべく水平なグラフが得られる、すなわち、20秒経過後、好ましくは60秒間経過後でも露光後塗膜と未露光後塗膜の膜厚増加量又は減少量が2nm以下の範囲のものがより好ましい。
特には、評価例17や18から明らかなように、ノルボルナンラクトンの(メタ)アクリレート単位を含む3元ポリマーやγ−ブチロラクトンの(メタ)アクリレート単位を含む4元ポリマーを用いたレジスト組成物が好ましい。
前記したとおり、本発明の第1の態様は、浸漬露光する工程を含むレジストパターン形成方法に用いられるポジ型レジスト組成物として好適か否かを評価する評価方法であって、
波長193nmの光源を用いた通常露光のリソグラフィー工程により130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1とし、他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2としたとき、[(X2/X1)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法である。
波長193nmの光源を用いた通常露光のリソグラフィー工程により160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1’とし、他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2’としたとき、[(X2’/X1’)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法である。
上記定義した絶対値はポジ又はネガレジスト組成物共に8.0以下、好ましくは5以下、最も好ましくは3以下で、0に近いほどよい。
そして、そのような通常露光のリソグラフィー工程により130nmのラインアンドスペースが1対1となるレジストパターン(以下「130nmL&S」と言う)を形成したときの感度X1とは、130nmL&Sが形成される露光量であり、当業者において頻繁に利用されるものであり、自明である。
その式は、Y=aLoge(X1)+bで与えられ、ここで、X1は露光量を、Yはレジストライン幅を、そしてaとbは定数を示す。さらに、この式を展開し、X1を表す式へ変えると、
X1=Exp[(Y−b)/a]となる。この式にY=130(nm)を導入すれば、計算上の理想的感度X1が算出される。
さらに、第1の態様または第2の態様における、模擬的浸漬リソグラフィー工程とは、上記説明した同193nmのArFエキシマレーザーを光源に用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に浸漬露光の溶媒をレジスト膜と接触させる工程を加えた工程を意味する。
接触とは基板上に設けた選択的露光後のレジスト膜を浸漬露光の溶媒に浸漬させても、シャワーの様に吹きかけてもかまわない。
そして、そのような模擬的浸漬リソグラフィー工程により、130nmL&Sのレジストパターンを形成したときの感度X2とは、上記X1と同様に130nmL&Sが形成される露光量であり、当業者においては通常利用されるものである。
また、その際の条件(レジスト塗布の回転数、プレベーク温度、露光条件、露光後加熱条件、アルカリ現像等の条件)も上記X1と同様である。
絶対値8.0を超えると、浸漬露光プロセス用レジスト組成物として、不適であり、レジストパターンがT−トップ形状となったり、レジストパターンの倒れが生じたりするなどの不具合が生じる。
すなわち、KrFエキシマレーザーの場合は、浸漬露光する工程を含むレジストパターン形成方法に用いられるポジ型レジスト組成物であって、波長248nmの光源を用いた通常露光のリソグラフィー工程により150nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1とし、他方、同248nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同150nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2としたとき、[(X2/X1)−1]×100の絶対値が8.0以下であるとよい。その絶対値は、好ましくは5以下、最も好ましくは3以下で、0に近いほどよい。
リソグラフィー工程におけるレジスト塗布、プレベーク、選択的露光、露光後加熱、及びアルカリ現像を順次施す工程は、このラインアンドスペースパターンを形成する際のレジスト膜厚は300〜400nmとし、露光光をKrFとする以外は、第1の態様と同様である。
また、該樹脂成分は、ポジ型、ネガ型のいずれの場合にも、後述の好適なポジ型レジスト組成物で詳述する(a0)(a0−1)ジカルボン酸の無水物含有構成単位および(a0−2)フェノール性水酸基含有構成単位(以下、(a0)または(a0)単位という。)を有さないことが好ましい。この単位を有さないことにより、評価方法3における最大の膜厚増加量が1.0nm以下とでき、また第1の態様と第2の態様における絶対値を8.0以下に調製できるので好ましい。
好適なポジ型レジスト組成物は、浸漬露光する工程を含むレジストパターン形成方法に用いられるポジ型レジスト組成物であって、酸解離性溶解抑制基を有し、酸の作用によりアルカリ可溶性が増大する樹脂成分(A)と、露光により酸を発生する酸発生剤成分(B)と、(A)成分及び(B)成分を溶解する有機溶剤(C)とを含み、前記(A)成分は、(a1)酸解離性溶解抑制基を有する(メタ)アクリル酸エステルから誘導される構成単位を有し、かつ(a0)(a0−1)ジカルボン酸の無水物含有構成単位又は(a0−2)フェノール性水酸基含有構成単位を有さないことを特徴とするポジ型レジスト組成物である。
そのため、レジストパターンの形成において、基板上に塗布されたポジ型レジスト組成物に対して、マスクパターンを介して選択的に露光すると、露光部のアルカリ可溶性が増大し、アルカリ現像することができる。
この例に係るポジ型レジスト組成物において、(A)成分は、(a0)(a0−1)ジカルボン酸の無水物含有構成単位および(a0−2)フェノール性水酸基含有構成単位(以下、(a0)または(a0)単位という。)を有さないことが必要である。
本明細書において(a0−1)ジカルボン酸の酸無水物含有構成単位とは、−C(O)−O−C(O)−構造を有する構成単位をいう。そのようなものとしては、例えば、単環式または多環式の環状酸無水物を含有する構成単位が挙げられ、より具体的には、下記[化1]に示す単環又は多環式の無水マレイン酸から誘導される単位、および下記[化2]に示すイタコン酸から誘導される単位等が挙げられる。
この例にかかるポジ型レジスト組成物は、(A)成分が(a0)、すなわち(a0−1)及び(a0−2)を含有しないことにより、浸漬露光(イマージョンリソグラフィー)プロセスにおいても、感度、プロファイル形状に優れるレジストパターンを形成することができる。
このような(a0)を有するレジスト組成物は浸漬露光プロセスにおいて、レジスト層の変質等の不具合が生じ、このため感度やプロファイル形状が悪化するものと考えられる。
ArFエキシマレーザーで露光する用途に適した特性とし、解像性等の特性を向上させる点においては、(メタ)アクリル酸エステルから誘導される構成単位を80モル%以上、好ましくは90モル%以上(100モル%が最も好ましい)含むことが好ましい。
また、(A)成分は、解像性、耐ドライエッチング性、微細なパターンの形状を満足するために、(a1)単位以外の複数の異なる機能を有するモノマー単位、例えば、以下の構成単位の組み合わせにより構成される。
ラクトン単位を有する(メタ)アクリル酸エステルから誘導される構成単位(以下、(a2)または(a2)単位という。)、
アルコール性水酸基含有多環式基を有する(メタ)アクリル酸エステルから誘導される構成単位(以下、(a3)または(a3)単位という。)、
前記(a1)単位の酸解離性溶解抑制基、前記(a2)単位のラクトン単位、および前記(a3)単位のアルコール性水酸基含有多環式基のいずれとも異なる多環式基を含む構成単位(以下、(a4)または(a4)単位という)。
好ましくは、(A)成分が、(a1)及び(a2)単位を含有していることにより、イマージョンリソグラフィー工程において使用される溶媒に対する耐溶解性が大きくなり、解像性およびレジストパターン形状が良好となる。さらに、これら2種の構成単位が(A)成分の40モル%以上、より好ましくは60モル%以上を占めていることが好ましい。
なお、(a1)〜(a4)単位の内、それぞれについて、異なる単位を複数種併用してもよい。
ここでのエッチング時の表面荒れは、上述の溶媒の影響によるレジストパターンの表面荒れ(プロファイル形状の劣化)や、従来の耐ドライエッチング性とは異なり、現像してレジストパターンを形成した後、エッチングしたレジストパターンにおいて、コンタクトホールパターンでは、ホールパターン周囲にひずみとなって表れ、ラインアンドスペースパターンではラインエッジラフネスとして表れるものである。
ラインエッジラフネスは、現像後にレジストパターンに発生するものである。ラインエッジラフネスは、例えばホールレジストパターンではホール周囲に歪みとなって表れるし、ラインアンドスペースパターンでは側面の不均一な凹凸となって表れる。
さらには、焦点深度幅特性を広くすることも望まれている。
(A)成分において、上述の様にメタアクリル酸エステルから誘導される構成単位とアクリル酸エステルから誘導されるエステルから誘導される構成単位とが共に存在することにより、これらの特性を向上させることができる。
また、この2つの構成単位をともに含むことにより、ディフェクトの低減効果も得られる。ここで、ディフェクトとは、例えばKLAテンコール社の表面欠陥観察装置(商品名「KLA」)により、現像後のレジストパターンの真上から観察した際に検知されるスカムやレジストパターンの不具合全般のことである。
・共重合体(A1):メタアクリル酸エステルから誘導される構成単位と、アクリル酸エステルから誘導される構成単位とを含む共重合体、
を含むものであってもよいし、
・混合樹脂(A2):少なくともメタアクリル酸エステルから誘導される構成単位を含む重合体と、少なくともアクリル酸エステルから誘導される構成単位を含む重合体との混合樹脂、
を含むものであってもよい。なお、この混合樹脂(A2)を構成するこれらの重合体の一方あるいは両方が、前記共重合体(A1)に相当するものであってもよい。
また、(A)成分には、他の樹脂成分を配合することもできるが、前記共重合体(A1)と前記混合樹脂(A2)のいずれか一方、あるいは両方からなるものが好ましい。
また、共重合体(A1)と、混合樹脂(A2)においては、それぞれ種類の異なるものを2種以上組み合わせて用いることもできる。
[(a1)単位]
(a1)単位は、酸解離性溶解抑制基を有する(メタ)アクリル酸エステルから誘導される構成単位である。
(a1)における酸解離性溶解抑制基は、露光前は(A)成分全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、露光後は前記(B)成分から発生した酸の作用により解離し、この(A)成分全体をアルカリ可溶性へ変化させるものであれば特に限定せずに用いることができる。一般的には、(メタ)アクリル酸のカルボキシル基と、環状又は鎖状の第3級アルキルエステルを形成する基、第3級アルコキシカルボニル基、又は鎖状アルコキシアルキル基などが広く知られている。
前記多環式基としては、フッ素原子又はフッ素化アルキル基で置換されていてもよいし、されていなくてもよいビシクロアルカン、トリシクロアルカン、テロラシクロアルカンなどから1個の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個の水素原子を除いた基などが挙げられる。この様な多環式基は、ArFレジストにおいて、多数提案されているものの中から適宜選択して用いることができる。これらの中でもアダマンチル基、ノルボルニル基、テトラシクロドデカニル基が工業上好ましい。
(a1)として好適なモノマー単位を下記[化3]〜[化11]に示す。
また、R4は、tert−ブチル基やtert-アミル基のような第3級アルキル基であり、tert−ブチル基である場合が工業的に好ましい。
(a1)単位として、上記に挙げた中でも、特に一般式(I)、(II)、(III)で表される構成単位は、イマージョンリソグラフィー工程において使用される溶媒に対する耐溶解性に優れ、高解像性に優れるパターンが形成できるため、より好ましい。
(a2)単位は、ラクトン単位を有するので、レジスト膜と基板の密着性を高めたり、現像液との親水性を高めるために有効であるし、イマージョンリソグラフィー工程において使用される溶媒に対する耐溶解性にも優れる。
(a2)単位は、ラクトン単位を有し、(A)成分の他の構成単位と共重合可能なものであればよい。
例えば、単環式のラクトン単位としては、γ−ブチロラクトンから水素原子1つを除いた基などが挙げられる。また、多環式のラクトン単位としては、ラクトン含有ポリシクロアルカンから水素原子を1つを除いた基などが挙げられる。このときラクトン単位において、−O−C(O)−構造を含む環をひとつ目の環として数える。したがって、ここでは環構造が−O−C(O)−構造を含む環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。
(a2)として好適なモノマー単位を下記一般式[化12]〜[化14]に示す。
(a3)単位は、アルコール性水酸基含有多環式基を有する(メタ)アクリル酸エステルから誘導される構成単位である。
前記アルコール性水酸基含有多環式基における水酸基は極性基であるため、これを用いることにより(A)成分全体の現像液との親水性が高まり、露光部におけるアルカリ溶解性が向上するし、イマージョンリソグラフィー工程において使用される溶媒に対する耐溶解性にも優れる。従って、(A)成分が(a3)を有すると、解像性が向上するため好ましい。
そして、(a3)における多環式基としては、前記(a1)の説明において例示したものと同様の脂肪族多環式基から適宜選択して用いることができる。
(a3)におけるアルコール性水酸基含有多環式基は特に限定されないが、例えば、水酸基含有アダマンチル基などが好ましく用いられる。
さらに、この水酸基含有アダマンチル基が、下記一般式(IV)で表されるものであると、耐ドライエッチング性を上昇させ、パターン断面形状の垂直性を高める効果を有するため、好ましい。
具体的には、下記一般式(V)で表される構成単位が好ましい。
(a4)単位において、「前記酸解離性溶解抑制基、前記ラクトン単位、および前記アルコール性水酸基含有多環式基のいずれとも異なる」多環式基とは、(A)成分において、(a4)単位の多環式基が、(a1)単位の酸解離性溶解抑制基、(a2)単位のラクトン単位、及び(a3)単位のアルコール性水酸基含有多環式基のいずれとも重複しない多環式基、という意味であり、(a4)が、(A)成分を構成している(a1)単位の酸解離性溶解抑制基、(a2)単位のラクトン単位、及び(a3)単位のアルコール性水酸基含有多環式基をいずれも保持していないことを意味している。
特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基から選ばれる少なくとも1種以上であると、工業上入手し易いなどの点で好ましい。
(a4)の好ましい例を下記[化17]〜[化19]に示す。
また、(A)成分を構成する構成単位の合計に対して、(a2)単位が20〜60モル%、好ましくは30〜50モル%であると、解像度、密着性に優れ、好ましい。
また、(a3)単位を用いる場合、(A)成分を構成する構成単位の合計に対して、5〜50モル%、好ましくは10〜40モル%であると、レジストパターン形状に優れ、好ましい。
(a4)単位を用いる場合、(A)成分を構成する構成単位の合計に対して、1〜30モル%、好ましくは5〜20モル%であると、孤立パターンからセミデンスパターンの解像性に優れ、好ましい。
中でも、(A)成分における前記各構成単位(a1)〜(a4)のそれぞれの含有量が、(a1)20〜60モル%、(a2)20〜60モル%、及び(a3)5〜50モル%である3元系、又は(a1)25〜50モル%、(a2)25〜50モル%、(a3)10〜30モル%、及び(a4)3〜25モル%である4元系共重合体を用いたポジ型レジスト組成物が浸漬露光(イマージョンリソグラフィー)プロセスにおいても、感度、プロファイル形状に優れるレジストパターンを形成することができ、好ましい。
また、この例においては、F2エキシマレーザー用レジストの樹脂成分も前記(a1)単位を含み、かつ(a0)単位を有さない限り、好適に用いることができる。そのようなF2用レジスト用の樹脂成分とは、例えば(メタ)アクリル酸エステル単位の側鎖にフッ素原子やフルオロアルキル基を有する基を有する単位を含む共重合体である。
レジスト組成物において、用いられる酸発生剤成分(B)としては、従来、化学増幅型レジストにおける酸発生剤として公知のものの中から任意のものを適宜選択して用いることができる。
これらの中でも、スルホニウム塩が好ましく、中でもその炭素数3以上のフッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩が好ましい。
(B)成分の使用量は、樹脂成分又は(A)成分100質量部に対し、0.5〜30質量部、好ましくは1〜10質量部とされる。0.5質量部未満ではパターン形成が十分に行われないし、30質量部を超えると均一な溶液が得られにくく、保存安定性が低下する原因となるおそれがある。
レジスト組成物は、前記樹脂成分又は(A)成分と前記(B)成分と、後述する任意の(D)成分および/または(E)成分とを、有機溶剤(C)に溶解させて製造することができる。
有機溶剤(C)としては、前記樹脂成分又は(A)成分と前記(B)成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種又は2種以上適宜選択して用いることができる。
PGMEを配合する場合は、PGMEA:PGMEの質量比が8:2〜2:8、好ましくは8:2〜5:5であると好ましい。
また、レジスト組成物には、レジストパターン形状、引き置き経時安定性などを向上させるために、さらに任意の(D)成分として含窒素有機化合物を配合させることができる。この含窒素有機化合物は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良いが、第2級低級脂肪族アミンや第3級低級脂肪族アミンが好ましい。
ここで、低級脂肪族アミンとは炭素数5以下のアルキルまたはアルキルアルコールのアミンを言い、この第2級や第3級アミンの例としては、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ−n−プロピルアミン、トリ−n−プロピルアミン、トリぺンチルアミン、トリドデシルアミン、トリオクチルアミン、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールなどが挙げられるが、特にトリエタノールアミンのようなアルカノールアミンが好ましい。
また、下記一般式(VI)で表される含窒素有機化合物も好ましく用いることができる。
R11、R12、R13の炭素数は、分子量調整の観点から、それぞれ1〜5、好ましくは1〜3である。R11、R12、R13の炭素数は同じであってもよいし、異なっていてもよい。R11、R12の構造は同じであってもよいし、異なっていてもよい。
一般式(VI)で表される化合物としては、例えばトリス-(2−メトキシメトキシエチル)アミン、トリス−2−(2−メトキシ(エトキシ))エチルアミン、トリス-(2−(2−メトキシエトキシ)メトキシエチル)アミン等が挙げられる。中でもトリス−2−(2−メトキシ(エトキシ))エチルアミンが好ましい。
これらの含窒素有機化合物の中では、とくに上記一般式(VI)で表される化合物が好ましく、特にトリス−2−(2−メトキシ(エトキシ))エチルアミンがイマージョンリソグラフィー工程において使用される溶媒に対する溶解性が小さく好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらのアミンは、樹脂成分又は(A)成分に対して、通常0.01〜2.0質量%の範囲で用いられる。
有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ‐n‐ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸‐ジ‐n‐ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
(E)成分は、樹脂成分又は(A)成分100質量部当り0.01〜5.0質量部の割合で用いられる。
次に、本発明によって好適と判断されるレジスト組成物を用いたレジストパターンの形成方法について説明する。
この方法は、レジスト組成物を用いるレジストパターンの形成方法であって、浸漬露光する工程を含むことを特徴とするレジストパターンの形成方法である。
まずシリコンウェーハ等の基板上に、本発明によって好適と判断されるレジスト組成物をスピンナーなどで塗布した後、プレベーク(PAB処理)を行う。
なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止膜を設けた2層積層体とすることもできる。
また、レジスト組成物の塗布層上に有機系の反射防止膜を設けた2層積層体とすることもでき、さらにこれに下層の反射防止膜を設けた3層積層体とすることもできる。
ここまでの工程は、周知の手法を用いて行うことができる。操作条件等は、使用するレジスト組成物の組成や特性に応じて適宜設定することが好ましい。
露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、F2レーザー、EUV(極紫外線)、VUV(真空紫外線)、電子線、X線、軟X線などの放射線を用いて行うことができる。本発明によって好適と判断されるレジスト組成物は、KrF又はArFエキシマレーザー、特にArFエキシマレーザーに対して有効である。
さらに、具体的には、前記パーフルオロアルキルエーテル化合物としては、パーフルオロ(2−ブチル−テトラヒドロフラン)(沸点102℃)を挙げることができ、前記パーフルオロアルキルアミン化合物としては、パーフルオロトリブチルアミン(沸点174℃)を挙げることができる。フッ素系不活性液体の中では、上記範囲の沸点を有するものが露光終了後に行う浸漬液の除去が簡便な方法で行えることから、好ましい。
本発明によって好適と判断されるレジスト組成物は、特に水に対する悪影響を受けにくく、感度、レジストパターンプロファイル形状に優れる。また、水はコスト、安全性、環境問題及び汎用性の観点からも好ましい。
また、空気の屈折率よりも大きくかつ使用されるレジスト組成物の屈折率よりも小さい屈折率を有する溶媒の屈折率としては、前記範囲内であれば特に制限されない。
このようにしてレジストパターンを形成することにより、微細な線幅のレジストパターン、特にピッチが小さいラインアンドスペース(L&S)パターンを良好な解像度により製造することができる。
ここで、ラインアンドスペースパターンにおけるピッチとは、パターンの線幅方向における、レジストパターン幅とスペース幅の合計の距離をいう。
また第1の態様と第2の態様に係るポジ型又はネガ型レジスト組成物は、[(X2/X1)−1]×100又は[(X2’/X1’)−1]×100の絶対値が8.0以下であることにより、レジスト組成物が前記空気の屈折率よりも大きくかつ使用されるレジスト組成物の屈折率よりも小さい屈折率を有する溶媒と接触しても、レジストパターンがT−トップ形状となるなどレジストパターンの表面の荒れがなく、感度劣化が小さく、又膨潤の小さい、レジストパターンプロファイル形状に優れる精度の高いレジストパターンを得ることができると評価できる。
又、上記の好適なポジ型レジスト組成物は、前記構成単位(a1)を有し、かつ(a0)を有さない樹脂成分(A)を含有しているので、レジスト組成物が前記空気の屈折率よりも大きくかつ使用されるレジスト組成物の屈折率よりも小さい屈折率を有する溶媒と接触しても、レジストパターンがT−トップ形状となるなどレジストパターンの表面の荒れがなく、感度劣化が小さく、又膨潤の小さい、レジストパターンプロファイル形状に優れる精度の高いレジストパターンを得ることができる。
なお、以下においては、浸漬工程を含むレジストパターン形成方法に用いられるレジスト組成物として好適な結果が得られているものは「評価例」、好適な結果が得られてないものについては「比較評価例」として示す。
[評価例1](評価試験1)
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物1を調製した。
(A)成分としては、[化21]に示した3種の構成単位からなるメタクリル酸エステル・アクリル酸エステルの共重合体100質量部を用いた。(A)成分の調製に用いた各構成単位p、q、rの比は、p=50モル%、q=30モル%、r=20モル%とした。なお、該共重合体はジカルボン酸の無水物含有構成単位およびフェノール性水酸基含有構成単位を有さない。調製した(A)成分の質量平均分子量は10000であった。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒1900質量部(質量比6:4)との混合溶剤を用いた。
(D)成分としては、トリエタノールアミン0.3質量部を用いた。
まず、有機系反射防止膜組成物「AR−19」(商品名、Shipley社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で215℃、60秒間焼成して乾燥させることにより、膜厚82nmの有機系反射防止膜を形成した。そして、上記で得られたポジ型レジスト組成物1を、スピンナーを用いて反射防止膜上に塗布し、ホットプレート上で115℃、90秒間プレベークして、乾燥させることにより、反射防止膜上に膜厚150nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S302B(ニコン社製、NA(開口数)=0.60,σ=0.75)により、ArFエキシマレーザー(193nm)を用いて選択的に照射した。 そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウェーハを回転させながら、23℃にて純水を5分間滴下しつづけた。
次に115℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
本評価例のレジスト組成物1においては、Eopは12.7mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のレジスト組成物1を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは12.4mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、2.4であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(12.7/12.4)、1.02であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
下記の(A)成分、(B)成分、(D)成分およびその他の成分を(C)成分に均一に溶解し、ポジ型レジスト組成物2を調製した。
(A)成分としては、[化22]に示した3種の構成単位からなるメタクリル酸エステル共重合体100質量部を用いた。(A)成分の調製に用いた各構成単位p、q、rの比は、p=40モル%、q=40モル%、r=20モル%とした。なお、該共重合体はジカルボン酸の無水物含有構成単位およびフェノール性水酸基含有構成単位を有さない。調製した(A)成分の質量平均分子量は10000であった。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートとプロピレングリコールモノメチルエーテルの混合溶媒700質量部(質量比6:4)との混合溶剤を用いた。
(D)成分としては、トリエタノールアミン0.3質量部を用いた。
また、その他の成分として、γ−ブチロラクトン25質量部を用いた。
一方、本評価例のレジスト組成物2を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは20.1mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、1.0であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(20.3/20.1)、1.01であった。また、レジストパターンは、T−トップ形状ではなく、表面荒れも見られず、良好なものであった。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物10を調製した。
(A)成分としては、[化23]に示した構成単位からなる重合体100質量部を用いた。調製した(A)成分の質量平均分子量は10000であった。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルの混合溶媒1900質量部との混合溶剤(質量比6:4)を用いた。
(D)成分としては、トリエタノールアミン0.3質量部を用いた。
一方、本比較評価例1のレジスト組成物10を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは8.4mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、8.3であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(9.1/8.4)、1.08であった。また、レジストパターンはT−トップ形状ではなかったが、表面荒れが観察され、不良なものであった。
一方、比較評価例1の結果より、ジカルボン酸の酸無水物含有構成単位を有する樹脂を用いたレジスト組成物では、模擬的浸漬露光処理と通常露光処理を行なった場合と感度を比較すると、絶対値は、8.3であり、感度劣化が大きく、また表面荒れが発生し、不良なレジストパターンであり、イマージョンリソグラフィーに不適あることが判明した。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物11を調製した。
(A)成分としては、ヒドロキシスチレン単位63モル%、スチレン単位24モル%及びtert−ブチルアクリレート単位13モル%の構成単位からなる共重合体100質量部を用いた。調製した(A)成分の質量平均分子量は12000であった。
(B)成分としては、ビス(tert−ブチルフェニルヨードニウムトリフルオロメタンスルホネート2.8質量部と、ジメチルモノフェニルスルホニウムトリフルオロメタンスルホネート1.0質量部を用いた。
(C)成分としては、乳酸エチル600質量部を用いた。
(D)成分としては、トリエタノールアミン0.26質量部を用い、(E)成分として、フェニルホスホン酸0.28質量部を用いた。
まず、有機系反射防止膜組成物「AR−3」(商品名、Shipley社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で220℃、60秒間焼成して乾燥させることにより、膜厚62nmの有機系反射防止膜を形成した。そして、上記で得られたポジ型レジスト組成物11を、スピンナーを用いて反射防止膜上に塗布し、ホットプレート上で110℃、90秒間プレベークして、乾燥させることにより、反射防止膜上に膜厚280nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S203B(ニコン社製、NA(開口数)=0.60)により、KrFエキシマレーザー(248nm)を用いて選択的に照射した。
そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウエーハを回転させながら、23℃にて純水を5分間滴下しつづけた。
次に110℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
その結果、Eopは22.0mJ/cm2であった。これをX2とする。また、レジストパターンはT−トップ形状となり、また表面荒れが観察された。
一方、本比較評価例のレジスト組成物11を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは20.0mJ/cm2であった。これをX2とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、10であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(22.0/20.0)、1.1であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物12を調製した。
(A)成分としては、ヒドロキシスチレン単位64モル%、1−エトキシ−1−エチルオキシスチレン単位36モル%構成単位からなる共重合体70質量部とヒドロキシスチレン単位67モル%、テトラヒドロピラニルオキシスチレン単位33モル%構成単位からなる共重合体30質量部の混合樹脂を用いた。調製した(A)成分の質量平均分子量はそれぞれ8000であった。
(B)成分としては、ビス(シクロヘキシルスルホニル)ジアゾメタン4質量部、tert−ブチルフェニルヨードニウムトリフルオロメタンスルホネート1質量部を用いた。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルの混合溶媒600質量部との混合溶剤(質量比6:4)を用いた。
(D)成分としては、トリイソプロパノールアミン0.52質量部を用い、(E)成分として、ドデカン酸0.54質量部を用いた。
まず、有機系反射防止膜組成物「DUV−44」(商品名、ブリューワサイエンス社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で225℃、90秒間焼成して乾燥させることにより、膜厚65nmの有機系反射防止膜を形成した。そして、上記で得られたポジ型レジスト組成物をスピンナーを用いて反射防止膜上に塗布し、ホットプレート上で90℃、90秒間プレベークして、乾燥させることにより、反射防止膜上に膜厚280nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S203B(ニコン社製、NA(開口数)=0.60)により、KrFエキシマレーザー(248nm)を用いて選択的に照射した。
そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウエーハを回転させながら、23℃にて純水を5分間滴下しつづけた。
次に110℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
その結果、Eopは26.3mJ/cm2であった。これをX2とする。また、レジストパターンはT−トップ形状ではないが、表面荒れが見られた。
一方、本比較評価例のレジスト組成物12を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは16.8mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、56.5であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(26.3/16.8)、1.57であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
また、従来の技術に挙げた非特許文献1で実験されている『UVII−HS』は、上記比較評価例2と3でもちいたポジ型レジスト組成物11と12のようにフェノール性水酸基を樹脂中に有する点は共通している。
なお、評価例1、2と比較評価例1〜3においては、評価試験1をおこない、水を滴下したのみの模擬的浸漬露光処理で実際の液浸露光(イマージョンリソグラフィー)は行っていない。しかし、この評価試験1は、シリコンウェーハを回転させながら、23℃にて純水を5分間滴下しつづけており、浸漬状態よりもより過酷な条件としているので、この評価試験1で感度やレジストパターン形状に問題がなければ、イマージョンリソグラフィーを適用したとき、イマージョンリソグラフィーの解像性の向上、広い焦点深度幅という効果を実現できることは明らかである。
評価例1と同様の組成のレジスト組成物1を用いて、レジスト膜厚を140nmに変えた以外は、評価例1と同様にして、基板(シリコウェーハ)の上に上記『AR−19』を82nmを設け、この上にレジスト層を形成した。
そして、評価試験2として、浸漬露光は、ニコン社作成の実験装置を用いて、プリズムと水と193nmの2本の光束干渉による実験(二光束干渉実験)を行った。同様の方法は、前記非特許文献2にも開示されており、実験室レベルで簡易にL&Sパターンが得られる方法として公知である。
なお、露光量は、L&Sパターンが安定して得られる露光量を選択した。また、上記反射防止膜上にレジスト膜を形成してから、約1時間経過した後露光処理(PCD:post coaing delay)し、さらに露光してから少なくとも30分間経過した後露光後加熱(PED: post exposure delay)処理した。
一方、比較評価例4においては、浸漬溶媒である水溶媒を用いず、直接プリズムとレジスト層とを接触させた以外は、評価例3と同様にして実験を行った。
現像は評価例1と同様に行なった。
なお、この評価試験2は水溶媒層のレジスト層に対する影響やレジストパターンの解像性、パターンプロファイルを調べるものである。よって、空気を用いた比較評価例4と同等の結果が得られていれば、そのレジスト層は溶媒層による影響を受けずに解像が可能であり、イマージョンリソグラフィーに用いれば、高解像性と広い焦点深度幅が実現され、さらに微細なパターンが得られる。
ライン幅65nm、ピッチ130nmをターゲットとした場合については、空気を媒体とした比較の実験は行わなかったが、純水を用いた場合であってもターゲットに近い値が得られ、溶媒の影響を受けずに解像可能であることが判明した。
また、いずれもプロファイル形状は良好であった。さらにLER(ラインエッジラフネス)については、純水を用いた場合、空気を用いた比較評価例4より、ラフネスの小さい優れた結果が得られた。
また、この二光束干渉実験においては、通常のレジストパターニング評価を行うクリーンルームより、アミン等のコンタミネーションの管理が不十分な環境となっているが、そのような環境下でさえ、約1時間のPCDと、さらに少なくとも30分のPED処理にてもこのような良好な結果が得られた。
したがって、このレジスト組成物をイマージョンリソグラフィーに適用すれば、例えばライン幅50nm、ピッチ100nm程度までは十分に解像可能であることが明らかとなった。
比較評価例1と同様の組成のレジスト組成物10を用いて、レジスト膜厚を140nmに変えた以外は、比較評価例1と同様にして、基板(シリコウェーハ)の上に上記『AR−19』を82nmを設け、この上にレジスト層を形成した。
そして、評価例3と同様に、評価試験2として、浸漬露光は、ニコン社作成の実験装置を用いて、プリズムと水と193nmの2本の光束干渉による実験を行った。
本比較評価例における浸漬露光においては、評価例3と同様にレジスト層とプリズム下面との間に浸漬溶媒として、水溶媒層を形成した。
なお、露光量は、L&Sパターンが安定して得られる露光量を選択した。
一方、比較評価例6においては、浸漬溶媒である水溶媒を用いず、直接プリズムとレジスト層とを接触させた以外は、比較評価例5と同様にして実験を行った。
現像は比較評価例1と同様に行なった。
下記化学式
他方、基板上に有機系反射防止膜「AR−19」(商品名、Shipley社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で215℃、60秒間焼成して乾燥させることにより、膜厚82nmの有機系反射防止膜を形成した。この反射防止膜上に、前記ネガ型レジスト組成物を、スピンナーを用いて塗布し、110℃にて60秒間プレベークして乾燥させることにより、前記反射防止膜上に膜厚250nmのレジスト膜を形成した。
上記基板に対して、評価例3や比較評価例5と同様な「2光束干渉光をプリズムを介して照射することによって、パターン露光光をシミュレートした2光束干渉露光装置(株式会社ニコン社製の実験装置)」を用い、浸漬溶媒に純水を、光源に波長193nmのArFエキシマレーザーを用いて、浸漬露光(評価試験2)を行った。なお、用いた装置のプリズム下面は純水を介してレジスト膜と接触していた。
前記露光の後、110℃にて60秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で40秒間現像した。アルカリ現像液としては2.38wt%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
このようにして得た90nmラインアンドスペースが1:1となるレジストパターンを走査型電子顕微鏡(SEM)にて観察したところ、このパターンのプロファイルにおいては表面荒れ、膨潤共に小さい良好なものであった。
評価例4において、浸漬露光(評価試験2)ではなく、評価例1と同様な模擬的浸漬露光処理を含めたパターン形成を行なった。
詳しくは、まず、有機系反射防止膜組成物「AR−19」(商品名、Shipley社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で215℃、60秒間焼成して乾燥させることにより、膜厚82nmの有機系反射防止膜を形成した。そして、評価例4で用いたネガ型レジスト組成物を、スピンナーを用いて反射防止膜上に塗布し、ホットプレート上で110℃、60秒間プレベークして、乾燥させることにより、反射防止膜上に膜厚300nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S302B(ニコン社製、NA(開口数)=0.60,2/3輪帯)により、位相シフトマスクを解してArFエキシマレーザー(193nm)を用いて選択的に照射した。そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウェーハを回転させながら、23℃にて純水を2分間滴下しつづけた。
次に110℃、60秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で30秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
本評価例のネガ型レジスト組成物においては、Eopは30.7mJ/cm2であった。これをX2’とする。また、レジストパターンは、表面荒れ、膨潤共に見られず、良好なものであった。
一方、本評価例のネガ型レジスト組成物を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは30.1mJ/cm2であった。これをX1’とする。
次いで、[(X2’/X1’)−1]×100の式から、その絶対値を求めたところ、2であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(30.7/30.1)、1.02であった。また、このパターンのプロファイルにおいては表面荒れ、膨潤共に見られない良好なものであった。
評価例1のレジスト組成物1において、(D)成分をトリエタノールアミンから、トリス−2−(2−メトキシ(エトキシ))エチルアミン0.65質量部へ変えた以外は同様なレジスト組成物1−(1)用いて、さらにレジスト膜厚を140nmに変えた以外は、評価例1と同様にして、基板(シリコウェーハ)の上に上記『AR−19』を82nmを設け、この上にレジスト層を形成した。
そして、評価例3と同様な評価試験2(ニコン社作成の実験装置を用いて、プリズムと水と193nmの2本の光束干渉による実験浸漬露光)を行った。評価例3における浸漬露光と同様にレジスト層とプリズム下面との間に浸漬溶媒として、水溶媒層を形成した。
なお、露光量は、L&Sパターンが安定して得られる露光量を選択した。現像は評価例1と同様に行なった。結果を表3に示した。
評価例6において、プレベーク温度を125℃に変え、またレジスト膜厚を110nmに変えた以外は、評価例6と同様にして、82nm膜厚の『AR−19』を設けた基板(シリコウェーハ)の上にこの上にレジスト層を形成した。そして、評価例6と同様な評価試験2を行ったのち、さらに評価例6と同様にしてレジストパターンを形成した。結果を表3に示した。
評価例1のレジスト組成物1において、(B)成分をトリフェニルスルホニウムノナフルオロブタンスルホネートと(4−メチルフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネートの混合物から、トリフェニルスルホニウムパーフルオロオクタンスルホネート5.0質量部に変えた以外は同様なレジスト組成物1―(2)用いて、さらにレジスト膜厚を140nmに変えた以外は、評価例6と同様にして、82nm膜厚の『AR−19』を設けた基板(シリコウェーハ)の上にこの上にレジスト層を形成した。そして、評価例6と同様な評価試験2を行ったのち、さらに評価例6と同様にしてレジストパターンを形成した。結果を表3に示した。
評価例8において、プレベーク温度を125℃に変え、またレジスト膜厚を110nmに変えた以外は、評価例6と同様にして、82nm膜厚の『AR−19』を設けた基板(シリコウェーハ)の上にレジスト層を形成した。そして、評価例6と同様な評価試験2を行ったのち、さらに評価例6と同様にしてレジストパターンを形成した。結果を表3に示した。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物3を調製した。
(A)成分としては、[化25]に示した4種の構成単位からなるメタクリル酸エステルの共重合体100質量部を用いた。(A)成分の調製に用いた各構成単位p、q、r及びtの比は、p=40モル%、q=40モル%、r=15モル%、t=5モル%とした。なお、該共重合体はジカルボン酸の無水物含有構成単位およびフェノール性水酸基含有構成単位を有さない。調製した(A)成分の質量平均分子量は10000であった。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒1900質量部(質量比6:4)との混合溶剤を用いた。
(D)成分としては、トリエタノールアミン0.3質量部を用いた。
すなわち、まず、有機系反射防止膜組成物「AR−19」(商品名、Shipley社製)を用いて評価例1と同様にして、膜厚82nmの有機系反射防止膜を形成した。そして、上記で得られたポジ型レジスト組成物3を用いて、評価例1と同様なプレベークにより反射防止膜上に膜厚150nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S302B(ニコン社製、NA(開口数)=0.60,σ=0.75)により、ArFエキシマレーザー(193nm)を用いて選択的に照射した。そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウェーハを回転させながら、23℃にて純水を2分間滴下しつづけた。なお、評価例1では、5分間滴下し続けたが、2分間でも5分間でも時間の依存性はないことが判明したことから、効率化のため2分間とした。
次に115℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
本評価例のレジスト組成物3においては、Eopは14.32mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のレジスト組成物3を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは14.37mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、0.3であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(14.32/14.37)、0.997であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
評価例10のポジ型レジスト組成物3において、(D)成分をトリエタノールアミンからトリペンチルアミン0.46質量部へ変えた以外は、同様にして、ポジ型レジスト組成物3−(1)を調製した。
上記のようにして製造したポジ型レジスト組成物3−(1)を用いて、評価例10と同様にして、模擬的浸漬露光処理を含めたパターン形成を行なった。その際の、130nmのラインアンドスペースが1:1となるレジストパターンを走査型電子顕微鏡(SEM)により観察し、またそのときの感度(Eop)を求めた。そのEopを求めたところ、12.79mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のポジ型レジスト組成物3−(1)を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは12.91mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、0.9であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(12.79/12.91)、0.991であった。また、レジストパターンは、T−トップ形状ではなく、表面荒れも見られず、良好なものであった。
評価例10のポジ型レジスト組成物3において、(D)成分をトリエタノールアミンからトリドデシルアミン1.05質量部へ変えた以外は、同様にして、ポジ型レジスト組成物3−(2)を調製した。
上記のようにして製造したポジ型レジスト組成物3−(2)を用いて、評価例10と同様にして、模擬的浸漬露光処理を含めたパターン形成を行なった。その際の、130nmのラインアンドスペースが1:1となるレジストパターンを走査型電子顕微鏡(SEM)により観察し、またそのときの感度(Eop)を求めた。そのEopを求めたところ、13.81mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のポジ型レジスト組成物3−(2)を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは13.93mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、0.86であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(13.81/13.93)、0.991であった。また、レジストパターンは、T−トップ形状ではなく、表面荒れも見られず、良好なものであった。
評価例1のポジ型レジスト組成物1において、(B)成分をトリフェニルスルホニムノナフルオロブタンスルホネートと(4−メチルフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネートの混合物からトリ(p−tert−ブチルフェニル)スルホニウムノナフルオロブタンスルホネート6.5質量部へ変えた以外は、同様にして、ポジ型レジスト組成物1−(3)を調製した。
上記のようにして製造したポジ型レジスト組成物1−(3)を用いて、評価例10と同様にして、模擬的浸漬露光処理を含めたパターン形成を行なった。その際の、130nmのラインアンドスペースが1:1となるレジストパターンを走査型電子顕微鏡(SEM)により観察し、またそのときの感度(Eop)を求めた。そのEopを求めたところ、22.18mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のポジ型レジスト組成物1−(3)を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは22.56mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、1.68であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(22.18/22.56)、0.983であった。また、レジストパターンは、T−トップ形状ではなく、表面荒れも見られず、良好なものであった。
評価例8におけるポジ型レジスト組成物1―(2)を用いて、シリコンウェーハ上に回転塗布し115℃で90秒間加熱し膜厚150nmのレジスト塗膜を設けた。これを未露光塗膜という。
他方、上記レジスト塗膜に対して露光装置NSR−S302B(ニコン社製、NA(開口数)=0.60,σ=0.75)により、ArFエキシマレーザー(193nm)を用いて目視で確認できる大面積(約10mm2)領域を露光した。なお露光量は6mJ/cm2であった。次に115℃、90秒間の条件でPEB処理した。これを露光塗膜という。
なお、試料における、露光・未露光での膜厚変動の違いを明らかにするため、各グラフは浸漬時間0秒を基準とし、そのときの膜厚値からの差分で表記し、再度グラフにプロットした。つまり、初期膜厚より薄くなれば負の値を、厚くなれば正の値を示すことになる。膜厚変動値の正の方向で示した最大値および負の方向で示した最大値を各試料ごとに求めた。正あるいは負への挙動がなかった場合は、その値を0nmとした。
測定開始から10秒間以内の最大の膜厚増加量は未露光塗膜と露光塗膜ともにで0nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で1.16nm、露光塗膜で0.66nmであった。
ポジ型レジスト組成物1―(2)において、トリエタノールアミンをトリペンチルアミン0.46質量部に変えた以外は同様なポジ型レジスト組成物1―(4)を調製した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本評価例におけるこのグラフをグラフ−2(図2参照)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜と露光塗膜ともにで0nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で1.00nm、露光塗膜で0.52nmであった。
ポジ型レジスト組成物1―(2)において、トリエタノールアミンをトリオクチルアミン0.71質量部に変えた以外は同様なポジ型レジスト組成物1―(5)を調製した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本評価例におけるこのグラフをグラフ−3(図3)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜と露光塗膜ともにで0nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で0.81nm、露光塗膜で1.75nmであった。
ポジ型レジスト組成物1―(2)において、トリエタノールアミンをトリオクチルアミン0.71質量部に変え、さらに(A)成分を[化26]に示した共重合体に変えた以外は同様なポジ型レジスト組成物4を調製した。なお、上記共重合体の質量平均分子量は10000でp、q、rは30モル%、50モル%、20モル%である。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜は0.02nm、露光塗膜は0.13nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で0.26nm、露光塗膜で0.15nmであった。
評価例10で用いたポジ型レジスト組成物3において、トリエタノールアミンをトリオクチルアミン0.71質量部に変えた以外は同様なポジ型レジスト組成物3−(3)を調製した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本評価例におけるこのグラフをグラフ−5(図5)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜は0.50nm、露光塗膜は0.44nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で0.04nm、露光塗膜で0nmであった。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物13を調製した。
(A)成分としては、ヒドロキシスチレン単位64モル%、1−エトキシ−1−エチルオキシスチレン単位36モル%構成単位からなる共重合体を用いた。調製した(A)成分の質量平均分子量は8000であった。
(B)成分としては、トリフェニルスルホニウムノナフルオロブタンスルホネート5質量部を用いた。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルの混合溶媒1900質量部との混合溶剤(質量比6:4)を用いた。
(D)成分としては、トリオクチルアミン0.71質量部を用いた。
次いで、ポジ型レジスト組成物13をシリコンウェーハ上に回転塗布し90℃で90秒間加熱し膜厚150nmのレジスト塗膜を設けた。これを未露光塗膜という。他方、上記レジスト塗膜に対して露光装置NSR−S203B(ニコン社製、NA(開口数)=0.60)により、KrFエキシマレーザー(248nm)を用いて目視で確認できる大面積(約10mm2)領域を露光した。なお露光量は12mJ/cm2であった。次に110℃、90秒間の条件でPEB処理した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本比較評価例におけるこのグラフをグラフ−6(図6)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜は0.nm、露光塗膜は1.55nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜で0.27nm、露光塗膜で0nmであった。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物14を調製した。
(A)成分としては、ヒドロキシスチレン単位60モル%、スチレン単位15モル%及びtert−ブチルアクリレート単位25モル%構成単位からなる共重合体を用いた。調製した(A)成分の質量平均分子量は12000であった。
(B)成分としては、トリフェニルスルホニウムノナフルオロブタンスルホネート5質量部を用いた。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルの混合溶媒1900質量部との混合溶剤(質量比6:4)を用いた。
(D)成分としては、トリオクチルアミン0.71質量部を用いた。
次いで、ポジ型レジスト組成物14をシリコンウェーハ上に回転塗布し115℃で90秒間加熱し膜厚150nmのレジスト塗膜を設けた。これを未露光塗膜という。他方、上記レジスト塗膜に対して露光装置NSR−S203B(ニコン社製、NA(開口数)=0.60)により、KrFエキシマレーザー(248nm)を用いて目視で確認できる大面積(約10mm2μm)領域を露光した。なお露光量は12mJ/cm2であった。次に115℃、90秒間の条件でPEB処理した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本比較評価例におけるこのグラフをグラフ−7(図7)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜は1.13nm、露光塗膜は0.22nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜と露光塗膜ともに0nmであった。
比較評価例1で用いたポジ型レジスト組成物10において、トリエタノールアミンをトリオクチルアミン0.71質量部に変え、さらに(B)成分をトリフェニルスルホニウムノナフルオロブタンスルホネート単独で5質量部に変えた以外は同様なポジ型レジスト組成物10−(1)を調製した。
次いで、評価例14と同様にして未露光塗膜と露光塗膜の膜厚の変化をQCMにより測定し、同様な浸漬時間に対する膜厚値のグラフを得た。本比較評価例におけるこのグラフをグラフ−8(図8)とする。
また、評価例14と同様にして測定開始から10秒間以内の最大の膜厚増加量を求めたところ、未露光塗膜は0.61nm、露光塗膜は1.49nmであり、10秒間以内の最大の膜厚減少量は、未露光塗膜、露光塗膜ともに0nmであった。
評価例2で用いたポジ型レジスト組成物2において、(B)成分として、オニウム塩の混合物からトリフェニルスルホニウムノナフルオロブタンスルホネート5.0質量部に変え、さらにγ−ブチロラクトンを除きプロピレングリコールモノメチルエーテルアセテートと乳酸エチルの混合溶媒1900質量部(質量比6:4)の混合溶媒へ変えた以外は同様にしてポジ型レジスト組成物2−(1)を調製した。
次に、上記で得られたレジスト組成物2−(1)を用いて、レジストパターンの形成を行った。
まず、有機系反射防止膜組成物「AR−19」(商品名、Shipley社製)を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で215℃、60秒間焼成して乾燥させることにより、膜厚82nmの有機系反射防止膜を形成した。そして、上記で得られたポジ型レジスト組成物2−(1)を、スピンナーを用いて反射防止膜上に塗布し、ホットプレート上で115℃、90秒間プレベークして、乾燥させることにより、反射防止膜上に膜厚200nmのレジスト層を形成した。
次に、マスクパターンを介して、露光装置NSR−S302B(ニコン社製、NA(開口数)=0.60,2/3輪帯)により、ArFエキシマレーザー(193nm)を用いて選択的に照射した。そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウェーハを回転させながら、23℃にて純水を2分間滴下しつづけた。
次に115℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
本評価例のレジスト組成物2−(1)においては、Eopは18.77mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のレジスト組成物2−(1)を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは19.03mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、1.4であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(19.03/18.77)、1.01であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
評価例19において、(A)成分を表4に示す各樹脂に変えた以外は同様にしてそれぞれの評価例におけるポジ型レジスト組成物を調製した。
次いで、評価例19において、プレベークとPEB温度を表4に示すように変えた以外は同様にして、模擬的浸漬露光処理を行って得られた感度X2と模擬的浸漬露光処理を行わずに得られた感度X1を求めた。そして、これらから[(X2/X1)−1]×100の式よりその絶対値を求めた。これらを表4に示す。また、レジストパターン形状は模擬的浸漬露光処理を行っても、すべての評価例において、若干の差はあるが、T−トップ形状ではなく、また表面荒れも見られず、比較的良好なものであった。
下記の(A)成分、(B)成分、および(D)成分を(C)成分に均一に溶解し、ポジ型レジスト組成物を調製した。
(A)成分としては、[化33]に示した3種の構成単位からなるメタクリル酸エステルの共重合体であってその重合に際し、連鎖移動剤としてHS−CH2−CH2−CH2−C(CF3)2−OHを用いることにより、共重合体の末端に−C(CF3)2−OH基を導入した共重合体100質量部を用いた。(A)成分の調製に用いた各構成単位p、q、rの比は、p=40モル%、q=40モル%、r=20モル%とした。なお、該共重合体はジカルボン酸の無水物含有構成単位およびフェノール性水酸基含有構成単位を有さない。調製した(A)成分の質量平均分子量は6400であった。
(C)成分としては、プロピレングリコールモノメチルエーテルアセテートと乳酸エチルとの混合溶媒900質量部(質量比6:4)との混合溶剤を用いた。
(D)成分としては、トリス−2−(2−メトキシ(エトキシ))エチルアミン0.8質量部を用いた。
次に、上記で得られた該ポジ型レジスト組成物を用いて、レジストパターンの形成を行った。
次に、バイナリマスクパターンを介して、露光装置NSR−S203B(ニコン社製、NA(開口数)=0.68,2/3輪帯)により、KrFエキシマレーザー(248nm)を用いて選択的に照射した。そして、模擬的浸漬露光処理として、該露光後のレジスト層を設けたシリコンウェーハを回転させながら、23℃にて純水を2分間滴下しつづけた。
次に110℃、90秒間の条件でPEB処理し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。
本評価例のポジ型レジスト組成物においては、Eopは33.2mJ/cm2であった。これをX2とする。また、レジストパターンは、T−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
一方、本評価例のポジ型レジスト組成物を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは32.1mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、3.4であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(33.2/32.1)、1.03であった。また、レジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
また、コンタクトホールパターンの形成をマスクをハーフトーンマスクに代えた以外同様にして形成したところ、模擬的浸漬露光処理した場合も、模擬的浸漬露光処理しない場合も共に孔径160nmのホールレジストパターンが形成され、そのレジストパターンはT−トップ形状ではなく、また表面荒れも見られず、良好なものであった。
評価例27〜31において、表5に示すような組成でそれぞれの評価例におけるポジ型レジスト組成物を調製し、表6で示す実装条件に変更したこと以外は、評価例4と同様な方法を用いて、「2光束干渉光をプリズムを介して照射することによって、パターン露光光をシミュレートした2光束干渉露光装置(株式会社ニコン社製の実験装置)」を用い、浸漬溶媒に純水を、光源に波長193nmのArFエキシマレーザーを用いて、浸漬露光(評価試験2)を行った。その結果を表7に示した。
評価例1のレジスト組成物を用いて、有機反射防止膜を用いなかったこと以外は、評価例1と同様な方法で膜厚150nmのレジスト膜を形成した。前記レジスト膜を水に完全に浸漬させた状態で、簡易型露光装置VUVES4500(リソテックジャパン株式会社製)を用いて、ArFエキシマレーザー(193nm)でオープンフレーム露光(マスクを介さないで露光)した。次に、ホットプレート上で115℃、90秒の条件でPEBを施し、さらに23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた。その際の感度は4.5mJ/cm2であり、光が当たった部分は完全に溶けきっていた。
評価例32において、レジスト膜を水に浸漬させなかったこと以外は同様な方法を用いて行った。その際の感度は4.5mJ/cm2であり、光が当たった部分が完全に溶けきっていた。
下記の(A)成分、(B)成分、(D)成分およびその他の成分を(C)成分に均一に溶解し、ポジ型レジスト組成物を調製した。
(A)成分としては、[化34]に示した3種の構成単位からなるメタクリル酸エステル共重合体100質量部を用いた。(A)成分の調製に用いた各構成単位p、q、rの比は、p=40モル%、q=40モル%、r=20モル%とした。なお、該共重合体はジカルボン酸の無水物含有構成単位およびフェノール性水酸基含有構成単位を有さない。調製した(A)成分の質量平均分子量は8900であった。
(D)成分としては、トリエタノールアミン0.3質量部を用いた。
(C)成分としては、乳酸エチルとプロピレングリコールモノメチルエーテルアセテートとの混合溶媒 (質量比4:6)を用いて、レジスト固形分濃度が4.3質量%となるように調製した。
一方、本評価例のレジスト組成物を用いて、上記模擬的浸漬露光処理を行なわず、従来行われている通常露光のリソグラフィー工程、すなわち上記模擬的浸漬露光処理を行なわない以外は、同様な方法にてレジストパターンの形成を行ったところ、Eopは14.7mJ/cm2であった。これをX1とする。
次いで、[(X2/X1)−1]×100の式から、その絶対値を求めたところ、4.0であった。通常露光の感度に対する模擬的浸漬露光処理の感度比を求めたところ(15.3/14.7)、1.04であった。また、レジストパターンは、T−トップ形状ではなく、表面荒れも見られず、良好なものであった。
レジスト組成物を塗布しない石英基板を用いて、評価例14と同様にしてQCMにより測定し、グラフを得た(図9)。
ポリスチレンとポリt−ブチルメタクリレートを溶媒に溶解したものを用いて評価例14と同様にしてQCMにより測定し、グラフを得た(図10)。
膜厚値の変動が少なく、本発明の考察を裏付ける結果が得られた。
Claims (4)
- 浸漬露光する工程を含むレジストパターン形成方法に用いられるポジ型レジスト組成物として好適か否かを評価する評価方法であって、
波長193nmの光源を用いた通常露光のリソグラフィー工程により130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1とし、
他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同130nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2としたとき、
[(X2/X1)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法。 - 浸漬露光する工程を含むレジストパターン形成方法に用いられるネガ型レジスト組成物として好適か否かを評価する評価方法であって、
波長193nmの光源を用いた通常露光のリソグラフィー工程により160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX1’とし、
他方、同193nmの光源を用いた通常露光のリソグラフィー工程において、選択的露光と露光後加熱(PEB)の間に上記浸漬露光の溶媒をレジスト膜と接触させる工程を加えた模擬的浸漬リソグラフィー工程により同160nmのラインアンドスペースが1対1となるレジストパターンを形成したときの感度をX2’としたとき、
[(X2’/X1’)−1]×100の絶対値が8.0以下である場合には好適であると判断することを特徴とするレジスト組成物の評価方法。 - 前記溶媒は、空気の屈折率よりも大きく、かつ前記レジスト膜の有する屈折率よりも小さい屈折率を有する溶媒である請求項1または2に記載のレジスト組成物の評価方法。
- 前記溶媒は、水である請求項1〜3のいずれかに記載のレジスト組成物の評価方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005151253A JP4260772B2 (ja) | 2003-01-31 | 2005-05-24 | レジスト組成物の評価方法 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003025152 | 2003-01-31 | ||
JP2003045000 | 2003-02-21 | ||
JP2003062531 | 2003-03-07 | ||
JP2003125244 | 2003-04-30 | ||
JP2003157257 | 2003-06-02 | ||
JP2003195403 | 2003-07-10 | ||
JP2003426939 | 2003-12-24 | ||
JP2005151253A JP4260772B2 (ja) | 2003-01-31 | 2005-05-24 | レジスト組成物の評価方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004017355A Division JP4434762B2 (ja) | 2003-01-31 | 2004-01-26 | レジスト組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005309457A JP2005309457A (ja) | 2005-11-04 |
JP4260772B2 true JP4260772B2 (ja) | 2009-04-30 |
Family
ID=42187925
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005151253A Expired - Fee Related JP4260772B2 (ja) | 2003-01-31 | 2005-05-24 | レジスト組成物の評価方法 |
JP2005186524A Expired - Fee Related JP4319171B2 (ja) | 2003-01-31 | 2005-06-27 | レジスト組成物の評価方法 |
JP2009239779A Expired - Fee Related JP4980406B2 (ja) | 2003-01-31 | 2009-10-16 | レジストパターン形成方法 |
JP2009239780A Expired - Fee Related JP4870202B2 (ja) | 2003-01-31 | 2009-10-16 | レジストパターンの形成方法 |
JP2011284144A Expired - Fee Related JP5539304B2 (ja) | 2003-01-31 | 2011-12-26 | ポジ型レジスト組成物 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005186524A Expired - Fee Related JP4319171B2 (ja) | 2003-01-31 | 2005-06-27 | レジスト組成物の評価方法 |
JP2009239779A Expired - Fee Related JP4980406B2 (ja) | 2003-01-31 | 2009-10-16 | レジストパターン形成方法 |
JP2009239780A Expired - Fee Related JP4870202B2 (ja) | 2003-01-31 | 2009-10-16 | レジストパターンの形成方法 |
JP2011284144A Expired - Fee Related JP5539304B2 (ja) | 2003-01-31 | 2011-12-26 | ポジ型レジスト組成物 |
Country Status (1)
Country | Link |
---|---|
JP (5) | JP4260772B2 (ja) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3042618B2 (ja) * | 1998-07-03 | 2000-05-15 | 日本電気株式会社 | ラクトン構造を有する(メタ)アクリレート誘導体、重合体、フォトレジスト組成物、及びパターン形成方法 |
JP2000336121A (ja) * | 1998-11-02 | 2000-12-05 | Shin Etsu Chem Co Ltd | 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法 |
JP4031327B2 (ja) * | 2002-09-05 | 2008-01-09 | 富士フイルム株式会社 | レジスト組成物 |
JP4048535B2 (ja) * | 2002-11-05 | 2008-02-20 | 富士フイルム株式会社 | ポジ型レジスト組成物 |
JP4121388B2 (ja) * | 2003-01-30 | 2008-07-23 | 富士フイルム株式会社 | ポジ型レジスト組成物、及び、活性光線の照射により酸を発生する化合物 |
JP4070642B2 (ja) * | 2003-03-17 | 2008-04-02 | 富士フイルム株式会社 | ポジ型レジスト組成物 |
JP2004300403A (ja) * | 2003-03-18 | 2004-10-28 | Jsr Corp | (メタ)アクリル系重合体および感放射線性樹脂組成物 |
JP4360955B2 (ja) * | 2003-03-27 | 2009-11-11 | 富士フイルム株式会社 | ポジ型レジスト組成物及びそれを用いたパターン形成方法 |
JP2004294870A (ja) * | 2003-03-27 | 2004-10-21 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
-
2005
- 2005-05-24 JP JP2005151253A patent/JP4260772B2/ja not_active Expired - Fee Related
- 2005-06-27 JP JP2005186524A patent/JP4319171B2/ja not_active Expired - Fee Related
-
2009
- 2009-10-16 JP JP2009239779A patent/JP4980406B2/ja not_active Expired - Fee Related
- 2009-10-16 JP JP2009239780A patent/JP4870202B2/ja not_active Expired - Fee Related
-
2011
- 2011-12-26 JP JP2011284144A patent/JP5539304B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005347763A (ja) | 2005-12-15 |
JP5539304B2 (ja) | 2014-07-02 |
JP2005309457A (ja) | 2005-11-04 |
JP2010066772A (ja) | 2010-03-25 |
JP4319171B2 (ja) | 2009-08-26 |
JP4980406B2 (ja) | 2012-07-18 |
JP2012078864A (ja) | 2012-04-19 |
JP2010061145A (ja) | 2010-03-18 |
JP4870202B2 (ja) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4434762B2 (ja) | レジスト組成物 | |
JPWO2004077158A1 (ja) | ホトレジスト組成物およびレジストパターンの形成方法 | |
JP2005099646A (ja) | 液浸露光プロセス用レジスト組成物および該レジスト組成物を用いたレジストパターン形成方法 | |
JP4502715B2 (ja) | 液浸露光用ポジ型レジスト組成物およびレジストパターンの形成方法 | |
JP4260772B2 (ja) | レジスト組成物の評価方法 | |
JP2005128572A (ja) | ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 | |
JP3895352B2 (ja) | ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 | |
JP2005128573A (ja) | ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4260772 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |