Nothing Special   »   [go: up one dir, main page]

JP4258089B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP4258089B2
JP4258089B2 JP2000050141A JP2000050141A JP4258089B2 JP 4258089 B2 JP4258089 B2 JP 4258089B2 JP 2000050141 A JP2000050141 A JP 2000050141A JP 2000050141 A JP2000050141 A JP 2000050141A JP 4258089 B2 JP4258089 B2 JP 4258089B2
Authority
JP
Japan
Prior art keywords
cylinder
exhaust
valve
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000050141A
Other languages
English (en)
Other versions
JP2001234762A (ja
Inventor
功 松本
正司 勝間田
正明 田中
啓二 四重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000050141A priority Critical patent/JP4258089B2/ja
Publication of JP2001234762A publication Critical patent/JP2001234762A/ja
Application granted granted Critical
Publication of JP4258089B2 publication Critical patent/JP4258089B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などに搭載される内燃機関に関し、特に電磁力を利用して排気弁を開閉駆動する電磁駆動式動弁機構を備えた内燃機関に関する。
【0002】
【従来の技術】
近年、自動車などに搭載される内燃機関では、吸排気弁の開閉駆動に起因した機械損失の防止、吸気のポンピング損失の防止、正味熱効率の向上等を目的として、吸気弁及び排気弁の開閉タイミングを任意に変更可能な動弁機構の開発が進められている。
【0003】
上記した動弁機構としては、例えば、磁性体からなり吸気排気弁に連動して進退動作するアーマチャと、励磁電流が印加されたときに前記アーマチャを閉弁方向へ吸引する閉弁用電磁石と、励磁電流が印加されたときに前記アーマチャを開弁方向へ吸引する開弁用電磁石と、前記アーマチャを閉弁方向へ付勢する閉弁側戻しばねと、前記アーマチャを開弁方向へ付勢する開弁側戻しばねとを備えた電磁駆動式の動弁機構が知られている。
【0004】
このような電磁駆動式動弁機構によれば、従来の動弁機構のように機関出力軸(クランクシャフト)の回転力を利用して吸排気弁を開閉駆動する必要がないため、機関出力軸による吸排気弁の駆動に起因した機関出力の損失が防止される。
【0005】
更に、上記したような電磁駆動式動弁機構によれば、従来の動弁機構のように機関出力軸の回転と連動して吸排気弁を開閉駆動する必要がなく、開弁用電磁石と閉弁用電磁石に対する励磁電流の印加タイミングを変更することによって吸排気弁を任意の時期に開閉させることが可能となるため、吸気絞り弁(スロットル弁)を用いることなく各気筒の吸入空気量を制御することが可能となる。この結果、スロットル弁に起因した吸気のポンピングロスが抑制される。
【0006】
【発明が解決しようとする課題】
4サイクルの内燃機関では、混合気の燃焼によって発生する燃焼圧力を機関出力軸(クランクシャフト)の回転トルクに有効に反映させるべく各気筒の排気行程下死点で排気弁を開弁させるとともに、排気の慣性力を利用して排気効率を向上させるべく各気筒の排気行程上死点直後で排気弁を閉弁させることが好ましい。
【0007】
このようなバルブタイミングが直列4気筒や直列6気筒の4サイクル内燃機関のように複数の気筒のうちの一の気筒が排気行程上死点もしくは排気行程上死点の直前にあるときに他の気筒が排気行程下死点となる内燃機関に適用された場合には、一の気筒の排気弁が閉弁する直前に他の気筒の排気弁が開弁されることになる。
【0008】
ここで、内燃機関の各気筒において排気弁が開弁した直後は、気筒内と排気通路との圧力差が大きいため、気筒内の既燃ガスが音速で一斉に排気通路へ噴出する、所謂ブローダウン現象が発生し、そのブローダウン現象による排気の圧力波(正圧波)が排気通路を経て他の気筒へ伝播されることになる。
【0009】
このため、前述したバルブタイミングが直列4気筒又は直列6気筒の4サイクル内燃機関に適用されると、一の気筒が排気行程上死点の近傍にあるときに他の気筒のブローダウン現象による正圧波が前記一の気筒へ到達する場合がある。
【0010】
ところで、一の気筒が排気行程上死点近傍にあるとき、言い換えれば一の気筒が排気行程の終了間際にある時は気筒内と排気通路との圧力差が小さくなるため、そのような状況下で他の気筒のブローダウン現象による正圧波が前記一の気筒に伝播されると、排気通路の圧力が気筒内の圧力より高くなり、排気通路の排気が気筒内へ逆流してしまう虞がある。
【0011】
排気行程終了間際の気筒に排気が逆流すると、排気行程が終了した後も気筒内に排気が残留することとなり、続く吸気行程における吸気の充填効率が低下し、その結果、内燃機関の出力が低下する虞がある。
【0012】
本発明は、上記したような事情に鑑みてなされたものであり、電磁力を利用して排気弁を開閉駆動する電磁駆動式動弁機構を備えた内燃機関において、ブローダウン現象に起因した排気効率の低下を抑制する技術を提供することにより、吸気の充填効率を向上させることを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記したような課題を解決するために以下のような手段を採用した。すなわち、本発明に係る内燃機関は、複数の気筒と、電磁力を利用して各気筒の排気弁を開閉駆動する電磁駆動式動弁機構とを備え、前記複数の気筒の中の一の気筒が排気上死点となるとき又は排気行程上死点の直前となるときに他の気筒が排気行程下死点となる内燃機関において、
前記他の気筒の排気弁が開弁した際に発生する圧力波が前記一の気筒へ伝播する時期と前記一の気筒が排気上死点近傍となる時期とを異ならせるべく前記電磁駆動式動弁機構を制御するバルブタイミング制御手段を備えることを特徴としている。
【0014】
このように構成された内燃機関では、バルブタイミング制御手段は、一の気筒が排気行程上死点近傍となる時期と他の気筒の排気弁が開弁した際に発生する圧力波(ブローダウン現象による正圧波)が一の気筒に伝播する時期とを異ならせるべく電磁駆動式動弁機構を制御することになる。
【0015】
この場合、他の気筒の排気弁が開弁した際に発生するブローダウン現象による正圧波は、一の気筒が排気上死点近傍にあるときに該一の気筒へ伝播されることがなくなるため、排気通路内の圧力が前記一の気筒内の圧力より高くなることがなく、排気通路内の排気が前記一の気筒内へ逆流することがない。
【0016】
この結果、前記一の気筒の排気行程が終了する間際では、排気の慣性力によって前記一の気筒内の既燃ガスが排気通路へ排出されるため、該一の気筒内に排気が残留することがなく、前記一の気筒の吸気行程において吸気の充填効率が向上することになる。
【0017】
また、本発明に係る内燃機関において、バルブタイミング制御手段は、例えば、他の気筒の排気弁が開弁する時期を所定量遅角させるべく電磁駆動式動弁機構を制御するようにしてもよい。
【0018】
この場合、他の気筒の排気弁開弁時期が遅角されることによってブローダウン現象による正圧波の発生時期が遅くなるため、その正圧波が一の気筒へ到達する時期は、一の気筒の排気行程上死点より後であって、一の気筒の排気弁が閉弁した後となる。
【0019】
この結果、一の気筒の排気弁が閉弁する間際に、他の気筒で発生したブローダウン現象による正圧波が一の気筒に伝播されることがない。
尚、前記した所定量は、他の気筒で発生したブローダウン現象による正圧波の伝播速度と内燃機関の機関回転速度との相対差に基づいて決定されるようにしてもよい。
【0020】
これは、内燃機関における排気弁の開閉時期は機関出力軸たるクランクシャフトの回転角度位置で特定されるため、一の気筒の排気弁閉弁時期と他の気筒の排気弁閉弁時期との時間的な間隔は機関回転速度に応じて変化することになるが、ブローダウン現象による正圧波の伝播速度は音速で略一定となるためである。
【0021】
また、本発明に係る内燃機関、すなわち、複数の気筒の中の一の気筒が排気上死点となるとき又は排気行程上死点の直前となるときに他の気筒が排気行程下死点となる内燃機関としては、直列4気筒の4サイクル内燃機関や、直列6気筒の4サイクル内燃機関等を例示することができる。
【0022】
【発明の実施の形態】
以下、本発明に係る内燃機関の具体的な実施態様について図面に基づいて説明する。
【0023】
図1及び図2は、本実施の形態に係る内燃機関とその吸排気系の概略構成を示す図である。図1及び図2に示す内燃機関1は、4つの気筒21を備えた直列4気筒の4サイクルガソリンエンジンである。
【0024】
内燃機関1は、4つの気筒21及び冷却水路1cが形成されたシリンダブロック1bと、このシリンダブロック1bの上部に固定されたシリンダヘッド1aとを備えている。
【0025】
前記シリンダブロック1bには、機関出力軸たるクランクシャフト23が回転自在に支持され、このクランクシャフト23は、各気筒21内に摺動自在に装填されたピストン22と連結されている。
【0026】
各気筒21のピストン22上方には、ピストン22の頂面とシリンダヘッド1aの壁面とに囲まれた燃焼室24が形成されている。前記シリンダヘッド1aには、燃焼室24に臨むよう点火栓25が取り付けられ、この点火栓25には、該点火栓25に駆動電流を印加するためのイグナイタ25aが接続されている。
【0027】
前記シリンダヘッド1aには、2つの吸気ポート26の開口端と2つの排気ポート27の開口端とが燃焼室24に臨むよう形成されるとともに、その噴孔が吸気ポート26に臨むよう燃料噴射弁32が取り付けられている。
【0028】
前記シリンダヘッド1aには、前記吸気ポート26の各開口端を開閉する吸気弁28が進退自在に設けられている。各吸気弁28には、励磁電流が印加されたときに発生する電磁力を利用して前記吸気弁28を進退駆動する電磁駆動機構30(以下、吸気側電磁駆動機構30と記す)が取り付けられている。
【0029】
前記シリンダヘッド1aには、前記排気ポート27の各開口端を開閉する排気弁29が進退自在に設けられている。各排気弁29には、励磁電流が印加されたときに発生する電磁力を利用して前記排気弁29を進退駆動する電磁駆動機構31(以下、排気側電磁駆動機構31と記す)が取り付けられている。
【0030】
ここで、吸気側電磁駆動機構30と排気側電磁駆動機構31の具体的な構成について述べる。尚、吸気側電磁駆動機構30と排気側電磁駆動機構31とは同様の構成であるため、排気側電磁駆動機構31のみを例に挙げて説明する。
【0031】
図3は、排気側電磁駆動機構31の構成を示す断面図である。図3において内燃機関1のシリンダヘッド1aは、シリンダブロック1bの上面に固定されるロアヘッド10と、このロアヘッド10の上部に設けたアッパヘッド11とを備えている。
【0032】
前記ロアヘッド10には、各気筒21に対応した排気ポート27が形成され、各排気ポート27の燃焼室24側の開口端には、排気弁29の弁体29aが着座するための弁座12が設けられている。
【0033】
ロアヘッド10には、各排気ポート27の内壁面からこのロアヘッド10の上面にかけて断面円形の貫通孔が形成され、この貫通孔には、この貫通孔に挿通される排気弁29の弁軸29bを進退自在に保持する筒状のバルブガイド13が挿入されている。
【0034】
アッパヘッド11には、第1コア301及び第2コア302が嵌入される断面円形のコア取付孔14が設けられ、このコア取付孔14は前記バルブガイド13と軸心が同一となる位置にある。コア取付孔14は下部が径大に形成され、その上部の径小部14aと下部の径大部14bを備えている。
【0035】
前記径小部14aには、軟磁性体からなる環状の第1コア301と第2コア302とが所定の間隙303を介して軸方向に直列に嵌挿されている。これらの第1コア301の上端と第2コア302の下端には、それぞれフランジ301aとフランジ302aが形成されており、第1コア301は上方から、また第2コア302は下方からそれぞれコア取付孔14に嵌挿され、フランジ301aとフランジ302aがコア取付孔14の縁部に当接することにより第1コア301と第2コア302の位置決めがされて、前記間隙303が所定の距離に保持されるようになっている。
【0036】
第1コア301の上方には、筒状のアッパキャップ305が設けられている。このアッパキャップ305は、その下端に形成されたフランジ部305aにボルト304を貫通させてアッパヘッド11上面に固定されている。この場合、フランジ部305aを含むアッパキャップ305の下端が第1コア301の上面周縁部に当接した状態で固定されることになり、その結果、第1コア301がアッパヘッド11に固定されることになる。
【0037】
一方、第2コア302の下部には、コア取付孔14の径大部14bと略同径の外径を有する環状体からなるロアキャップ307が設けられている。このロアキャップ307にはボルト307が貫通し、そのボルト307により前記径小部14aと径大部14bの段部における下向きの段差面に固定されている。この場合、ロアキャップ307が第1コア302の下面周縁部に当接した状態で固定されることになり、その結果、第2コア302がアッパヘッド11に固定されることになる。
【0038】
前記第1コア301の前記間隙303側の面に形成された溝部には、第1の電磁コイル308が把持されており、前記第2コア302の間隙303側の面に形成された溝部には第2の電磁コイル309が把持されている。その際、第1の電磁コイル308と第2の電磁コイル309とは、前記間隙303を介して向き合う位置に配置されるものとする。
【0039】
前記間隙303には、該間隙303の内径より径小な外径を有する環状の軟磁性体からなるアーマチャ311が配置されている。このアーマチャ311の中空部には、該アーマチャ311の軸心に沿って上下方向に延出した円柱状のアーマチャシャフト310が固定されている。このアーマチャシャフト311は、その上端が前記第1コア301の中空部を通ってその上方のアッパキャップ305内まで至るとともに、その下端が第2コア302の中空部を通ってその下方の径大部14b内に至るよう形成され、前記第1コア301及び前記第2コア302によって軸方向へ進退自在に保持されている。
【0040】
前記アッパキャップ305内に延出したアーマチャシャフト310の上端部には、円板状のアッパリテーナ312が接合されるとともに、前記アッパキャップ305の上部開口部にはアジャストボルト313が螺着され、これらアッパリテーナ312とアジャストボルト313との間には、アッパスプリング314が介在している。尚、前記アジャストボルト313と前記アッパスプリング314との当接面には、前記アッパキャップ305の内径と略同径の外径を有するスプリングシート315が介装されている。
【0041】
一方、前記大径部12b内に延出したアーマチャシャフト310の下端部には、排気弁29の弁軸29bの上端部が当接している。前記弁軸29bの上端部の外周には、円板状のロアリテーナ29cが接合されており、そのロアリテーナ29cの下面とロアヘッド10の上面との間には、ロアスプリング316が介在している。
【0042】
このように構成された排気側電磁駆動機構31では、第1の電磁コイル308及び第2の電磁コイル309に励磁電流が印加されていないときは、アッパスプリング314からアーマチャシャフト310に対して下方向(すなわち、排気弁29を開弁させる方向)への付勢力が作用するとともに、ロアスプリング316から排気弁29に対して上方向(すなわち、排気弁29を閉弁させる方向)への付勢力が作用し、その結果、アーマチャシャフト310及び排気弁29が互いに当接して所定の位置に弾性支持された状態、いわゆる中立状態に保持されることになる。
【0043】
尚、アッパスプリング314とロアスプリング316の付勢力は、前記アーマチャ311の中立位置が前記間隙303において前記第1コア301と前記第2コア302との中間の位置に一致するよう設定されており、構成部品の初期公差や経年変化等によってアーマチャ311の中立位置が前記した中間位置からずれた場合には、アーマチャ311の中立位置が前記した中間位置と一致するようアジャストボルト313によって調整することが可能になっている。
【0044】
また、前記アーマチャシャフト310及び前記弁軸29bの軸方向の長さは、前記アーマチャ311が前記間隙303の中間位置に位置するときに、前記弁体29aが全開側変位端と全閉側変位端との中間の位置(以下、中開位置と称する)となるように設定されている。
【0045】
前記した排気側電磁駆動機構31では、第1の電磁コイル308に励磁電流が印加されると、第1コア301と第1の電磁コイル308とアーマチャ311との間に、アーマチャ311を第1コア301側へ変位させる方向の電磁力が発生し、第2の電磁コイル309に励磁電流が印加されると、第2コア302と第2の電磁コイル309とアーマチャ311との間にアーマチャ311を前記第2コア302側へ変位させる方向の電磁力が発生する。
【0046】
従って、上記した排気側電磁駆動機構31では、第1の電磁コイル308と第2の電磁コイル309とに交互に励磁電流が印加されることにより、アーマチャ311が進退動作し、以て弁体29aが開閉駆動されることになる。その際、第1の電磁コイル308及び第2の電磁コイル309に対する励磁電流の印加タイミングと励磁電流の大きさを変更することにより、排気弁29の開閉タイミングを制御することが可能となる。
【0047】
ここで、図1及び図2に戻り、内燃機関1のシリンダヘッド1aには、4つの枝管からなる吸気枝管33が接続され、各気筒21の吸気ポート26が前記吸気枝管33の各枝管と連通している。
【0048】
前記吸気枝管33は、吸気の脈動を抑制するためのサージタンク34に接続されている。前記サージタンク34には、吸気管35が接続されている。前記吸気管35は、吸気中の塵や埃等を取り除くためのエアクリーナボックス36と接続されている。
【0049】
前記吸気管35には、該吸気管35内を流れる空気の質量(吸入空気質量)に対応した電気信号を出力するエアフローメータ44が取り付けられている。前記吸気管35において前記エアフローメータ44より下流の部位には、該吸気管35内を流れる吸気の流量を調整するスロットル弁39が設けられている。
【0050】
前記スロットル弁39には、ステッパモータ等からなり印加電力の大きさに応じて前記スロットル弁39を開閉駆動するスロットル用アクチュエータ40と、前記スロットル弁39の開度に対応した電気信号を出力するスロットルポジションセンサ41と、アクセルペダル42に機械的に接続され該アクセルペダル42の操作量に対応した電気信号を出力するアクセルポジションセンサ43とが取り付けられている。
【0051】
一方、前記内燃機関1には、4本の枝管が内燃機関1の直下流において1本の集合管に合流するよう形成された排気枝管45が接続され、各気筒21の排気ポート27が前記排気枝管45の各枝管と連通している。
【0052】
前記した排気枝管45の集合管は、排気浄化触媒46と接続されている。排気浄化触媒46は、排気管47が接続され、排気管47は、下流にて図示しないマフラーと接続されている。
【0053】
前記排気枝管45の集合管には、該排気枝管45内を流れる排気の空燃比、言い換えれば、前記排気浄化触媒46に流入する排気の空燃比に対応した電気信号を出力する空燃比センサ48が取り付けられている。
【0054】
前記排気浄化触媒46は、例えば、該排気浄化触媒46に流入する排気の空燃比が理論空燃比近傍の所定の空燃比であるときに排気中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する三元触媒、該排気浄化触媒46に流入する排気の空燃比がリーン空燃比であるときは排気中に含まれる窒素酸化物(NOx)を吸蔵し、流入排気の空燃比が理論空燃比もしくはリッチ空燃比であるときは吸蔵していた窒素酸化物(NOx)を放出しつつ還元・浄化する吸蔵還元型NOx触媒、該排気浄化触媒46に流入する排気の空燃比が酸素過剰状態にあり且つ所定の還元剤が存在するときに排気中の窒素酸化物(NOx)を還元・浄化する選択還元型NOx触媒、もしくは上記した各種の触媒を適宜組み合わせてなる触媒である。
【0055】
また、内燃機関1は、クランクシャフト23の端部に取り付けられたタイミングロータ51aとタイミングロータ51a近傍のシリンダブロック1bに取り付けられた電磁ピックアップ51bとからなるクランクポジションセンサ51と、内燃機関1の内部に形成された冷却水路1cを流れる冷却水の温度を検出すべくシリンダブロック1bに取り付けられた水温センサ52とを備えている。
【0056】
このように構成された内燃機関1には、該内燃機関1の運転状態を制御するための電子制御ユニット(Electronic Control Unit:ECU)20が併設されている。
【0057】
前記ECU20には、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、クランクポジションセンサ51、水温センサ52等の各種センサが電気配線を介して接続され、各センサの出力信号がECU20に入力されるようになっている。
【0058】
前記ECU20には、イグナイタ25a、吸気側電磁駆動機構30、排気側電磁駆動機構31、燃料噴射弁32、スロットル用アクチュエータ40等が電気配線を介して接続され、ECU20が各種センサの出力信号値をパラメータとしてイグナイタ25a、吸気側電磁駆動機構30、排気側電磁駆動機構31、燃料噴射弁32、スロットル用アクチュエータ40を制御することが可能になっている。
【0059】
ここで、ECU20は、図4に示すように、双方向性バス400によって相互に接続されたCPU401とROM402とRAM403とバックアップRAM404と入力ポート405と出力ポート406とを備えるとともに、前記入力ポート405に接続されたA/Dコンバータ(A/D)407を備えている。
【0060】
前記A/D407は、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、水温センサ52等のようにアナログ信号形式の信号を出力するセンサと電気配線を介して接続されている。前記A/D407は、前記した各センサの出力信号をアナログ信号形式からデジタル信号形式に変換した後に前記入力ポート405へ送信する。
【0061】
前記入力ポート405は、前述したスロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、空燃比センサ48、水温センサ52等のようにアナログ信号形式の信号を出力するセンサと前記A/D407を介して接続されるとともに、クランクポジションセンサ51のようにデジタル信号形式の信号を出力するセンサと直接接続されている。
【0062】
前記入力ポート405は、各種センサの出力信号を直接又はA/D407を介して入力し、それらの出力信号を双方向性バス400を介してCPU401やRAM403へ送信する。
【0063】
前記出力ポート406は、イグナイタ25a、吸気側電磁駆動機構30、排気側電磁駆動機構31、燃料噴射弁32、スロットル用アクチュエータ40等と電気配線を介して接続されている。
【0064】
前記出力ポート406は、CPU401から出力された制御信号を双方向性バス400を介して入力し、その制御信号をイグナイタ25a、吸気側電磁駆動機構30、排気側電磁駆動機構31、燃料噴射弁32、又はスロットル用アクチュエータ40へ送信する。
【0065】
前記ROM402は、燃料噴射量を決定するための燃料噴射量制御ルーチン、燃料噴射時期を決定するための燃料噴射時期制御ルーチン、吸気弁28を所望の目標開弁タイミング及び目標閉弁タイミングに従って開閉させるための吸気弁開閉制御ルーチン、排気弁29を所望の目標開弁タイミング及び目標閉弁タイミングに従って開閉させるための排気弁開閉制御ルーチン、各気筒21の点火栓25の点火時期を決定するための点火時期制御ルーチン、スロットル弁39の開度を決定するためのスロットル開度制御ルーチン等のアプリケーションプログラムを記憶している。
【0066】
前記ROM402は、前記したアプリケーションプログラムに加え、各種の制御マップを記憶している。前記した制御マップは、例えば、内燃機関1の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関1の運転状態と吸気弁28の目標開閉タイミングとの関係を示す吸気弁開閉タイミング制御マップ、内燃機関1の運転状態と排気弁29の目標開閉タイミングとの関係を示す排気弁開閉タイミング制御マップ、内燃機関1の運転状態と吸気側電磁駆動機構30及び排気側電磁駆動機構31に印加すべき励磁電流量との関係を示す励磁電流量制御マップ、内燃機関1の運転状態と各点火栓25の点火時期との関係を示す点火時期制御マップ、内燃機関1の運転状態とスロットル弁39の開度との関係を示すスロットル開度制御マップ等である。
【0067】
前記RAM403は、各センサの出力信号やCPU401の演算結果等を記憶する。前記演算結果は、例えば、クランクポジションセンサ51の出力信号に基づいて算出される機関回転数等である。前記RAM403に記憶される各種のデータは、クランクポジションセンサ51が信号を出力する度に最新のデータに書き換えられる。
【0068】
前記バックアップRAM45は、内燃機関1の運転停止後もデータを保持する不揮発性のメモリであり、各種制御に係る学習値等を記憶する。
前記CPU401は、前記ROM402に記憶されたアプリケーションプログラムに従って動作し、燃料噴射制御、吸気弁開閉制御、排気弁開閉制御、点火制御を実行すると共に、本発明の要旨となるバルブタイミング制御を実行する。
【0069】
以下、本実施の形態に係るバルブタイミング制御について述べる。
4サイクルの内燃機関では、混合気の燃焼によって発生する燃焼圧力をクランクシャフトの回転トルクに有効に反映させるべく排気弁の開弁時期を排気行程下死点に設定し、且つ、排気の慣性力を利用して排気効率を向上させるべく排気弁の閉弁時期を排気行程上死点後に設定することが好ましい。尚、以下では、排気弁の開弁時期が排気行程下死点となり且つ排気弁の閉弁時期が排気行程上死点後となるバルブタイミングを基準排気バルブタイミングと称するものとする。
【0070】
ところで、内燃機関1は直列4気筒の4サイクル内燃機関であるため、気筒間の点火間隔が180°CAとなり、4つ気筒21のうちの一の気筒21の排気行程上死点と他の気筒21(点火順序が一の気筒21の次となる気筒21)の排気行程下死点とが同期することになる。
【0071】
例えば、内燃機関1の点火順序が1番気筒、3番気筒、4番気筒、2番気筒の順序となる場合は、図5に示すように、1番気筒が排気行程上死点となるときに3番気筒が排気行程下死点となり、3番気筒が排気行程上死点となるときに4番気筒が排気行程下死点となり、4番気筒が排気行程上死点となるときに2番気筒が排気行程下死点となり、2番気筒が排気行程上死点となるときに1番気筒が排気行程下死点となる。
【0072】
このため、内燃機関1において基準排気バルブタイミングが適用された場合は、一の気筒21の排気弁29が閉弁する前に他の気筒21の排気弁29が開弁することになる。
【0073】
他の気筒21の排気弁29が開弁した直後は、前記他の気筒21内の既燃ガスが音速で一斉に排気枝管45へ噴出するブローダウン現象が発生し、そのブローダウン現象による正圧波が排気枝管45を介して一の気筒21の排気ポート27へ伝播することになる。
【0074】
他の気筒21のブローダウン現象による正圧波が一の気筒21の排気ポート27へ伝播されると、図6に示すように、前記排気ポート27内の圧力が急激に高くなる。その際、一の気筒21の排気弁29が閉弁していないと、排気ポート27から気筒21内へ排気が逆流し、排気効率が悪化してしまうことになる。
【0075】
特に、本実施の形態で例示した排気枝管45のように、4つの枝管が内燃機関の直下流において1本の集合管に合流するよう形成された排気枝管を備えた内燃機関では、他の気筒から一の気筒へ至る排気通路の距離が短くなるため、他の気筒のブローダウン現象による正圧波が一の気筒の排気弁閉弁前に該一の気筒へ伝播する可能性が高くなる。
【0076】
一方、ブローダウン現象による正圧波の伝播速度が音速で略一定となるため、他の気筒21のブローダウン現象による正圧波が一の気筒21に到達するのに要する時間(以下、ブローダウン伝播時間:TBと称する)は略一定となる。
【0077】
これに対し、基準排気バルブタイミングにおける他の気筒21の排気弁開弁時期と一の気筒21の排気弁閉弁時期との時間的な間隔(以下、気筒間排気弁動作間隔:TVと称する)は、機関回転速度(機関回転数)に応じて変化することになる。例えば、内燃機関1の機関回転数が低くなるほど気筒間排気弁動作間隔:TVは長くなり、内燃機関1の機関回転数が高くなるほど気筒間排気弁動作間隔:TVは短くなる。
【0078】
そこで、本実施の形態では、内燃機関1に関して、気筒間排気弁動作間隔:TVとブローダウン伝播時間:TBとが等しくなる機関回転数(以下、基準機関回転数と称する)を予め実験的に求めておき、CPU401は、内燃機関1の機関回転数が前記基準機関回転数以下であるときには、各気筒21の排気弁開弁時期を基準排気バルブタイミングの排気弁開弁時期(排気行程下死点)より所定量遅角させるようにした。
【0079】
このように排気弁開弁時期が遅角された場合は、ブローダウン現象の発生時期は、基準排気バルブタイミングに従って排気弁29が開弁する場合に比して遅くなる。
【0080】
その際、CPU401が排気弁開弁時期の遅角量を最適化することにより、図7に示すように、内燃機関1の一の気筒21の排気弁29が閉弁する前に、他の気筒21のブローダウン現象による正圧波が前記一の気筒21に到達することがない。言い換えれば、前記他の気筒21のブローダウン現象による正圧波は、前記一の気筒21の排気弁29が閉弁した後に、該一の気筒21へ到達することになる。
【0081】
尚、排気弁開弁時期の遅角量は、所定の固定値であってもよく、あるいは、機関回転数に応じて変更される可変値であってもよいが、本実施の形態では、排気弁開弁時期の遅角量が可変値とされる例について述べる。
【0082】
排気弁開弁時期の遅角量が可変値とされる場合は、CPU401は、内燃機関1の機関回転数が基準機関回転数より低いことを条件に、機関回転数が低くなるほど遅角量を大きくし、機関回転数が高くなるほど遅角量を小さくする。
【0083】
具体的には、CPU401は、先ず、内燃機関1の機関回転数をパラメータとして気筒間排気弁動作間隔:TVを算出する。次いで、CPU401は、前記気筒間排気弁動作間隔:TVからブローダウン伝播時間:TBを減算して前記気筒間排気弁動作間隔:TVと前記ブローダウン伝播時間:TBとの時間差:TV−TBを求め、前記した時間差:TV−TBが大きくなるほど遅角量を大きくし、前記した時間差:TV−TBが小さくなるほど遅角量を小さくする。
【0084】
その際、時間差:TV−TBと遅角量との相関関係を実験的に求め、それらの関係を予め二次元マップ化してROM402の所定領域に記憶しておくようにしてもよい。但し、その場合には、CPU401は、気筒間排気弁動作間隔:TV及び時間差:TV−TBを算出した上で遅角量を算出することになり、CPU401にかかる負荷が大きくなるので、機関回転数と遅角量との相関関係を実験的に求め、それらの関係を予め二次元マップ化してROM402の所定領域に記憶させておくことにより、CPU401にかかる負荷を低減するようにしても良い。
【0085】
次に、本実施の形態に係るバルブタイミング制御について具体的に述べる。
バルブタイミング制御では、CPU401は、図8に示すような排気側バルブタイミング制御ルーチンを実行することになる。この排気側バルブタイミング制御ルーチンは、予めROM402に記憶されているアプリケーションプログラムであり、CPU401によって所定時間毎(例えば、クランクポジションセンサ51がパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0086】
排気側バルブタイミング制御ルーチンでは、CPU401は、先ずS801において、RAM403へアクセスし、最新の機関回転数(Ne)を読み出す。
S802では、CPU401は、ROM402へアクセスし、予め実験的に求められた基準機関回転数(Nes)を読み出す。
【0087】
S803では、CPU401は、前記S801で読み出された機関回転数(Ne)が前記S802で読み出された基準機関回転数(Nes)以下であるか否かを判別する。
【0088】
前記S803において前記機関回転数(Ne)が前記基準機関回転数(Nes)より高いと判定した場合は、CPU401は、基準排気バルブタイミングにおける気筒間排気弁動作間隔:TVがブローダウン伝播時間:TBより短くなるとみなし、S807へ進む。
【0089】
S807では、CPU401は、基準排気バルブタイミングに従って排気弁29を開閉動作させるべく排気側電磁駆動機構31を制御する。
具体的には、CPU401は、先ず、クランクポジションセンサ51の出力信号に基づいてクランクシャフト23の回転角度位置を算出する。続いて、CPU401は、算出された回転角度位置が基準排気バルブタイミングの排気弁開弁時期と一致した時点(もしくは、CPU401が制御信号を出力した時点から排気弁29が実際に開弁動作する時点までの応答遅れ時間の分だけ排気弁開弁時期より早い時点)で、排気側電磁駆動機構31の第1の電磁コイル308に対する励磁電流の印加を停止し、次いで第2の電磁コイル309に対する励磁電流の印加を開始する。
【0090】
また、CPU401は、クランクシャフト23の回転角度位置が基準排気バルブタイミングの排気弁閉弁時期と一致した時点(もしくは、CPU401が制御信号を出力した時点から排気弁29が実際に閉弁動作する時点までの応答遅れ時間の分だけ排気弁閉弁時期より早い時点)で、排気側電磁駆動機構31の第2の電磁コイル309に対する励磁電流の印加を終了し、次いで第1の電磁コイル308のに対する励磁電流の印加を開始する。
【0091】
この場合、内燃機関1の各気筒21の排気弁29は、基準排気バルブタイミングに従って開閉動作し、一の気筒21の排気弁29が閉弁する前に他の気筒21の排気弁29が開弁することになるが、他の気筒21の排気弁29が開弁する時点から一の気筒21の排気弁29が閉弁する時点までの時間(すなわち、気筒間排気弁動作間隔:TV)は、他の気筒21のブローダウン現象による正圧波が一の気筒21へ到達するのに要する時間(すなわち、ブローダウン伝播時間:TB)より短くなるため、一の気筒21の排気弁は、他の気筒21のブローダウン現象による正圧波が該一の気筒21へ到達する前に閉弁することになる。
【0092】
CPU401は、上記したようなS807の処理を実行し終えると、本ルーチンの実行を一旦終了する。
一方、前記したS803において前記機関回転数(Ne)が前記基準機関回転数(Nes)以下であると判定した場合は、CPU401は、基準排気バルブタイミングにおける気筒間排気弁動作間隔:TVがブローダウン伝播時間:TBより長くなるとみなし、S804へ進む。
【0093】
S804では、CPU401は、排気弁開弁時期の遅角量を算出する。その際、CPU401は、機関回転数と遅角量との相関関係を示す二次元マップを用いて遅角量を算出するようにしてもよく、あるいは、気筒間排気弁動作間隔:TVとブローダウン伝播時間:TBとの時間差:TV−TBを算出した上で、その時間差:TV−TBと遅角量との相関関係を示す二次元マップを用いて遅角量を算出するようにしてもよい。
【0094】
S805では、CPU401は、基準排気バルブタイミングの排気弁開弁時期を前記S804で算出された遅角量に従って補正する。
S806では、CPU401は、前記S805で補正された排気弁開弁時期、及び基準排気バルブタイミングの排気弁閉弁時期に従って排気弁29を開閉動作させるべく排気側電磁駆動機構31を制御する。そして、CPU401は、前記S806の処理を実行し終えると本ルーチンの実行を一旦終了する。
【0095】
この場合、各気筒21の排気弁開弁時期は、基準排気バルブタイミングの排気弁開弁時期より遅角されるため、内燃機関1の一の気筒21の排気弁29が閉弁する前に他の気筒21のブローダウン現象による正圧波が前記一の気筒21へ到達することがない。
【0096】
この結果、内燃機関1の一の気筒21の排気弁29が閉弁する直前であって、一の気筒21が排気行程上死点近傍にあるときには、一の気筒21内に残留していた既燃ガスの略全てが排気の慣性力を受けて該一の気筒21内から排気ポート27へ引き出されることになり、一の気筒21の排気効率が向上する。
【0097】
更に、排気弁29が閉弁する直前の気筒21において既燃ガスの略全てが排出されると、排気弁29が閉弁する時点で気筒21内の圧力が負圧となるため、続く吸気行程における吸気の充填効率が向上し、内燃機関1の出力を高めることが可能となる。
【0098】
尚、排気弁29の開弁時期が排気行程下死点後に遅角されると、排気行程下死点から排気弁29が開弁されるまでの期間において内燃機関1が気筒21内の既燃ガスを圧縮する仕事を行うこととなり、それによって機関出力の一部が損失されることになるが、排気弁開弁時期の遅角量を必要最小限に抑えることにより、排気弁開弁時期の遅角に起因した機関出力の損失量に比して、吸気の充填効率向上による機関出力の増大量を大きくすることが可能となる。
【0099】
以上述べたようにCPU401が排気側バルブタイミング制御ルーチンを実行することにより、本発明にかかるバルブタイミング制御手段が実現されることになる。
【0100】
従って、本実施の形態に係る内燃機関1によれば、一の気筒21が排気行程上死点近傍にあるとき、つまり一の気筒21が排気行程の終了間際にあるときに、他の気筒21のブローダウン現象による正圧波が前記1の気筒21へ伝播することがなくなるため、一の気筒21へ排気が逆流することがなく、排気効率の向上と吸気の充填効率向上とを図ることが可能となり、以て内燃機関1の出力を向上させることができる。
【0101】
尚、本実施の形態では、直列4気筒の4サイクル内燃機関を例に挙げたが、これに限られるものではなく、直列6気筒の4サイクル内燃機関1であってもよい。要は、複数気筒のうちの一の気筒が排気行程上死点近傍にあるときに他の気筒が排気行程下死点となる内燃機関であればよい。
【0102】
【発明の効果】
本発明に係る内燃機関によれば、複数の気筒の中の一の気筒が排気上死点となるとき又は排気行程上死点の直前となるときに他の気筒が排気行程下死点となる内燃機関において、他の気筒の排気弁が開弁した際に発生する圧力波が一の気筒へ伝播する時期と一の気筒が排気上死点近傍となる時期とを異ならせることが可能となるため、一の気筒が排気上死点近傍にあるときに、他の気筒のブローダウン現象による正圧波が前記一の気筒へ伝播されることがなくなる。
【0103】
この結果、一の気筒が排気行程上死点近傍にあるとき、言い換えれば一の気筒が排気行程の終了間際にあるときに、一の気筒内に残留していた既燃ガスの略全ては、排気の慣性力を受けて排出されることとなり、既燃ガスが気筒内に残留することがなく、以て吸気行程における吸気の充填効率を向上させ、内燃機関の出力を向上させることが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る内燃機関の一実施態様を示す平面図
【図2】 本発明に係る内燃機関の一実施態様を示す断面図
【図3】 排気側電磁駆動機構の構成を示す断面図
【図4】 ECUの内部構成を示すブロック図
【図5】 内燃機関のサイクルを示すタイミングチャート図
【図6】 基準排気バルブタイミングにおいてブローダウン現象による正圧波が伝播するタイミングを示す図
【図7】 排気弁開弁時期が遅角された場合においてブローダウン現象による正圧波が伝播するタイミングを示す図
【図8】 排気側バルブタイミング制御ルーチンを示すフローチャート図
【符号の説明】
1・・・・内燃機関
20・・・ECU
26・・・吸気ポート
27・・・排気ポート
28・・・吸気弁
29・・・排気弁
30・・・吸気側電磁駆動機構
31・・・排気側電磁駆動機構
33・・・吸気枝管
34・・・サージタンク
35・・・吸気管
36・・・エアクリーナボックス
39・・・スロットル弁
40・・・スロットル用アクチュエータ
41・・・スロットルポジションセンサ
42・・・アクセルペダル
43・・・アクセルポジションセンサ
51・・・クランクポジションセンサ

Claims (4)

  1. 複数の気筒と、電磁力を利用して各気筒の排気弁を開閉駆動する電磁駆動式動弁機構とを備え、前記複数の気筒の中の一の気筒の排気弁が閉弁する前に他の気筒の排気弁が開弁する内燃機関において、
    前記他の気筒の排気弁が開弁した際に発生する圧力波が前記一の気筒へ伝播する時期を前記一の気筒の排気弁が閉弁する時期より遅らせるべく前記電磁駆動式動弁機構を制御するバルブタイミング制御手段を備えることを特徴とする内燃機関。
  2. 前記バルブタイミング制御手段は、前記他の気筒の排気弁が開弁する時期を所定量遅角させるべく前記電磁駆動式動弁機構を制御することを特徴とする請求項1に記載の内燃機関。
  3. 前記所定量は、前記一の気筒の排気弁が開弁する時期と前記他の気筒の排気弁が開弁する時期との時間的な間隔である気筒間排気弁動作間隔と、前記圧力波が前記一の気筒に到達するのに要する時間であるブローダウン伝播時間と、の相対差に基づいて決定されることを特徴とする請求項2に記載の内燃機関。
  4. 前記内燃機関は、直列4気筒又は直列6気筒の4サイクル内燃機関であることを特徴とする請求項1に記載の内燃機関。
JP2000050141A 2000-02-25 2000-02-25 内燃機関 Expired - Fee Related JP4258089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050141A JP4258089B2 (ja) 2000-02-25 2000-02-25 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050141A JP4258089B2 (ja) 2000-02-25 2000-02-25 内燃機関

Publications (2)

Publication Number Publication Date
JP2001234762A JP2001234762A (ja) 2001-08-31
JP4258089B2 true JP4258089B2 (ja) 2009-04-30

Family

ID=18571966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050141A Expired - Fee Related JP4258089B2 (ja) 2000-02-25 2000-02-25 内燃機関

Country Status (1)

Country Link
JP (1) JP4258089B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948404B2 (ja) 2003-01-06 2007-07-25 トヨタ自動車株式会社 内燃機関およびバルブタイミングの制御方法

Also Published As

Publication number Publication date
JP2001234762A (ja) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3967536B2 (ja) 可変動弁機構を有する内燃機関
KR100404773B1 (ko) 전자구동밸브를 가지는 내연기관
JP3562415B2 (ja) 可変動弁機構を有する内燃機関
JP3948404B2 (ja) 内燃機関およびバルブタイミングの制御方法
EP2514944B1 (en) Control device for engine
JP4453536B2 (ja) 駆動装置およびこれを搭載する自動車並びに駆動装置の制御方法
JP3324039B2 (ja) 希薄な燃料−空気混合気で運転されるガソリン機関の有害な排気ガス放出物の減少方法
JP2006283636A (ja) エンジンの制御装置
JP4258089B2 (ja) 内燃機関
JP3771101B2 (ja) 内燃機関の制御装置
JP2002221037A (ja) 筒内噴射式ガス燃料内燃機関
JP2001234769A (ja) 可変動弁機構を有する内燃機関
JP4214659B2 (ja) 電磁駆動弁を有する内燃機関
JP2002195059A (ja) 内燃機関用可変動弁機構の制御装置
JP3510044B2 (ja) 内燃機関の電磁駆動弁の始動方法
JP3975683B2 (ja) 電磁駆動弁を有する内燃機関
JP2008274884A (ja) 内燃機関の制御装置
JP2006194252A (ja) 内燃機関の制御装置
JP4218169B2 (ja) 電磁駆動弁を有する内燃機関
JP6699272B2 (ja) エンジンおよびその制御方法
JP4258955B2 (ja) 電磁駆動弁を有する内燃機関
JP2001193504A (ja) 電磁駆動弁を有する内燃機関
JP4244490B2 (ja) 可変動弁機構を有する内燃機関
JP3637858B2 (ja) 内燃機関の制御装置
JP5505655B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees