JP4260067B2 - Method for producing alumina fiber - Google Patents
Method for producing alumina fiber Download PDFInfo
- Publication number
- JP4260067B2 JP4260067B2 JP2004167924A JP2004167924A JP4260067B2 JP 4260067 B2 JP4260067 B2 JP 4260067B2 JP 2004167924 A JP2004167924 A JP 2004167924A JP 2004167924 A JP2004167924 A JP 2004167924A JP 4260067 B2 JP4260067 B2 JP 4260067B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- fiber
- mass
- spinning
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims description 69
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 238000009987 spinning Methods 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 21
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 229910052596 spinel Inorganic materials 0.000 claims description 16
- 239000011029 spinel Substances 0.000 claims description 16
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 239000008119 colloidal silica Substances 0.000 claims description 8
- -1 Aluminum oxychloride Chemical compound 0.000 claims description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 239000011550 stock solution Substances 0.000 claims 1
- 239000003054 catalyst Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 239000003463 adsorbent Substances 0.000 description 11
- 238000010304 firing Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000002013 dioxins Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
- Inorganic Fibers (AREA)
- Paper (AREA)
Description
本発明は、アルミナ質繊維の製造方法に関する。 The present invention relates to a method for producing an alumina fiber .
触媒担体を繊維状とすれば、嵩密度を低くすることができるのでガスの透過性が高くなり、ガスの低温燃焼用触媒担体として有利となる。また、比表面積の大きな繊維はダイオキシン類等の環境汚染物質の吸着能力に優れるので、比表面積の大きなセラミック繊維が要望されている。この要望を満たすべく特許文献1など提案されているが、この方法は、特定の曇点を有する表面活性剤を紡糸原液に配合するものであるので、紡糸原液のチキソトロピー性が高くなり、シェアをかけると見かけ粘度が低下するなどの現象が顕著となるため、特殊な紡糸方式しか適用できないといった問題があった。しかも、紡糸原液の調製が複雑であるため、大量生産には不向きであった。
本発明の目的は、例えば触媒担体、吸着材等として好適な比表面積の大きなアルミナ質繊維の製造方法を提供することである。本発明の目的は、特定紡糸原液を調製し、それを繊維化した後、特定条件で焼成して少なくとも繊維表面をスピネル型結晶で変質することによって達成することができる。 An object of the present invention is to provide a method for producing an alumina fiber having a large specific surface area suitable as, for example, a catalyst carrier or an adsorbent. The object of the present invention can be achieved by preparing a specific spinning dope, fiberizing it, and firing it under specific conditions to alter at least the fiber surface with spinel crystals.
本発明は、オキシ塩化アルミニウムと、コロイダルシリカと、紡糸助剤としてポリビニルアルコール、ポリエチレンオキサイド及びポリエチレングリコールから選ばれた少なくとも一種とを、アルミナ成分とシリカ成分の合計100質量部に対して、アルミナ分が60〜80質量部、シリカ分が20〜40質量部、紡糸助剤が3〜18質量部となるよう混合して紡糸原液を調製し、これを紡糸した後、毎分2〜50℃の速度で700〜900℃まで昇温し、この温度で保持することを特徴とする、少なくとも繊維表面をスピネル型結晶で変質されてなり、比表面積が30〜200m 2 /gであるアルミナ質繊維の製造方法である。 The present invention includes a aluminum oxychloride, colloidal silica, polyvinyl alcohol as a spinning aid, and at least one selected from polyethylene oxide and polyethylene glycol, with respect to 100 parts by weight of the alumina component and the silica component, alumina component Is mixed so that the amount of silica is from 60 to 80 parts by mass, the silica content is from 20 to 40 parts by mass, and the spinning aid is from 3 to 18 parts by mass. the temperature was raised to 700 to 900 ° C. at a rate, and wherein the holding at this temperature, even without less will be altered to the fiber surface in the spinel type crystal, alumina having a specific surface area of 30 to 200 m 2 / g It is a manufacturing method of a fiber.
本発明によれば、比表面積が30〜200m2/gのアルミナ質繊維が提供される。本発明で製造されたアルミナ質繊維は、ガスの低温燃焼が可能で、耐熱性・耐薬品性に優れた繊維状触媒担体や、ダイオキシン類等の環境汚染物質の吸着能力と耐熱性・耐薬品性とに優れた繊維状吸着材などとして用いることができる。 According to the present invention, a specific surface area of alumina textiles of 30 to 200 m 2 / g is provide. The alumina fiber produced in the present invention is capable of low-temperature gas combustion, and has excellent heat resistance and chemical resistance, such as a fibrous catalyst carrier , adsorption capacity for environmental pollutants such as dioxins, and heat and chemical resistance. It can be used as a fibrous adsorbent having excellent properties .
本発明で製造されるアルミナ質繊維は、アルミナ成分が60〜80質量%、シリカ成分が20〜40質量%の化学組成を有し、比表面積が30〜200m2/gである。耐熱性・耐薬品性の点からはアルミナ成分が多いほどよいが、アルミナ成分を多くすると繊維が脆くなり、また生産性も低下する恐れがある。また、上記比表面積の範囲において、触媒担体、吸着材、吸着フィルターとして十分な機能を発現し、しかも繊維強度も十分なものとなる。 The alumina fiber produced in the present invention has a chemical composition in which the alumina component is 60 to 80 % by mass, the silica component is 20 to 40% by mass, and the specific surface area is 30 to 200 m 2 / g. From the standpoint of heat resistance and chemical resistance, the more the alumina component, the better. However, if the alumina component is increased, the fiber becomes brittle and the productivity may be lowered . Moreover, within the range of the specific surface area, sufficient functions as a catalyst carrier, an adsorbent, and an adsorption filter are exhibited, and the fiber strength is sufficient.
本発明で製造されるアルミナ質繊維は、少なくとも繊維表面がスピネル型結晶で変質されているものであり、特に繊維表面と共に繊維内部までがこのようなスピネル型結晶で変質されているものが好ましい。ここで、スピネル型結晶とは、アルミナ質のスピネル型結晶として、例えばγ−アルミナ,δ−アルミナ,θ−アルミナ等の中間アルミナ等であり、アルミナシリカ質のスピネル型結晶として、例えばAl−Siスピネル等である。また、変質とは、少なくとも繊維表面がこれらの結晶となっていることであるが、特にγ−アルミナ又はAl−Siスピネルの少なくとも一方によって繊維表面全部が覆われていることが好ましい。変質が不十分であると、繊維表面が細かい微粒子結晶で覆われる割合が少なくなり、比表面積10〜250m2/gの実現が難しくなる。変質は、繊維表面の結晶構造を透過型電子顕微鏡(TEM)観察によって確認することができ、X線回折分析と併用すればより確実となる。 The alumina fiber produced in the present invention is one in which at least the fiber surface is modified with spinel crystals, and in particular, the fiber surface and the inside of the fibers are modified with such spinel crystals. Here, the spinel crystal is an alumina spinel crystal, for example, intermediate alumina such as γ-alumina, δ-alumina, θ-alumina, etc., and an alumina siliceous spinel crystal is, for example, Al-Si. Spinel etc. The alteration means that at least the fiber surface is made of these crystals, and it is particularly preferable that the entire fiber surface is covered with at least one of γ-alumina or Al—Si spinel. If the alteration is insufficient, the ratio of the fiber surface covered with fine particulate crystals decreases, and it becomes difficult to achieve a specific surface area of 10 to 250 m 2 / g. The alteration can be confirmed by observing the crystal structure of the fiber surface with a transmission electron microscope (TEM), and becomes more reliable when used in combination with X-ray diffraction analysis.
本発明のアルミナ質繊維の製造方法で用いられる紡糸原液は、アルミナ源としてオキシ塩化アルミニウム、シリカ源としてコロイダルシリカ、紡糸助剤としてポリビニルアルコール、ポリエチレンオキサイド及びポリエチレングリコールから選ばれた少なくとも一種を用いて調製され、それらの割合は、アルミナ成分とシリカ成分の合計100質量部に対して、アルミナ分が60〜80質量部、シリカ分が20〜40質量部、紡糸助剤が3〜18質量部とする。ポリビニルアルコールは、部分ケン化物、完全ケン化物のいずれか、又はその両方であってもよい。 Spinning solution used in the production how the aluminous fibers of the present invention, aluminum oxychloride, a silica source as colloidal silica, polyvinyl alcohol as a spinning aid, at least one selected from polyethylene oxide and polyethylene glycol used as the alumina source prepared Te, the proportions thereof may be the total 100 parts by weight of the alumina component and the silica component, alumina component is 60 to 80 parts by mass, the silica content of 20 to 40 parts by weight, the spinning aid is 3 to 18 parts by weight And The polyvinyl alcohol may be a partially saponified product, a fully saponified product, or both.
オキシ塩化アルミニウムとコロイダルシリカの配合量を上記のようにするのは、アルミナ成分60〜80質量%、シリカ成分20〜40質量%のアルミナ質繊維を製造するためである。紡糸助剤の使用量が上記範囲を逸脱すると、紡糸時の液糸の延伸が十分でなくなり、繊維が切れるか、ショットと呼ばれる未繊維化物の生成が多くなるか、繊維径が太くなりすぎるなどの恐れがある。特に好ましい紡糸助剤の使用量は、紡糸原液中の上記アルミナ分とシリカ分の合計100質量部に対して4〜9質量部である。 The reason why the blending amounts of aluminum oxychloride and colloidal silica are as described above is to produce alumina fibers having an alumina component of 60 to 80 % by mass and a silica component of 20 to 40% by mass . If the amount of the spinning aid deviates from the above range, the drawing of the liquid yarn at the time of spinning becomes insufficient, the fiber breaks, the production of unfibrinated products called shots increases, the fiber diameter becomes too thick, etc. There is a fear. A particularly preferable amount of the spinning aid is 4 to 9 parts by mass with respect to a total of 100 parts by mass of the alumina component and the silica component in the spinning dope.
紡糸原液の粘度は、500〜20000mPa・s、特に1000〜5000mPa・sであることが好ましい。粘度がこれよりも著しく小さいと繊維化(紡糸)が困難となる恐れがあり、また著しく大きいと、繊維径が大きくなりすぎ、脆い繊維となりやすくなる。紡糸原液の繊維化(紡糸)は、例えば遠心法、押し出し法、吹き出し法等の各種の紡糸法で行うことができる。 The viscosity of the spinning dope is preferably 500 to 20000 mPa · s, more preferably 1000 to 5000 mPa · s. If the viscosity is significantly smaller than this, fiberization (spinning) may be difficult. If the viscosity is extremely large, the fiber diameter becomes too large and brittle fibers tend to be formed. The spinning solution can be made into fibers (spinning) by various spinning methods such as a centrifugal method, an extrusion method, and a blowing method.
本発明で重要なことは、スピネル型結晶で変質させるための紡糸後の焼成条件であり、毎分2〜50℃の速度で700〜900℃まで昇温し、この温度で保持することである。この温度範囲の保持時間は15〜90分とすることが好ましい。保持温度が700℃未満では、スピネル型結晶の生成が不十分となり、1150℃をこえると、一旦生成したスピネル型結晶が相転移し、ムライト、α−アルミナ等の高温安定相に移行するので、結晶粒径が増大し、比表面積が小さくなり、しかも脆い繊維となる。 What is important in the present invention is post-spinning firing conditions for alteration with spinel crystals, and the temperature is raised to 700 to 900 ° C. at a rate of 2 to 50 ° C. per minute and maintained at this temperature. The The retention time of the temperature range of this is preferably set to 15 to 90 minutes. If the holding temperature is less than 700 ° C., the generation of spinel crystals is insufficient, and if it exceeds 1150 ° C., the spinel crystals once generated undergo a phase transition and shift to a high temperature stable phase such as mullite and α-alumina. The crystal grain size increases, the specific surface area decreases, and the fiber becomes brittle.
一般に、紡糸した繊維から水分、塩素分、有機分が脱離すると繊維の強度は低下し、形状は崩れやすい状態となるが、本発明において紡糸後の昇温速度が2℃/分未満では、形状が崩れやすい状態での滞留時間が長すぎるため、粉化した繊維となりやすくなり、しかも生産性が低下する。一方、昇温速度が50℃/分をこえると繊維内部の温度が十分あがらないうちに高温域に達してしまい、この高温域で急激に水分、塩素分、有機分の脱離が起こるので繊維に大きな空隙ができやすくなり、強度の低い繊維となる恐れがあること、更には塩化水素ガスの脱離、紡糸助剤の燃焼分解不良によって、最終製品に塩素分や有機分が残存する恐れもある。 In general, when moisture, chlorine, and organic components are desorbed from the spun fiber, the strength of the fiber decreases and the shape tends to collapse. However, in the present invention, if the heating rate after spinning is less than 2 ° C./min, Since the residence time in a state where the shape tends to collapse is too long, it becomes easy to become a pulverized fiber, and the productivity is lowered. On the other hand, if the rate of temperature rise exceeds 50 ° C./min, the fiber will reach a high temperature range before the temperature rises sufficiently, and moisture, chlorine, and organic components will be desorbed rapidly at this high temperature range. Large voids can easily be formed, resulting in low-strength fibers. In addition, chlorine and organic components may remain in the final product due to desorption of hydrogen chloride gas and poor combustion decomposition of the spinning aid. is there.
本発明で製造されたアルミナ質繊維は、そのまま繊維状触媒担体又は繊維状吸着材として使用することができるし、更には繊維状吸着材を成形加工した吸着フィルターとして使用することができる。成形加工は、例えばアルミナ質繊維を水に分散させ、成形用の有機バインダー、高温での保形用の無機バインダー及び凝集剤等の少なくとも一方を添加し、抄造成形法等によってフェルト状の成形体とすることによって行うことができる。繊維状触媒担体は、例えばメタンの低温燃焼用触媒の担体等として用いることができ、また繊維状吸着材及び吸着フィルターは、例えばダイオキシン類を含む排出ガスの処理用として、各種焼却炉の排ガス処理設備や除外設備用のフィルター等として用いることができる。 The alumina fiber produced in the present invention can be used as it is as a fibrous catalyst carrier or a fibrous adsorbent, and further can be used as an adsorption filter obtained by molding the fibrous adsorbent. The molding process is performed by, for example, dispersing an alumina fiber in water, adding at least one of an organic binder for molding, an inorganic binder for shape retention at high temperature, a flocculant, and the like, and forming a felt-like molded body by a papermaking molding method or the like It can be done by. The fibrous catalyst carrier can be used, for example, as a carrier for a catalyst for low-temperature combustion of methane, and the fibrous adsorbent and the adsorption filter are, for example, for exhaust gas treatment of various incinerators for treating exhaust gas containing dioxins. It can be used as a filter for equipment or excluded equipment.
実施例1
アルミナ固形分濃度で22質量%のオキシ塩化アルミニウム水溶液4550g(アルミナ分として1001g)と、シリカ濃度20質量%のコロイダルシリカ1250g(シリカ分として250g)と、部分ケン化ポリビニルアルコールの10質量%水溶液600g(紡糸原液中のアルミナ分とシリカ分の合計100質量部に対して部分ケン化ポリビニルアルコールが4.8質量部)とを混合した後、減圧脱水濃縮を行い、粘度3000mPa・sの紡糸原液を調製した。これを、円周面に直径0.5mmの孔を300個設けられた直径100mmの中空円盤を回転させながらこれらの孔から飛び出させて繊維化すると同時に、500℃の熱風により乾燥固化させて繊維前駆体を製造した。その後、繊維前駆体を、速度8℃/分で最高温度900℃まで昇温し、この温度で40分間保持する焼成を行ってアルミナ質繊維を製造した。
Example 1
4550 g of an aluminum oxychloride aqueous solution having a solid alumina concentration of 22% by mass (1001 g as an alumina component), 1250 g of colloidal silica having a silica concentration of 20% by mass (250 g as a silica component), and 600 g of a 10% by mass aqueous solution of partially saponified polyvinyl alcohol. (The partially saponified polyvinyl alcohol is 4.8 parts by mass with respect to a total of 100 parts by mass of the alumina and silica components in the spinning undiluted solution), and then subjected to vacuum dehydration concentration to obtain a spinning undiluted solution having a viscosity of 3000 mPa · s. Prepared. The fiber is made to fly out of these holes by spinning a hollow disk with a diameter of 100 mm having 300 holes with a diameter of 0.5 mm on the circumferential surface, and simultaneously dried and solidified with hot air at 500 ° C. A precursor was produced. Thereafter, the fiber precursor was heated to a maximum temperature of 900 ° C. at a rate of 8 ° C./min, and calcination was carried out at this temperature for 40 minutes to produce alumina fibers.
得られたアルミナ質繊維は、アルミナ成分が80質量%、シリカ成分が20質量%であり、平均繊維径が3.5μm、BET法比表面積が170m2/gであった。このアルミナ質繊維を樹脂に埋め込み、これを削って繊維の表面部のみを露出させ、透過型電子顕微鏡(TEM)観察を行ったところ、結晶生成が認められた。また、粉末X線回折法にて結晶状態を測定したところ、スピネル型結晶の回折ピークのみが検出された。 The obtained alumina fiber had an alumina component of 80% by mass and a silica component of 20% by mass, an average fiber diameter of 3.5 μm, and a BET specific surface area of 170 m 2 / g. When this alumina fiber was embedded in a resin, it was shaved to expose only the surface portion of the fiber, and observation with a transmission electron microscope (TEM) revealed that crystal formation was observed. Further, when the crystal state was measured by the powder X-ray diffraction method, only the diffraction peak of the spinel crystal was detected.
つぎに、繊維状触媒担体、繊維状吸着材又はフィルターの用途として適合しているかどうかを評価するため、風速に対する耐久性試験として、30mm×30mm×30mmの繊維の積層体マット、及び抄造成形法によって製作した繊維質成形体を用意し、その一面に対して、5mm離れた位置から、ノズル(直径5mm)を用い、20m/秒の空気を5秒間噴射、5秒間停止する操作を3時間繰り返して行い、試験前後の繊維積層体の質量変化率を測定した。その結果、質量減量率は積層体マットで0.3%、繊維質成形体で0.4%であった。 Next, in order to evaluate whether it is suitable for use as a fibrous catalyst carrier, fibrous adsorbent or filter, as a durability test against wind speed, a laminated mat of fibers of 30 mm × 30 mm × 30 mm, and a paper molding method Prepare the fiber molded body manufactured by the above, and use a nozzle (diameter 5 mm) from a position 5 mm away from one side, spray 20 m / second of air for 5 seconds, and repeat the operation of stopping for 5 seconds for 3 hours. The mass change rate of the fiber laminate before and after the test was measured. As a result, the weight loss rate was 0.3% for the laminated mat and 0.4% for the fibrous molded body.
以上のことから、本実施例で製造されたアルミナ質繊維は、アルミナ成分が80質量%、シリカ成分が20質量%の化学組成を有していることから耐熱性・耐薬品性に優れ、またBET法比表面積が170m2/gで、その少なくとも表面がスピネル型結晶で変質されていることから十分な触媒担持能力ないしは環境汚染物質の吸着能力を有し、しかも繊維の強度が高いため風速に対する耐久性が高くなり、繊維状触媒担体、繊維状吸着材又はフィルターの用途として適合していることがわかった。 From the above, the alumina fiber produced in this example has a chemical composition having an alumina component of 80% by mass and a silica component of 20% by mass, and thus has excellent heat resistance and chemical resistance. The BET method specific surface area is 170 m 2 / g, and at least the surface is altered by spinel crystals, so that it has sufficient catalyst carrying capacity or adsorption ability of environmental pollutants, and the strength of the fiber is high, so It has been found that the durability is high and it is suitable for use as a fibrous catalyst support, a fibrous adsorbent or a filter.
実施例2
コロイダルシリカの使用量を3330g(シリカ分として666g)としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 2
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that the amount of colloidal silica used was 3330 g (666 g as the silica content).
比較例1
コロイダルシリカを配合しなかったこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Comparative Example 1
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that no colloidal silica was added.
実施例3
焼成の最高温度を700℃とし、この温度で15分間保持する焼成をしたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 3
Aluminous fibers were produced and evaluated in the same manner as in Example 1 except that the maximum firing temperature was 700 ° C. and firing was performed at this temperature for 15 minutes.
比較例2
焼成時の最高温度を1150℃とし、この温度で90分間保持する焼成をしたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Comparative Example 2
Aluminous fibers were produced and evaluated in the same manner as in Example 1 except that the maximum temperature during firing was 1150 ° C. and firing was performed at this temperature for 90 minutes.
実施例4
10質量%部分ケン化ポリビニルアルコール水溶液の使用量を375g(紡糸原液中のアルミナ分とシリカ分の合計100質量部に対して3質量部)としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 4
The same method as in Example 1 except that the amount of the 10% by mass partially saponified polyvinyl alcohol aqueous solution was 375 g (3 parts by mass with respect to 100 parts by mass in total of alumina and silica in the spinning dope). Alumina fibers were manufactured and evaluated.
実施例5
10質量%部分ケン化ポリビニルアルコール水溶液の使用量を2250g(紡糸原液中のアルミナ分とシリカ分の合計100質量部に対して18質量部)としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 5
The same method as in Example 1 except that the amount of 10% by mass partially saponified polyvinyl alcohol aqueous solution was 2250 g (18 parts by mass with respect to 100 parts by mass in total of alumina and silica in the spinning dope). Alumina fibers were manufactured and evaluated.
実施例6
部分ケン化ポリビニルアルコールの代わりに完全ケン化ポリビニルアルコールを用いたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 6
Aluminous fibers were produced and evaluated in the same manner as in Example 1 except that completely saponified polyvinyl alcohol was used instead of partially saponified polyvinyl alcohol.
実施例7
部分ケン化ポリビニルアルコールの代わりにポリエチレンオキサイドを用いたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 7
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that polyethylene oxide was used instead of partially saponified polyvinyl alcohol.
実施例8
部分ケン化ポリビニルアルコールの代わりにポリエチレングリコールを用いたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 8
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that polyethylene glycol was used instead of partially saponified polyvinyl alcohol.
実施例9
焼成時の昇温速度を毎分2℃としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 9
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that the temperature rising rate during firing was 2 ° C. per minute.
実施例10
焼成時の昇温速度を毎分50℃としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Example 10
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that the temperature rising rate during firing was 50 ° C. per minute.
比較例3
配合するコロイダルシリカの質量を5000g(シリカ分として1000g)としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Comparative Example 3
Aluminous fibers were produced and evaluated in the same manner as in Example 1 except that the mass of the colloidal silica to be blended was 5000 g (1000 g as the silica content).
比較例4
焼成時の最高温度を1250℃としたこと以外は、実施例1と同様の方法でアルミナ質繊維を製造し、評価した。
Comparative Example 4
Alumina fibers were produced and evaluated in the same manner as in Example 1 except that the maximum temperature during firing was 1250 ° C.
以上の結果を表1に示す。表1から、比較例3は、実施例に比べて比表面積が小さく、触媒担体、吸着材、フィルターとしては適切ではなかった。これは、紡糸原液のシリカ成分を多くしすぎるとガラスが繊維表面を覆ってしまったためと推定される。また、比較例4の繊維は、比表面積が小さく、風速に対する耐久性も劣り、しかもスピネル型結晶のX線回折ピーク以外にムライトのピークが検出された。これは、焼成の最高温度を高くしすぎると、繊維の表面等にムライト、α−アルミナ等の粒径の大きい結晶が生成したためと推定される。比較例1,2は、実施例よりも風速に対する耐久性が劣った。 The results are shown in Table 1. From Table 1, Comparative Example 3 had a specific surface area smaller than that of Examples, and was not suitable as a catalyst carrier, adsorbent, or filter. This is presumably because the glass covered the fiber surface when the silica component of the spinning dope was increased too much. In addition, the fiber of Comparative Example 4 had a small specific surface area, poor durability against wind speed, and a mullite peak was detected in addition to the X-ray diffraction peak of the spinel crystal. This is presumably because, when the maximum firing temperature was too high, crystals having a large particle size such as mullite and α-alumina were formed on the fiber surface and the like. Comparative Examples 1 and 2 were inferior in durability to wind speed than the Examples.
本発明で製造されたアルミナ質繊維は、比表面積が大きいことから金属等の他物質の濡れ性が高いと考えられ、他物質との複合化に有利である。また、高強度で十分な耐熱性を有した繊維であるため、繊維状触媒担体、繊維状吸着材及びフィルターは勿論のこと、これら以外に、繊維強化金属、繊維強化プラスチック等の各種複合材料の強化用繊維として使用できる。また、本発明の繊維状触媒担体は、例えばメタンの低温燃焼用触媒の担体等として用いることができ、また繊維状吸着材及び吸着フィルターは、例えばダイオキシン類を含む排出ガスの処理用として、各種焼却炉の排ガス処理設備や除外設備用のフィルター等として用いることができる。 Alumina fiber produced by the present invention is considered to have high wettability other materials such as metal from the large specific surface area, it is advantageous to composite with other materials. In addition, since the fiber has high strength and sufficient heat resistance, not only the fibrous catalyst carrier, fibrous adsorbent and filter, but also various composite materials such as fiber reinforced metal and fiber reinforced plastic can be used. Can be used as a reinforcing fiber. The fibrous catalyst carrier of the present invention can be used, for example, as a carrier for a low-temperature combustion catalyst for methane, and the fibrous adsorbent and the adsorption filter can be used for various kinds of exhaust gas treatment including, for example, dioxins. It can be used as a filter for an exhaust gas treatment facility of an incinerator or an exclusion facility.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004167924A JP4260067B2 (en) | 2004-06-07 | 2004-06-07 | Method for producing alumina fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004167924A JP4260067B2 (en) | 2004-06-07 | 2004-06-07 | Method for producing alumina fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005344257A JP2005344257A (en) | 2005-12-15 |
JP4260067B2 true JP4260067B2 (en) | 2009-04-30 |
Family
ID=35496895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004167924A Expired - Lifetime JP4260067B2 (en) | 2004-06-07 | 2004-06-07 | Method for producing alumina fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4260067B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007244950A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Particulate filter type exhaust gas cleaning catalyst and particulate filter |
EP2811055B1 (en) * | 2012-01-31 | 2018-06-13 | Nichias Corporation | Inorganic fiber and process for manufacturing same |
WO2014069589A1 (en) * | 2012-10-31 | 2014-05-08 | 電気化学工業株式会社 | Alumina-based fibrous mass, process for producing same, and use |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6335827A (en) * | 1986-07-24 | 1988-02-16 | Taki Chem Co Ltd | Production of spinning solution for alumina fiber |
JPS6385115A (en) * | 1986-09-29 | 1988-04-15 | Taki Chem Co Ltd | Preparation of stock solution for spinning alumina fiber |
JP4174474B2 (en) * | 2002-06-28 | 2008-10-29 | 電気化学工業株式会社 | Inorganic short fiber aggregate for holding material, method for producing the same, and holding material |
-
2004
- 2004-06-07 JP JP2004167924A patent/JP4260067B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005344257A (en) | 2005-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101752091B1 (en) | Blanket comprising silica aerogel and method for preparing the same | |
US8647557B2 (en) | Method for producing sheets including fibrous aerogel | |
EP0889862B1 (en) | Pyrolysis of ceramic precursors to nanoporous ceramics | |
US20060104882A1 (en) | Silicon carbide fibers essentially devoid of whiskers and products made therefrom | |
US7083771B2 (en) | Process for producing silicon carbide fibers essentially devoid of whiskers | |
CN112813584A (en) | Aerogel fiber filling material and preparation method and application thereof | |
US4937212A (en) | Zirconium oxide fibers and process for their preparation | |
JP6228461B2 (en) | Inorganic fiber and method for producing the same | |
Boudaira et al. | Preparation and characterization of microfi ltration membranes and their supports using kaolin (DD2) and CaCO3 | |
CN100572622C (en) | Micro-pore silicon carbide fiber and preparation method thereof | |
Duan et al. | Green preparation of thermal-insulative, flame retardant, and hydrophobic silica aerogel reinforced poly (vinyl alcohol) composites | |
Fu et al. | Flexible-in-rigid polycrystalline titanium nanofibers: a toughening strategy from a macro-scale to a molecular-scale | |
JP4260067B2 (en) | Method for producing alumina fiber | |
KR20170028273A (en) | Method for preparing porous particle containing fiber | |
US20100009187A1 (en) | Polycrystalline Corundum Fibers And Method For The Production Thereof | |
Wang et al. | Sol-coated preparation and characterization of macroporous α-Al 2 O 3 membrane support | |
KR20100090377A (en) | High-temperature oxidative resistant porous nano silicon carbide and manufacturing method thereof | |
JP2019530631A (en) | Inorganic fiber composition | |
TWI535658B (en) | Nonwoven / airgel composite fireproof / heat insulating material and preparation method thereof | |
JP2001158673A (en) | Method for producing structure of porous silicon carbide fiber | |
CN106518144A (en) | Foamed ceramic and preparation method thereof | |
Naga et al. | Porous fibrous mullite bodies | |
CN106518145A (en) | Foamed ceramic and preparation method thereof | |
CN114316341A (en) | Fiber foam material for oil adsorption and preparation method thereof | |
Hussein | Synthesis and Characterization of Porous Ceramic Hollow Fibers with Nano-Molecular Size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4260067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |