Nothing Special   »   [go: up one dir, main page]

JP4064645B2 - New production method of polysubstituted cycloalkenes - Google Patents

New production method of polysubstituted cycloalkenes Download PDF

Info

Publication number
JP4064645B2
JP4064645B2 JP2001175047A JP2001175047A JP4064645B2 JP 4064645 B2 JP4064645 B2 JP 4064645B2 JP 2001175047 A JP2001175047 A JP 2001175047A JP 2001175047 A JP2001175047 A JP 2001175047A JP 4064645 B2 JP4064645 B2 JP 4064645B2
Authority
JP
Japan
Prior art keywords
group
substituent
production method
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175047A
Other languages
Japanese (ja)
Other versions
JP2002371036A (en
Inventor
充 新藤
宏造 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001175047A priority Critical patent/JP4064645B2/en
Publication of JP2002371036A publication Critical patent/JP2002371036A/en
Application granted granted Critical
Publication of JP4064645B2 publication Critical patent/JP4064645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医薬品や各種材料の原料として種々の用途が期待される多置換シクロアルケン類の新規製造法に関する。
【0002】
【従来の技術】
多置換シクロアルケン類の製造法としては、例えばJ.Am.Chem.Soc.1987,109,2547-2549及びChem.Pharm.Bull.1982,30,723-726に記載のデヒドロイリドジオールの合成法等がある。しかしながら、これらの方法は、前者では8工程、また、後者では7工程と何れも工程数が多く操作が煩雑である。
また、Tetrahedron,1980,36,3115-3119ではリモネンを原料に4工程でデヒドロイリドジオールを合成しているが、天然物が原料なので、他の類縁体への応用には限界があり、汎用性に欠ける。
更に、J.Chem.Soc.,Chem.Commun.,1991,1367-1368では、セラトピカノールの合成において、その中間体がリモネンから6〜7工程で合成されている。
このように、これまで知られている多置換シクロアルケン類の製造法は、何れも工程数が多く操作が煩雑であり、また選択性に乏しく、且つ収率もあまり良くない。
【0003】
【発明が解決しようとする課題】
本発明は、工程数が少なく、選択性に優れ、且つ収率の高い多置換シクロアルケン類の製造法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、イノラートアニオンと、ケト基を有するα,β−不飽和化合物とを、タンデム型環化付加−マイケル反応させた後、脱炭酸反応させることを特徴とする多置換シクロアルケン類の製造法に関する。
【0005】
【発明の実施の形態】
本発明の製造法において用いられるイノラートアニオンとしては、例えば下記一般式[1]
【化4】

Figure 0004064645
(式中、Rは、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表す。)
で示される化合物が挙げられる。
【0006】
本発明の製造法において用いられる、ケト基を有するα,β−不飽和化合物としては、例えば下記一般式[2]
【化5】
Figure 0004064645
(式中、Rは、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表し、R,R,R,R,R,R,R及びR10はそれぞれ独立して水素原子、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表す。また、RとR又はRとR10とが結合してそれぞれが結合している炭素原子と一緒になって芳香環若しくはシクロアルキル環を形成していても良く、更には、RとR10とが結合してそれぞれが結合している炭素原子と一緒になってシクロアルキル環を形成していても良い。Xは電子吸引性の官能基を表し、m及びnはそれぞれ独立して0又は1を表す。)
で示される化合物が挙げられる。
なお、上記一般式[2]で表されるアルケンの立体構造はシスでもトランスでもどちらでも良い。
【0007】
本発明の製造法により得られる多置換シクロアルケン類としては、例えば下記一般式[3]
【化6】
Figure 0004064645
(式中、R〜R10、X、m及びnは前記と同じ。)
で示される化合物が挙げられる。
【0008】
上記一般式[1]〜[3]において、R〜R10で表される、置換基を有していても良いアルキル基のアルキル基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルキル基が挙げられ、より具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
また、置換基を有していても良いアリール基のアリール基としては、例えば、炭素数6〜30、好ましくは6〜20、より好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素基が挙げられ、より具体的には、例えば、フェニル基、トリル基、キシリル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。
置換基を有していても良いアラルキル基のアラルキル基としては、例えば、炭素数7〜30、好ましくは7〜20、より好ましくは7〜15の単環、多環又は縮合環式のアラルキル基が挙げられ、より具体的には、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。
また、これらアルキル基、アリール基、アラルキル基の置換基としては、本発明に係る反応の進行に支障を来さないものであればどのような置換基でも良いが、例えば、アルケニル基、アルキニル基、アルコシ基、ハロゲン原子等が挙げられる。
【0009】
上記一般式[2]及び[3]において、Xで表される電子吸引性の官能基としては、例えば、−COOR基、−CH=NR基、−CN基、−SOR基(但し、Rは、何れの場合も、水素原子、アルキル基、アリール基又はアラルキル基を表す。)等が挙げられ、−COOR基が特に好ましい。
ここで、Rで表されるアルキル基、アリール基、アラルキル基としては、上記した、R〜R10で表されるアルキル基、アリール基、アラルキル基のそれと同じものが挙げられる。
【0010】
本発明の製造法において用いられるイノラートアニオンは、例えば下記反応スキームに従って容易に合成することが出来る。Tetrahedron 1998,43,2411-2422
【化7】
Figure 0004064645
【0011】
即ち、例えば、α,α−ジブロモエステルにターシャリーブチルリチウム(4当量)を加え、−78度で3時間、更に0度で30分反応させることにより合成できる。反応は通常、テトラヒドロフラン(THF)、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒中で行われる。
【0012】
本発明の多置換シクロアルケン類の製造法において、イノラートアニオンと、ケト基を有するα,β−不飽和化合物とのタンデム型環化付加−マイケル反応は、通常−40度〜−78度の間、好ましくは−78度により近い温度で行われる。反応時間は通常10分〜1時間程度であるが、30分位が一般的である。反応は通常、テトラヒドロフラン(THF)、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒中で行われる。
なお、α,α−ジブロモエステルからイノラートを合成する反応と、生成したイノラートと、ケト基を有するα,β−不飽和化合物とのタンデム型環化付加−マイケル反応は、通常ワンポットで行われる。
タンデム型環化付加−マイケル反応後の脱炭酸反応は、通常、酸触媒存在下加熱還流させることにより行われる。酸としては、酸性シリカゲル、塩酸、硫酸が適しているが、一般的には酸性シリカゲルが用いられる。溶媒はベンゼンかトルエンが一般的である。反応時間は1〜10時間程度である。
【0013】
本発明の製造法を比較的構造の簡単な化合物を例にして反応スキームで示すと大略下記の如くなる。
【化8】
Figure 0004064645
【0014】
また、一般式[2]において、RとR10とが結合してそれぞれが結合している炭素原子と一緒になってシクロアルキル環を形成している場合について、本発明の製造法を反応スキームで示すと下記の如くなる。
【化9】
Figure 0004064645
【0015】
更に、一般式[2]において、RとR又はRとR10とが結合してそれぞれが結合している炭素原子と一緒になって芳香環を形成している場合について、本発明の製造法を反応スキームで示すと下記の如くなる。
【化10】
Figure 0004064645
【0016】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0017】
実施例1 エチル(2,3−ジメチル−2−シクロペンテニル)アセテートの合成
2,2−ジブロモプロピオン酸エチル(260mg)のTHF溶液6mlに−78度冷却下、ターシャリーブチルリチウムのペンタン溶液(2.82ml,1.4M)を加え、3時間撹拌、引き続き0度で30分間撹拌した。次に−78度に冷却し、6−オキソ−2−ヘプテン酸エチル(136mg)のTHF溶液を加え30分間撹拌した。次に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出(3×20ml)し、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄後無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去し、得られた粗生成物をベンゼン(15ml)に溶かし酸性シリカゲルを25mg加えて9時間加熱環流した。シリカゲルを濾去し、溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィで精製して無色油状の所望の生成物93.4mg(収率64%)を得た。
H~NMR (300 MHz, CDCl) d: 1.26 (t, J = 7.2 Hz, 3H), 1.42~1.53 (m, 1H), 1.56 (s, 3H), 1.61 (s, 3H), 2.01~2.12 (m, J = 10.0 Hz, 14.7 Hz, 2H), 2.22 (m, 2H), 2.52 (d, J = 4.4 Hz, 14.7 Hz, 1H), 2. 8 8 (m, 1H), 4.13 (q, J = 7.3 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 11.8 (q), 13.9 (q), 14.2 (q), 28.5 (t), 36.4 (t), 39.0 (t), 46.4 (d), 6 0. 0 (t), 132.2 (s), 132.4 (s), 173.4 (s)。
IR (Neat): 1737 cm−1
MS (EI) m/z 182 (M), 95 (70%)。
HRMS (EI) calcd for C11H18O 182.1307, found: 182.1283。
【0018】
実施例2〜11
一般式[3]において、XがCOEtで、R,Rが表1に記載の各組み合わせからなる2,3−ジ置換−2−シクロアルケニルアセテートを実施例1と同様にして合成した。
結果(収率)を表1にまとめて示す。
【0019】
【表1】
Figure 0004064645
【0020】
また、各生成物の物性値を以下に示す。
◎エチル(2−ブチル−3−メチル−2−シクロペンテニル)アセテート(実施例2の化合物)
H~NMR (300 MHz, CDCl, TMS) d: 0.89 (m, 3H), 1.26 (m, J = 7.2 Hz, 7H), 1.44~1.53 (m, 1H), 1.61 (s, 3H), 1.84 (m, 1H), 2.05 (m, J = 10.4 Hz, 14.8 Hz, 2H), 2.11~2.28 (m, 3H), 2.52 (dd, J = 4. 1 Hz, 14.8 Hz, 1H), 2.99 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 13.9 (q), 14.0 (q), 14.2 (q), 22.6 (t), 25.8 (t), 28.6 (t), 30.2 (t), 36.4 (t), 38.9 (t), 43.8 (d), 60.0 (t), 132.6 (s), 136.7 (s), 173.4 (s)。
IR (Neat): 1737 cm−1
MS (EI) m/z 224 (M), 137 (100%)。
HRMS (EI) calcd for C14H24O 224.1776, found: 224.1806。
【0021】
◎エチル(2−シクロヘキシル−3−メチル−2−シクロペンテニル)アセテート(実施例3の化合物)
H~NMR (300 MHz, CDCl3, TMS) d: 1.26 (m, J = 7.2 Hz, 7H), 1.51~1.74 (m, 10H), 1.89~1.96 (m, 1H), 2.09 (m, J = 11.1 Hz, 14.9 Hz, 1H), 2.23 (m, 1H), 2.32 (m, 1H), 2.57 (dd, J = 3.3Hz, 14.9 H z, 1H), 3.02 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.2 (q), 26.2 (t), 26.8 (t), 27.1 (t), 29.0 (t), 31.2 (t), 32.6 (t), 36.5 (t), 38.2 (d), 39.6 (t), 43.6 (d), 60.0 (t), 132.4 (s), 141.3 (s), 173.4 (s)。
IR (Neat): 1737 cm−1
MS (EI) m/z 250 (M), 162 (100%)。
HRMS (EI) calcd for C16H26O 250.1933, found: 250.1929。
【0022】
◎エチル(2−メチル−3−フェニル−2−シクロペンテニル)アセテート(実施例4の化合物)
H~NMR (300 MHz, CDCl) d: 1.28 (t, J = 7.2 Hz, 3H), 1.59~1.68 (m, 1H), 1.80 (s,3H), 2.17~2.2 9 (m, J = 9.9 Hz, 14,9 Hz, 2H), 2.61~2.72 (m, J = 4.4 Hz, 14.9 Hz, 3H), 3.08 (m, 1H), 4.16 (q, J = 7. 2 Hz, 2H), 7.19~7.36 (m, 5H)。
13C~NMR (75 MHz, CDCl) d: 13.6 (q), 14.2 (q), 28.7 (t), 35.2 (t), 38.7 (t), 47.6 (d), 60.2 (t), 126. 3 (d), 127.6 (d), 127.9 (d), 136.0 (s), 136.3 (s), 138.3 (s), 173.1 (s)。
IR (Neat): 1733, 1599, 1493, 763, 700 cm−1
MS (EI) m/z 244 (M+), 173 (100%)。
HRMS (EI) calcd for C16H20O 244.1463, found: 244.1478。
【0023】
◎エチル(2−ブチル−3−フェニル−2−シクロペンテニル)アセテート(実施例5の化合物)
H~NMR (300 MHz, CDCl, TMS) d: 0.85 (t, J = 7.2 Hz, 3H), 1.28 (m, J = 7.2 Hz, 7H), 1.61~1. 6 8 (m, 1H), 1.96 (m, 1H), 2.14~2.25 (m, J = 10.6 Hz, 14.9 Hz, 2H), 2.38 (m, 1H), 2.59~2.71 (m, J = 4.0 Hz, 14.9 Hz, 3H), 3.22 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 7.19~7.35 (muti, 5H)。
13C~NMR (75 MHz, CDCl) d: 13.8 (q), 14.2 (q), 22.7 (t), 26.6 (t), 28.8 (t), 30.2 (t), 35.7 (t), 38.5 (t), 44.5 (d), 60.2 (t), 126.3 (d), 127.7 (d), 128.0 (d), 136.7 (s), 138.7 (s), 140.5 (s), 173.2 (s)。
IR (Neat): 1736, 762, 699 cm−1
MS (EI) m/z 286 (M), 199 (100%)。
HRMS (EI) calcd for C19H26O 286.1933, found: 286.1927。
【0024】
◎エチル(2−シクロヘキシル−3−フェニル−2−シクロペンテニル)アセテート(実施例6の化合物)
H~NMR (300 MHz, CDCl) d: 1.11~1.43 (m, J = 7.2 Hz, 9H), 1.60~1.72 (m, 5H), 2.06~2.18 (m, 1 H), 2.28 (dd, J = 11.2 Hz, 15.0 Hz, 1H), 2.46 (m, 1H), 2.57~2.68 (m, 2H), 2.75 (dd, J = 3.3 Hz, 15. 0 Hz, 1H), 3.24 (m, 1H), 4.17 (q, J = 7.2 Hz, 2H), 7.18~7.35 (muti, 5H)。
13C~NMR (75 MHz, CDCl) d: 14.3 (q), 26.1 (t), 26.5 (t), 26.7 (t), 29.8 (t), 31.6 (t). 33.2 (t), 35.9 (t), 38.7 (d), 39.4 (t), 43.4 (d), 60.2 (t), 126.3 (d), 127.8 (d), 128.0 (d), 137.0 (s), 139.1 (s), 145.1 (s), 17 3.1 (s). IR (Neat): 1732, 761, 700 cm−1
MS (EI) m/z 312 (M+), 224 (100%)。
HRMS (EI) calcd for C21H28O 312.2089, found: 312.2117。
【0025】
◎エチル(2,3−ジメチル−2−シクロヘキセニル)アセテート(実施例7の化合物)
H~NMR (300 MHz, CDCl) d: 1.26 (t, J = 7.2 Hz, 3H), 1.55 (m, 4H), 1.59 (s, 3H), 1.62 (s,3H), 1. 90 (m, 2H), 2.17 (dd, J = 10.3 Hz, 14.5 Hz, 1H), 2.40 (m, 1H), 2.51 (dd, J = 3.5 Hz, 14.5 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.2 (q), 17.3 (q), 19.2 (t), 19.5 (q), 27.9 (t), 31.8 (t), 37.0 (d), 38. 2 (t), 60.1 (t), 127.1 (s), 127.9 (s), 173.5 (s)。
IR (Neat): 1737 cm−1
MS (EI) m/z 196 (M), 109。
HRMS (EI) calcd for C12H20O 196.1463, found: 196.1468。
【0026】
◎エチル(2−ブチル−3−メチル−2−シクロヘキセニル)アセテート(実施例8の化合物)
H~NMR (300 MHz, CDCl) d: 0.90 (t, J = 7.2 H, 3H), 1.26 (m, J = 7.2 Hz, 7H), 1.56 (m, 4H), 1. 60 (s, 3H), 1.78 (m, 1H), 1.89 (m, 2H), 2.18 (m, J = 10.3 Hz, 14.3 Hz, 2H), 2.49 (m, J = 3.3 H z, 1 4.3 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 13.9 (q), 14.2 (q), 18.6 (t), 19.2 (q), 22.9 (t), 27.6 (t), 30.8 (t), 31.1 (t), 31.8 (t), 34.3 (d), 38.2 (t), 60.0 (t), 127.9 (s), 132.2 (s), 173.5 (s)。
IR (Neat): 1737 cm−1
MS (EI) m/z 238 (M), 150, 108 (100%)。
HRMS (EI) calcd for C15H26O 238.133, found: 238.1905。
【0027】
◎エチル(2−シクロヘキシル−3−メチル−2−シクロヘキセニル)アセテート(実施例9の化合物)
H~NMR (300 MHz, CDCl) d: 1.27 (m, J = 7.2 Hz, 9H), 1.51~1.75 (m, 11H), 1.93 (m, 2H), 2.16 ~2. 34 (m, J = 11.3 Hz, 15.3 Hz, 2H), 2.48 (dd, J = 2.3 Hz, 15.3 Hz, 1H), 2.60 (m, 1H), 4.14 (q, J = 7, 2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.2 (q), 17.5 (t), 19.5 (q), 26.2 (t), 27.1 (t), 27.3 (t), 30.8 (t), 31.9 (d), 32.1 (t), 32.2 (t), 38.6 (t), 42.0 (d), 60.0 (t), 127.5 (s), 136.4 (s), 173.2 (s)。
IR (Neat): 1736 cm−1
MS (EI) m/z 264 (M), 176 (100%)。
HRMS (EI) calcd for C17H28O 264.2089, found: 264.2115。
【0028】
◎エチル(2−ブチル−3−フェニル−2−シクロヘキセニル)アセテート(実施例10の化合物)
H~NMR (300 MHz, CDCl) d: 0.74 (t, J = 7.2 Hz, 3H), 1.05~1.19 (m, 2H), 1.26~1.31 (m, J = 7. 2 Hz, 5H), 1.61~1.74 (m, 5H), 1.96~2.02 (m, 1H), 2.18 (m, 2H), 2.30 (dd, J = 10.5 Hz, 15.0 Hz, 1 H), 2.59 (dd, J = 3.7 Hz, 15.0 Hz, 1H), 2.71 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 7.07 (dd, J = 1.5 Hz, 7. 3 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.29 (t, J = 7.3 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 13.9 (q), 14.3 (q), 19.2 (t), 22.5 (t), 27.8 (t), 30.7 (t), 30.8 (t), 32.7 (t), 32.9 (d), 38.3 (t), 60.3 (t), 125.9 (d), 128.0 (d), 128.2 (d), 134.9 (s), 135.2 (s), 144.5 (s), 173.4 (s)。
IR (Neat): 1733, 762, 702 cm−1
MS (EI) m/z 300 (M, 100%)。
HRMS (EI) calcd for C20H28O 300.2089, found: 300.2113。
【0029】
◎エチル(2−ブチル−3−メチル−2−シクロヘプテニル)アセテート(実施例11の化合物)
H~NMR (300 MHz, CDCl) d: 0.91 (m, 3H), 1.21~1.32 (m, J = 7.2 Hz, 9H), 1.50~1.63 (m, 4H), 1. 66 (s, 3H), 1.86 (m, 1H), 2.04 (m, 2H), 2.21 (m, 1H), 2.50 (dd, J = 6.3 Hz, 14.6 Hz, 1H), 2.54 (dd, J = 9.6 Hz, 14.6 Hz, 1H), 2.75 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.1 (q), 14.3 (q), 22.2 (t), 22.9 (t), 26.1 (t), 30.8 (t), 31.1 (t), 34.2 (t), 34.5 (t), 36.6 (t), 40.4 (d), 60.1 (t), 132.0 (s), 136.6 (s), 173.4 (s)。
IR (Neat): 1738 cm−1
MS (EI) m/z 252 (M), 164 (100%)。
HRMS (EI) calcd for C16H28O 252.2089, found: 252.2108。
【0030】
実施例12 エチル(2−ブチルビシクロ[4.4.0]デス−1−エン−3−イル)アセテートの合成
一般式[2]において、RとR10とが結合してそれぞれが結合している炭素原子と一緒になってシクロアルキル環を形成している場合の本発明の製造法の例として、シクロアルキル環がシクロヘキシル環で、m=0,n=1で、Rがブチル基である標題化合物を実施例1と同様にして合成した(無色オイル。収率87%。)。
H~NMR (300 MHz, CDCl) d: 0.88~0.93 (m, 3H), 1.18~1.46 (m, J = 7.2 Hz, 12H), 1.54~1.86 (m, 8H), 2.15~2.26 (m, 2H), 2.42~2.52 (m, 2H), 2.59 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.1 (q), 14.3 (q), 23.0 (t), 24.4 (t), 25.5 (t), 27.1 (t), 28.7 (t), 30.6 (t), 30.7 (t), 32.1 (t), 35.1 (d), 35.6 (t), 37.9 (t), 38.0 (d), 60.1 (t), 130.1 (s), 135.9 (s), 173.6 (s)。
IR (Neat):1732 cm−1
. MS (EI) m/z 278(M+), 190(100%)。
HRMS (EI) calcd for C18H30O 278.2246, found: 278.2249。
【0031】
実施例13 エチル(3,4−ジメチル−1,2−ジヒドロナフタレン−2−イル)アセテートの合成
一般式[2]において、RとR10とが結合してそれぞれが結合している炭素原子と一緒になって芳香環を形成している場合の本発明の製造法の例として、芳香環がベンゼン環で、m=0,n=1でR及びRがメチル基である標題化合物を実施例1と同様にして合成した(無色オイル。収率70%。)。
H~NMR (400 MHz, CDCl) d: 1.24 (t, J = 7.1 Hz, 3H), 1.93 (s, 3H), 2.01 (s, 3H), 2.12 (dd, J = 10.1 Hz, 15.1 Hz, 1H), 2.20 (dd, J = 4.6 Hz, 15.1 Hz, 1H), 2.60~2.68 (m, J = 15.6 Hz, 2H), 2.99 (dd, J = 6.3 Hz, 15.6 Hz, 1H), 4.07~4.15 (m, 2H), 7.08~7.12 (m, 2H), 7.18~7.24 (m, 2H)。
13C~NMR (75 MHz, CDCl) d: 14.3 (q), 14.5 (q), 19.0 (q), 32.9 (t), 34.8 (t), 36.9 (d), 60.2 (t), 122. 4 (d), 125.8 (s), 125.9 (d), 126.3 (d), 128.1 (d), 132.6 (s), 133.5 (s), 136.0 (s), 172.7 (s)。
IR (Neat): 1731, 761 cm−1
MS (EI) m/z 244 (M), 156 (100%)。
HRMS (EI) calcd for C16H20O 244.1463, found: 244.1446。
【0032】
参考例1 エチル(3,4−ジメチルナフタレン−2−イル)アセテートの合成実施例13で得られた化合物のトルエン溶液にジクロロジシアノ−p−ベンゾキノンを加えて1時間加熱還流させたところ黄色オイル状の標題化合物が40%の歩留で得られた。
H~NMR (400 MHz, CDCl) d: 1.25 (t, J = 7.1 Hz, 3H), 2.40 (s, 3H), 2.62 (s, 3H), 3.82 (s, 2H), 4.17 (q, J = 7.1 Hz, 2H), 7.40 (t, J = 7.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.56 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H)。
13C~NMR (75 MHz, CDCl) d: 14.2 (q), 15.1 (q), 16.5 (q), 40.8 (t), 60.8 (t), 123.8 (d), 124.8 (d), 125.6 (d), 127.5 (d), 128.1 (d), 131.6 (s) 131.8 (s), 132.0 (s), 132.2 (s), 132.6 (s), 171.8 (s)。
IR (Neat): 1732, 761 cm−1
MS (EI) m/z 242 (M), 169 (100%). HRMS (EI) calcd for C16H18O2 242.1307, found: 242.1319。
【0033】
【発明の効果】
本発明の製造法により得られる炭素環状化合物は、医薬品や各種材料などの有用有機化合物を合成する際の原料となりうるものである。更に、これらの生成物、特に置換基が多いものについては従来法では多段階を要し、選択性も低くなるが、本発明の製造法では僅か2段階で収率も高く、精製も容易であることから工業的な規模での製造にも適しており、産業上有用な製造法であると言うことが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel process for producing polysubstituted cycloalkenes that are expected to be used in various applications as raw materials for pharmaceuticals and various materials.
[0002]
[Prior art]
Examples of the method for producing polysubstituted cycloalkenes include the synthesis method of dehydroylide diol described in J. Am. Chem. Soc. 1987, 109, 2547-2549 and Chem. Pharm. Bull. 1982, 30, 723-726, etc. is there. However, these methods require 8 steps in the former and 7 steps in the latter, and the number of steps is large and the operation is complicated.
In addition, Tetrahedron, 1980, 36, 3115-3119 synthesizes dehydroylide diol in 4 steps using limonene as a raw material, but because it is a natural product, its application to other analogs is limited and versatile. Lack.
Further, in J. Chem. Soc., Chem. Commun., 1991, 1367-1368, in the synthesis of seratopicanol, its intermediate is synthesized from limonene in 6 to 7 steps.
As described above, all the known methods for producing polysubstituted cycloalkenes have many steps, complicated operations, poor selectivity, and poor yield.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a polysubstituted cycloalkene having a small number of steps, excellent selectivity, and high yield.
[0004]
[Means for Solving the Problems]
The present invention relates to a polysubstituted cycloalkene characterized in that an enolate anion and an α, β-unsaturated compound having a keto group are subjected to a tandem cycloaddition-Michael reaction, followed by a decarboxylation reaction. It relates to the manufacturing method.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the inolate anion used in the production method of the present invention include the following general formula [1].
[Formula 4]
Figure 0004064645
(In the formula, R 1 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group which may have a substituent.)
The compound shown by these is mentioned.
[0006]
As an α, β-unsaturated compound having a keto group used in the production method of the present invention, for example, the following general formula [2]
[Chemical formula 5]
Figure 0004064645
(In the formula, R 2 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group which may have a substituent, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. Or an aralkyl group which may have a substituent, R 6 and R 8, or R 8 and R 10 , and together with the carbon atom to which each is bonded, an aromatic ring or cyclo An alkyl ring may be formed, and R 2 and R 10 may be bonded together to form a cycloalkyl ring together with the carbon atoms to which each is bonded, where X is an electron Represents an attractive functional group, and m and n each independently represent 0 or 1 .)
The compound shown by these is mentioned.
The steric structure of the alkene represented by the general formula [2] may be either cis or trans.
[0007]
Examples of the polysubstituted cycloalkenes obtained by the production method of the present invention include the following general formula [3]
[Chemical 6]
Figure 0004064645
(In the formula, R 1 to R 10 , X, m, and n are the same as described above.)
The compound shown by these is mentioned.
[0008]
In the general formulas [1] to [3], the alkyl group of the alkyl group which may have a substituent represented by R 1 to R 10 has, for example, 1 to 20 carbon atoms, preferably 1-10, more preferably 1-6 linear, branched or cyclic alkyl groups are mentioned, more specifically, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, Examples include isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
In addition, the aryl group of the aryl group which may have a substituent is, for example, a monocyclic, polycyclic or condensed cyclic group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms. An aromatic hydrocarbon group is mentioned, More specifically, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a methyl naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group etc. are mentioned, for example.
The aralkyl group of the aralkyl group which may have a substituent is, for example, a monocyclic, polycyclic or condensed cyclic aralkyl group having 7 to 30 carbon atoms, preferably 7 to 20 carbon atoms, more preferably 7 to 15 carbon atoms. More specifically, for example, benzyl group, phenethyl group, naphthylmethyl group, naphthylethyl group and the like can be mentioned.
In addition, as the substituent of these alkyl group, aryl group, and aralkyl group, any substituent may be used as long as it does not hinder the progress of the reaction according to the present invention. For example, alkenyl group, alkynyl group , An alkoxy group, a halogen atom, and the like.
[0009]
In the general formulas [2] and [3], examples of the electron-withdrawing functional group represented by X include a —COOR group, a —CH═NR group, a —CN group, a —SO 2 R group (provided that R represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group in any case, and the like, and the —COOR group is particularly preferable.
Here, examples of the alkyl group, aryl group, and aralkyl group represented by R include the same alkyl groups, aryl groups, and aralkyl groups as those represented by R 1 to R 10 described above.
[0010]
The inolate anion used in the production method of the present invention can be easily synthesized, for example, according to the following reaction scheme. Tetrahedron 1998,43,2411-2422
[Chemical 7]
Figure 0004064645
[0011]
That is, for example, it can be synthesized by adding tertiary butyl lithium (4 equivalents) to α, α-dibromoester and reacting at −78 degrees for 3 hours and further at 0 degrees for 30 minutes. The reaction is usually carried out in an ether solvent such as tetrahydrofuran (THF), diethyl ether, diisopropyl ether and the like.
[0012]
In the process for producing the polysubstituted cycloalkenes of the present invention, the tandem cycloaddition-Michael reaction between an inolate anion and an α, β-unsaturated compound having a keto group is usually carried out at -40 degrees to -78 degrees. And preferably at a temperature closer to -78 degrees. The reaction time is usually about 10 minutes to 1 hour, but about 30 minutes is common. The reaction is usually carried out in an ether solvent such as tetrahydrofuran (THF), diethyl ether, diisopropyl ether and the like.
The reaction for synthesizing an enolate from α, α-dibromoester and the tandem cycloaddition-Michael reaction between the generated inolate and an α, β-unsaturated compound having a keto group are usually carried out in one pot.
The decarboxylation reaction after the tandem cycloaddition-Michael reaction is usually performed by heating to reflux in the presence of an acid catalyst. As the acid, acidic silica gel, hydrochloric acid, and sulfuric acid are suitable, but acidic silica gel is generally used. The solvent is generally benzene or toluene. The reaction time is about 1 to 10 hours.
[0013]
When the production method of the present invention is shown in a reaction scheme by taking a compound having a relatively simple structure as an example, it is roughly as follows.
[Chemical 8]
Figure 0004064645
[0014]
In the general formula [2], when the R 2 and R 10 are bonded to each other to form a cycloalkyl ring together with the bonded carbon atoms, the production method of the present invention is reacted. The scheme is as follows.
[Chemical 9]
Figure 0004064645
[0015]
Furthermore, in the general formula [2], the present invention relates to the case where R 6 and R 8 or R 8 and R 10 are bonded together to form an aromatic ring together with the bonded carbon atoms. The production method is shown in the reaction scheme as follows.
[Chemical Formula 10]
Figure 0004064645
[0016]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples.
[0017]
Example 1 Synthesis of ethyl (2,3-dimethyl-2-cyclopentenyl) acetate A solution of ethyl 2,2-dibromopropionate (260 mg) in 6 ml of THF was cooled to −78 ° C. under a pentane solution of tertiary butyl lithium (2 .82 ml, 1.4 M) was added and stirred for 3 hours, followed by stirring at 0 ° C. for 30 minutes. Next, the mixture was cooled to −78 ° C., a solution of ethyl 6-oxo-2-heptenoate (136 mg) in THF was added, and the mixture was stirred for 30 minutes. Next, a saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate (3 × 20 ml). The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, the resulting crude product was dissolved in benzene (15 ml), 25 mg of acidic silica gel was added, and the mixture was heated to reflux for 9 hours. The silica gel was removed by filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 93.4 mg (yield 64%) of the desired product as a colorless oil.
1 H ~ NMR (300 MHz, CDCl 3 ) d: 1.26 (t, J = 7.2 Hz, 3H), 1.42 ~ 1.53 (m, 1H), 1.56 (s, 3H), 1.61 (s, 3H), 2.01 ~ 2.12 (m, J = 10.0 Hz, 14.7 Hz, 2H), 2.22 (m, 2H), 2.52 (d, J = 4.4 Hz, 14.7 Hz, 1H), 2.8 8 (m, 1H), 4.13 (q , J = 7.3 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 11.8 (q), 13.9 (q), 14.2 (q), 28.5 (t), 36.4 (t), 39.0 (t), 46.4 (d), 6 0 0 (t), 132.2 (s), 132.4 (s), 173.4 (s).
IR (Neat): 1737 cm −1 .
MS (EI) m / z 182 (M + ), 95 (70%).
HRMS (EI) calcd for C 11 H 18 O 2 182.1307, found: 182.1283.
[0018]
Examples 2-11
In the general formula [3], a 2,3-disubstituted-2-cycloalkenyl acetate in which X is CO 2 Et and R 1 and R 2 are each combinations shown in Table 1 was synthesized in the same manner as in Example 1. did.
The results (yield) are summarized in Table 1.
[0019]
[Table 1]
Figure 0004064645
[0020]
Moreover, the physical-property value of each product is shown below.
Ethyl (2-butyl-3-methyl-2-cyclopentenyl) acetate (Compound of Example 2)
1 H to NMR (300 MHz, CDCl 3 , TMS) d: 0.89 (m, 3H), 1.26 (m, J = 7.2 Hz, 7H), 1.44 to 1.53 (m, 1H), 1.61 (s, 3H), 1.84 (m, 1H), 2.05 (m, J = 10.4 Hz, 14.8 Hz, 2H), 2.11 to 2.28 (m, 3H), 2.52 (dd, J = 4.1 Hz, 14.8 Hz, 1H), 2.99 ( m, 1H), 4.13 (q, J = 7.2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 13.9 (q), 14.0 (q), 14.2 (q), 22.6 (t), 25.8 (t), 28.6 (t), 30.2 (t), 36.4 ( t), 38.9 (t), 43.8 (d), 60.0 (t), 132.6 (s), 136.7 (s), 173.4 (s).
IR (Neat): 1737 cm −1 .
MS (EI) m / z 224 (M + ), 137 (100%).
HRMS (EI) calcd for C 14 H 24 O 2 224.1776, found: 224.1806.
[0021]
エ チ ル Ethyl (2-cyclohexyl-3-methyl-2-cyclopentenyl) acetate (compound of Example 3)
1 H to NMR (300 MHz, CDCl3, TMS) d: 1.26 (m, J = 7.2 Hz, 7H), 1.51 to 1.74 (m, 10H), 1.89 to 1.96 (m, 1H), 2.09 (m, J = 11.1 Hz, 14.9 Hz, 1H), 2.23 (m, 1H), 2.32 (m, 1H), 2.57 (dd, J = 3.3Hz, 14.9 Hz, 1H), 3.02 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.2 (q), 26.2 (t), 26.8 (t), 27.1 (t), 29.0 (t), 31.2 (t), 32.6 (t), 36.5 ( t), 38.2 (d), 39.6 (t), 43.6 (d), 60.0 (t), 132.4 (s), 141.3 (s), 173.4 (s).
IR (Neat): 1737 cm −1 .
MS (EI) m / z 250 (M + ), 162 (100%).
HRMS (EI) calcd for C 16 H 26 O 2 250.1933, found: 250.1929.
[0022]
Ethyl (2-methyl-3-phenyl-2-cyclopentenyl) acetate (Compound of Example 4)
1 H to NMR (300 MHz, CDCl 3 ) d: 1.28 (t, J = 7.2 Hz, 3H), 1.59 to 1.68 (m, 1H), 1.80 (s, 3H), 2.17 to 2.29 (m, J = 9.9 Hz, 14,9 Hz, 2H), 2.61 to 2.72 (m, J = 4.4 Hz, 14.9 Hz, 3H), 3.08 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 7.19 ~ 7.36 (m, 5H).
13 C-NMR (75 MHz, CDCl 3 ) d: 13.6 (q), 14.2 (q), 28.7 (t), 35.2 (t), 38.7 (t), 47.6 (d), 60.2 (t), 126. 3 (d), 127.6 (d), 127.9 (d), 136.0 (s), 136.3 (s), 138.3 (s), 173.1 (s).
IR (Neat): 1733, 1599, 1493, 763, 700 cm −1 .
MS (EI) m / z 244 (M +), 173 (100%).
HRMS (EI) calcd for C 16 H 20 O 2 244.1463, found: 244.1478.
[0023]
Ethyl (2-butyl-3-phenyl-2-cyclopentenyl) acetate (Compound of Example 5)
1 H to NMR (300 MHz, CDCl 3 , TMS) d: 0.85 (t, J = 7.2 Hz, 3H), 1.28 (m, J = 7.2 Hz, 7H), 1.61 to 1.6 8 (m, 1H) , 1.96 (m, 1H), 2.14 to 2.25 (m, J = 10.6 Hz, 14.9 Hz, 2H), 2.38 (m, 1H), 2.59 to 2.71 (m, J = 4.0 Hz, 14.9 Hz, 3H), 3.22 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 7.19-7.35 (muti, 5H).
13 C-NMR (75 MHz, CDCl 3 ) d: 13.8 (q), 14.2 (q), 22.7 (t), 26.6 (t), 28.8 (t), 30.2 (t), 35.7 (t), 38.5 ( t), 44.5 (d), 60.2 (t), 126.3 (d), 127.7 (d), 128.0 (d), 136.7 (s), 138.7 (s), 140.5 (s), 173.2 (s).
IR (Neat): 1736, 762, 699 cm −1 .
MS (EI) m / z 286 (M + ), 199 (100%).
HRMS (EI) calcd for C 19 H 26 O 2 286.1933, found: 286.1927.
[0024]
エ チ ル Ethyl (2-cyclohexyl-3-phenyl-2-cyclopentenyl) acetate (compound of Example 6)
1 H to NMR (300 MHz, CDCl 3 ) d: 1.11 to 1.43 (m, J = 7.2 Hz, 9H), 1.60 to 1.72 (m, 5H), 2.06 to 2.18 (m, 1 H), 2.28 (dd, J = 11.2 Hz, 15.0 Hz, 1H), 2.46 (m, 1H), 2.57 to 2.68 (m, 2H), 2.75 (dd, J = 3.3 Hz, 15.0 Hz, 1H), 3.24 (m, 1H) 4.17 (q, J = 7.2 Hz, 2H), 7.18-7.35 (muti, 5H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.3 (q), 26.1 (t), 26.5 (t), 26.7 (t), 29.8 (t), 31.6 (t). 33.2 (t), 35.9 ( t), 38.7 (d), 39.4 (t), 43.4 (d), 60.2 (t), 126.3 (d), 127.8 (d), 128.0 (d), 137.0 (s), 139.1 (s), 145.1 ( s), 17 3.1 (s). IR (Neat): 1732, 761, 700 cm −1 .
MS (EI) m / z 312 (M +), 224 (100%).
HRMS (EI) calcd for C 21 H 28 O 2 312.2089, found: 312.2117.
[0025]
Ethyl (2,3-dimethyl-2-cyclohexenyl) acetate (Compound of Example 7)
1 H ~ NMR (300 MHz, CDCl 3 ) d: 1.26 (t, J = 7.2 Hz, 3H), 1.55 (m, 4H), 1.59 (s, 3H), 1.62 (s, 3H), 1.90 ( m, 2H), 2.17 (dd, J = 10.3 Hz, 14.5 Hz, 1H), 2.40 (m, 1H), 2.51 (dd, J = 3.5 Hz, 14.5 Hz, 1H), 4.14 (q, J = 7.2 Hz , 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.2 (q), 17.3 (q), 19.2 (t), 19.5 (q), 27.9 (t), 31.8 (t), 37.0 (d), 38. 2 (t), 60.1 (t), 127.1 (s), 127.9 (s), 173.5 (s).
IR (Neat): 1737 cm −1 .
MS (EI) m / z 196 (M + ), 109.
HRMS (EI) calcd for C 12 H 20 O 2 196.1463, found: 196.1468.
[0026]
Ethyl (2-butyl-3-methyl-2-cyclohexenyl) acetate (Compound of Example 8)
1 H-NMR (300 MHz, CDCl 3 ) d: 0.90 (t, J = 7.2 H, 3H), 1.26 (m, J = 7.2 Hz, 7H), 1.56 (m, 4H), 1.60 (s, 3H), 1.78 (m, 1H), 1.89 (m, 2H), 2.18 (m, J = 10.3 Hz, 14.3 Hz, 2H), 2.49 (m, J = 3.3 Hz, 14.3 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 13.9 (q), 14.2 (q), 18.6 (t), 19.2 (q), 22.9 (t), 27.6 (t), 30.8 (t), 31.1 ( t), 31.8 (t), 34.3 (d), 38.2 (t), 60.0 (t), 127.9 (s), 132.2 (s), 173.5 (s).
IR (Neat): 1737 cm −1 .
MS (EI) m / z 238 (M + ), 150, 108 (100%).
HRMS (EI) calcd for C 15 H 26 O 2 238.133, found: 238.1905.
[0027]
Ethyl (2-cyclohexyl-3-methyl-2-cyclohexenyl) acetate (Compound of Example 9)
1 H to NMR (300 MHz, CDCl 3 ) d: 1.27 (m, J = 7.2 Hz, 9H), 1.51 to 1.75 (m, 11H), 1.93 (m, 2H), 2.16 to 2.34 (m, J = 11.3 Hz, 15.3 Hz, 2H), 2.48 (dd, J = 2.3 Hz, 15.3 Hz, 1H), 2.60 (m, 1H), 4.14 (q, J = 7, 2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.2 (q), 17.5 (t), 19.5 (q), 26.2 (t), 27.1 (t), 27.3 (t), 30.8 (t), 31.9 ( d), 32.1 (t), 32.2 (t), 38.6 (t), 42.0 (d), 60.0 (t), 127.5 (s), 136.4 (s), 173.2 (s).
IR (Neat): 1736 cm −1 .
MS (EI) m / z 264 (M + ), 176 (100%).
HRMS (EI) calcd for C 17 H 28 O 2 264.2089, found: 264.2115.
[0028]
Ethyl (2-butyl-3-phenyl-2-cyclohexenyl) acetate (Compound of Example 10)
1 H to NMR (300 MHz, CDCl 3 ) d: 0.74 (t, J = 7.2 Hz, 3H), 1.05 to 1.19 (m, 2H), 1.26 to 1.31 (m, J = 7.2 Hz, 5H), 1.61 ~ 1.74 (m, 5H), 1.96 ~ 2.02 (m, 1H), 2.18 (m, 2H), 2.30 (dd, J = 10.5 Hz, 15.0 Hz, 1 H), 2.59 (dd, J = 3.7 Hz, 15.0 Hz, 1H), 2.71 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 7.07 (dd, J = 1.5 Hz, 7.3 Hz, 2H), 7.20 (t, J = 7.3 Hz , 1H), 7.29 (t, J = 7.3 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 13.9 (q), 14.3 (q), 19.2 (t), 22.5 (t), 27.8 (t), 30.7 (t), 30.8 (t), 32.7 ( t), 32.9 (d), 38.3 (t), 60.3 (t), 125.9 (d), 128.0 (d), 128.2 (d), 134.9 (s), 135.2 (s), 144.5 (s), 173.4 ( s).
IR (Neat): 1733, 762, 702 cm −1 .
MS (EI) m / z 300 (M + , 100%).
HRMS (EI) calcd for C 20 H 28 O 2 300.2089, found: 300.2113.
[0029]
Ethyl (2-butyl-3-methyl-2-cycloheptenyl) acetate (Compound of Example 11)
1 H ~ NMR (300 MHz, CDCl 3 ) d: 0.91 (m, 3H), 1.21 ~ 1.32 (m, J = 7.2 Hz, 9H), 1.50 ~ 1.63 (m, 4H), 1. 66 (s, 3H ), 1.86 (m, 1H), 2.04 (m, 2H), 2.21 (m, 1H), 2.50 (dd, J = 6.3 Hz, 14.6 Hz, 1H), 2.54 (dd, J = 9.6 Hz, 14.6 Hz, 1H), 2.75 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.1 (q), 14.3 (q), 22.2 (t), 22.9 (t), 26.1 (t), 30.8 (t), 31.1 (t), 34.2 ( t), 34.5 (t), 36.6 (t), 40.4 (d), 60.1 (t), 132.0 (s), 136.6 (s), 173.4 (s).
IR (Neat): 1738 cm −1 .
MS (EI) m / z 252 (M + ), 164 (100%).
HRMS (EI) calcd for C 16 H 28 O 2 252.2089, found: 252.2108.
[0030]
Example 12 Synthesis of ethyl (2-butylbicyclo [4.4.0] des-1-en-3-yl) acetate In general formula [2], R 2 and R 10 are bonded to each other. As an example of the production method of the present invention when a cycloalkyl ring is formed together with a carbon atom, the cycloalkyl ring is a cyclohexyl ring, m = 0, n = 1, and R 1 is a butyl group. The title compound was synthesized as in Example 1 (colorless oil, yield 87%).
1 H to NMR (300 MHz, CDCl 3 ) d: 0.88 to 0.93 (m, 3H), 1.18 to 1.46 (m, J = 7.2 Hz, 12H), 1.54 to 1.86 (m, 8H), 2.15 to 2.26 (m , 2H), 2.42 to 2.52 (m, 2H), 2.59 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.1 (q), 14.3 (q), 23.0 (t), 24.4 (t), 25.5 (t), 27.1 (t), 28.7 (t), 30.6 ( t), 30.7 (t), 32.1 (t), 35.1 (d), 35.6 (t), 37.9 (t), 38.0 (d), 60.1 (t), 130.1 (s), 135.9 (s), 173.6 ( s).
IR (Neat): 1732 cm −1 .
MS (EI) m / z 278 (M +), 190 (100%).
HRMS (EI) calcd for C 18 H 30 O 2 278.2246, found: 278.2249.
[0031]
Example 13 Synthesis of ethyl (3,4-dimethyl-1,2-dihydronaphthalen-2-yl) acetate In general formula [2], carbon atoms to which R 8 and R 10 are bonded to each other As an example of the production method of the present invention in the case of forming an aromatic ring together with a title compound, the aromatic ring is a benzene ring, m = 0, n = 1, and R 1 and R 2 are methyl groups Was synthesized in the same manner as in Example 1 (colorless oil, yield 70%).
1 H ~ NMR (400 MHz, CDCl 3 ) d: 1.24 (t, J = 7.1 Hz, 3H), 1.93 (s, 3H), 2.01 (s, 3H), 2.12 (dd, J = 10.1 Hz, 15.1 Hz , 1H), 2.20 (dd, J = 4.6 Hz, 15.1 Hz, 1H), 2.60 to 2.68 (m, J = 15.6 Hz, 2H), 2.99 (dd, J = 6.3 Hz, 15.6 Hz, 1H), 4.07 to 4.15 (m, 2H), 7.08 to 7.12 (m, 2H), 7.18 to 7.24 (m, 2H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.3 (q), 14.5 (q), 19.0 (q), 32.9 (t), 34.8 (t), 36.9 (d), 60.2 (t), 122. 4 (d), 125.8 (s), 125.9 (d), 126.3 (d), 128.1 (d), 132.6 (s), 133.5 (s), 136.0 (s), 172.7 (s).
IR (Neat): 1731, 761 cm −1 .
MS (EI) m / z 244 (M + ), 156 (100%).
HRMS (EI) calcd for C 16 H 20 O 2 244.1463, found: 244.1446.
[0032]
Reference Example 1 Synthesis of ethyl (3,4-dimethylnaphthalen-2-yl) acetate Dichlorodicyano-p-benzoquinone was added to a toluene solution of the compound obtained in Example 13 and heated under reflux for 1 hour. Of the title compound was obtained with a yield of 40%.
1 H to NMR (400 MHz, CDCl 3 ) d: 1.25 (t, J = 7.1 Hz, 3H), 2.40 (s, 3H), 2.62 (s, 3H), 3.82 (s, 2H), 4.17 (q, J = 7.1 Hz, 2H), 7.40 (t, J = 7.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.56 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H) , 8.00 (d, J = 7.8 Hz, 1H).
13 C-NMR (75 MHz, CDCl 3 ) d: 14.2 (q), 15.1 (q), 16.5 (q), 40.8 (t), 60.8 (t), 123.8 (d), 124.8 (d), 125.6 ( d), 127.5 (d), 128.1 (d), 131.6 (s) 131.8 (s), 132.0 (s), 132.2 (s), 132.6 (s), 171.8 (s).
IR (Neat): 1732, 761 cm −1 .
MS (EI) m / z 242 (M + ), 169 (100%). HRMS (EI) calcd for C16H18O2 242.1307, found: 242.1319.
[0033]
【The invention's effect】
The carbocyclic compound obtained by the production method of the present invention can be a raw material for synthesizing useful organic compounds such as pharmaceuticals and various materials. Furthermore, these products, particularly those having a large number of substituents, require many steps in the conventional method and have low selectivity. However, in the production method of the present invention, the yield is high in two steps and purification is easy. Therefore, it is suitable for manufacturing on an industrial scale and can be said to be an industrially useful manufacturing method.

Claims (9)

イノラートアニオンと、ケト基を有するα,β−不飽和化合物とを、タンデム型環化付加−マイケル反応させた後、脱炭酸反応させることを特徴とする多置換シクロアルケン類の製造法。A process for producing a polysubstituted cycloalkene, which comprises subjecting an inolate anion and an α, β-unsaturated compound having a keto group to a tandem cycloaddition-Michael reaction followed by a decarboxylation reaction. 酸触媒下加熱反応させることにより脱炭酸反応を行う請求項1に記載の製造法。The production method according to claim 1, wherein the decarboxylation reaction is carried out by heating under an acid catalyst. イノラートアニオンが下記一般式[1]
Figure 0004064645
(式中、Rは、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表す。)
で示されるアニオンである、請求項1又は2に記載の製造法。
The inolate anion is represented by the following general formula [1]
Figure 0004064645
(In the formula, R 1 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group which may have a substituent.)
The manufacturing method of Claim 1 or 2 which is an anion shown by these.
ケト基を有するα,β−不飽和化合物が下記一般式[2]
Figure 0004064645
(式中、Rは、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表し、R,R,R,R,R,R,R及びR10はそれぞれ独立して水素原子、置換基を有していても良いアルキル基、置換基を有していても良いアリール基又は置換基を有していても良いアラルキル基を表す。また、RとR又はRとR10とが結合してそれぞれが結合している炭素原子と一緒になって芳香環若しくはシクロアルキル環を形成していても良く、更には、RとR10とが結合してそれぞれが結合している炭素原子と一緒になってシクロアルキル環を形成していても良い。Xは電子吸引性の官能基を表し、m及びnはそれぞれ独立して0又は1を表す。)
で示される化合物である請求項1〜3の何れかに記載の製造法。
The α, β-unsaturated compound having a keto group is represented by the following general formula [2]
Figure 0004064645
(In the formula, R 2 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group which may have a substituent, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. Or an aralkyl group which may have a substituent, R 6 and R 8, or R 8 and R 10 , and together with the carbon atom to which each is bonded, an aromatic ring or cyclo An alkyl ring may be formed, and R 2 and R 10 may be bonded together to form a cycloalkyl ring together with the carbon atoms to which each is bonded, where X is an electron Represents an attractive functional group, and m and n each independently represent 0 or 1 .)
The production method according to any one of claims 1 to 3, wherein the compound is represented by the formula:
電子吸引性の官能基が、−COOR基、−CH=NR基、−CN基又は−SOR基(但し、Rは、何れの場合も、水素原子、アルキル基、アリール基又はアラルキル基を表す。)である請求項4に記載の製造法。The electron-withdrawing functional group is a —COOR group, —CH═NR group, —CN group or —SO 2 R group (where R is a hydrogen atom, an alkyl group, an aryl group or an aralkyl group in any case). The production method according to claim 4, wherein 電子吸引性の官能基が−COOR基(但し、Rは前記と同じ。)である請求項4に記載の製造法。The production method according to claim 4, wherein the electron-withdrawing functional group is a —COOR group (wherein R is as defined above). 多置換シクロアルケン類が下記一般式[3]
Figure 0004064645
(式中、R〜R10、X、m及びnは前記と同じ。)
で示される化合物である請求項1〜4の何れかに記載の製造法。
The polysubstituted cycloalkenes are represented by the following general formula [3]
Figure 0004064645
(In the formula, R 1 to R 10 , X, m, and n are the same as described above.)
The production method according to any one of claims 1 to 4, which is a compound represented by the formula:
Xが、−COOR基、−CH=NR基、−CN基又は−SOR基(但し、Rは前記と同じ。)である請求項7に記載の製造法。X is, -COOR group, -CH = NR group, -CN group or -SO 2 R group (wherein, R represents the same. As above) Process according to Claim 7 is. Xが−COOR基(但し、Rは前記と同じ。)である請求項7に記載の製造法。The production method according to claim 7, wherein X is a -COOR group (wherein R is the same as defined above).
JP2001175047A 2001-06-11 2001-06-11 New production method of polysubstituted cycloalkenes Expired - Fee Related JP4064645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175047A JP4064645B2 (en) 2001-06-11 2001-06-11 New production method of polysubstituted cycloalkenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175047A JP4064645B2 (en) 2001-06-11 2001-06-11 New production method of polysubstituted cycloalkenes

Publications (2)

Publication Number Publication Date
JP2002371036A JP2002371036A (en) 2002-12-26
JP4064645B2 true JP4064645B2 (en) 2008-03-19

Family

ID=19016249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175047A Expired - Fee Related JP4064645B2 (en) 2001-06-11 2001-06-11 New production method of polysubstituted cycloalkenes

Country Status (1)

Country Link
JP (1) JP4064645B2 (en)

Also Published As

Publication number Publication date
JP2002371036A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3281920B2 (en) Method for producing allylfuran compound
JP3973941B2 (en) Method for producing δ-aminopentadienoic acid ester derivative
US10975050B2 (en) Process for preparing optically pure (R)-4-n-propyl-dihydrofuran-2(3H)-one
CN113896674B (en) Synthesis method of apremilast
CN109535120B (en) Preparation method of 7-substituted-3, 4,4, 7-tetrahydrocyclobutane coumarin-5-ketone
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
US3910958A (en) Process for preparing arylacetic acids and esters thereof
JP4540197B2 (en) (E) Process for producing 3-methyl-2-cyclopentadecenone
JP2000080082A (en) Production of 5-halogeno-2-substituted pyridine
JP7168161B2 (en) Method for producing heterol multimer
EP0528694B1 (en) Method for producing optically active 3-substituted-2-norbornanones and their intermediates
JP2659587B2 (en) 4-aziridinyl pyrimidine derivatives and their production
JP4667589B2 (en) Method for producing 2,4-dihydroxypyridine
KR101881918B1 (en) New process for the synthesis of acylsulfonamides derivatives
JPH0597735A (en) Production of optically active secondary alcohol
JPS6247171B2 (en)
JP4138322B2 (en) New process for the preparation of 5-isoxazolidinones
JP3494465B2 (en) Method for producing optically active α-amino acid derivative
JP5344287B2 (en) Process for producing α-difluorohalomethylcarbonyl compound
KR930001338B1 (en) Process for the preparation of substituted mono olefin compound by amino alkyl
JPH0662473B2 (en) Method for producing alkoxypropyl chloride
JPS6159303B2 (en)
JPH09309857A (en) Production of 4-unsaturated aldehydes
JPH0519545B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees