Nothing Special   »   [go: up one dir, main page]

JP4187959B2 - Non-aqueous electrolyte and secondary battery using the same - Google Patents

Non-aqueous electrolyte and secondary battery using the same Download PDF

Info

Publication number
JP4187959B2
JP4187959B2 JP2001326630A JP2001326630A JP4187959B2 JP 4187959 B2 JP4187959 B2 JP 4187959B2 JP 2001326630 A JP2001326630 A JP 2001326630A JP 2001326630 A JP2001326630 A JP 2001326630A JP 4187959 B2 JP4187959 B2 JP 4187959B2
Authority
JP
Japan
Prior art keywords
carbonate
borate
electrolytic solution
lithium
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001326630A
Other languages
Japanese (ja)
Other versions
JP2003132946A (en
Inventor
昭男 檜原
剛史 林
達麗 石田
千穂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001326630A priority Critical patent/JP4187959B2/en
Publication of JP2003132946A publication Critical patent/JP2003132946A/en
Application granted granted Critical
Publication of JP4187959B2 publication Critical patent/JP4187959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充放電特性に優れた非水電解液、およびそれを用いた二次電池に関する。より詳細には、ホウ酸エステルを含むリチウム二次電池に適した非水電解液、およびそれを用いた二次電池に関する。
【0002】
【発明の技術的背景】
非水電解液を用いた電池は、高電圧でかつ高エネルギー密度を有しており、また貯蔵性などの信頼性も高いので、民生用電子機器の電源として広く用いられている。
【0003】
このような電池として非水電解液二次電池があり、その代表的存在は、リチウムイオン二次電池である。リチウムイオン二次電池の電解質材料には、非水電解液が広く使用されており、それに用いられる非水溶媒として、誘電率の高いカーボネート化合物が知られている。非水電解液として、より具体的には、プロピレンカーボネート、エチレンカーボネートなどの誘電率の高いカーボネート化合物溶媒と、炭酸ジメチル、炭酸ジエチルなどの粘度の低いカーボネート溶媒との混合溶媒に、LiBF、LiPF、LiClO、LiAsF、LiCFSO、LISiFなどの電解質を混合した溶液が提案されている。
【0004】
一方で、電池の高容量化を目指して電極の研究も進められており、リチウムイオン二次電池の負極として、リチウムの吸蔵、放出が可能な炭素材料が用いられている。特に黒鉛などの高結晶性炭素は、放電電位が平坦であるなどの特徴を有していることから、現在市販されているリチウムイオン二次電池の多くで負極材料として採用されている。
【0005】
しかしながら、黒鉛などの高結晶性炭素を負極に用いる場合、電解液用の非水溶媒として、凝固点の低い高誘電率溶媒であるプロピレンカーボネートや1,2‐ブチレンカーボネートを用いると、初回充電時に溶媒の還元分解反応が起こり、活物質であるリチウムイオンの黒鉛への挿入反応が進行しにくくなり、その結果、初回の充放電効率の低下や、電解液の分解物による電解液のLiイオン伝導性の低下や、電極界面抵抗の増大による電池の負荷特性の低下が起こる。
【0006】
このため、電解液に使用される高誘電率の非水溶媒として、常温で固体ではあるものの、還元分解反応が継続的に起こりにくいエチレンカーボネートをプロピレンカーボネ−トに代えて使用したり、混合したりすることにより、非水溶媒の還元分解反応を抑える試みがなされているが、必ずしも十分ではない。また、非晶質炭素を負極に用いた場合でも、溶媒の微少な還元分解反応が起こり、電解液の分解物による電解液のLiイオン伝導性の低下や、電極界面抵抗の増大による電池の負荷特性の低下が起こる。
【0007】
このため、還元分解反応をさらに抑制するために、様々な添加剤を加えることが提案されている。(特開平5−13088、特開平6−52887、特開昭63−102173、特開平11−162511、特開平11−3728)
【0008】
また、電池の負荷特性を改善する試みとしては、電解液のイオン伝導性を向上するために、低粘度の鎖状溶媒を混合すること(特開平10−27625)なども提案されている。
【0009】
【発明が解決しようとする課題】
本発明は、電極の界面抵抗の増大を抑制し、電池にすぐれた負荷特性および低温特性を与え、さらに優れた寿命特性を与える非水電解液の提供を目的とする。
また本発明は、この非水電解液を用いた寿命特性にすぐれた二次電池の提供を目的とする。
【0010】
【課題を解決するための手段】
本発明は、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリペンチル、ホウ酸ジエチルメチル、ホウ酸トリ(メトキシエチル)、ヒドロキシホウ酸ジメチル、ホウ酸ジメチルモノリチウム塩およびホウ酸モノメチルジリチウム塩から選ばれるアルキルホウ酸エステル類ならびにホウ酸トリ(トリフルオロエチル)、ホウ酸メチルジ(トリフルオロエチル)、ホウ酸トリ(トリクロロエチル)、ホウ酸トリ(テトラフルオロエチル)、ホウ酸トリ(モノフルオロエチル)、ホウ酸トリ(ペンタフルオロプロピル)、ホウ酸トリ(ヘキサフルオロプロピル)、ホウ酸トリ(2−メチル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(2−フェニル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(トリフルオロエトキシエチル)及びホウ酸メチルジ(トリフルオロエトキシエチル)から選ばれるハロゲン含有ホウ酸エステルなる群から選ばれたホウ酸エステルと、1,3―プロパンスルトン、1,4―ブタンスルトン、1,3―プロペンスルトン、1,4―ブテンスルトンおよび1,5―ペンテンスルトンから選ばれたスルトン並びにベンゼンジスルホン酸ジメチルなる群から選ばれたスルホニル基含有化合物と、非水溶媒と電解質を含むリチウム二次電池用非水電解液を提供する
【0011】
前記の非水電解液がさらに、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピルエチレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、フルオロビニレンカーボネートおよびトリフルオロメチルビニレンカーボネートから選ばれたビニレンカーボネート誘導体を含む前記の非水電解液は、本発明の好ましい態様である
【0012】
記非水溶媒が環状非プロトン性溶媒および/または鎖状非プロトン性溶媒からなる溶媒である前記の非水電解液は、本発明の好ましい態様である。
【0013】
前記環状非プロトン性溶媒が、環状カーボネートおよび環状エステルから選ばれた少なくとも1種の溶媒である前記の非水電解液は、本発明の好ましい態様である。
【0014】
前記鎖状非プロトン性溶媒が、鎖状カーボネートおよび鎖状エステルから選ばれた少なくとも1種の溶媒である前記の非水電解液は、本発明の好ましい態様である。
【0015】
前記電解質が、LiPF、LiBF、LiOSO(2k+1)(k=1〜8の整数)、LiClO、LiAsF、LiN(SO(2k+1)(k=1〜8の整数)、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)から選ばれた少なくとも1種である前記の非水電解液は、本発明の好ましい態様である。
【0016】
また本発明は、前記の非水電解液を含むリチウム二次電池を提供する。
【0017】
さらに本発明は、負極活物質として金属リチウム、リチウム含有合金、リチウムイオンのドープ・脱ドープが可能な炭素材料、リチウムイオンのドープ・脱ドープが可能な酸化スズ、リチウムイオンのドープ・脱ドープが可能な酸化チタン、酸化ニオブもしくは酸化バナジウム、またはリチウムイオンのドープ・脱ドープが可能なシリコンもしくはスズのいずれかを含む負極と、正極活物質として遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属の複合酸化物、導電性高分子材料、炭素材料またはこれらの混合物のいずれかを含む正極と、前記の非水電解液とを含むリチウム二次電池を提供する。
【0018】
前記リチウムイオンのドープ・脱ドープが可能な炭素材料が、X線解析で測定した(002)面における面間隔距離(d002)が、0.340nm以下である前記のリチウムイオン二次電池は、本発明の好ましい態様である。
【0019】
【発明の実施の形態】
本発明に係る非水電解液およびこの非水電解液を用いた非水電解液二次電池について具体的に説明する。
【0020】
本発明に係る非水電解液は、ホウ酸エステルと非水溶媒と電解質を含む非水電解液である。
本発明の電解液において、ホウ酸エステル類を含有すると、初期充電時の電極界面抵抗の上昇が抑制されるために望ましい非水電解液が得られる。この非水電解液を用いた非水電解液二次電池はすぐれた負荷特性を示す。
【0021】
ホウ酸エステル
本発明で使用されるホウ酸エステル類は、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリペンチル、ホウ酸ジエチルメチル、ホウ酸トリ(メトキシエチル)、ヒドロキシホウ酸ジメチル、ホウ酸ジメチルモノリチウム塩およびホウ酸モノメチルジリチウム塩から選ばれるアルキルホウ酸エステル類ならびにホウ酸トリ(トリフルオロエチル)、ホウ酸メチルジ(トリフルオロエチル)、ホウ酸トリ(トリクロロエチル)、ホウ酸トリ(テトラフルオロエチル)、ホウ酸トリ(モノフルオロエチル)、ホウ酸トリ(ペンタフルオロプロピル)、ホウ酸トリ(ヘキサフルオロプロピル)、ホウ酸トリ(2−メチル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(2−フェニル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(トリフルオロエトキシエチル)及びホウ酸メチルジ(トリフルオロエトキシエチル)から選ばれるハロゲン含有ホウ酸エステルなる群から選ばれたホウ酸エステルである
【0022】
発明の非水電解液は、前記ホウ酸エステルと、非水溶媒と電解質に加えて、さらに1,3―プロパンスルトン、1,4―ブタンスルトン、1,3―プロペンスルトン、1,4―ブテンスルトンおよび1,5―ペンテンスルトンから選ばれたスルトン並びにベンゼンジスルホン酸ジメチルなる群から選ばれたスルホニル基含有化合物を含有することができる。
非水電解液が、さらにスルホニル基含有化合物を含むと、初期充電時の界面抵抗の上昇が抑制する効果が高められる。また、初期充電時のみならず、繰返し使用後や高温保存後の界面抵抗の上昇が抑制されるため望ましい
【0023】
スルホニル基含有化合物の非水電解液への添加量は、0.01〜10重量%が望ましく、さらには0.05〜5重量%が望ましい。
【0024】
ビニレンカーボネート誘導体
本発明の非水電解液は、さらに下記一般式(3)で表わされるビニレンカーボネート誘導体をさらに含有してもよい。
【0025】
本発明の非水電解液が、下記一般式(3)で表わされるビニレンカーボネート誘導体を含有すると、初期充電時の界面抵抗の上昇が抑制される効果がさらに高められることに加えて、サイクル試験や高温保存試験時の電池容量の維持率が向上する。
【0026】
【化1】

Figure 0004187959
【0027】
式中RおよびRは、同一でも異なってもよく、水素または炭素数1〜10の有機基である。
有機基の好ましい例としては、炭化水素基、ヘテロ原子含有炭化水素基が挙げられる。
【0028】
炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基のような飽和炭化水素基、ビニル基、アリル基などの二重結合含有炭化水素基、エチニル基、プロパルギル基などの三重結合含有炭化水素基のような不飽和炭化水素基などを挙げることができる。
【0029】
ヘテロ原子含有炭化水素基の、ヘテロ原子としては、酸素、窒素、イオウ、リン、ホウ素などが挙げられる。ヘテロ原子含有炭化水素基の好ましい例として、メトキシエチル基やメトキシカルボニルエチル基のようにエーテル結合、エステル結合、カーボネート結合などを含む酸素含有炭化水素基や、アミノ基などを含む窒素含有炭化水素基を挙げることができる。
【0030】
有機基は、ハロゲン原子で置換されていてもよい。ハロゲン元素としては、フッ素、塩素、臭素などが挙げられるが、フッ素が好適である。ハロゲン原子で置換された有機基としては、トリフルオロエチル基のようなハロゲン化炭化水素基、ハロゲン含有基で置換された炭化水素基、ハロゲン化ヘテロ原子含有炭化水素基などを挙げることができる。特にはハロゲン化炭化水素基が好ましい。
【0031】
有機基としては、中でも炭素数1〜10の炭化水素基または炭素数1〜10のハロゲン化炭化水素基が好ましい。
【0032】
前記一般式(3)で表わされるビニレンカーボネート誘導体の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピルエチレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネートなどを挙げることができる。これらのうち、ビニレンカーボネートが好ましい。
【0033】
ビニレンカーボネート誘導体の電解液への添加量は、非水電解液全体に対して、0.05〜5重量%が好ましい。
【0034】
前記一般式(1)で表わされるホウ酸エステル類、前記一般式(2)で表わされる化合物および前記一般式(3)で表わされるビニレンカーボネート誘導体を含む非水電解液は、本発明の非水電解液の好ましい態様である。
前記一般式(1)で表わされるホウ酸エステル類および前記一般式(3)で表わされるビニレンカーボネート誘導体を含む非水電解液もまた、本発明の非水電解液の好ましい態様である。
【0035】
これらの中では前記一般式(1)で表わされるホウ酸エステル類、前記一般式(2)で表わされる化合物を含む非水電解液、および前記一般式(3)で表わされるビニレンカーボネート誘導体を含む非水電解液がより好ましい態様である。
【0036】
非水溶媒
本発明の非水電解液は、非水溶媒に電解質を溶解した溶液に、これまで説明してきた化合物を含有させた構成になっている。
【0037】
本発明では、非水溶媒として環状非プロトン性溶媒および/または鎖状非プロトン性溶媒からなることが望ましい。
環状非プロトン性溶媒としては、エチレンカーボネートのような環状カーボネート、γ−ブチロラクトンのような環状エステル、ジオキソランのような環状エーテルが例示され、鎖状非プロトン性溶媒としては、ジメチルカーボネートのような鎖状カーボネート、プロピオン酸メチルのような鎖状カルボン酸エステル、ジメトキシエタンのような鎖状エーテル、リン酸トリメチルのような鎖状リン酸エステルが例示される。
【0038】
電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒を環状非プロトン性溶媒および鎖状非プロトン性溶媒の組み合わせにすることが好ましい。 さらに、電解液の電気化学的安定性から、環状非プロトン性溶媒には環状カーボネートを、鎖状非プロトン性溶媒には鎖状カーボネートを適用することが好ましい。
【0039】
環状カーボネートの具体例としては、エチレンカーボネート、プロピレンカーボネート、1,2‐ブチレンカーボネート、2,3‐ブチレンカーボネート、1,2‐ペンチレンカーボネート、2,3‐ペンチレンカーボネートなどを挙げることができる。中でも誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートが好ましい。これら環状カーボネートは2種以上混合して使用してもよい。
【0040】
鎖状カーボネートの具体例としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネートなどを挙ることができる。中でも粘度が低いジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートが好適に使用される。これら鎖状カーボネートは2種以上混合して使用してもよい。
【0041】
環状カーボネートと鎖状カーボネートの組合せとして具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
【0042】
環状カーボネートと鎖状カーボネートの混合割合は、重量比で表して、環状カーボネート:鎖状カーボネートが、5:95〜80:20、さらに好ましくは10:90〜70:30、特に好ましくは15:85〜55:45である。
【0043】
このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができ、電解質の溶解度をさらに高めることができる。それによって、常温から低温での電気伝導性に優れた電解液とすることできるので、常温から低温での電池の負荷特性を改善することができる。
【0044】
また、電池の安全性向上のために、溶媒の引火点の向上を指向する場合は、非水溶媒として、環状の非プロトン性溶媒を単独で使用するか、鎖状の非プロトン性溶媒の混合量を、非水溶媒全体に対して重量比で20%未満に制限することが望ましい。
【0045】
この場合の環状の非プロトン性溶媒としては、特に、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、メチルオキサゾリノンから選ばれる1種またはこれらの混合物を混合することが望ましい。具体的な溶媒の組み合わせとしては、エチレンカーボネートとスルホラン、エチレンカーボネートとγ−ブチロラクトン、エチレンカーボネートとプロピレンカーボネート、エチレンカーボネートとプロピレンカーボネートとガンマブチロラクトンなどが例示される。
【0046】
鎖状の非プロトン性溶媒の混合量を、非水溶媒全体に対して重量比で20%以下混合する場合は、鎖状の非プロトン性溶媒として、鎖状カーボネート、鎖状カルボン酸エステル、鎖状リン酸エステルが例示され、特に、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジヘプチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、メチルヘプチルカーボネートなどの鎖状カーボネートが望ましい。
【0047】
本発明に係る非水電解液では、非水溶媒として、上記以外の他の溶媒を含んでいてもよく、他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル‐N,N‐ジメチルカーバメートなどの鎖状カーバメート、N‐メチルピロリドンなどの環状アミド、N,N‐ジメチルイミダゾリジノンなどの環状ウレア、および下記一般式で表わされるエチレングリコール誘導体などを挙げることができる。
HO(CHCHO)H、HO{CHCH(CH)O}H、CHO(CHCHO)H、CHO{CHCH(CH)O}H、CHO(CHCHO)CH、CHO{CHCH(CH)O}CH、C19PhO(CHCHO){CH(CH)O}CH(Phはフェニル基)、CHO{CHCH(CH)O}CO{O(CH)CHCHOCH(式中、a〜fは5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。)
非水電解液
本発明の非水電解液は、非水溶媒に電解質を溶解し、さらに前述の化合物類を含有するものである。使用される電解質としては、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
【0048】
電解質の具体例としては、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiCSO、LiC17SOなどのリチウム塩が挙げられる。また、次の一般式で示されるリチウム塩も使用することができる。LiOSO、LiN(SO)(SO10)、LiC(SO11)(SO12)(SO13)、LiN(SOOR14)(SOOR15)(ここで、R〜R15は、互いに同一であっても異なっていてもよく、炭素数1〜6のパーフルオロアルキル基である)。これらのリチウム塩は単独で使用してもよく、また2種以上を混合して使用してもよい。
【0049】
これらのうち、特に、LiPF、LiBF、LiOSO、LiN(SO)(SO10)、LiC(SO11)(SO12)(SO13)、LiN(SOOR14)(SOOR15)が好ましい。
【0050】
このような電解質は、0.1〜3モル/リットル、好ましくは0.5〜2モル/リットルの濃度で非水電解液中に含まれていることが望ましい。
【0051】
本発明における非水電解液は、前述の化合物類と非水溶媒と電解質とを必須構成成分として含むが、必要に応じて他の添加剤などを加えてもよい。
【0052】
他の添加剤としては、無水マレイン酸、ノルボルネンジカルボン酸無水物、ジグリコール酸などのカルボン酸無水物類;ビニルエチレンカーボネート、ジビニルエチレンカーボネート、メチレン−1,2−エチレンカーボネートなどの不飽和炭化水素置換環状カーボネート類;フッ化水素などが挙げられる。
【0053】
フッ化水素を添加剤に使用する場合、電解液への添加方法は、直接、電解液にフッ化水素ガスを所定量吹き込むことが挙げられる。また、本発明で使用するリチウム塩がLiPFやLiBFなどのフッ素を含有するリチウム塩である場合は、下記に示した水のような活性プロトン化合物と電解質の反応を利用して、水を電解液に添加し、電解液中で発生させても良い。
【0054】
LiMF + HO → LiPF(n−2)O + 2HF
(ただし、MはP、Bなどを表わし、 M=Pのときn=6、M=Bのときn=4である。)
【0055】
水を電解液に添加し、間接的にHFを電解液中に生成させる場合、水1分子からHFがほぼ定量的に2分子生成するので、水の添加量は、所望のHF添加濃度にあわせて計算し添加する。具体的には、所望のHF量の0.45倍(重量比)の水を添加するのが好ましい。
【0056】
他のプロトン性化合物の具体例としては、トリフルオロ酢酸、メタノール、エタノール、エチレングリコール、プロピレングリコールなどを挙げることができる。
【0057】
フッ化水素としての添加量は0.0001〜0.7wt%、好ましくは0.001〜0.3wt%、より好ましくは0.001〜0.1wt%である。
【0058】
本発明に係る非水電解液は、リチウムイオン二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液としても用いることができる。
【0059】
二次電池
本発明に係る非水電解液二次電池は、負極と、正極と、前記の非水電解液とを基本的に含んで構成されており、通常、負極と正極との間にセパレータが設けられている。
【0060】
負極を構成する負極活物質としては、金属リチウム、リチウム合金、リチウムイオンをドーブ・脱ドーブすることが可能な炭素材料、リチウムイオンをドープ・脱ドープすることが可能な酸化スズ、酸化ニオブもしくは酸化バナジウム、リチウムイオンをドープ・脱ドープすることが可能な酸化チタン、またはリチウムイオンをドープ・脱ドープすることが可能なシリコンもしくはスズのいずれも用いることができる。これらの中でもリチウムイオンをドーブ・脱ドーブすることが可能な炭素材料が好ましい。このような炭素材料は、グラファイトであっても非晶質炭素であってもよく、活性炭、炭素繊維、カーボンブラック、メソカーボンマイクロビーズ、天然黒鉛などが用いられる。
【0061】
負極活物質として、特にX線解析で測定した(002)面の面間隔(d002)が0.340nm以下の炭素材料が好ましく、密度が1.70g/cm以上である黒鉛またはそれに近い性質を有する高結晶性炭素材料が望ましい。このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。
【0062】
正極を構成する正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物または遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−x)、LiNiMnCo(1−x−y)などのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール/ポリアニリン複合体などの導電性高分子材料などが挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属またはリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属の複合酸化物と炭素材料との混合物を用いることもできる。
【0063】
セパレータは正極と負極を電気的に絶縁しかつリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。多孔性膜としては微多孔性ポリマーフィルムが好適に使用され、材質としてポリオレフィンやポリイミド、ポリフッ化ビニリデンが例示される。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムを例示することができる。高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子などが挙げられる。本発明の電解液は、高分子を膨潤させて高分子電解質を得る目的で使用しても良い。
【0064】
このような非水電解液二次電池は、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は形状によらず同じであり、目的に応じて設計変更を施すことができる。次に、円筒型およびコイン型電池の構造について説明するが、各電池を構成する負極活物質、正極活物質およびセパレータは、前記したものが共通して使用される。
【0065】
例えば、円筒型非水電解液二次電池の場合には、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、非水電解液を注入したセパレータを介して巻回し、巻回体の上下に絶縁板を載置した状態で電池缶に収納されている。
【0066】
また、本発明に係る非水電解液二次電池は、コイン型非水電解液二次電池にも適用することができる。コイン型電池では、円盤状負極、セパレータ、円盤状正極、およびステンレス、またはアルミニウムの板が、この順序に積層された状態でコイン型電池缶に収納されている。
【0067】
【実施例】
以下、実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって何ら制限されるものではない。
【0068】
(実施例1〜7、参考例1〜3
1.電池の作製
<非水電解液の調製>
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を、EC:MEC=4:6(重量比)の割合で混合し、次に電解質であるLiPFを非水溶媒に溶解し、電解質濃度が1.0モル/リットルとなるように非水電解液を調製した。次にこの非水電解液(100重量%とする)に対して、表1に示す添加剤を、表1に示す割合で添加した。
【0069】
<負極の作製>
天然黒鉛(中越黒鉛製LF−18A)87重量部と結着剤のポリフッ化ビニリデン(PVDF)13重量部を混合し、溶剤のN−メチルピロリジノンに分散させ、天然黒鉛合剤スラリーを調製した。次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し、乾燥させた後、圧縮成型し、これを14mmの円盤状に打ち抜いて、コイン状の天然黒鉛電極を得た。この天然黒鉛電極合剤の厚さは110μm、重量は直径14mmの円の面積あたり20mgであった。
【0070】
<LiCoO電極の作製>
LiCoO(本荘FMCエナジーシステムズ(株)製 HLC−21)90重量部と、導電剤の黒鉛6重量部及びアセチレンブラック1重量部と結着剤のポリフッ化ビニリデン3重量部を混合し、溶剤のN−メチルピロリドンに分散させ、LiCoO合剤スラリーを調製した。
このLiCoO合剤スラリーを厚さ20μmのアルミ箔に塗布、乾燥させ、圧縮成型し、これを直径13mmにうちぬき、LiCoO電極を作製した。
このLiCoO合剤の厚さは90μm、重量は直径13mmの円の面積あたり35mgであった。
【0071】
<電池の作製>
直径14mmの天然黒鉛電極、直径13mmのLiCoO電極、厚さ25μm、直径16mmの微多孔性ポリプロピレンフィルムからできたセパレータを、ステンレス製の2032サイズの電池缶内に、天然黒鉛電極、セパレーター、LiCoO電極の順序で積層した。その後、セパレータに前記非水電解液0.03mlを注入し、アルミニウム製の板(厚さ1.2mm、直径16mm、およびバネを収納した。最後に、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電池を作製した。
【0072】
2.電池特性の評価
<電池の初期特性の測定>
(1)初期低負荷放電容量の測定
前述のように作製したコイン型電池を使用し、この電池を0.5mA定電流4.2V定電圧の条件で、4.2V定電圧の時の電流値が0.05mAになるまで充電し、その後、0.5mA定電流3.0V定電圧の条件で、3.0V定電圧の時の電流値が0.05mAになるまで放電した。この時のコイン型電池の放電容量を、「初期低負荷放電容量」と呼ぶこととする。初期低負荷放電容量は、いずれの電池でも、4.5mAh前後であった。
【0073】
(2)初期中負荷放電容量の測定
次に、この電池を3mA定電流4.2V定電圧の条件で、4.2V定電圧の時の電流値が0.05mAになるまで充電し、その後5mAの電流で電池の電圧が3.0Vになるまで放電した。この時のコイン型電池の放電容量を「初期中負荷放電容量」と呼ぶこととする。
【0074】
<電極の界面抵抗の測定>
コイン型電池を4.2Vに充電した後、0.2Hzおよび2500Hzでのインピーダンスを測定し、0.2Hzでのインピーダンス値から2500Hzでのインピーダンス値を差し引いたインピーダンス値を「電極界面抵抗」とした。
【0075】
<電池の保存特性の測定>
(1)放電容量の測定
電池を一旦3Vに放電した後、3mA定電流4.1V定電圧の条件で、4.1V定電圧の時の電流値が0.05mAになるまで充電した。この時の充電量を「保存前充電容量」とした。
この電池を、50℃で1週間保存した後、0.5mA定電流3.0V定電圧の条件で、3.0V定電圧の時の電流値が0.05mAになるまで放電した。この時の放電量を、「保存後放電容量」とした。
「保存後放電容量」と「保存前充電容量」の差を「高温保存自己放電容量」とした(「保存後放電容量」−「保存前充電容量」=「高温保存自己放電容量」)。
【0076】
(2)保存後中負荷放電容量の測定
次に、この電池を3mA定電流4.2V定電圧の条件で、4.2V定電圧の時の電流値が0.05mAになるまで充電し、その後5mAの電流で電池の電圧が3.0Vになるまで放電した。この時のコイン型電池の放電容量を「保存後中負荷放電容量」と呼ぶこととする。
【0077】
実施例1〜7、参考例1〜3の電池特性の評価結果を表2に示した。
【0078】
(比較例1)
実施例1の<非水電解液の調製>において、添加剤の添加を省略するほかは同様にして非水電解液の調製を行ない、得られた非水電解液を用いて、実施例1と同様にして電池を作製し、電池特性の評価を行なった。
比較例1で測定された「電極界面抵抗」および「高温保存自己放電容量」をそれぞれ「ブランクでの電極界面抵抗」および「ブランクでの高温保存自己放電容量」とする。
電池特性の評価の結果を表2に示した。
【0079】
表2に示した電池特性の評価は、実施例1〜10および比較例1における実験結果から、以下の指標を用いて行った。いずれも単位は%である。
「電極界面抵抗比」={「試験電解液使用電池の電極界面抵抗」/「ブランクでの電極界面抵抗」}×100
「初期負荷特性指標」={「初期中負荷放電容量」/「初期低負荷放電容量」}×100
「負荷特性維持率」={「保存後中負荷放電容量」/「初期中負荷放電容量」}×100
「自己放電比」={「試験電解液の高温保存自己放電容量」/「ブランクでの高温保存自己放電容量」}×100
【0080】
【表1】
Figure 0004187959
【0081】
【表2】
Figure 0004187959
【0082】
表2より、実施例1〜のいずれの電解液を使用しても、初期の界面抵抗がブランク(比較例1)よりも小さくなっており、優れた負荷特性を示す電池が得られることが分かった。
【0083】
また、表2より本願発明の電解液によって、高温保存後の負荷特性の劣化が少ない電池が得られることが分かる。電解液がさらに前記一般式(3)で表わされるビニレンカーボネート誘導体を含有すると、高温保存後の負荷特性の劣化および自己放電が抑制され、さらに優れた特性を示す電池が得られることが分かる。
【0084】
【発明の効果】
本発明により、リチウムイオン二次電池用の電解液として特に好適な非水電解液が提供される。
本発明の非水電解液を使用することによって、初期特性、または初期特性および高温保存後の特性において、電極の界面抵抗が小さく、負荷特性に優れた非水電解液二次電池を得ることができる。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a non-aqueous electrolyte excellent in charge / discharge characteristics and a secondary battery using the same. More specifically, the present invention relates to a nonaqueous electrolytic solution suitable for a lithium secondary battery containing a borate ester, and a secondary battery using the same.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
  A battery using a non-aqueous electrolyte is widely used as a power source for consumer electronic devices because of its high voltage and high energy density and high reliability such as storage.
[0003]
  As such a battery, there is a nonaqueous electrolyte secondary battery, and a typical example thereof is a lithium ion secondary battery. Non-aqueous electrolytes are widely used as electrolyte materials for lithium ion secondary batteries, and carbonate compounds having a high dielectric constant are known as non-aqueous solvents used therefor. More specifically, as a non-aqueous electrolyte, LiBF is mixed with a mixed solvent of a carbonate compound solvent having a high dielectric constant such as propylene carbonate or ethylene carbonate and a carbonate solvent having a low viscosity such as dimethyl carbonate or diethyl carbonate.4, LiPF6, LiClO4, LiAsF6, LiCF3SO3, LI2SiF6A solution in which an electrolyte such as the above is mixed has been proposed.
[0004]
  On the other hand, research on electrodes has been conducted with the aim of increasing the capacity of batteries, and carbon materials capable of inserting and extracting lithium are used as negative electrodes of lithium ion secondary batteries. In particular, highly crystalline carbon such as graphite has features such as a flat discharge potential, and is therefore adopted as a negative electrode material in many of the lithium ion secondary batteries currently on the market.
[0005]
  However, when highly crystalline carbon such as graphite is used for the negative electrode, if non-aqueous solvent for the electrolyte is propylene carbonate or 1,2-butylene carbonate, which is a high dielectric constant having a low freezing point, As a result, reductive decomposition reaction of lithium ion, which is the active material, becomes difficult to proceed into the graphite, resulting in a decrease in the initial charge / discharge efficiency and the Li ion conductivity of the electrolyte solution due to the decomposition product of the electrolyte solution. Or the load characteristics of the battery are reduced due to an increase in electrode interface resistance.
[0006]
  Therefore, as a non-aqueous solvent having a high dielectric constant used for the electrolyte, ethylene carbonate, which is solid at room temperature but hardly undergoes reductive decomposition reaction, can be used instead of propylene carbonate or mixed. Although attempts have been made to suppress the reductive decomposition reaction of non-aqueous solvents by doing so, it is not always sufficient. In addition, even when amorphous carbon is used for the negative electrode, a slight reductive decomposition reaction of the solvent occurs, and the battery load is reduced due to a decrease in Li ion conductivity of the electrolytic solution due to the decomposition product of the electrolytic solution and an increase in electrode interface resistance. Degradation of characteristics occurs.
[0007]
  For this reason, in order to further suppress the reductive decomposition reaction, it has been proposed to add various additives. (JP-A-5-13088, JP-A-6-52887, JP-A-63-102173, JP-A-11-162511, JP-A-11-3728)
[0008]
  Further, as an attempt to improve the load characteristics of the battery, mixing a low-viscosity chain solvent (Japanese Patent Laid-Open No. 10-27625) has been proposed in order to improve the ionic conductivity of the electrolytic solution.
[0009]
[Problems to be solved by the invention]
  An object of the present invention is to provide a nonaqueous electrolytic solution that suppresses an increase in interfacial resistance of an electrode, gives excellent load characteristics and low temperature characteristics to a battery, and gives excellent life characteristics.
  It is another object of the present invention to provide a secondary battery having excellent life characteristics using this non-aqueous electrolyte.
[0010]
[Means for Solving the Problems]
  The present inventionTrimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tripentyl borate, diethyl methyl borate, tri (methoxyethyl) borate, dimethyl hydroxyborate, dimethyl monolithium borate and monomethyl diborate Alkyl borate esters selected from lithium salts and tri (trifluoroethyl) borate, methyl di (trifluoroethyl) borate, tri (trichloroethyl) borate, tri (tetrafluoroethyl) borate, tri (monofluoroborate) Fluoroethyl), tri (pentafluoropropyl) borate, tri (hexafluoropropyl) borate, tri (2-methyl-1,1,1,3,3,3-hexafluoropropyl) borate, triborate (2-Phenyl-1,1,1,3,3,3-hexafluoro Boric acid ester selected from the group consisting of halogen-containing boric acid ester selected from tripropyl (trifluoroethoxyethyl) borate and methyl di (trifluoroethoxyethyl) borate, 1,3-propane sultone, A sulfonyl group-containing compound selected from the group consisting of sultone selected from 4-butane sultone, 1,3-propene sultone, 1,4-butene sultone and 1,5-pentene sultone, and dimethyl benzenedisulfonate, Including non-aqueous solvent and electrolyteLithium secondary batteryProvide non-aqueous electrolyte.
[0011]
  The non-aqueous electrolyte is furtherSelected from vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl ethylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, dipropyl vinylene carbonate, fluoro vinylene carbonate and trifluoromethyl vinylene carbonateThe non-aqueous electrolyte containing a vinylene carbonate derivative is a preferred embodiment of the present invention..
[0012]
in frontThe above-mentioned non-aqueous electrolytic solution in which the non-aqueous solvent is a solvent comprising a cyclic aprotic solvent and / or a chain aprotic solvent is a preferred embodiment of the present invention.
[0013]
  The non-aqueous electrolyte solution in which the cyclic aprotic solvent is at least one solvent selected from cyclic carbonates and cyclic esters is a preferred embodiment of the present invention.
[0014]
  The non-aqueous electrolyte solution in which the chain aprotic solvent is at least one solvent selected from a chain carbonate and a chain ester is a preferred embodiment of the present invention.
[0015]
  The electrolyte is LiPF6, LiBF4, LiOSO2CkF(2k + 1)(K = integer from 1 to 8), LiClO4, LiAsF6, LiN (SO2CkF(2k + 1))2(K = integer from 1 to 8), LiPFn(CkF(2k + 1))(6-n)The nonaqueous electrolytic solution which is at least one selected from (n = 1 to 5, k = 1 to 8) is a preferred embodiment of the present invention.
[0016]
  The present invention also includes the above non-aqueous electrolyte.lithiumA secondary battery is provided.
[0017]
  Furthermore, the present invention includes metallic lithium as a negative electrode active material, a lithium-containing alloy, a carbon material that can be doped / undoped with lithium ions, a tin oxide that can be doped / undoped with lithium ions, and a doped / undoped lithium ion. Transitions with possible negative electrode containing titanium oxide, niobium oxide or vanadium oxide, or silicon or tin that can be doped / undoped with lithium ion, and transition metal oxide, transition metal sulfide, lithium as positive electrode active material Provided is a lithium secondary battery comprising a positive electrode including any one of a metal complex oxide, a conductive polymer material, a carbon material, or a mixture thereof, and the non-aqueous electrolyte.
[0018]
  The lithium ion secondary battery in which the intercalation distance (d002) on the (002) plane measured by X-ray analysis is 0.340 nm or less is the carbon material that can be doped / undoped with lithium ions. This is a preferred embodiment of the invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  The nonaqueous electrolyte solution according to the present invention and the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte solution will be specifically described.
[0020]
  The nonaqueous electrolytic solution according to the present invention is a nonaqueous electrolytic solution containing a boric acid ester, a nonaqueous solvent, and an electrolyte.
  When the boric acid ester is contained in the electrolytic solution of the present invention, an increase in electrode interface resistance during initial charging is suppressed, and thus a desirable nonaqueous electrolytic solution is obtained. A non-aqueous electrolyte secondary battery using this non-aqueous electrolyte exhibits excellent load characteristics.
[0021]
                              Borate ester
  The borate esters used in the present invention are:Trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tripentyl borate, diethyl methyl borate, tri (methoxyethyl) borate, dimethyl hydroxyborate, dimethyl monolithium borate and monomethyl diborate Alkyl borate esters selected from lithium salts and tri (trifluoroethyl) borate, methyl di (trifluoroethyl) borate, tri (trichloroethyl) borate, tri (tetrafluoroethyl) borate, tri (monofluoroborate) Fluoroethyl), tri (pentafluoropropyl) borate, tri (hexafluoropropyl) borate, tri (2-methyl-1,1,1,3,3,3-hexafluoropropyl) borate, triborate (2-Phenyl-1,1,1,3,3,3-hexafluoro Propyl), tri borate (trifluoroethoxy ethyl) and halogen-containing borate ester comprising a boric acid ester selected from the group selected from boric acid methyl di (trifluoroethoxy ethyl)Is.
[0022]
BookThe non-aqueous electrolyte of the inventionRecordIn addition to oxalate, non-aqueous solvent and electrolyte,Sultone selected from the group consisting of 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1,4-butene sultone and 1,5-pentene sultone, and a sulfonyl group selected from the group consisting of dimethyl benzenedisulfonate ContainsCompounds can be included.
  Non-aqueous electrolyteContains sulfonyl groupWhen the compound is contained, an effect of suppressing an increase in interface resistance at the time of initial charge is enhanced. In addition, it is desirable not only during initial charging, but also because the increase in interface resistance after repeated use and storage at high temperatures is suppressed..
[0023]
  Contains sulfonyl groupThe amount of the compound added to the non-aqueous electrolyte is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight.
[0024]
                        Vinylene carbonate derivative
  The nonaqueous electrolytic solution of the present invention may further contain a vinylene carbonate derivative represented by the following general formula (3).
[0025]
  When the nonaqueous electrolytic solution of the present invention contains a vinylene carbonate derivative represented by the following general formula (3), in addition to further enhancing the effect of suppressing an increase in interface resistance during initial charging, a cycle test or The maintenance rate of the battery capacity during the high temperature storage test is improved.
[0026]
[Chemical 1]
Figure 0004187959
[0027]
  Where R7And R8May be the same or different and are hydrogen or an organic group having 1 to 10 carbon atoms.
  Preferable examples of the organic group include a hydrocarbon group and a hetero atom-containing hydrocarbon group.
[0028]
  Examples of the hydrocarbon group include a saturated hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, and an octyl group, a double bond-containing hydrocarbon group such as a vinyl group and an allyl group, an ethynyl group, and a propargyl group. Examples thereof include unsaturated hydrocarbon groups such as a triple bond-containing hydrocarbon group.
[0029]
  Examples of the hetero atom of the hetero atom-containing hydrocarbon group include oxygen, nitrogen, sulfur, phosphorus and boron. Preferred examples of heteroatom-containing hydrocarbon groups include oxygen-containing hydrocarbon groups containing ether bonds, ester bonds, carbonate bonds, etc., such as methoxyethyl groups and methoxycarbonylethyl groups, and nitrogen-containing hydrocarbon groups containing amino groups, etc. Can be mentioned.
[0030]
  The organic group may be substituted with a halogen atom. Examples of the halogen element include fluorine, chlorine, bromine and the like, with fluorine being preferred. Examples of the organic group substituted with a halogen atom include a halogenated hydrocarbon group such as a trifluoroethyl group, a hydrocarbon group substituted with a halogen-containing group, and a halogenated heteroatom-containing hydrocarbon group. In particular, a halogenated hydrocarbon group is preferable.
[0031]
  As the organic group, a hydrocarbon group having 1 to 10 carbon atoms or a halogenated hydrocarbon group having 1 to 10 carbon atoms is preferable.
[0032]
  Specific examples of the vinylene carbonate derivative represented by the general formula (3) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl ethylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, dipropyl vinylene carbonate, fluoro vinylene carbonate, Examples thereof include trifluoromethyl vinylene carbonate. Of these, vinylene carbonate is preferred.
[0033]
  The amount of vinylene carbonate derivative added to the electrolytic solution is preferably 0.05 to 5% by weight with respect to the entire non-aqueous electrolytic solution.
[0034]
  The non-aqueous electrolyte containing the boric acid ester represented by the general formula (1), the compound represented by the general formula (2) and the vinylene carbonate derivative represented by the general formula (3) is a non-aqueous electrolyte of the present invention. This is a preferred embodiment of the electrolytic solution.
  A nonaqueous electrolytic solution containing the boric acid ester represented by the general formula (1) and the vinylene carbonate derivative represented by the general formula (3) is also a preferred embodiment of the nonaqueous electrolytic solution of the present invention.
[0035]
  Among these, a boric acid ester represented by the general formula (1), a non-aqueous electrolyte containing a compound represented by the general formula (2), and a vinylene carbonate derivative represented by the general formula (3) are included. A non-aqueous electrolyte is a more preferred embodiment.
[0036]
                                Non-aqueous solvent
  The nonaqueous electrolytic solution of the present invention has a configuration in which the compound described so far is contained in a solution obtained by dissolving an electrolyte in a nonaqueous solvent.
[0037]
  In the present invention, the non-aqueous solvent is preferably composed of a cyclic aprotic solvent and / or a chain aprotic solvent.
  Examples of the cyclic aprotic solvent include a cyclic carbonate such as ethylene carbonate, a cyclic ester such as γ-butyrolactone, and a cyclic ether such as dioxolane. The chain aprotic solvent includes a chain such as dimethyl carbonate. Examples thereof include chain carbonates, chain carboxylic acid esters such as methyl propionate, chain ethers such as dimethoxyethane, and chain phosphate esters such as trimethyl phosphate.
[0038]
  In the case where the load characteristics and low temperature characteristics of the battery are particularly intended to be improved, the non-aqueous solvent is preferably a combination of a cyclic aprotic solvent and a chain aprotic solvent. Furthermore, it is preferable to apply a cyclic carbonate to the cyclic aprotic solvent and a chain carbonate to the chain aprotic solvent from the electrochemical stability of the electrolytic solution.
[0039]
  Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like. Among them, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is preferable. Two or more of these cyclic carbonates may be used as a mixture.
[0040]
  Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, methyl trifluoroethyl carbonate, and the like. Can be. Among them, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate having a low viscosity are preferably used. These chain carbonates may be used as a mixture of two or more.
[0041]
  Specific combinations of cyclic carbonate and chain carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and diethyl Carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl Carbonate, ethylene carbonate and methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate, dimethyl carbonate and diethyl carbonate, Examples thereof include ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate.
[0042]
  The mixing ratio of the cyclic carbonate and the chain carbonate is expressed by weight ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ~ 55: 45.
[0043]
  By setting such a ratio, an increase in the viscosity of the electrolytic solution can be suppressed and the degree of dissociation of the electrolyte can be increased, so that the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased, and the solubility of the electrolyte Can be further enhanced. As a result, an electrolytic solution having excellent electrical conductivity from room temperature to low temperature can be obtained, so that the load characteristics of the battery from room temperature to low temperature can be improved.
[0044]
  In addition, to improve the flash point of the solvent to improve battery safety, use a cyclic aprotic solvent alone as the non-aqueous solvent, or mix a chain of aprotic solvents. It is desirable to limit the amount to less than 20% by weight with respect to the total non-aqueous solvent.
[0045]
  As the cyclic aprotic solvent in this case, it is particularly desirable to mix one kind or a mixture selected from ethylene carbonate, propylene carbonate, γ-butyrolactone, and methyloxazolinone. Specific examples of the solvent combination include ethylene carbonate and sulfolane, ethylene carbonate and γ-butyrolactone, ethylene carbonate and propylene carbonate, ethylene carbonate, propylene carbonate, and gamma butyrolactone.
[0046]
  When the amount of the chain aprotic solvent mixed is 20% or less by weight with respect to the total amount of the nonaqueous solvent, the chain aprotic solvent may be a chain carbonate, a chain carboxylate ester, a chain In particular, chain phosphates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diheptyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, and methyl heptyl carbonate are preferable.
[0047]
  In the non-aqueous electrolyte solution according to the present invention, as the non-aqueous solvent, a solvent other than the above may be included. Specifically, as the other solvent, an amide such as dimethylformamide, methyl-N, N And chain carbamates such as -dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, cyclic ureas such as N, N-dimethylimidazolidinone, and ethylene glycol derivatives represented by the following general formula.
  HO (CH2CH2O)aH, HO {CH2CH (CH3) O}bH, CH3O (CH2CH2O)cH, CH3O {CH2CH (CH3) O}dH, CH3O (CH2CH2O)eCH3, CH3O {CH2CH (CH3) O}fCH3, C9H19PhO (CH2CH2O)g{CH (CH3) O}hCH3(Ph is a phenyl group), CH3O {CH2CH (CH3) O}iCO {O (CH3) CHCH2}jOCH3(In the formula, a to f are integers of 5 to 250, g to j are integers of 2 to 249, 5 ≦ g + h ≦ 250, 5 ≦ i + j ≦ 250.)
                                Non-aqueous electrolyte
  The non-aqueous electrolyte solution of the present invention dissolves an electrolyte in a non-aqueous solvent and further contains the aforementioned compounds. Any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte.
[0048]
  As a specific example of the electrolyte, LiPF6, LiBF4, LiClO4, LiAsF6, Li2SiF6, LiC4F9SO3, LiC8F17SO3And lithium salts. Moreover, the lithium salt shown by the following general formula can also be used. LiOSO2R8, LiN (SO2R9) (SO2R10), LiC (SO2R11) (SO2R12) (SO2R13), LiN (SO2OR14) (SO2OR15) (Where R8~ R15May be the same as or different from each other, and are perfluoroalkyl groups having 1 to 6 carbon atoms). These lithium salts may be used alone or in combination of two or more.
[0049]
  Of these, in particular, LiPF6, LiBF4, LiOSO2R8, LiN (SO2R9) (SO2R10), LiC (SO2R11) (SO2R12) (SO2R13), LiN (SO2OR14) (SO2OR15) Is preferred.
[0050]
  Such an electrolyte is desirably contained in the non-aqueous electrolyte at a concentration of 0.1 to 3 mol / liter, preferably 0.5 to 2 mol / liter.
[0051]
  The non-aqueous electrolyte in the present invention contains the aforementioned compounds, a non-aqueous solvent and an electrolyte as essential components, but other additives may be added as necessary.
[0052]
  Other additives include carboxylic anhydrides such as maleic anhydride, norbornene dicarboxylic anhydride, diglycolic acid; unsaturated hydrocarbons such as vinyl ethylene carbonate, divinyl ethylene carbonate, methylene-1,2-ethylene carbonate Substituted cyclic carbonates; hydrogen fluoride and the like.
[0053]
  In the case of using hydrogen fluoride as an additive, the method of adding to the electrolytic solution includes blowing a predetermined amount of hydrogen fluoride gas directly into the electrolytic solution. The lithium salt used in the present invention is LiPF.6And LiBF4In the case of a lithium salt containing fluorine, etc., water may be added to the electrolytic solution using the reaction of an active proton compound such as water and an electrolyte shown below, and may be generated in the electrolytic solution. .
[0054]
  LiMFn + H2O → LiPF(N-2)O + 2HF
(However, M represents P, B, etc., n = 6 when M = P, and n = 4 when M = B.)
[0055]
  When water is added to the electrolyte and HF is indirectly generated in the electrolyte, two molecules of HF are generated almost quantitatively from one molecule of water, so the amount of water added matches the desired concentration of HF added. Calculate and add. Specifically, it is preferable to add 0.45 times (weight ratio) water as desired.
[0056]
  Specific examples of other protic compounds include trifluoroacetic acid, methanol, ethanol, ethylene glycol, propylene glycol and the like.
[0057]
  The addition amount as hydrogen fluoride is 0.0001 to 0.7 wt%, preferably 0.001 to 0.3 wt%, more preferably 0.001 to 0.1 wt%.
[0058]
  The non-aqueous electrolyte according to the present invention is not only suitable as a non-aqueous electrolyte for a lithium ion secondary battery, but can also be used as a non-aqueous electrolyte for a primary battery.
[0059]
                                Secondary battery
  The non-aqueous electrolyte secondary battery according to the present invention basically includes a negative electrode, a positive electrode, and the non-aqueous electrolyte, and usually includes a separator between the negative electrode and the positive electrode. ing.
[0060]
  Examples of the negative electrode active material constituting the negative electrode include metallic lithium, lithium alloy, carbon material capable of doping / dedoing lithium ions, tin oxide, niobium oxide or oxidation capable of doping / dedoping lithium ions. Vanadium, titanium oxide that can be doped / undoped with lithium ions, or silicon or tin that can be doped / undoped with lithium ions can be used. Among these, a carbon material that can dope / dedope lithium ions is preferable. Such a carbon material may be graphite or amorphous carbon, and activated carbon, carbon fiber, carbon black, mesocarbon microbeads, natural graphite and the like are used.
[0061]
  As the negative electrode active material, a carbon material having a (002) plane distance (d002) of 0.340 nm or less measured by X-ray analysis is particularly preferable, and the density is 1.70 g / cm.3The above-described graphite or a highly crystalline carbon material having properties close thereto is desirable. When such a carbon material is used, the energy density of the battery can be increased.
[0062]
  As the positive electrode active material constituting the positive electrode, MoS2TiS2, MnO2, V2O5Transition metal oxides or transition metal sulfides such as LiCoO2LiMnO2, LiMn2O4, LiNiO2, LiNixCo(1-x)O2, LiNixMnyCo(1-xy)O2Examples thereof include composite oxides composed of lithium and a transition metal such as polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, and dimercaptothiadiazole / polyaniline composite. Among these, a composite oxide composed of lithium and a transition metal is particularly preferable. When the negative electrode is lithium metal or a lithium alloy, a carbon material can also be used as the positive electrode. As the positive electrode, a mixture of lithium and transition metal composite oxide and a carbon material can be used.
[0063]
  The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte. As the porous film, a microporous polymer film is preferably used, and examples of the material include polyolefin, polyimide, and polyvinylidene fluoride. In particular, a porous polyolefin film is preferable, and specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and polypropylene can be exemplified. Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like. The electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
[0064]
  Such a nonaqueous electrolyte secondary battery can be formed in a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose. Next, the structures of the cylindrical and coin-type batteries will be described. The negative electrode active material, the positive electrode active material, and the separator constituting each battery are commonly used.
[0065]
  For example, in the case of a cylindrical non-aqueous electrolyte secondary battery, a negative electrode formed by applying a negative electrode active material to a negative electrode current collector and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector are It winds through the separator which inject | poured the water electrolyte solution, and is accommodated in the battery can in the state which mounted the insulating board on the upper and lower sides of the wound body.
[0066]
  The non-aqueous electrolyte secondary battery according to the present invention can also be applied to a coin-type non-aqueous electrolyte secondary battery. In a coin-type battery, a disk-shaped negative electrode, a separator, a disk-shaped positive electrode, and a stainless steel or aluminum plate are stored in a coin-type battery can in a state of being laminated in this order.
[0067]
【Example】
  EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not restrict | limited at all by these Examples.
[0068]
(Example 17, Reference Examples 1-3)
1. Battery fabrication
<Preparation of non-aqueous electrolyte>
  Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed in a ratio of EC: MEC = 4: 6 (weight ratio), and then the electrolyte LiPF6Was dissolved in a non-aqueous solvent to prepare a non-aqueous electrolyte so that the electrolyte concentration was 1.0 mol / liter. Next, the additives shown in Table 1 were added to the non-aqueous electrolyte solution (100% by weight) at the ratio shown in Table 1.
[0069]
<Production of negative electrode>
  87 parts by weight of natural graphite (LF-18A made by Chuetsu Graphite) and 13 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed and dispersed in N-methylpyrrolidinone as a solvent to prepare a natural graphite mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm, dried, compression-molded, punched into a 14 mm disk, and coin-shaped natural graphite. An electrode was obtained. The natural graphite electrode mixture had a thickness of 110 μm and a weight of 20 mg per area of a circle having a diameter of 14 mm.
[0070]
<LiCoO2Production of electrodes>
  LiCoO290 parts by weight (HLC-21 manufactured by Honjo FMC Energy Systems Co., Ltd.), 6 parts by weight of graphite as a conductive agent and 1 part by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride as a binder were mixed. Dispersed in methylpyrrolidone and LiCoO2A mixture slurry was prepared.
  This LiCoO2The mixture slurry was applied to an aluminum foil with a thickness of 20 μm, dried, compression molded, and punched out to a diameter of 13 mm, and LiCoO2An electrode was produced.
This LiCoO2The thickness of the mixture was 90 μm, and the weight was 35 mg per area of a circle having a diameter of 13 mm.
[0071]
<Production of battery>
  Natural graphite electrode with a diameter of 14 mm, LiCoO with a diameter of 13 mm2A separator made of an electrode and a microporous polypropylene film having a thickness of 25 μm and a diameter of 16 mm is placed in a 2032 size battery can made of stainless steel, a natural graphite electrode, a separator, LiCoO2Laminated in the order of electrodes. Thereafter, 0.03 ml of the non-aqueous electrolyte was poured into the separator, and an aluminum plate (thickness 1.2 mm, diameter 16 mm, and spring was accommodated. Finally, the battery can lid was passed through a polypropylene gasket. By crimping, a coin-type battery having a diameter of 20 mm and a height of 3.2 mm was produced while maintaining the airtightness in the battery.
[0072]
2. Evaluation of battery characteristics
<Measurement of initial battery characteristics>
(1) Measurement of initial low-load discharge capacity
  Using the coin-type battery produced as described above, this battery was charged under the condition of a constant current of 0.5 mA and a constant voltage of 4.2 V until the current value at a constant voltage of 4.2 V was 0.05 mA, Thereafter, discharging was performed under a condition of a constant current of 0.5 mA and a constant voltage of 3.0 V until the current value at a constant voltage of 3.0 V was 0.05 mA. The discharge capacity of the coin-type battery at this time is referred to as “initial low-load discharge capacity”. The initial low load discharge capacity was around 4.5 mAh in any of the batteries.
[0073]
(2) Measurement of initial medium load discharge capacity
  Next, this battery was charged under the condition of a constant current of 3 mA and a constant voltage of 4.2 V until the current value at a constant voltage of 4.2 V reached 0.05 mA, and then the battery voltage was 3.0 V at a current of 5 mA. Discharged until The discharge capacity of the coin-type battery at this time is referred to as “initial medium load discharge capacity”.
[0074]
<Measurement of electrode interface resistance>
  After charging the coin-type battery to 4.2 V, the impedance at 0.2 Hz and 2500 Hz was measured, and the impedance value obtained by subtracting the impedance value at 2500 Hz from the impedance value at 0.2 Hz was defined as “electrode interface resistance”. .
[0075]
<Measurement of battery storage characteristics>
(1) Measurement of discharge capacity
  The battery was once discharged to 3 V, and charged under the condition of a 3 mA constant current of 4.1 V constant voltage until the current value at the time of 4.1 V constant voltage was 0.05 mA. The charge amount at this time was defined as “charge capacity before storage”.
  This battery was stored at 50 ° C. for 1 week, and then discharged under a condition of a constant current of 0.5 mA and a constant voltage of 3.0 V until the current value at a constant voltage of 3.0 V was 0.05 mA. The discharge amount at this time was defined as “discharge capacity after storage”.
  The difference between “discharge capacity after storage” and “charge capacity before storage” was defined as “high-temperature storage self-discharge capacity” (“discharge capacity after storage” − “charge capacity before storage” = “high-temperature storage self-discharge capacity”).
[0076]
(2) Measurement of medium load discharge capacity after storage
  Next, this battery was charged under the condition of a constant current of 3 mA and a constant voltage of 4.2 V until the current value at a constant voltage of 4.2 V reached 0.05 mA, and then the battery voltage was 3.0 V at a current of 5 mA. Discharged until The discharge capacity of the coin-type battery at this time is referred to as “medium-load discharge capacity after storage”.
[0077]
  Example 17, Reference Examples 1-3The evaluation results of the battery characteristics are shown in Table 2.
[0078]
(Comparative Example 1)
  In <Preparation of Nonaqueous Electrolyte> in Example 1, a nonaqueous electrolyte was prepared in the same manner except that the addition of the additive was omitted. Using the obtained nonaqueous electrolyte, Example 1 and Similarly, batteries were prepared and battery characteristics were evaluated.
  The “electrode interface resistance” and “high temperature storage self-discharge capacity” measured in Comparative Example 1 are defined as “electrode interface resistance in blank” and “high temperature storage self-discharge capacity in blank”, respectively.
  The evaluation results of the battery characteristics are shown in Table 2.
[0079]
  The battery characteristics shown in Table 2 were evaluated using the following indices from the experimental results in Examples 1 to 10 and Comparative Example 1. In both cases, the unit is%.
“Electrode interface resistance ratio” = {“electrode interface resistance of battery using test electrolyte” / “electrode interface resistance in blank”} × 100
“Initial load characteristic index” = {“Initial load discharge capacity” / “Initial low load discharge capacity”} × 100
“Load characteristic maintenance ratio” = {“Medium load discharge capacity after storage” / “Initial medium load discharge capacity”} × 100
“Self-discharge ratio” = {“High-temperature storage self-discharge capacity of test electrolyte” / “High-temperature storage self-discharge capacity in blank”} × 100
[0080]
[Table 1]
Figure 0004187959
[0081]
[Table 2]
Figure 0004187959
[0082]
  From Table 2, Examples 1 to7It was found that even when any of these electrolytes was used, the initial interface resistance was smaller than that of the blank (Comparative Example 1), and a battery exhibiting excellent load characteristics was obtained.
[0083]
  From Table 2With the electrolyte of the present invention, highIt can be seen that a battery with little deterioration in load characteristics after storage at a high temperature can be obtained. It can be seen that when the electrolytic solution further contains a vinylene carbonate derivative represented by the general formula (3), deterioration of load characteristics and self-discharge after high-temperature storage are suppressed, and a battery exhibiting superior characteristics can be obtained.
[0084]
【The invention's effect】
  The present invention provides a non-aqueous electrolyte that is particularly suitable as an electrolyte for a lithium ion secondary battery.
  By using the non-aqueous electrolyte of the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery with low initial electrode interface resistance and excellent load characteristics in initial characteristics or characteristics after storage at high temperature. it can.

Claims (14)

ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリペンチル、ホウ酸ジエチルメチル、ホウ酸トリ(メトキシエチル)、ヒドロキシホウ酸ジメチル、ホウ酸ジメチルモノリチウム塩およびホウ酸モノメチルジリチウム塩から選ばれるアルキルホウ酸エステル類ならびにホウ酸トリ(トリフルオロエチル)、ホウ酸メチルジ(トリフルオロエチル)、ホウ酸トリ(トリクロロエチル)、ホウ酸トリ(テトラフルオロエチル)、ホウ酸トリ(モノフルオロエチル)、ホウ酸トリ(ペンタフルオロプロピル)、ホウ酸トリ(ヘキサフルオロプロピル)、ホウ酸トリ(2−メチル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(2−フェニル−1,1,1,3,3,3−ヘキサフルオロプロピル)、ホウ酸トリ(トリフルオロエトキシエチル)及びホウ酸メチルジ(トリフルオロエトキシエチル)から選ばれるハロゲン含有ホウ酸エステルなる群から選ばれたホウ酸エステルと、1,3―プロパンスルトン、1,4―ブタンスルトン、1,3―プロペンスルトン、1,4―ブテンスルトンおよび1,5―ペンテンスルトンから選ばれたスルトン並びにベンゼンジスルホン酸ジメチルなる群から選ばれたスルホニル基含有化合物と、非水溶媒と電解質を含むリチウム二次電池用非水電解液。 Trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tripentyl borate, diethyl methyl borate, tri (methoxyethyl) borate, dimethyl hydroxyborate, dimethyl monolithium borate and monomethyl diborate Alkyl borate esters selected from lithium salts and tri (trifluoroethyl) borate, methyl di (trifluoroethyl) borate, tri (trichloroethyl) borate, tri (tetrafluoroethyl) borate, tri (monofluoroborate) Fluoroethyl), tri (pentafluoropropyl) borate, tri (hexafluoropropyl) borate, tri (2-methyl-1,1,1,3,3,3-hexafluoropropyl) borate, triborate (2-Phenyl-1,1,1,3,3,3-hexafluoro Boric acid ester selected from the group consisting of halogen-containing boric acid ester selected from tripropyl (trifluoroethoxyethyl) borate and methyl di (trifluoroethoxyethyl) borate, 1,3-propane sultone, A sulfonyl group-containing compound selected from the group consisting of sultone selected from 4-butane sultone, 1,3-propene sultone, 1,4-butene sultone and 1,5-pentene sultone, and dimethyl benzenedisulfonate , a non-aqueous solvent, and an electrolyte A non-aqueous electrolyte for a lithium secondary battery . さらにビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピルエチレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、フルオロビニレンカーボネートおよびトリフルオロメチルビニレンカーボネートから選ばれたビニレンカーボネート誘導体を含むことを特徴とする請求項1に記載の非水電解液。Further , it contains a vinylene carbonate derivative selected from vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl ethylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, dipropyl vinylene carbonate, fluoro vinylene carbonate and trifluoromethyl vinylene carbonate. The nonaqueous electrolytic solution according to claim 1 . 非水溶媒が環状非プロトン性溶媒および/または鎖状非プロトン性溶媒からなることを特徴とする請求項1または2に記載の非水電解液。The nonaqueous electrolytic solution according to claim 1 or 2, wherein the nonaqueous solvent comprises a cyclic aprotic solvent and / or a chain aprotic solvent. 環状非プロトン性溶媒が、環状カーボネートおよび環状エステルから選ばれた少なくとも1種の溶媒であることを特徴とする請求項に記載の非水電解液。The nonaqueous electrolytic solution according to claim 3 , wherein the cyclic aprotic solvent is at least one solvent selected from cyclic carbonates and cyclic esters. 環状非プロトン性溶媒が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびγ−ブチロラクトンから選ばれた少なくとも1種の溶媒であることを特徴とする請求項記載の非水電解液。The nonaqueous electrolytic solution according to claim 4 , wherein the cyclic aprotic solvent is at least one solvent selected from ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone. 鎖状非プロトン性溶媒が、鎖状カーボネートおよび鎖状エステルから選ばれた少なくとも1種の溶媒であることを特徴とする請求項2〜5のいずれかに記載の非水電解液。6. The nonaqueous electrolytic solution according to claim 2 , wherein the chain aprotic solvent is at least one solvent selected from a chain carbonate and a chain ester. 鎖状非プロトン性溶媒が、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルプロピオネートおよびプロピルアセテートから選ばれた少なくとも1種の溶媒であることを特徴とする請求項に記載の非水電解液。Chain aprotic solvent, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, claim 6, characterized in that at least one solvent selected from methyl propionate and propyl acetate Non-aqueous electrolyte. 電解質が、LiPF、LiBF、LiOSO(2k+1)(k=1〜8の整数)、LiClO、LiAsF、LiN(SO(2k+1)(k=1〜8の整数)、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)から選ばれた少なくとも1種であることを特徴とする請求項1〜のいずれかに記載の非水電解液。The electrolyte is LiPF 6 , LiBF 4 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiClO 4 , LiAsF 6 , LiN (SO 2 C k F (2k + 1) ) 2 (k = 1 to 8), LiPF n (C k F (2k + 1) ) (6-n) (n = 1 to 5, k = 1 to 8) Item 8. The nonaqueous electrolytic solution according to any one of Items 1 to 7 . 前記ホウ酸エステルが、非水電解液全体に対して0.5〜1重量%含まれていることを特徴とする請求項1〜8のいずれかに記載の非水電解液。The nonaqueous electrolytic solution according to any one of claims 1 to 8, wherein the boric acid ester is contained in an amount of 0.5 to 1 wt% with respect to the entire nonaqueous electrolytic solution. 記スルホニル基含有化合物が、非水電解液全体に対して0.05〜5重量%含まれていることを特徴とする請求項1〜のいずれかに記載の非水電解液。Before SL sulfonyl group-containing reduction compound is a non-aqueous electrolyte according to any one of claims 1 to 9, characterized in that it contains 0.05 to 5 wt% with respect to the total non-aqueous electrolyte. 記ビニレンカーボネート誘導体が、非水電解液全体に対して0.05〜5重量%含まれていることを特徴とする請求項1〜10のいずれかに記載の非水電解液。Non-aqueous electrolyte according to any one of claims 1 to 10 before millet two alkylene carbonate derivative, with respect to the entire non-aqueous electrolyte characterized in that it contains 0.05 to 5 wt%. 請求項1〜11のいずれかに記載の非水電解液を含むリチウム二次電池。 Lithium secondary battery comprising the nonaqueous electrolytic solution according to any one of claims 1 to 11. 負極活物質として金属リチウム、リチウム含有合金、リチウムイオンのドープ・脱ドープが可能な炭素材料、リチウムイオンのドープ・脱ドープが可能な酸化スズ、リチウムイオンのドープ・脱ドープが可能な酸化チタン、酸化ニオブもしくは酸化バナジウム、またはリチウムイオンのドープ・脱ドープが可能なシリコンもしくはスズのいずれかを含む負極と、正極活物質として遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属の複合酸化物、導電性高分子材料、炭素材料またはこれらの混合物のいずれかを含む正極と、請求項1〜11のいずれかに記載の非水電解液とを含むリチウム二次電池。As a negative electrode active material, metallic lithium, lithium-containing alloy, carbon material that can be doped / undoped with lithium ions, tin oxide that can be doped / undoped with lithium ions, titanium oxide that can be doped / undoped with lithium ions, A negative electrode containing either niobium oxide or vanadium oxide, or silicon or tin capable of being doped / undoped with lithium ions, and transition metal oxides, transition metal sulfides, and composite oxides of lithium and transition metals as positive electrode active materials A lithium secondary battery comprising: a positive electrode including any one of a conductive polymer material, a carbon material, or a mixture thereof; and the nonaqueous electrolytic solution according to any one of claims 1 to 11 . 前記リチウムイオンのドープ・脱ドープが可能な炭素材料が、X線解析で測定した(002)面における面間隔距離(d002)が、0.340nm以下であることを特徴とする請求項13に記載のリチウムイオン二次電池。Doping and dedoping of the lithium ions is a carbon material capable, surface separation distance in was measured by X-ray analysis (002) plane (d002) is, according to claim 13, characterized in that at most 0.340nm Lithium ion secondary battery.
JP2001326630A 2001-10-24 2001-10-24 Non-aqueous electrolyte and secondary battery using the same Expired - Lifetime JP4187959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326630A JP4187959B2 (en) 2001-10-24 2001-10-24 Non-aqueous electrolyte and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326630A JP4187959B2 (en) 2001-10-24 2001-10-24 Non-aqueous electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2003132946A JP2003132946A (en) 2003-05-09
JP4187959B2 true JP4187959B2 (en) 2008-11-26

Family

ID=19142981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326630A Expired - Lifetime JP4187959B2 (en) 2001-10-24 2001-10-24 Non-aqueous electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4187959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013140A1 (en) 2017-07-14 2019-01-17 三井化学株式会社 Lithium boron fluorophosphate complex compound, composition containing lithium boron fluorophosphate, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
CN109980287A (en) * 2019-04-04 2019-07-05 常州创标新能源科技有限公司 A kind of electrolyte and preparation method thereof for lithium battery
CN110556578A (en) * 2019-09-06 2019-12-10 中国科学院福建物质结构研究所 Electrolyte additive, electrolyte containing electrolyte additive and application of electrolyte in lithium ion battery

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012284A1 (en) 2002-07-25 2004-02-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
CN100444456C (en) * 2004-05-11 2008-12-17 比亚迪股份有限公司 Non-aqueous electrolyte and secondary battery of lithium
US7629085B2 (en) 2004-05-28 2009-12-08 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery
JP4968614B2 (en) * 2004-12-10 2012-07-04 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP5055710B2 (en) * 2005-04-13 2012-10-24 ソニー株式会社 Secondary battery electrolyte, secondary battery and electronic equipment
US20070077496A1 (en) * 2005-10-05 2007-04-05 Medtronic, Inc. Lithium-ion battery
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP4423277B2 (en) * 2006-07-24 2010-03-03 日立ビークルエナジー株式会社 Lithium secondary battery
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
US9118062B2 (en) * 2007-06-13 2015-08-25 Sony Corporation Anode and method of manufacturing the same, and battery and method of manufacturing the same
JP2008308421A (en) * 2007-06-13 2008-12-25 Sony Corp Ionic compound, negative electrode, electrolyte, electrochemical device and battery
JP5107118B2 (en) * 2008-03-31 2012-12-26 三洋電機株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5112148B2 (en) * 2008-03-31 2013-01-09 三洋電機株式会社 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery
JP5063448B2 (en) * 2008-03-31 2012-10-31 三洋電機株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
CN102113163B (en) 2008-08-06 2015-01-21 三井化学株式会社 Nonaqueous electrolyte solution and lithium secondary battery
JP5463581B2 (en) * 2009-03-11 2014-04-09 三井化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
US8822086B2 (en) 2009-09-28 2014-09-02 National University Corporation Shizuoka University Solvent for electrolyte solution, electrolyte solution, and gel-like electrolyte
JP5421803B2 (en) * 2010-01-20 2014-02-19 東ソー・ファインケム株式会社 Additive for lithium ion secondary battery electrolyte
JP2011181463A (en) * 2010-03-03 2011-09-15 Tdk Corp Polymer electrolyte, secondary battery, and method of manufacturing secondary battery
JP5948756B2 (en) * 2010-08-05 2016-07-06 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2012169138A (en) * 2011-02-14 2012-09-06 Tosoh Finechem Corp Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery
JP5658821B2 (en) * 2011-09-20 2015-01-28 日立マクセル株式会社 Non-aqueous secondary battery
JP6227864B2 (en) * 2012-11-12 2017-11-08 株式会社リコー Non-aqueous electrolyte storage element
US10287263B2 (en) * 2014-11-21 2019-05-14 Daikin Industries, Ltd. Fluorinated unsaturated cyclic carbonate and process for producing same
WO2016125592A1 (en) * 2015-02-04 2016-08-11 ステラケミファ株式会社 Non-aqueous electrolytic solution for secondary battery, and secondary battery including same
JP6781548B2 (en) * 2015-02-06 2020-11-04 ステラケミファ株式会社 Non-aqueous electrolyte for secondary batteries and secondary batteries equipped with it
KR20170117044A (en) * 2015-02-09 2017-10-20 스텔라 케미파 코포레이션 Non-aqueous electrolyte for secondary battery and secondary battery having same
CN104868162B (en) * 2015-06-02 2017-09-05 哈尔滨工业大学 An electrolyte solution for improving the positive electrode surface film of high-voltage positive electrode material
JP6749088B2 (en) * 2015-11-05 2020-09-02 三井化学株式会社 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
WO2017078107A1 (en) 2015-11-05 2017-05-11 三井化学株式会社 Nonaqueous electrolyte solution for secondary batteries, and secondary battery
CN105375066B (en) * 2015-12-16 2018-01-12 东莞市杉杉电池材料有限公司 One kind is applied to silicon-carbon cathode lithium-ion battery electrolytes and silicon-carbon cathode lithium ion battery
EP3584872B1 (en) 2017-02-16 2023-10-25 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and power storage device
JP2018156761A (en) * 2017-03-16 2018-10-04 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
CN107275676A (en) * 2017-08-04 2017-10-20 广州天赐高新材料股份有限公司 A kind of electrolyte and silicon substrate lithium secondary battery for silicon substrate lithium secondary battery
CN108091935A (en) * 2017-12-20 2018-05-29 中南大学 A kind of high voltage electrolyte of lithium ion battery and its preparation and application
WO2019188760A1 (en) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 Electrochemical device
US12255288B2 (en) 2019-03-29 2025-03-18 Mitsui Chemicals, Inc. Nonaqueous electrolytic solution for battery and lithium secondary battery
CN110085911B (en) * 2019-04-27 2021-04-06 珠海冠宇电池股份有限公司 Non-aqueous electrolyte and lithium ion battery containing same
JP7326681B2 (en) * 2019-07-30 2023-08-16 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
KR20210141251A (en) * 2020-05-15 2021-11-23 인천대학교 산학협력단 Electrolyte for lithium secondary battery comprising triethanolamine borate and lithium secondary battery comprising the same
CN111430801B (en) 2020-05-28 2022-04-22 蜂巢能源科技有限公司 Electrolyte of lithium ion secondary battery and application thereof
CN115997316A (en) 2020-06-26 2023-04-21 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
EP4541799A4 (en) * 2022-06-21 2025-07-02 Contemporary Amperex Technology Hong Kong Ltd CONNECTION AND SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL DEVICE THEREOF
CN115911554A (en) * 2022-11-18 2023-04-04 重庆太蓝新能源有限公司 Electrolyte, battery and electric equipment
CN116239626B (en) * 2023-01-13 2023-09-15 南京工业大学 Fluorine-modified borate ester and preparation method thereof and brake fluid containing the fluorine-modified borate ester
CN120073069A (en) * 2023-11-30 2025-05-30 广州天赐高新材料股份有限公司 An electrolyte and its application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016862A1 (en) * 1995-11-03 1997-05-09 Arizona Board Of Regents Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents
JPH113728A (en) * 1997-04-17 1999-01-06 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP3439084B2 (en) * 1997-08-05 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte battery
JP3462764B2 (en) * 1998-09-25 2003-11-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4474715B2 (en) * 1999-10-13 2010-06-09 パナソニック株式会社 Non-aqueous electrochemical device and its electrolyte
JP2001256997A (en) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd Lithium secondary battery
JP4082853B2 (en) * 2000-07-13 2008-04-30 三洋電機株式会社 Lithium secondary battery
JP4236390B2 (en) * 2001-04-19 2009-03-11 三洋電機株式会社 Lithium secondary battery
JP2002358999A (en) * 2001-06-01 2002-12-13 Gs-Melcotec Co Ltd Non-aqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013140A1 (en) 2017-07-14 2019-01-17 三井化学株式会社 Lithium boron fluorophosphate complex compound, composition containing lithium boron fluorophosphate, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
US11597736B2 (en) 2017-07-14 2023-03-07 Mitsui Chemicals, Inc. Lithium boron fluorophosphate complex compound, lithium boron fluorophosphate-containing composition, lithium boron fluorophosphate, additive for lithium secondary battery, non-aqueous electrolytic solution for battery, and lithium secondary battery
CN109980287A (en) * 2019-04-04 2019-07-05 常州创标新能源科技有限公司 A kind of electrolyte and preparation method thereof for lithium battery
CN109980287B (en) * 2019-04-04 2021-10-19 常州创标新能源科技有限公司 Electrolyte for lithium battery and preparation method thereof
CN110556578A (en) * 2019-09-06 2019-12-10 中国科学院福建物质结构研究所 Electrolyte additive, electrolyte containing electrolyte additive and application of electrolyte in lithium ion battery
CN110556578B (en) * 2019-09-06 2021-02-12 中国科学院福建物质结构研究所 A kind of electrolyte additive, electrolyte containing it and application of this electrolyte in lithium ion battery

Also Published As

Publication number Publication date
JP2003132946A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4450550B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4557381B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4726282B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4190162B2 (en) Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5030074B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5390736B2 (en) Non-aqueous electrolyte for electrochemical devices
KR101766568B1 (en) Nonaqueous electrolyte solution for batteries, novel compound, polymer electrolyte, and lithium secondary battery
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2016201177A (en) Nonaqueous electrolyte for battery, and lithium secondary battery
JP4565707B2 (en) Nonaqueous electrolyte and secondary battery using the same
JP4863572B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4392726B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4662600B2 (en) Electrolytic solution for lithium battery and secondary battery using the same
JP2000294278A (en) Nonaqueous electrolyte and secondary battery using it
JPH0963644A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2002008717A (en) Nonaqueous electrolyte and secondary battery using the same
JP3986216B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2004087437A (en) Lithium secondary battery
JP3949337B2 (en) Non-aqueous electrolyte and secondary battery using the same
KR100594474B1 (en) Non-aqueous electrolytic solutions and secondary battery containing the same
JP4010701B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5487442B2 (en) Lithium ion secondary battery
JP2004087282A (en) Nonaqueous electrolytic solution and secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Ref document number: 4187959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term