Nothing Special   »   [go: up one dir, main page]

JP4047304B2 - Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder - Google Patents

Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder Download PDF

Info

Publication number
JP4047304B2
JP4047304B2 JP2004189416A JP2004189416A JP4047304B2 JP 4047304 B2 JP4047304 B2 JP 4047304B2 JP 2004189416 A JP2004189416 A JP 2004189416A JP 2004189416 A JP2004189416 A JP 2004189416A JP 4047304 B2 JP4047304 B2 JP 4047304B2
Authority
JP
Japan
Prior art keywords
silver
powder
silver powder
fine
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004189416A
Other languages
Japanese (ja)
Other versions
JP2005146408A (en
Inventor
卓也 佐々木
政志 加藤
卓 藤本
貴彦 坂上
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004189416A priority Critical patent/JP4047304B2/en
Priority to US11/037,329 priority patent/US20050183543A1/en
Publication of JP2005146408A publication Critical patent/JP2005146408A/en
Application granted granted Critical
Publication of JP4047304B2 publication Critical patent/JP4047304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本件出願に係る発明は、微粒銀粒子付着銀粉及びその微粒銀粒子付着銀粉の製造方法に関するものである。   The invention according to the present application relates to fine silver particle-attached silver powder and a method for producing the fine silver particle-attached silver powder.

従来から、銀インク(ペースト)は、セラミック基板と同時焼成して回路形成に用いる等の相対的に高温での焼成用途の他、特許文献1に開示されているように、プリント配線板の配線回路、ビアホール充填、部品実装用接着剤等の種々の樹脂成分と混合して硬化させて用いるような用途が存在している。後者のような用途においては、導電フィラーとしての銀粉の粉粒同士が焼結することなく、粉粒同士の接触のみで電気的導電性を得るというのが一般的であった。   Conventionally, silver ink (paste) is used for circuit formation by cofiring with a ceramic substrate, as well as for firing at a relatively high temperature. Applications exist such that they are mixed and cured with various resin components such as circuits, via hole filling, and component mounting adhesives. In applications such as the latter, it has been common to obtain electrical conductivity only by contact between the powder particles without sintering the powder particles of the silver powder as the conductive filler.

ところが、近年は、銀粉を用いて形成した導体に対する電気的低抵抗化と、その電気的低抵抗化を実現するための高い接続信頼性が要求されるようになり、樹脂成分の硬化と共にフィラーである銀粉自体も焼結して導電性を発揮する銀インクあるいは銀ペーストに対する要求が高まってきた。一般に、このような要求に応えるには、焼結温度を下げるために、導電フィラーである銀粉の粉粒の微粒化が必要と考えられるのは当然である。   However, in recent years, electrical resistance to conductors formed using silver powder and high connection reliability to achieve electrical resistance have been required. There has been an increasing demand for silver ink or silver paste that sinters certain silver powder itself to exhibit conductivity. In general, in order to meet such demands, it is natural that atomization of silver powder as a conductive filler is necessary in order to lower the sintering temperature.

従来からの銀粉の製造には、特許文献2に記載したように硝酸銀溶液とアンモニア水とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元プロセスが採用され、これを銀ペーストに加工して用いられてきた。そして、この従来の銀粉以上の低温焼結性を確保しようと、特許文献3に開示されているような、銀ナノ粒子を含む銀インクが提唱されてきた。   As described in Patent Document 2, a conventional silver powder is produced by a wet reduction process in which a silver ammine complex aqueous solution is produced with a silver nitrate solution and aqueous ammonia, and an organic reducing agent is added thereto. It has been used after being processed into a paste. And the silver ink containing a silver nanoparticle which is disclosed by patent document 3 has been advocated in order to ensure the low temperature sintering property more than this conventional silver powder.

特開2001−107101号公報JP 2001-107101 A 特開2002−334618号公報JP 2002-334618 A 特開2002−324966号公報JP 2002-324966 A

しかしながら、銀粉を含む金属粉では、一般的に粉粒の微粒化と粉粒が単分散により近いという意味での分散性の両立は困難と言われている。例えば、上記特許文献1に開示されているような、銀ナノ粒子を含む銀インクの場合には、ナノ粒子の分散性を安定化するためには保護コロイドとして多量の分散剤を添加するのが一般的である。かかる場合、銀ナノ粒子の焼結温度よりも分散剤の分解温度が高いのが一般的であり、銀ナノ粒子自体の低温焼結特性を充分に生かしきれないものとなる。   However, with metal powders containing silver powder, it is generally said that it is difficult to achieve both the atomization of powder particles and the dispersibility in the sense that the powder particles are closer to monodispersion. For example, in the case of a silver ink containing silver nanoparticles as disclosed in Patent Document 1, a large amount of a dispersant is added as a protective colloid in order to stabilize the dispersibility of the nanoparticles. It is common. In such a case, the decomposition temperature of the dispersant is generally higher than the sintering temperature of the silver nanoparticles, and the low-temperature sintering characteristics of the silver nanoparticles themselves cannot be fully utilized.

また、銀ナノ粒子の銀インクの場合、従来のペーストよりもフィラーの含有量が大幅に低いため、薄膜形成は容易であっても厚膜を形成することが難しく、比較的大電流を流すような電源回路に用いることの出来るレベルの回路断面の大きな配線回路の形成用途、又は低抵抗回路用途への適用が困難となる。さらに実装部品の接着剤用途では導電性と共に接着強度に対する要求も厳しく、硬化により強い接着強度を発揮する樹脂を一定量以上添加する事が不可欠であり、そのため銀ナノ粒子のインクでは対応できない部分が多く存在したのである。   In addition, the silver nanoparticle silver ink has a much lower filler content than conventional pastes, so it is difficult to form a thick film even if it is easy to form a thin film. This makes it difficult to apply a wiring circuit having a large circuit cross section at a level that can be used for a simple power supply circuit or a low resistance circuit. Furthermore, in adhesive applications for mounting parts, there are strict requirements for conductivity and adhesive strength, and it is indispensable to add a certain amount or more of resin that exhibits strong adhesive strength by curing, so there are parts that can not be handled with silver nanoparticle ink There were many.

一方、従来の一般的な銀ペーストに使用されてきたレベルの銀粉では、その粒径から低温焼結性に限界があった事は言うまでもない。なぜなら、従来の製造方法で得られる銀粉の粉粒は、その一次粒子の平均粒径DIAが通常は0.6μmを超え、レーザー回折散乱式粒度分布測定法による平均粒径D50は1.0μmを超え、D50/DIAで表される凝集度が1.7を超えるのが実情であった。そのため、近年のファインピッチ化した回路形成等にも不向きであった。 On the other hand, it goes without saying that the silver powder at the level that has been used in conventional general silver pastes has limited low-temperature sinterability due to its particle size. Because particulate silver powder obtained by the conventional manufacturing method is greater than the average particle diameter D IA is typically 0.6μm of the primary particles, the average particle size D 50 by laser diffraction scattering particle size distribution measurement method 1. The actual situation was that the degree of aggregation exceeded 0 μm and the D 50 / D IA exceeded 1.7. Therefore, it has been unsuitable for forming circuits with fine pitches in recent years.

また、従来の銀粉を用いた場合の銀ペーストによる回路形成においては、加熱温度が300℃以下という非焼成若しくは低温焼結型の用途も多く、低温での高い焼結性能を得るためには、低結晶性の銀粉が好ましいとされてきた。しかし、低結晶性の銀粉を得るためには、製造条件上、還元の速い反応系を採用せざるを得ず、その結果、結晶性は低いものの、凝集の著しい銀粉しか得られなかった。従って、市場では、低温焼結性を備え、且つ、従来にない微粒の銀粉であって、しかも粉粒の凝集の少ない良好な分散性を備えた銀粉の供給が求められてきたのである。   Also, in the circuit formation with silver paste when using conventional silver powder, there are many non-firing or low-temperature sintering type applications where the heating temperature is 300 ° C. or less, and in order to obtain high sintering performance at low temperature, Low crystalline silver powder has been preferred. However, in order to obtain a low crystalline silver powder, a reaction system having a high reduction must be employed in terms of production conditions, and as a result, only a silver powder with remarkable agglomeration was obtained although the crystallinity was low. Accordingly, there has been a demand in the market for the supply of silver powder that has low-temperature sinterability and has a fine dispersibility that is fine and unprecedented, and that has good dispersibility with little aggregation of the powder.

また、一方では、銀粉に不純物量の少ないことが求められてきた。即ち、銀粉の製造は、上述した湿式還元プロセスが採用されており、そのプロセスで使用する還元剤等が銀粉の粉粒表面に残留するのである。従って、従来の製造方法を採用する以上、不可避的な問題であった。そして、銀粉の不純物量が増加すると、その銀粉を用いて形成した導体の電気的抵抗が増加するのである。   On the other hand, the silver powder has been required to have a small amount of impurities. That is, the above-described wet reduction process is employed for the production of silver powder, and the reducing agent used in the process remains on the surface of the silver powder particles. Therefore, as long as the conventional manufacturing method is adopted, it is an inevitable problem. And if the impurity amount of silver powder increases, the electrical resistance of the conductor formed using the silver powder will increase.

その結果、市場では銀粉に対し、従来にない低温焼結性を備え、微粒で、且つ、高分散であり、しかも、低抵抗を実現するための不純物含有量が少ないという要求が行われてきたのである。   As a result, there has been a demand for silver powder that has an unprecedented low-temperature sinterability, is fine and highly dispersed, and has a low impurity content to achieve low resistance. It is.

そこで、本件発明者等は、従来の銀粉の粉粒自体を微粒化する新たな方法を鋭意研究してきたが、現在の技術レベルでは自ずと限界が生じてきた。ところが、発明者等が思うに銀粉の粉粒同士が焼結するにあたっては、粉粒の表面近傍が焼結し連結した状態になればよいと考えられる。そうであれば、従来の銀粉の粉粒の表層のみを焼結容易なものに出来れば、従来の銀粉でも低温焼結性が得られるのではないかと考えたのである。以下、本件発明に関して、「微粒銀粒子付着銀粉」と「微粒銀粒子付着銀粉の製造方法」とに分けて説明する。   Thus, the present inventors have eagerly studied a new method for atomizing the conventional silver powder itself, but the current technical level has been limited. However, the inventors think that when the silver powder particles are sintered, it is sufficient that the surface vicinity of the powder particles is sintered and connected. In that case, if only the surface layer of the conventional silver powder particles could be easily sintered, it was thought that low-temperature sinterability could be obtained even with the conventional silver powder. Hereinafter, the present invention will be described by dividing into “fine silver particle-attached silver powder” and “manufacturing method of fine silver particle-attached silver powder”.

<微粒銀粒子付着銀粉>
本件発明に係る微粒銀粒子付着銀粉は、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径D IA が0.6μm以下の銀粉の粉粒表面に、微粒銀粒子を付着させたことを特徴とした微粒銀粒子付着銀粉。」である。即ち、図1にイメージ的に示したように、芯材である銀粉2の粉粒表面を、更に微細な微粒銀粒子3で被覆するのである。このように銀粉2の粉粒表面に微粒銀粒子3が存在することで、芯材の粉粒の形状及びサイズに依存することなく、粒径の小さな微粒銀粒子2が低温焼結性を発揮するため、微粒銀粒子付着銀粉1の隣り合う粉粒同士の焼結を容易にするのである。
<Silver powder with fine silver particles>
Fine silver particles deposited silver powder according to the present invention, the average particle diameter D IA is less than the silver powder 0.6μm granular surface of the primary particles obtained by image analysis of the "scanning electron microscope image, depositing the fine silver particles It is a fine silver particle-attached silver powder characterized by that . " That is, as shown in FIG. 1, the surface of the silver powder 2 as the core material is covered with finer silver particles 3. Thus, the presence of the fine silver particles 3 on the surface of the silver powder 2 allows the fine silver particles 2 having a small particle diameter to exhibit low-temperature sintering properties without depending on the shape and size of the core powder. Therefore, sintering of the adjacent powder particles of the fine silver particle-attached silver powder 1 is facilitated.

ここで言う「微粒銀粒子」とは、その粒径がnmオーダーの銀ナノ粒子であり、芯材である銀粉2の粉粒表面にのみ存在することになる。上述したように、銀ナノ粒子自体を銀インクに用いる場合には、ナノ粒子の分散性を安定化するため、銀ナノ粒子の焼結温度よりも高い分解温度をもつ多量の分散剤を添加するのが一般的であり、銀ナノ粒子自体の低温焼結特性を充分に生かしきれないものとなる。しかし、芯材である銀粉2の粉粒表面に、更に微細な微粒銀粒子3を付着させることで、芯材の銀粉の粉粒の大きさ及び形状に関係なく、銀ナノ粒子の低温焼結特性を十分に引き出すことが可能となるのである。従って、芯材の銀粉の粉粒形状が略球形でも、粉粒径が数十μmのフレーク粉であっても、芯材としての使用が可能となるのである。   The “fine silver particles” referred to here are silver nanoparticles having a particle size of the order of nm, and are present only on the surface of the silver powder 2 as a core material. As described above, when silver nanoparticles themselves are used in silver ink, a large amount of dispersant having a decomposition temperature higher than the sintering temperature of silver nanoparticles is added to stabilize the dispersibility of the nanoparticles. In general, the low temperature sintering characteristics of the silver nanoparticles themselves cannot be fully utilized. However, by attaching finer fine silver particles 3 to the surface of the silver powder 2 as the core material, the silver nanoparticles can be sintered at a low temperature regardless of the size and shape of the silver powder particles in the core material. This makes it possible to fully extract the characteristics. Therefore, even if the particle shape of the silver powder of the core material is substantially spherical or flake powder having a powder particle diameter of several tens of μm, it can be used as the core material.

芯材として用いる銀粉は、略球形状のもの、フレーク形状等の扁平形状のもの等を用いることができ、従来から存在する製造方法に於いて製造条件を考慮することにより、ある程度シャープな粒度分布、分散性を確保することが可能となる。その結果、単体で見たときには分散性の乏しい銀ナノ粒子であっても、その銀ナノ粒子を芯材銀粉の表面に付着させた微粒銀粒子付着銀粉として用いることで、取り扱い性に優れ、ペースト加工する際には多量の保護コロイドを必要とせず、しかも従来の銀ペーストと同等の銀粒子含有量を達成することができ、回路等の形状を引き回した際の塗膜を厚くすることが可能となるのである。   The silver powder used as the core material can be of a substantially spherical shape, a flat shape such as a flake shape, etc., and by considering the manufacturing conditions in the existing manufacturing method, the particle size distribution is sharp to some extent It is possible to ensure dispersibility. As a result, even if the silver nanoparticles are poorly dispersible when viewed as a single substance, the silver nanoparticles are used as fine silver particle-attached silver powder that is attached to the surface of the core silver powder, so that the handleability is excellent and the paste When processing, a large amount of protective colloid is not required, and the same silver particle content as that of conventional silver paste can be achieved, and the coating film can be made thicker when the circuit shape is drawn. It becomes.

以上に述べてきたような微粒銀粒子付着銀粉は、焼結可能温度が170℃以下となり、極めて良好な焼結特性を示すこととなるのである。その結果、この微粒銀粒子付着銀粉を用いて銀ペースト(インク)を製造し、これを用いて回路等の形状を描くときの、膜圧は厚くして大電流でも使用可能な回路を得ることが出来る。しかも、粉粒同士の焼結が容易であるため、導体としての電気的低抵抗化及び導通信頼性が大幅に向上するのである。   The fine silver particle-attached silver powder as described above has a sinterable temperature of 170 ° C. or lower and exhibits extremely good sintering characteristics. As a result, a silver paste (ink) is manufactured using this fine silver particle-attached silver powder, and when this is used to draw the shape of a circuit, etc., a circuit that can be used with a large current is obtained by increasing the film pressure. I can do it. Moreover, since it is easy to sinter the powder particles, electrical resistance reduction and conduction reliability as a conductor are greatly improved.

本件発明に係る微粒銀粒子付着銀粉は芯材に銀粉を用いるものである。従って、この微粒銀粒子付着銀粉の粉粒の粒径及び分散性は、その芯材である銀粉に依存する傾向が非常に強いものとなる。即ち、芯材に用いる銀粉に、粒度分布、分散性が高度なレベルで確保できる範囲でのものを用いることが好ましいのである。そして、電気抵抗の阻害要因となる不純物量が少ないという条件を兼ね備えればなお良好なものと言えるのである。そこで、本件発明者等が銀粉自体の微粒化を追求して鋭意研究した結果、以下に示す粉体特性を持つ銀粉を得ることができた。そして、これを芯材に用い、微粒銀粒子付着銀粉を製造すると極めて良好な製品が得られることに想到したのである。   The fine silver particle-attached silver powder according to the present invention uses silver powder as a core material. Therefore, the particle diameter and dispersibility of the fine silver particle-attached silver powder tend to be very dependent on the silver powder as the core material. That is, it is preferable to use the silver powder used for the core material within a range in which the particle size distribution and dispersibility can be secured at a high level. And it can be said that it is still good if it also has the condition that the amount of impurities that inhibit electric resistance is small. Therefore, as a result of intensive studies by the present inventors in pursuit of atomization of the silver powder itself, silver powder having the following powder characteristics could be obtained. And it was conceived that a very good product can be obtained by using this as a core material to produce fine silver particle-attached silver powder.

その銀粉は基本的に「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下。」である。更に、「a.前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される凝集度が1.5以下。」、「.結晶子径が10nm以下。」の各粉体特性を兼ね備えるものである。そして、もう一つの銀粉は上記各粉体特性を兼ね備えると同時に、更に「.有機不純物含有量が炭素量換算で0.25wt%以下。」という粉体特性を備えるものである。この2種類の銀粉は、製造条件を変更することにより不純物含有量が差として現れているのである。このような粉体特性を持つ銀粉は、従来の製造方法では得ることのできないレベルの分散性を備えた微粒銀粉である。以下、この芯材となる銀粉の粉体特性に関して説明する。 Its silver powder essentially "average particle diameter D IA of the primary particles obtained by image analysis of scanning electron microscope images 0.6μm or less." A. Furthermore, “a . The degree of aggregation represented by D 50 / D IA using the average particle diameter D IA of the primary particles and the average particle diameter D 50 obtained by the laser diffraction / scattering particle size distribution measurement method is 1.5 or less. "," B. Crystallite diameter is 10 nm or less. " The other silver powder has the above-mentioned powder characteristics and at the same time has the powder characteristics of “ c . Organic impurity content is 0.25 wt% or less in terms of carbon amount”. These two types of silver powder appear as a difference in impurity content by changing the production conditions. The silver powder having such powder characteristics is a fine silver powder having a level of dispersibility that cannot be obtained by a conventional manufacturing method. Hereinafter, the powder characteristics of the silver powder as the core material will be described.

本発明に係る銀粉の特性は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下というものである。ここで、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIA」とは、走査型電子顕微鏡(SEM)を用いて観察される銀粉の観察像(本件発明で芯材に用いる微粒銀粉の場合には倍率10000倍、従来の銀粉の場合は倍率3000〜5000倍で観察するのが好ましい。)を画像解析することにより得られる平均粒径のことである。なお、本件明細書における走査型電子顕微鏡(SEM)を用いて観察される微粒銀粉の画像解析は、旭エンジニアリング株式会社製のIP−1000PCを用いて、円度しきい値10、重なり度20として円形粒子解析を行い、平均粒径DIAを求めたものである。この微粒銀粉の観察像を画像処理することにより得られる平均粒径DIAは、SEM観察像から直接得るものであるため、一次粒子の平均粒径が確実に捉えられていることになる。本件発明で言う微粒銀粉のDIAは、本件発明者らが観察する限り0.01μm〜0.6μmの範囲に殆どが入ってくるが、現実には更に微細な粒径のものが確認できる場合もあり、下限値を敢えて明記していないのである。 Characteristics of silver powder according to the present invention, the average particle diameter D IA of the primary particles obtained by image analysis of scanning electron microscope images is that 0.6μm or less. Here, “average particle diameter D IA of primary particles obtained by image analysis of scanning electron microscope image” refers to an observation image of silver powder observed with a scanning electron microscope (SEM) (core material in the present invention) In the case of fine silver powder used in the above, it is preferably observed at a magnification of 10,000 times, and in the case of conventional silver powder, it is preferably observed at a magnification of 3000 to 5000 times. In addition, image analysis of fine silver powder observed using a scanning electron microscope (SEM) in the present specification uses an IP-1000PC manufactured by Asahi Engineering Co., Ltd. A circular particle analysis is performed to obtain an average particle diameter DIA . Since the average particle diameter DIA obtained by image processing the observation image of the fine silver powder is obtained directly from the SEM observation image, the average particle diameter of the primary particles is surely captured. D IA of fine silver powder referred to in the present invention, mostly in the range of 0.01μm~0.6μm unless observing present inventors although incoming reality that can be confirmed even more of fine particle size There is also a lower limit that is not clearly stated.

.の特性は、本件発明で芯材に用いる微粒銀粉が、従来の銀粉に無いほど高い分散性を示すことから、この分散性を示す指標として「凝集度」を用いたのである。本件発明で言う凝集度とは、前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される値のことである。ここで、D50とは、レーザー回折散乱式粒度分布測定法を用いて得られる重量累積50%における粒径のことであり、この平均粒径D50の値は、真に粉粒の一つ一つの径を直接観察したものではなく、凝集した粉粒を一個の粒子(凝集粒子)として捉えて、平均粒径を算出していると言えるのである。即ち、現実の銀粉の粉粒は、個々の粒子が完全に分離した、いわゆる単分散粉ではなく、複数個の粉粒が凝集した状態になっているのが通常と考えられるからである。しかしながら、粉粒の凝集状態が少なく、単分散に近いほど、平均粒径D50の値は小さなものとなるのが通常である。本件発明で用いる微粒銀粉のD50は、0.25μm〜0.80μm程度の範囲となり、従来の製造方法では全く得られなかった範囲の平均粒径D50を持つ微粒銀粉となるのである。なお、本件明細書における、レーザー回折散乱式粒度分布測定法は、微粒銀粉0.1gをイオン交換水と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて測定したものである。 a . Since the fine silver powder used for the core material in the present invention exhibits a high dispersibility that is not found in conventional silver powders, “aggregation” is used as an index indicating the dispersibility. The degree of aggregation referred to in the present invention is a value represented by D 50 / D IA using the average particle diameter D IA of the primary particles and the average particle diameter D 50 obtained by the laser diffraction / scattering particle size distribution measurement method. It is. Here, D 50 is a particle size at a weight accumulation of 50% obtained by using a laser diffraction scattering type particle size distribution measuring method, and the value of this average particle size D 50 is truly one of powder particles. It can be said that the average particle diameter is calculated by capturing the aggregated particles as one particle (aggregated particle) instead of directly observing one diameter. That is, it is considered that the actual silver powder is not a so-called monodispersed powder in which individual particles are completely separated, but a plurality of powders are usually aggregated. However, little aggregation state of granular, closer to monodisperse, the value of the average particle diameter D 50 is becoming small things usually. D 50 of the fine silver powder used in the present invention is in the range of about 0.25 μm to 0.80 μm, and becomes a fine silver powder having an average particle diameter D 50 in a range that could not be obtained at all by the conventional production method. In this specification, the laser diffraction / scattering particle size distribution measurement method is performed by mixing 0.1 g of fine silver powder with ion-exchanged water and dispersing for 5 minutes with an ultrasonic homogenizer (US-300T manufactured by Nippon Seiki Seisakusho). It is measured using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup).

これに対し、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIA」とは、走査型電子顕微鏡(SEM)を用いて観察される銀粉の観察像を画像解析することにより得られる平均粒径のことであり、凝集状態を考慮することなく一次粒子の平均粒径が確実に捉えられているものである。 On the other hand, “average particle diameter D IA of primary particles obtained by image analysis of scanning electron microscope image” is an image analysis of an observation image of silver powder observed using a scanning electron microscope (SEM). The average particle diameter of the primary particles is reliably captured without considering the aggregation state.

この結果、本件発明者等は、レーザー回折散乱式粒度分布測定法の平均粒径D50と画像解析により得られる平均粒径DIAとを用いて、D50/DIAで算出される値を凝集度として捉えることとしたのである。即ち、同一ロットの微粒銀粉においてD50とDIAとの値が同一精度で測定できるものと仮定して、上述した理論で考えると、凝集状態のあることを測定値に反映させるD50の値は、DIAの値よりも大きな値になると考えられる。このとき、D50の値は、微粒銀粉の粉粒の凝集状態がなくなるほど、限りなくDIAの値に近づいてゆき、凝集度であるD50/DIAの値は、1に近づくことになる。凝集度が1となった段階で、粉粒の凝集状態が全く無い単分散粉と言えるのである。 As a result, the present inventors have found that, by using the average particle diameter D IA obtained by an average particle size D 50 and the image analysis of a laser diffraction scattering particle size distribution measuring method, the value calculated by D 50 / D IA It was taken as the degree of aggregation. That is, assuming that the values of D 50 and D IA can be measured with the same accuracy in fine silver powder of the same lot, the value of D 50 that reflects the presence of an agglomerated state in the measured value is considered in the above theory. Is considered to be larger than the value of DIA . At this time, the value of D 50, the more granular aggregation state of the fine silver powder is eliminated, Yuki approaching the value of the infinitely D IA, the value of a degree of aggregation D 50 / D IA is that approaches 1 Become. When the degree of aggregation becomes 1, it can be said to be a monodisperse powder having no agglomerated state of particles.

そこで、本件発明者等は、凝集度と各凝集度の微粒銀粉を用いて製造した微粒銀粉ペーストの粘度、焼結加工して得られる導体の表面平滑性等との相関関係を調べてみた。その結果、極めて良好な相関関係が得られる事がわかったのである。このことから分かるように、微粒銀粉の持つ凝集度をコントロールしてやれば、その微粒銀粉を用いて製造する微粒銀粉ペーストの粘度の自由なコントロールが可能となると判断できるのである。しかも、凝集度を1.5以下にしておけば、微粒銀粉ペーストの粘度、焼結加工後の表面平滑性等の変動を極めて狭い領域に納めることが可能となることが分かったのである。また、凝集状態が解消されていればいるほど、その微粒銀粉を用いて焼結させて得られる導体の膜密度が向上し、結果として形成した焼結導体の電気的抵抗を低くすることが可能となるのである。   Therefore, the present inventors examined the correlation between the degree of aggregation and the viscosity of the fine silver powder paste produced using the fine silver powder of each aggregation degree, the surface smoothness of the conductor obtained by sintering, and the like. As a result, it was found that a very good correlation was obtained. As can be seen from this, it can be determined that if the degree of aggregation of the fine silver powder is controlled, the viscosity of the fine silver powder paste produced using the fine silver powder can be freely controlled. Moreover, it has been found that if the degree of aggregation is 1.5 or less, it is possible to keep fluctuations in the viscosity of the fine silver powder paste, the surface smoothness after the sintering process, etc. in a very narrow region. In addition, the more the aggregated state is resolved, the higher the film density of the conductor obtained by sintering with the fine silver powder, and the lower the electrical resistance of the resulting sintered conductor. It becomes.

また、現実に凝集度を算出してみると、1未満の値を示す場合もある。これは、凝集度の算出に用いるDIAを真球と仮定しているからと考えられ、理論的には1未満の値にはならないのであるが、現実には、真球ではないがために1未満の凝集度の値が得られるようである。 Further, when the degree of aggregation is actually calculated, a value less than 1 may be indicated. This makes the D IA used for calculating the degree of aggregation is considered because it is assumed that true sphere, but in theory is not become a value less than 1, in reality, since not a true sphere It appears that a cohesion value of less than 1 is obtained.

.の特性は結晶子径が10nm以下というものであり、この結晶子径と焼結可能温度とは、非常に密接な関係を有するものである。即ち、平均粒径が同等の銀粉同士で対比すれば、結晶子径が小さなものであるほど、低温での焼結が可能となるのである。従って、本件発明にかかる微粒銀粉のように微粒であるが故に表面エネルギーが大きく、しかも、10nm以下という小さな結晶子径を備えることで、芯材である微粒銀粉自体の焼結可能温度を低温化することができるのである。ここで、結晶子径に関して下限値を設けていないが、測定装置、測定条件等により一定の測定誤差が生じるためである。また、結晶子径が10nmを下回る範囲での測定値に高い信頼性を求めることが困難であり、敢えて下限値を定めるとしたならば、本件発明者らの研究の結果得られた2nm程度であると考える。 b . The characteristic is that the crystallite diameter is 10 nm or less, and the crystallite diameter and the sinterable temperature have a very close relationship. In other words, if silver powders having the same average particle diameter are compared with each other, the smaller the crystallite diameter, the lower the sintering possible. Therefore, the surface energy is large because it is fine like the fine silver powder according to the present invention, and it has a small crystallite diameter of 10 nm or less, thereby lowering the sinterable temperature of the fine silver powder itself as the core material. It can be done. Here, although no lower limit is set for the crystallite diameter, it is because a certain measurement error occurs depending on the measurement apparatus, measurement conditions, and the like. In addition, it is difficult to obtain high reliability for the measurement value in the range where the crystallite diameter is less than 10 nm. If the lower limit value is deliberately determined, it is about 2 nm obtained as a result of the present inventors' research. I think there is.

.の特性は、有機不純物含有量が炭素量換算で0.25wt%以下というものである。ここでは、炭素量含有量を有機不純物含有量の指標として用い、微粒銀粉の粉粒に付着した不純物量の目安としているのである。このときの炭素含有量の測定は、堀場製作所製 EMIA−320Vを用いて、微粒銀粉0.5g、タングステン粉1.5g、スズ粉0.3gを混合し、これを磁性るつぼ内に入れ、燃焼−赤外吸収法により測定したものである。従来の製造方法で得られた銀粉の炭素含有量は、いかに洗浄を強化しても0.25wt%を超える炭素量を含むものとなるのである。 c . The characteristic is that the organic impurity content is 0.25 wt% or less in terms of carbon amount. Here, the carbon content is used as an index of the organic impurity content, and is used as a measure of the amount of impurities adhering to the fine silver powder. The carbon content at this time is measured by mixing EMIA-320V manufactured by Horiba Seisakusho, mixing 0.5 g of fine silver powder, 1.5 g of tungsten powder, and 0.3 g of tin powder, and placing this in a magnetic crucible and burning. -Measured by infrared absorption method. The carbon content of the silver powder obtained by the conventional manufacturing method includes a carbon amount exceeding 0.25 wt%, no matter how strong the cleaning is.

本件発明に係る微粒銀粉は、上述してきたa.及びb.若しくはa.〜c.の粉体特性を備えているため、従来にない微粒銀粉であると捉えることが出来る。しかも、本件発明で芯材に用いる微粒銀粉を焼結可能温度という特性から見ても、240℃以下という低温での焼結開始が可能な微粒銀粉と言えるのである。本件発明における焼結可能温度とは、各銀粉を用いて銀ペーストを製造し、アルミナ基板上に回路を引き回し、抵抗測定の可能な程度に焼結加工できる最低温度のことである。また、この焼結可能温度に関しても下限値を特に規定していないが、本件発明者らの行った研究及び一般的な技術常識を考慮すれば、芯材とする微粒銀粉自体で考えれば170℃を下回る焼結可能温度を得ることは殆ど不可能であり、下限値に相当する温度であると考えている。 The fine silver powder according to the present invention has the a. And b. Or a. ~ C. Therefore, it can be understood that it is an unprecedented fine silver powder. Moreover, even if the fine silver powder used for the core material in the present invention is seen from the property of the sinterable temperature, it can be said that the fine silver powder can start sintering at a low temperature of 240 ° C. or lower. The sinterable temperature in the present invention is the lowest temperature at which a silver paste is produced using each silver powder, a circuit is drawn on an alumina substrate, and sintering is possible to the extent that resistance can be measured. Further, although there is no particular lower limit for the sinterable temperature, considering the research conducted by the present inventors and general technical common sense, 170 ° C. is considered when considering the fine silver powder itself as the core material. It is almost impossible to obtain a sinterable temperature lower than 1, and is considered to be a temperature corresponding to the lower limit.

更に、上記してきた粉体特性を備える効果として、本件発明にかかる微粒銀粉のタップ充填密度は4.0g/cm以上という高いものとなるのである。ここで言うタップ充填密度は、微粒銀粉200gを精秤し、150cmのメスシリンダーに入れ、ストローク40mmで1000回の落下を繰り返しタッピングした後、微粒銀粉の容積を測定するという方法で測定したものである。このタップ充填密度は、理論的に微細な粒径を持ち、粉粒同士の凝集の無い分散性の高い状態であるほど、高い値が得られることになる。従来の銀粉のタップ充填密度が4.0g/cm 未満であることを考慮すれば、本件発明にかかる微粒銀粉は、非常に微細で且つ分散性に優れたものであるとの裏付けにもなるのである。 Furthermore, as an effect having the above-described powder characteristics, the tap filling density of the fine silver powder according to the present invention is as high as 4.0 g / cm 3 or more. The tap packing density here is measured by a method in which 200 g of fine silver powder is precisely weighed, placed in a 150 cm 3 measuring cylinder, repeatedly dropped 1000 times with a stroke of 40 mm, and then the volume of the fine silver powder is measured. It is. This tap filling density has a theoretically fine particle size, and the higher the dispersibility without aggregation of powder particles, the higher the value obtained. Considering that the tap packing density of the conventional silver powder is less than 4.0 g / cm 3 , the fine-grained silver powder according to the present invention also supports that it is very fine and has excellent dispersibility. It is.

以上に述べてきた芯材として用いる微粒銀粉は、微粒で且つ分散性に優れ、その微粒銀粉自体でも焼結可能温度が240℃以下という低温焼結性を備えるのである。そして、この微粒銀粉の粉粒の表面に銀ナノ粒子を付着させることで、従来の銀粉に比べて微粒で且つ分散性に優れ、且つ、焼結可能温度が170℃以下の範囲となり低温焼結性能を持つ微粒銀粒子付着銀粉となるのである。   The fine silver powder used as the core material described above is fine and has excellent dispersibility, and the fine silver powder itself has a low-temperature sinterability of 240 ° C. or lower. Then, by attaching silver nanoparticles to the surface of the fine silver powder, it is finer and more dispersible than conventional silver powder. It becomes a fine silver particle-attached silver powder having performance.

<微粒銀粒子付着銀粉の製造方法>
この本件発明に係る微粒銀粒子付着銀粉の製造方法は、製造方法1及び製造方法2という2つの方法に大別して、以下に説明する。また、この製造方法1及び製造方法2のそれぞれにおいて用いるのに好適な微粒銀粉に関しては、微粒銀粉の製造方法として説明することとする。
<Method for producing fine silver particle-attached silver powder>
The method for producing the fine silver particle-attached silver powder according to the present invention will be described below, roughly divided into two methods, ie, production method 1 and production method 2. The fine silver powder suitable for use in each of the production method 1 and the production method 2 will be described as a production method of the fine silver powder.

製造方法1: この製造方法は、「銀粉と、硝酸銀と錯化剤とを混合して攪拌溶解させて得られる銀錯体を含む溶液とを接触させ、ここに還元剤を加え微粒銀粒子を銀粉の粉粒表面へ析出させることを特徴とした微粒銀粒子付着銀粉の製造方法。」である。 Production method 1: This production method is “contacting a silver powder and a solution containing a silver complex obtained by mixing and dissolving silver nitrate and a complexing agent, and adding a reducing agent to the fine silver particles. Is a method for producing fine silver particle-attached silver powder, characterized by being deposited on the surface of the powder grains of

ここで銀粉スラリーとするときの、スラリー中の銀粉量に関しては、特に限定はない。しかしながら、スラリー中の銀粉量を明確にしなければ、製造における薬剤の使用量を明確に示すことが出来ないことになる。そこで、この製造方法1では、1リットルの純水に50gの銀粉を分散させた銀粉スラリー中の粉粒表面に、銀ナノ粒子を付着させ微粒銀粒子付着銀粉を得る方法として説明する。なお、この銀粉は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが1μm以下の銀粉を用いることを前提としている。 There is no limitation in particular about the amount of silver powder in a slurry when it is set as a silver powder slurry here. However, unless the amount of silver powder in the slurry is clarified, the amount of chemical used in the production cannot be clearly indicated. Therefore, this production method 1 will be described as a method for obtaining fine silver particle-attached silver powder by attaching silver nanoparticles to the powder grain surface in a silver powder slurry in which 50 g of silver powder is dispersed in 1 liter of pure water. In addition, this silver powder presupposes using the silver powder whose average particle diameter DIA of the primary particle obtained by the image analysis of a scanning electron microscope image is 1 micrometer or less.

最初に、「硝酸銀と錯化剤とを混合して攪拌溶解させて得られる銀錯体を含む溶液」に関して説明する。前記条件の銀粉量を処理するためには、8g〜26gの硝酸銀を用いる。8g未満の硝酸銀では、実用上十分な微粒銀による被覆率を得ることが出来ず、26gを超える硝酸銀を用いても、それ以上に被覆率の向上が起こらないからである。そして、ここで用いる錯化剤は、亜硫酸塩、アンモニウム塩である。亜硫酸カリウムを用いる場合には、50g〜150gの範囲で用いるのである。亜硫酸カリウムの添加量が50g未満の場合には、銀の錯化が完全に行えず銀錯体を完全に生成し得ないのである。亜硫酸カリウムの添加量が150gを超えても、既に銀錯体を形成するための十分な量の錯化剤量は超えており、銀錯体を得るための反応速度が速くなることもなく不経済となるからである。この硝酸銀を1リットルの純水に溶解させ、そこに錯化剤を加え、十分に攪拌して銀錯体を含む溶液を得るのである。   First, “a solution containing a silver complex obtained by mixing and dissolving silver nitrate and a complexing agent” will be described. In order to process the amount of silver powder under the above conditions, 8 to 26 g of silver nitrate is used. This is because, when silver nitrate is less than 8 g, a practically sufficient coverage with fine silver cannot be obtained, and even when silver nitrate exceeds 26 g, the coverage is not further improved. The complexing agents used here are sulfites and ammonium salts. When potassium sulfite is used, it is used in the range of 50 g to 150 g. When the amount of potassium sulfite added is less than 50 g, the complexation of silver cannot be performed completely and a silver complex cannot be completely formed. Even if the amount of potassium sulfite added exceeds 150 g, the amount of complexing agent sufficient to form a silver complex is already exceeded, and the reaction rate for obtaining a silver complex is not increased, which is uneconomical. Because it becomes. This silver nitrate is dissolved in 1 liter of pure water, a complexing agent is added thereto, and the mixture is sufficiently stirred to obtain a solution containing a silver complex.

以上のようにして得られた銀錯体を含む溶液に前記の50gの銀粉を添加し、十分に攪拌するのである。そして、そこに還元剤を加えて還元反応を行わせ、銀粉の粉粒表面にナノオーダーの粒径を持つ微粒銀粉を均一に析出させるのである。このときに用いる還元剤は、ヒドラジン、DMAB、SBH、ホルマリン、次亜リン酸である。ヒドラジンを用いる場合には、5g〜50gのヒドラジンを200ml以下(0mlを含む)の純水に溶解し、これを60分以内(一括で添加する場合を含む)の時間で添加するのである。ヒドラジン量が5g未満では、還元がうまくいかず銀粉の粉粒表面を微粒銀粉が均一に被覆できないのである。そして、ヒドラジン量が50gを超えても還元速度が特に速くなると言うこともなく、経済性を損なうだけとなるのである。   The above-mentioned 50 g of silver powder is added to the solution containing the silver complex obtained as described above, and sufficiently stirred. Then, a reducing agent is added thereto to cause a reduction reaction, and fine silver powder having a nano-order particle diameter is uniformly deposited on the surface of the silver powder. The reducing agent used at this time is hydrazine, DMAB, SBH, formalin, or hypophosphorous acid. In the case of using hydrazine, 5 g to 50 g of hydrazine is dissolved in 200 ml or less (including 0 ml) of pure water, and this is added within 60 minutes (including the case where it is added all at once). If the amount of hydrazine is less than 5 g, the reduction is not successful and the fine silver powder cannot uniformly coat the surface of the silver powder. And even if the amount of hydrazine exceeds 50 g, it does not say that the reduction rate is particularly fast, and it only impairs the economy.

そして、還元反応を行わせる際の液温は、室温〜45℃の範囲である。液温が45℃を超えると還元反応が速くなりすぎて、銀粉の粉粒表面への微粒銀粉の析出が不均一化しやすく、得られる微粒銀粒子付着銀粉の粒度分布を劣化させるのである。そして、上記還元剤濃度の範囲において、添加時間は5分間〜40分間程度の範囲を採用することが好ましい。5分未満の反応時間は、生成する粉粒の凝集が強くなる傾向がある。一方、40分もの添加時間を採用すれば、十分に均一な被覆が可能となるのである。   And the liquid temperature at the time of performing a reductive reaction is the range of room temperature-45 degreeC. When the liquid temperature exceeds 45 ° C., the reduction reaction becomes too fast, and the precipitation of the fine silver powder on the surface of the silver powder tends to be nonuniform, and the particle size distribution of the resulting fine silver particle-attached silver powder is deteriorated. And in the range of the said reducing agent density | concentration, it is preferable to employ | adopt the range for about 5 minutes-40 minutes for addition time. When the reaction time is less than 5 minutes, there is a tendency for the aggregation of the produced particles to become strong. On the other hand, if an addition time of 40 minutes is employed, a sufficiently uniform coating can be achieved.

以上のようにして銀粉の粉粒表面に微粒銀粉を還元析出すると、その後、濾別、洗浄、脱水、乾燥して、本件発明に係る微粒銀粒子付着銀粉が得られるのである。ここで言う濾別、洗浄、脱水、乾燥に関しては、種々の方法を用いることが可能であり、特に、その手法、条件に関する限定は要さないものである。   When the fine silver powder is reduced and deposited on the surface of the silver powder as described above, the fine silver particle-attached silver powder according to the present invention is obtained by filtering, washing, dehydrating and drying. Various methods can be used for the filtering, washing, dehydration, and drying referred to here, and there is no particular limitation on the method and conditions.

製造方法2: この製造方法は、「銀粉を分散媒に加えた銀粉スラリーに、硝酸銀と中和剤とを添加して攪拌溶解させ微粒酸化銀粒子を銀粉の粉粒表面へ析出させ、洗浄し、紫外線照射を行い微粒酸化銀粒子を微粒銀粒子へと還元することを特徴とした微粒銀粒子付着銀粉の製造方法。」である。 Manufacturing method 2: This manufacturing method is “adding silver nitrate and a neutralizing agent to a silver powder slurry in which silver powder is added to a dispersion medium, stirring and dissolving it, and precipitating fine silver oxide particles on the surface of the silver powder and washing. "A method for producing fine silver particle-attached silver powder, characterized by reducing the fine silver oxide particles to fine silver particles by ultraviolet irradiation."

ここで銀粉スラリーとするときの、スラリー中の銀粉量に関しては、特に限定はない。しかしながら、スラリー中の銀粉量を明確にしなければ、製造における薬剤の使用量を明確に示すことが出来ないことになる。そこで、1500gの分散媒に50gの銀粉を分散させた銀粉スラリーの粉粒表面に、銀ナノ粒子を付着させ微粒銀粒子付着銀粉を得る方法として説明する。なお、この銀粉は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが1μm以下の銀粉を用いることを前提としている。 There is no limitation in particular about the amount of silver powder in a slurry when it is set as a silver powder slurry here. However, unless the amount of silver powder in the slurry is clarified, the amount of chemical used in the production cannot be clearly indicated. Therefore, a method of obtaining fine silver particle-attached silver powder by attaching silver nanoparticles to the powder grain surface of a silver powder slurry in which 50 g of silver powder is dispersed in 1500 g of a dispersion medium will be described. In addition, this silver powder presupposes using the silver powder whose average particle diameter DIA of the primary particle obtained by the image analysis of a scanning electron microscope image is 1 micrometer or less.

「銀粉を分散媒に加えた銀粉スラリー」に関して説明する。ここで用いる分散媒は、エチレングリコール(モノエチレングリコール、ジエチレングリコール、トリエチレングリコールを含む)、ブタンジオール(1,4−ブタンジオール、1,2−ブタンジオール、2,3−ブタンジオールを含む)、グリセリンである。ここでは、分散媒にエチレングリコールを用いる場合を想定して説明することとする。従って、前記50gの銀粉を1500gのエチレングリコール中に添加して攪拌することで、銀粉スラリーとするのである。   The “silver powder slurry in which silver powder is added to a dispersion medium” will be described. The dispersion medium used here is ethylene glycol (including monoethylene glycol, diethylene glycol, triethylene glycol), butanediol (including 1,4-butanediol, 1,2-butanediol, 2,3-butanediol), Glycerin. Here, the case where ethylene glycol is used as the dispersion medium will be described. Therefore, the silver powder slurry is obtained by adding 50 g of the silver powder to 1500 g of ethylene glycol and stirring.

以上のようにして得られた銀粉スラリーに、硝酸銀と中和剤とを添加して攪拌溶解させ微粒酸化銀粒子を銀粉の粉粒表面へ析出させるのである。このときの硝酸銀及び中和剤はは、硝酸銀又は中和剤を溶解させた水溶液状態で用いることが好ましい。銀粉スラリー中での薬剤の偏在を防止して、中和反応が銀粉スラリー中で均一に起こるようにするためである。このときに用いる硝酸銀水溶液には、500gの純水に2.50g〜33.34g(硝酸銀濃度が3wt%〜40wt%に相当)の硝酸銀を溶解させた硝酸銀水溶液を用いることが好ましい。硝酸銀量が2.50g未満の場合には、前記銀粉の粉粒表面を均一に被覆する酸化銀量が析出しないのである。硝酸銀量が33.34gを超えても、銀粉の粉粒表面へ付着する酸化銀量は大きく変化せず、むしろ粉粒の粒度分布及び分散性を劣化させるのである。   To the silver powder slurry obtained as described above, silver nitrate and a neutralizing agent are added and dissolved by stirring to precipitate fine silver oxide particles on the surface of the silver powder. The silver nitrate and the neutralizing agent at this time are preferably used in an aqueous solution in which silver nitrate or the neutralizing agent is dissolved. This is to prevent the drug from being unevenly distributed in the silver powder slurry so that the neutralization reaction occurs uniformly in the silver powder slurry. The silver nitrate aqueous solution used at this time is preferably a silver nitrate aqueous solution in which 2.50 g to 33.34 g (silver nitrate concentration corresponds to 3 wt% to 40 wt%) of silver nitrate is dissolved in 500 g of pure water. When the amount of silver nitrate is less than 2.50 g, the amount of silver oxide that uniformly coats the surface of the silver powder does not precipitate. Even if the amount of silver nitrate exceeds 33.34 g, the amount of silver oxide adhering to the surface of the silver powder does not change significantly, but rather the particle size distribution and dispersibility of the powder are deteriorated.

そして、中和剤には、水酸化ナトリウム、水酸化カリウム等のアルカリ金属塩を用いることができる。この中和剤の添加量は、中和する硝酸銀量に依存することは当然であり、水酸化ナトリウムを用いることを想定すると0.588g〜7.840gの範囲で、硝酸銀量に対応させて用いられることになる。このときの水酸化ナトリウムも水溶液として用いることが好ましいため、500gの純水に溶解させた水酸化ナトリウム水溶液として用いる。   An alkali metal salt such as sodium hydroxide or potassium hydroxide can be used as the neutralizing agent. The amount of the neutralizing agent added is naturally dependent on the amount of silver nitrate to be neutralized. When sodium hydroxide is used, it is used in a range of 0.588 g to 7.840 g corresponding to the amount of silver nitrate. Will be. Since sodium hydroxide at this time is also preferably used as an aqueous solution, it is used as an aqueous sodium hydroxide solution dissolved in 500 g of pure water.

以上のようにして銀粉の粉粒表面へ微粒酸化銀粉を付着させると、その後、微粒酸化銀粉付銀粉を洗浄することになる。この洗浄は、反応に用いた溶液を除去し、水分を十分に除去するものでなければならない。従って、水洗とアルコール洗浄とを組み合わせて用いることが最も好ましい。水洗は、上述してきた条件で得られた微粒酸化銀粉付銀粉に対し、少なくとも500g以上の可能な限り多くの水量で洗浄し、脱水することが好ましい。不純物量を可能な限り除去するためである。そして、更に確実に水分を除去するため、アルコール洗浄を行うのである。このアルコール洗浄には、エチルアルコール、メチルアルコール、イソプロピルアルコール等を用いることができ、その使用量に関して特に制限はなく、水分除去が十分に可能な量を用いれば足りるのである。   When the fine silver oxide powder is adhered to the surface of the silver powder as described above, the silver powder with the fine silver oxide powder is then washed. This washing must remove the solution used in the reaction and remove water sufficiently. Therefore, it is most preferable to use a combination of water washing and alcohol washing. Washing with water is preferably performed by washing with as much water as possible at least 500 g or more with respect to the silver powder with fine silver oxide powder obtained under the conditions described above. This is to remove the impurity amount as much as possible. And in order to remove a water | moisture content more reliably, alcohol washing is performed. For this alcohol cleaning, ethyl alcohol, methyl alcohol, isopropyl alcohol or the like can be used, and there is no particular limitation on the amount of use, and it is sufficient to use an amount capable of sufficiently removing water.

以上の洗浄が終了すると、乾燥させることなく、直ちに紫外線照射を行い、粉粒表面にある微粒酸化銀粒子を微粒銀粒子へと還元することで、微粒銀粒子付着銀粉が得られるのである。ここで、紫外線照射を行うことで、微粒酸化銀の微粒銀への迅速な転換を促し、且つ、不均一な還元が起こらないようにするのである。ここで用いる紫外線は、特に厳密な意味での波長の限定はなく、例えば、殺菌用に用いる紫外線ランプを用いることが出来る。この紫外線照射が終了すると、十分に乾燥させ、本件発明に係る微粒銀粒子付着銀粉が得られるのである。   When the above washing is completed, ultraviolet irradiation is performed immediately without drying, and the fine silver oxide particles on the surface of the fine particles are reduced to fine silver particles, thereby obtaining fine silver particle-attached silver powder. Here, by performing ultraviolet irradiation, rapid conversion of fine silver oxide to fine silver is promoted, and non-uniform reduction does not occur. The wavelength of ultraviolet rays used here is not particularly limited in a strict sense, and for example, an ultraviolet lamp used for sterilization can be used. When this ultraviolet irradiation is completed, it is sufficiently dried to obtain the fine silver particle-attached silver powder according to the present invention.

芯材となる銀粉の好適な製造方法: ここでは、上述してきた本件発明に係る微粒銀粒子付着銀粉の芯材として用いるのに好適な銀粉(粉粒が略球形状のもの)の製造に関して説明する。ここで説明する銀粉の製造方法は、上述した「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下。」、「.前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される凝集度が1.5以下。」、「.結晶子径が10nm以下。」の各粉体特性を兼ね備えるものであるから、従来の硝酸銀水溶液を用いて製造した銀粉に比べ、ここで説明する銀粉も十分に微粒銀粉ということが出来るものである。 Preferred production method of silver powder as core material : Here, production of silver powder suitable for use as the core material of the fine silver particle-attached silver powder according to the present invention described above (in which the powder particles are substantially spherical) will be described. To do. Wherein the manufacturing method of the silver powder to be described, the above-described "average particle diameter D IA of the primary particles obtained by image analysis of scanning electron microscope images 0.6μm or less." The average particle size of "a. The primary particles D IA and, cohesion represented by D 50 / D IA with an average particle size D 50 by laser diffraction scattering particle size distribution measuring method of 1.5 or less. "," b. crystallite diameter 10nm or less Therefore, the silver powder described here can also be referred to as a fine silver powder as compared with the silver powder produced using a conventional silver nitrate aqueous solution.

この銀粉の製造方法は、硝酸銀水溶液と錯化剤とを混合して反応させ銀錯体水溶液を得て、これと有機還元剤とを接触反応させて銀粒子を還元析出させ、濾過、洗浄、乾燥させて銀粉を製造する方法において、添加後において希薄な濃度となる還元剤量、硝酸銀量、錯化剤量を用いるという点が大きな特徴である。従来、還元剤溶液と銀錯体水溶液とは槽内で一括して混合されるのが一般的であり、そのため一般的に銀濃度を10g/l以上の濃度とするため、多くの硝酸銀量、還元剤量及び錯化剤量を添加しなければ、設備の規模に対する生産性を確保することが出来なかったのである。なお、以下の説明では、より明確に具体性を表すため、錯化剤としてアンモニア水を用いる方法を例にとり説明する。   This silver powder is produced by mixing an aqueous silver nitrate solution with a complexing agent to obtain a silver complex aqueous solution, which is contacted with an organic reducing agent to cause silver particles to be reduced and precipitated, filtered, washed, and dried. In the method for producing silver powder, the feature is that the amount of reducing agent, the amount of silver nitrate, and the amount of complexing agent, which are diluted after addition, are used. Conventionally, the reducing agent solution and the silver complex aqueous solution are generally mixed together in a tank. Therefore, in order to generally set the silver concentration to 10 g / l or more, a large amount of silver nitrate, reduction If the amount of the agent and the amount of the complexing agent were not added, productivity for the scale of the equipment could not be ensured. In the following description, a method using ammonia water as a complexing agent will be described as an example in order to express the specificity more clearly.

本件発明にかかる製造方法において最も重要な特徴は、銀アンミン錯体水溶液と有機還元剤とを接触反応させた後の有機還元剤濃度が低く、生成した銀粉の粉粒表面に吸着残留したり、粉粒の成長過程で粉粒内部に取り込まれる有機還元材料を低減化できる点にある。従って、この混合後の溶液において、銀濃度が1g/l〜6g/lとしたのに対して、有機還元剤濃度を1g/l〜3g/lに維持することが、最も好ましいのである。   The most important feature in the production method according to the present invention is that the concentration of the organic reducing agent after the silver ammine complex aqueous solution and the organic reducing agent are contact-reacted is low, and remains adsorbed on the surface of the generated silver powder, It is in the point which can reduce the organic reduction material taken in the inside of a powder grain in the growth process of a grain. Therefore, it is most preferable to maintain the organic reducing agent concentration at 1 g / l to 3 g / l while the silver concentration in the mixed solution is 1 g / l to 6 g / l.

ここで、銀濃度と還元剤量とは比例的な関係にあり、銀濃度が高いほど量的に多くの銀粉を得ることが可能となるのは当然である。しかし、ここでの銀濃度が6g/lを超えるものとすると、析出する銀粒子が粗粒化する傾向があり、何ら従来の銀粉と変わらない粒径となり、本件発明で言う高分散性を備えた微細銀粉を得ることができなくなるのである。これに対し、ここでの銀濃度が1g/l未満となると、微粒銀粉としてきわめて細かなものが得られるものの、微細になりすぎて吸油量が増大し、ペースト粘度の上昇を招くため、有機ビヒクル量を増加させる必要が生じ、最終的に形成した焼結導体の膜密度が低く、電気抵抗が上昇する傾向が生じるのである。加えて、必要となる工業的生産性を満足しないものとなるのである。   Here, there is a proportional relationship between the silver concentration and the amount of the reducing agent, and it is natural that a higher amount of silver powder can be obtained as the silver concentration is higher. However, if the silver concentration here exceeds 6 g / l, the precipitated silver particles tend to be coarse, and the particle size is not different from that of conventional silver powder, and has high dispersibility as referred to in the present invention. It becomes impossible to obtain fine silver powder. On the other hand, when the silver concentration here is less than 1 g / l, an extremely fine powder can be obtained as a fine silver powder, but it becomes too fine and the oil absorption increases, resulting in an increase in paste viscosity. It is necessary to increase the amount, and the film density of the finally formed sintered conductor is low, and the electric resistance tends to increase. In addition, the required industrial productivity is not satisfied.

そして、上記銀濃度が1g/l〜6g/lとしたのに対して、有機還元剤濃度を1g/l〜3g/lに維持することが、本件発明にかかる微粒銀粉を歩留まり良く得るには最も適した条件となる。ここで、有機還元剤濃度を1g/l〜3g/lとしているのは、銀アンミン錯体水溶液の銀濃度との関係において微粒の銀粉を得るのに最も適した範囲として選択するのである。有機還元剤濃度が3g/lを超えると、銀アンミン錯体水溶液に対し添加する還元剤液量は少なくなるが、還元析出する銀粉の粉粒の凝集の進行が著しくなり始め、粉粒に含まれる不純物量(本件明細書では、不純物量を炭素含有量として捉えている。)が急激に多くなり始めるのである。一方、有機還元剤濃度を1g/l未満とすると、使用する還元剤のトータル液量が増大し、廃水処理量も大きくなり、工業的経済性を満足しないものとなるのである。   And in order to obtain the fine silver powder according to the present invention with a good yield, maintaining the organic reducing agent concentration at 1 g / l to 3 g / l while the silver concentration is set to 1 g / l to 6 g / l. This is the most suitable condition. Here, the organic reducing agent concentration of 1 g / l to 3 g / l is selected as the most suitable range for obtaining fine silver powder in relation to the silver concentration of the silver ammine complex aqueous solution. When the concentration of the organic reducing agent exceeds 3 g / l, the amount of the reducing agent added to the silver ammine complex aqueous solution decreases, but the progress of aggregation of silver powder particles that are reduced and precipitated begins to become remarkable and is contained in the powder particles. The amount of impurities (in this specification, the amount of impurities is regarded as the carbon content) begins to increase rapidly. On the other hand, when the concentration of the organic reducing agent is less than 1 g / l, the total amount of reducing agent to be used increases, the amount of wastewater treatment increases, and industrial economic efficiency is not satisfied.

ここで言う「有機還元剤」とは、ヒドロキノン、アスコルビン酸、グルコース等である。中でも、有機還元剤にはヒドロキノンを選択的に使用することが望ましい。本件発明においてヒドロキノンは、他の有機還元剤と比べて比較的に反応性に優れ、結晶子径が小さな低結晶性の銀粉を得るために最も適した反応速度を備えるものと言えるのである。   The “organic reducing agent” mentioned here is hydroquinone, ascorbic acid, glucose and the like. Among these, it is desirable to selectively use hydroquinone as the organic reducing agent. In the present invention, hydroquinone is relatively excellent in reactivity as compared with other organic reducing agents, and can be said to have a reaction rate most suitable for obtaining a low crystalline silver powder having a small crystallite size.

そして、前記有機還元剤と組み合わせて他の添加剤を用いることも可能である。ここで言う添加剤とは、ゼラチン等の膠類、アミン系高分子剤、セルロース類等であり銀粉の還元析出プロセスを安定化させ、同時に一定の分散剤としての機能を果たすものであることが望ましいのであり、有機還元剤、工程の種類等に応じて適宜選択的に使用すれば良いのである。   And it is also possible to use another additive in combination with the said organic reducing agent. The additives mentioned here are glues such as gelatin, amine-based polymer agents, celluloses, etc., which stabilize the reduction precipitation process of silver powder and at the same time serve as a certain dispersant. It is desirable to use it appropriately and selectively depending on the organic reducing agent, the type of process, and the like.

そして、以上のようにして得た銀アンミン錯体水溶液と還元剤とを接触反応させ微粒銀粉を還元析出させる方法において、本件発明では、図2に示すように、銀アンミン錯体水溶液Sが流れる一定の流路(以上及び以下において「第一流路」と称している。)を流れ、その第一流路aの途中に合流する第二流路bを設け、この第二流路bを通じて有機還元剤及び必要に応じた添加剤Sを第一流路a内に流し、第一流路aと第二流路bとの合流点mで接触混合して、銀粒子を還元析出させる方法(以下、この方法を「合流混合方式」と称することとする。)を採用することが望ましいのである。 Then, a method of precipitating the above manner was silver ammine complex solution obtained by fine silver powder and a reducing agent are contacted reacting reduction, in the present invention, as shown in FIG. 2, silver ammine complex solution S 1 is flow constant And a second flow path b that joins in the middle of the first flow path a, and the organic reducing agent passes through the second flow path b. and flowing the additive S 2 as needed in the first flow path a, in contact mixed at the merging point m between the first flow path a and the second channel b, a method of reducing precipitation of silver particles (hereinafter, this It is desirable to adopt a method called “joint mixing method”.

このような合流混合方式を採用することにより、2つの液の混合時間が最短で完了し、系内が均一な状態で反応が進行するため、均一な形状の粉粒が形成される。また、混合後の溶液全体としてみたときの有機還元剤量が低いということは、還元析出する微粒銀粉の粉粒表面へ吸着残留する有機還元剤量が少なくなる。結果として、濾過して乾燥して得られる微粒銀粉の付着不純物量を低減化することが可能となるのである。この微粒銀粉の付着不純物量の低下により、銀ペーストを経て形成される焼結導体の電気抵抗の低減化も図れることになるのである。   By adopting such a merging and mixing method, the mixing time of the two liquids is completed in the shortest time, and the reaction proceeds in a uniform state in the system, so that uniform-shaped powder particles are formed. Moreover, when the amount of the organic reducing agent when viewed as the whole solution after mixing is low, the amount of the organic reducing agent adsorbed and retained on the surface of the fine silver powder to be reduced and precipitated is reduced. As a result, it becomes possible to reduce the amount of impurities deposited on the fine silver powder obtained by filtration and drying. By reducing the amount of impurities deposited on the fine silver powder, the electrical resistance of the sintered conductor formed through the silver paste can be reduced.

更に、硝酸銀水溶液とアンモニア水とを接触反応させて、銀アンミン錯体水溶液を得る際に、硝酸銀濃度が2.6g/l〜48g/lの硝酸銀水溶液を用いて、銀濃度が2g/l〜12g/lの銀アンミン錯体水溶液を得ることが望ましいのである。ここで、硝酸銀水溶液の濃度を規定すると言うことは、硝酸銀水溶液の液量を規定しているのと同義であり、銀アンミン錯体水溶液の銀濃度が2g/l〜12g/lとすることを考えるに、そこに添加するアンモニア水の濃度及び液量が必然的に定まることになるのである。現段階において、明確な技術的な理由は判明していないが、ここで言う硝酸銀濃度が2.6g/l〜48g/lの硝酸銀水溶液を用いることにより、最も良好な製造安定性を示し品質的に安定した微粒銀粉を得ることが出来るのである。   Furthermore, when silver nitrate aqueous solution and ammonia water are contact-reacted to obtain a silver ammine complex aqueous solution, a silver nitrate aqueous solution having a silver nitrate concentration of 2.6 g / l to 48 g / l is used, and a silver concentration of 2 g / l to 12 g. It is desirable to obtain a silver ammine complex aqueous solution of / l. Here, prescribing the concentration of the silver nitrate aqueous solution is synonymous with prescribing the amount of the silver nitrate aqueous solution, and it is considered that the silver concentration of the silver ammine complex aqueous solution is 2 g / l to 12 g / l. In addition, the concentration and amount of ammonia water added thereto are inevitably determined. At the present stage, a clear technical reason is not known, but by using a silver nitrate aqueous solution having a silver nitrate concentration of 2.6 g / l to 48 g / l, the best production stability is shown and the quality is improved. Stable fine-grained silver powder can be obtained.

そして、洗浄及び乾燥させ芯材となる銀粉を得るのである。ここでの洗浄は、水洗浄とアルコール洗浄とを組み合わせて行っても、アルコール洗浄のみを使用しても構わない、特に洗浄方法に限定はないのである。また、乾燥方法に関しても、特に限定はないのである。   And the silver powder used as a core material is obtained by washing and drying. The cleaning here may be performed in combination with water cleaning and alcohol cleaning, or only alcohol cleaning may be used, and the cleaning method is not particularly limited. Also, there is no particular limitation on the drying method.

そして、上記製造方法で得られた上記各粉体特性を兼ね備えると同時に、更に「.有機不純物含有量が炭素量換算で0.25wt%以下。」という粉体特性を備えるものとするためには、洗浄方法を変更しなければならない。以下に、その洗浄方法を説明する。 Then, at the same time combines the up Symbol each powder properties obtained by the above manufacturing method, further "c. The organic impurity content of 0.25 wt% or less of carbon content in terms." To those having powder characteristics of To change the cleaning method. The cleaning method will be described below.

不純物含有量を少なくするためには、最終的に行う洗浄であり、非常に重要なものとなる。このときの洗浄は、水洗浄とアルコール洗浄とを組み合わせて行っても、アルコール洗浄のみを使用しても構わないが、アルコールで洗浄する際の洗浄を強化するのである。即ち、還元析出した微粒銀粉40gに対しては、通常100ml程度の純水で洗浄を行い、その後、50ml程度のアルコールでアルコール洗浄を行うのである。これに対し、本件発明では、アルコール洗浄を行う際に200ml以上という、微粒銀粉1kgあたりを5L以上の過剰アルコールで洗浄するのである。   In order to reduce the impurity content, cleaning is finally performed, which is very important. The cleaning at this time may be performed in combination with water cleaning and alcohol cleaning, or only alcohol cleaning may be used, but the cleaning at the time of cleaning with alcohol is strengthened. That is, 40 g of finely precipitated fine silver powder is usually washed with about 100 ml of pure water, and then washed with about 50 ml of alcohol. On the other hand, in the present invention, 200 kg or more per 1 kg of fine silver powder is washed with 5 L or more of excess alcohol when performing alcohol washing.

このような洗浄強化による不純物の低減が図れるのも、微粒銀粉を得る際の銀アンミン錯体水溶液と還元剤との接触反応において、希薄な濃度の反応系を採用し混合後の溶液全体としてみたときの有機還元剤量を低く抑える手法を採用しているからである。   Impurities can be reduced by such cleaning strengthening when the reaction solution between the silver ammine complex aqueous solution and the reducing agent in obtaining fine silver powder is used as a whole solution after mixing using a dilute concentration reaction system. This is because a technique for keeping the amount of the organic reducing agent low is employed.

本件発明に係る微粒銀粒子付着銀粉は、銀粉の粉粒表面に、更に微粒の銀粉(銀ナノ粒子)を付着させた構成を持つため、従来の銀粉には見られないレベルの低温焼結特性を発揮するものとなる。また、当該微粒銀粒子付着銀粉の芯材に用いる銀粉に、従来に無いほど微細で、分散性に優れ、不純物量の少ない、従来の銀粉には見られない微粒粉を用いることで、特に優れた低温焼結特性を示すものとなるのである。   The fine silver particle-attached silver powder according to the present invention has a structure in which fine silver powder (silver nanoparticles) is further adhered to the surface of the silver powder, so that it has a low temperature sintering characteristic not seen in conventional silver powder. Will be demonstrated. In addition, the silver powder used for the core material of the fine silver particle-attached silver powder is particularly excellent by using a fine powder that is finer than ever, excellent in dispersibility, has a small amount of impurities, and is not found in conventional silver powder. In addition, it exhibits low temperature sintering characteristics.

一方、本件発明に係る微粒銀粒子付着銀粉の製造方法は、工程の操業安定性に優れ、当該微粒銀粒子付着銀粉を非常に効率よく製造できる方法である。また、上述した希薄濃度の溶液を用いた銀粉の製造方法を採用することで、芯材として用いる銀粉を効率よく得ることができるのである。   On the other hand, the method for producing fine silver particle-attached silver powder according to the present invention is excellent in operational stability of the process, and can produce the fine silver particle-attached silver powder very efficiently. Moreover, the silver powder used as a core material can be efficiently obtained by adopting the method for producing silver powder using the above-described dilute solution.

以下、本件発明の最良の実施の形態を、比較例と対比しつつ、詳細に説明することとする。以下の実施例では、最初に芯材として用いる銀粉を製造した。そして、更に、微粒銀粒子付着銀粉を製造し、これを用いて銀ペーストを製造し、試験回路を形成し、比抵抗及び焼結可能温度の測定を行った。   Hereinafter, the best mode of the present invention will be described in detail while comparing with a comparative example. In the following examples, silver powder used as a core material was first manufactured. Further, fine silver particle-attached silver powder was produced, a silver paste was produced using this, a test circuit was formed, and specific resistance and sinterable temperature were measured.

芯材となる銀粉の製造方法: 本実施例では、最初に芯材として用いる銀粉(粉粒が略球形状のもの)を製造した。その製造方法は、以下のとおりである。 Manufacturing method of silver powder used as core material : In this example, silver powder (having a substantially spherical shape) was first used as a core material. The manufacturing method is as follows.

最初に63.3gの硝酸銀を9.7リットルの純水に溶解させ硝酸銀水溶液を調製し、これに235mlの25wt%濃度アンモニア水を一括で添加して攪拌することにより銀アンミン錯体水溶液を得たのである。   First, 63.3 g of silver nitrate was dissolved in 9.7 liters of pure water to prepare an aqueous silver nitrate solution. To this, 235 ml of 25 wt% aqueous ammonia was added all at once and stirred to obtain an aqueous silver ammine complex solution. It is.

そして、この銀アンミン錯体水溶液を、図2に示した内径13mmの第一流路aに流量1500ml/secで導入し、第二流路bから還元剤を流量1500ml/secで流し合流点mで20℃の温度になるようにして接触させ、微粒銀粉を還元析出させた。このときに用いた還元剤には、21gのヒドロキノンを10リットルの純水に溶解させたヒドロキノン水溶液を用いた。従って、混合が終了した時点でのヒドロキノン濃度は、約1.04g/lであり、非常に希薄な濃度である。   Then, this silver ammine complex aqueous solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 2 at a flow rate of 1500 ml / sec, and the reducing agent is allowed to flow from the second flow path b at a flow rate of 1500 ml / sec. The fine silver powder was reduced and precipitated by contacting the mixture at a temperature of 0 ° C. As the reducing agent used at this time, an aqueous hydroquinone solution in which 21 g of hydroquinone was dissolved in 10 liters of pure water was used. Accordingly, the hydroquinone concentration at the end of mixing is about 1.04 g / l, which is a very dilute concentration.

以上のようにして得られた微粒銀粉40gを分取するため、ヌッチェを用いて濾過し、100mlの水と600mlのメタノールとを用いて洗浄し、更に70℃×5時間の乾燥を行い微粒銀粉を得たのである。   In order to fractionate 40 g of the fine silver powder obtained as described above, it is filtered using a Nutsche, washed with 100 ml of water and 600 ml of methanol, and further dried at 70 ° C. for 5 hours. I got.

以上のようにして得られた銀粉の粉体特性は、表1に示した比較例1に相当するものであり、他の実施例及び比較例の粉体特性と共に掲載している。ここでは以上に述べてきた説明で測定方法等が不明なものについて説明しておくこととする。表1の焼結可能温度とは、各銀粉を用いて銀ペーストを製造し、アルミナ基板上に回路を引き回し、抵抗測定の可能な程度に焼結加工できる最低温度のことであり、150〜250℃の範囲で選択して焼結加工して得られた1mm幅回路を用いて比抵抗を測定したのである。なお、焼結が良好に行われているか否かの判断には、走査型電子顕微鏡での焼結状態観察も併用した。その他、銀ペーストの組成は、微粒銀粉85wt%、ターピネオール15wt%としたのである。FIB分析は析出結晶粒の大きさを測定し、結晶子径の測定に用いたのである。   The powder characteristics of the silver powder obtained as described above correspond to Comparative Example 1 shown in Table 1, and are listed together with the powder characteristics of other Examples and Comparative Examples. Here, the measurement method and the like that are unknown in the above description will be described. The sinterable temperature in Table 1 is the lowest temperature at which a silver paste is produced using each silver powder, a circuit is drawn on an alumina substrate, and sintering is possible to the extent that resistance measurement is possible. The specific resistance was measured using a 1 mm wide circuit obtained by selecting and sintering in the range of ° C. Note that the observation of the sintering state with a scanning electron microscope was also used in determining whether the sintering was performed satisfactorily. In addition, the composition of the silver paste was 85% by weight of fine silver powder and 15% by weight of terpineol. In FIB analysis, the size of the precipitated crystal grains was measured and used to measure the crystallite diameter.

微粒銀粒子付着銀粉の製造: ここでは、以上のようにして得られた銀粉を芯材として用いて、上述の製造方法1に従って、微粒銀粒子付着銀粉を製造したのである。 Production of fine silver particle-attached silver powder: Here, fine silver particle-attached silver powder was produced according to the above-described production method 1 using the silver powder obtained as described above as a core material.

まず、50gの上記銀粉の粉粒表面に微細銀粒子を付着させるため、「硝酸銀と錯化剤とを添加して攪拌溶解させて得られる銀錯体を含む溶液」を調製した。ここでは、17gの硝酸銀を1リットルの純水に溶解させ、そこに錯化剤として86gの亜硫酸カリウムを添加して銀錯体を生成し、銀錯体を含む溶液とした。   First, in order to attach fine silver particles to the surface of 50 g of the above silver powder, a “solution containing a silver complex obtained by adding silver nitrate and a complexing agent and dissolving by stirring” was prepared. Here, 17 g of silver nitrate was dissolved in 1 liter of pure water, and 86 g of potassium sulfite was added thereto as a complexing agent to form a silver complex, thereby preparing a solution containing the silver complex.

以上のようにして得られた銀錯体を含む溶液に前記の50gの銀粉を添加し、1分間攪拌したのである。そして、そこに還元剤を加えて還元反応を行わせ、銀粉の粉粒表面にナノオーダーの粒径を持つ微粒銀粉を均一に析出させたのである。この還元剤には、ヒドラ10gのヒドラジンを90mlの純水に溶解し、一括で添加し、液温40℃で10分間の還元反応を実施した。以上のようにして銀粉の粉粒表面に微粒銀粉を還元析出すると、その後、定法に従い濾別、洗浄、脱水、乾燥して、本件発明に係る微粒銀粒子付着銀粉を得たのである。   The above-described 50 g of silver powder was added to the solution containing the silver complex obtained as described above and stirred for 1 minute. Then, a reducing agent was added thereto to cause a reduction reaction, and fine silver powder having a nano-order particle size was uniformly deposited on the surface of the silver powder. To this reducing agent, 10 g of hydrazine hydrazine was dissolved in 90 ml of pure water, added all at once, and a reduction reaction was performed at a liquid temperature of 40 ° C. for 10 minutes. When the fine silver powder was reduced and deposited on the surface of the silver powder as described above, the fine silver particle-attached silver powder according to the present invention was obtained by filtration, washing, dehydration and drying according to a conventional method.

このようにして得られた微粒銀粒子付着銀粉を用いて、芯材となる銀粉に対して行ったと同様の粉体特性の測定、及び銀ペーストを製造し、試験回路を形成し、比抵抗及び焼結可能温度の測定を行った。その結果を表1に実施例1として示している。   Using the fine silver particle-attached silver powder thus obtained, measurement of the same powder characteristics as that performed on the silver powder as the core material, and manufacturing a silver paste, forming a test circuit, the specific resistance and The sinterable temperature was measured. The results are shown in Table 1 as Example 1.

芯材となる銀粉の製造方法: 本実施例では、最初に芯材として用いる銀粉(粉粒が略球形状のもの)を製造した。その製造条件は、以下のとおりである。 Manufacturing method of silver powder used as core material : In this example, silver powder (having a substantially spherical shape) was first used as a core material. The manufacturing conditions are as follows.

本実施例では、実施例1と異なる製造条件を用いて微粒銀粉を製造し得られた微粒銀粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試験回路を形成し、導体抵抗及び焼結可能温度の測定を行った。   In this example, the powder characteristics of fine silver powder obtained by producing fine silver powder using production conditions different from those of Example 1 were measured. Further, a silver paste was produced using fine silver powder, a test circuit was formed, and the conductor resistance and the sinterable temperature were measured.

最初に63.3gの硝酸銀を3.1リットルの純水に溶解させ硝酸銀水溶液を調製し、これに235mlの25wt%濃度アンモニア水を一括で添加して攪拌することにより銀アンミン錯体水溶液を得たのである。   First, 63.3 g of silver nitrate was dissolved in 3.1 liters of pure water to prepare an aqueous silver nitrate solution. To this, 235 ml of 25 wt% aqueous ammonia was added all at once and stirred to obtain an aqueous silver ammine complex solution. It is.

そして、この銀アンミン錯体溶液を、図2に示した内径13mmの第一流路aに流量1500ml/secで導入し、第二流路bから還元剤を流量1500ml/secで流し合流点mで20℃の温度になるようにして接触させ、微粒銀粉を還元析出させた。このときに用いた還元剤には、21gのヒドロキノンを3.4リットルの純水に溶解させたヒドロキノン水溶液を用いた。従って、混合が終了した時点でのヒドロキノン濃度は、約3.0g/lであり、非常に希薄な濃度である。   Then, this silver ammine complex solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 2 at a flow rate of 1500 ml / sec, and the reducing agent is flowed from the second flow path b at a flow rate of 1500 ml / sec. The fine silver powder was reduced and precipitated by contacting the mixture at a temperature of 0 ° C. As the reducing agent used at this time, an aqueous hydroquinone solution in which 21 g of hydroquinone was dissolved in 3.4 liters of pure water was used. Therefore, the hydroquinone concentration at the end of mixing is about 3.0 g / l, which is a very dilute concentration.

以上のようにして得られた微粒銀粉40gを実施例1と同様にして、ヌッチェを用いて濾過し、100mlの水と600mlの大容量のメタノールとを用いて洗浄し、更に70℃×5時間の乾燥を行い芯材となる銀粉を得たのである。以上のようにして得られた銀粉の粉体特性は、表1に示した比較例2に相当するものであり、他の実施例及び比較例の粉体特性と共に掲載している。   In the same manner as in Example 1, 40 g of the fine silver powder obtained as described above was filtered using Nutsche, washed with 100 ml of water and 600 ml of a large volume of methanol, and further 70 ° C. × 5 hours. Was dried to obtain a silver powder as a core material. The powder characteristics of the silver powder obtained as described above correspond to Comparative Example 2 shown in Table 1, and are listed together with the powder characteristics of other Examples and Comparative Examples.

微粒銀粒子付着銀粉の製造: ここでは、以上のようにして得られた銀粉を芯材として用いて、上述の製造方法2に従って、微粒銀粒子付着銀粉を製造したのである。従って、最初に、1500gのエチレングリコールを分散媒として用い、ここに50gの上記銀粉を加え十分に攪拌して分散させた銀粉スラリーを調製した。 Production of fine silver particle-attached silver powder: Here, fine silver particle-attached silver powder was produced according to the above-described production method 2 using the silver powder obtained as described above as a core material. Therefore, first, 1500 g of ethylene glycol was used as a dispersion medium, and 50 g of the above-described silver powder was added thereto and sufficiently stirred and dispersed to prepare a silver powder slurry.

以上のようにして得られた銀粉スラリーに、硝酸銀と中和剤とを添加して攪拌溶解させ微粒酸化銀粒子を銀粉の粉粒表面へ析出させるのである。まず、硝酸銀を添加するのであるが、このときの硝酸銀添加は、500gの純水に16.67g(硝酸銀濃度が30wt%に相当)の硝酸銀を溶解させた硝酸銀水溶液を用いた。そして、中和剤を添加し十分に攪拌するのであるが、この中和剤添加には、500gの純水に3.92gの水酸化ナトリウムを溶解させた水酸化ナトリウム水溶液を用いた。以上のようにして銀粉の粉粒表面へ微粒酸化銀粉を付着させたのである。   To the silver powder slurry obtained as described above, silver nitrate and a neutralizing agent are added and dissolved by stirring to precipitate fine silver oxide particles on the surface of the silver powder. First, silver nitrate is added. At this time, silver nitrate was added using an aqueous silver nitrate solution in which 16.67 g (corresponding to a silver nitrate concentration of 30 wt%) of silver nitrate was dissolved in 500 g of pure water. Then, a neutralizing agent is added and stirred sufficiently. For this neutralizing agent addition, a sodium hydroxide aqueous solution in which 3.92 g of sodium hydroxide was dissolved in 500 g of pure water was used. As described above, the fine silver oxide powder was adhered to the surface of the silver powder.

その後、微粒酸化銀粉付銀粉を濾別し洗浄した。この洗浄は、水洗とアルコール洗浄とを組み合わせて用いた。最初に水洗を行った。このときの水洗は、上記条件で得られた微粒酸化銀粉付銀粉を、500gの水量で洗浄し、不純物量を可能な限り除去し脱水した。そして、その後、更に確実に水分を除去するため、500gのイソプロピルアルコールを用いてアルコール洗浄を行った。   Thereafter, the silver powder with fine silver oxide powder was separated by filtration and washed. This washing was performed using a combination of water washing and alcohol washing. First, it was washed with water. The washing with water at this time was performed by washing the silver powder with fine silver oxide powder obtained under the above conditions with an amount of water of 500 g, removing the impurity amount as much as possible, and dehydrating. Then, in order to remove moisture more reliably, alcohol cleaning was performed using 500 g of isopropyl alcohol.

以上の洗浄が終了すると、乾燥させることなく、直ちに紫外線照射を行い、粉粒表面にある微粒酸化銀粒子を微粒銀粒子へと還元したのである。紫外線照射には、株式会社東芝の通常は殺菌ランプとして用いられるCL15−Aを3時間照射して、微粒酸化銀の微粒銀への迅速な転換を促し、且つ、不均一な還元が起こらないようにしたのである。その後、定法に従い乾燥を行い、本件発明に係る不純物付着量の少ない微粒銀粒子付着銀粉を得たのである。   When the above washing was completed, ultraviolet irradiation was performed immediately without drying, and the fine silver oxide particles on the powder surface were reduced to fine silver particles. For UV irradiation, CL15-A, which is normally used as a sterilization lamp by Toshiba Corporation, is irradiated for 3 hours to promote rapid conversion of fine silver oxide to fine silver, and to prevent uneven reduction. It was. Thereafter, drying was performed according to a conventional method to obtain a fine silver particle-attached silver powder with a small amount of impurities according to the present invention.

このようにして得られた微粒銀粒子付着銀粉を用いて、芯材となる銀粉に対して行ったと同様の粉体特性の測定、及び銀ペーストを製造し、試験回路を形成し、比抵抗及び焼結可能温度の測定を行った。その結果を表1に実施例2として示している。   Using the fine silver particle-attached silver powder thus obtained, measurement of the same powder characteristics as that performed on the silver powder as the core material, and manufacturing a silver paste, forming a test circuit, the specific resistance and The sinterable temperature was measured. The results are shown in Table 1 as Example 2.

芯材となる銀粉の製造方法: 本実施例では、以下に示す製造方法を用いて結晶子径の大きな銀粉(粉粒が略球形状のもの)を製造し得られた銀粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試験回路を形成し、導体抵抗及び焼結可能温度の測定を行った。 Production method of silver powder as a core material: In this example, the powder characteristics of silver powder obtained by producing silver powder having a large crystallite diameter (having a substantially spherical shape) using the production method shown below. It was measured. Further, a silver paste was produced using fine silver powder, a test circuit was formed, and the conductor resistance and the sinterable temperature were measured.

最初に260mlの純水に20gのポリビニルピロリドンを溶解させ、更に50gの硝酸銀を溶解させ硝酸銀水溶液を調製し、これに25gの硝酸を一括で添加して攪拌することにより銀含有硝酸系溶液を得たのである。この混合が終了した時点でのアスコルビン酸濃度は、約36.0g/lとなっている。   First, 20 g of polyvinyl pyrrolidone is dissolved in 260 ml of pure water, 50 g of silver nitrate is further dissolved to prepare an aqueous silver nitrate solution, and 25 g of nitric acid is added all at once and stirred to obtain a silver-containing nitric acid solution. It was. The ascorbic acid concentration at the end of this mixing is about 36.0 g / l.

一方、還元剤として35.8gのアスコルビン酸を500mlの純水に添加し溶解させ還元溶液を調製した。   On the other hand, 35.8 g of ascorbic acid as a reducing agent was added to 500 ml of pure water and dissolved to prepare a reducing solution.

そして、この銀含有硝酸系溶液を反応槽に入れ、ここに上記還元溶液を一括で添加して、液温を25℃に維持して攪拌し反応させることで銀粉を還元析出させた。   Then, the silver-containing nitric acid solution was put into a reaction vessel, and the reducing solution was added all at once, and the liquid temperature was maintained at 25 ° C., followed by stirring and reacting, whereby silver powder was reduced and precipitated.

以上のようにして得られた微粒銀粉を、ヌッチェを用いて濾過し、100mlの水と50mlのメタノールとを用いて洗浄し、更に70℃×5時間の乾燥を行い芯材として用いる銀粉を得たのである。この銀粉の粉体特性は、表1の比較例3として掲載している。   The fine silver powder obtained as described above is filtered using Nutsche, washed with 100 ml of water and 50 ml of methanol, and further dried at 70 ° C. for 5 hours to obtain a silver powder used as a core material. It was. The powder characteristics of this silver powder are listed as Comparative Example 3 in Table 1.

微粒銀粒子付着銀粉の製造: ここでは、以上のようにして得られた銀粉を芯材として用いて、上述の実施例2と同様にして、微粒銀粒子付着銀粉を製造したのである。従って、重複した記載を避けるため、ここでの工程の詳細な説明に関しては省略する。 Production of fine silver particle-attached silver powder: Here, fine silver particle-attached silver powder was produced in the same manner as in Example 2 above, using the silver powder obtained as described above as a core material. Therefore, in order to avoid redundant description, a detailed description of the steps here is omitted.

このようにして得られた微粒銀粒子付着銀粉を用いて、芯材となる銀粉に対して行ったと同様の粉体特性の測定、及び銀ペーストを製造し、試験回路を形成し、比抵抗及び焼結可能温度の測定を行った。その結果を表1に実施例3として示している。   Using the fine silver particle-attached silver powder thus obtained, measurement of the same powder characteristics as that performed on the silver powder as the core material, and manufacturing a silver paste, forming a test circuit, the specific resistance and The sinterable temperature was measured. The results are shown in Table 1 as Example 3.

芯材となるフレーク銀粉の製造方法: 本実施例では、略球形状の銀粉を物理的に加工することにより、フレーク状の銀粉を得て、これを芯材として用いた。このフレーク銀粉の粉体特性は、表2に比較例4として示している。 Method for producing flake silver powder as core material: In this example, flake-shaped silver powder was obtained by physically processing a substantially spherical silver powder, and this was used as the core material. The powder characteristics of this flake silver powder are shown in Table 2 as Comparative Example 4.

微粒銀粒子付着フレーク銀粉の製造: ここでは、以上のようにして得られたフレーク銀粉を芯材として用いて、上述の製造方法1に従って、微粒銀粒子付着フレーク銀粉を製造したのである。このときの製造条件は、実施例1と同様であり、重複した記載となるため、ここでの説明は省略する。 Production of fine silver particle-attached flake silver powder: Here, using the flake silver powder obtained as described above as a core material, fine silver particle-attached flake silver powder was produced according to the production method 1 described above. The manufacturing conditions at this time are the same as those in the first embodiment, and the description is omitted because they are duplicated.

このようにして得られた微粒銀粒子付着フレーク銀粉を用いて、芯材となるフレーク銀粉に対して行ったと同様の粉体特性の測定、及び銀ペーストを製造し、試験回路を形成し、比抵抗及び焼結可能温度の測定を行った。その結果を表2に実施例4として示している。   Using the obtained fine silver particle-attached flake silver powder, measurement of powder characteristics similar to that performed on the flake silver powder as a core material, and manufacturing a silver paste, forming a test circuit, Resistance and sintering temperature were measured. The results are shown in Table 2 as Example 4.

比較例Comparative example

(比較例1)
実施例1に記載の、芯材として用いた銀粉を、そのまま比較例として用いた。その粉体特性等は、表1に示した比較例1として示している。
(Comparative Example 1)
The silver powder used as the core material described in Example 1 was used as it was as a comparative example. The powder characteristics and the like are shown as Comparative Example 1 shown in Table 1.

(比較例2)
実施例2に記載の、芯材として用いた銀粉を、そのまま比較例として用いた。その粉体特性等は、表1に示した比較例2として示している。
(Comparative Example 2)
The silver powder used as the core material described in Example 2 was used as it was as a comparative example. The powder characteristics and the like are shown as Comparative Example 2 shown in Table 1.

(比較例3)
実施例3に記載の、芯材として用いた銀粉を、そのまま比較例として用いた。その粉体特性等は、表1に示した比較例3として示している。
(Comparative Example 3)
The silver powder used as the core material described in Example 3 was used as it was as a comparative example. The powder characteristics and the like are shown as Comparative Example 3 shown in Table 1.

(比較例4)
実施例4に記載の、芯材として用いたフレーク銀粉を、そのまま比較例として用いた。その粉体特性等は、表1に示した比較例4として示している。
(Comparative Example 4)
The flake silver powder used as the core material described in Example 4 was used as it was as a comparative example. The powder characteristics and the like are shown as Comparative Example 4 shown in Table 1.

<実施例と比較例との対比検討> 上述の実施例1〜実施例3と比較例1〜比較例3とを表1を参照しつつ対比することとする。 <Contrast Study between Examples and Comparative Examples> The above-described Examples 1 to 3 and Comparative Examples 1 to 3 will be compared with reference to Table 1.

Figure 0004047304
Figure 0004047304

表1において、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3のそれぞれの芯材銀粉と微粒銀粒子付着銀粉との粉体特性を対比する。すると、微粒銀粒子を付着させても、芯材の粉体特性が殆ど変化しないことが分かる。特に、Dmaxの値が微粒銀粒子の付着前後において殆ど変動していないため、微粒銀粒子付着銀粉としても芯材の銀粉の持つ分散性が維持されていることが分かるのである。従って、芯材として用いる銀粉に可能な限り微粒で且つ高分散の銀粉を使用することが非常に有利となることが分かるのである。なお、表1では、微粒銀粒子付着銀粉の結晶子径を記載していないが、芯材の銀粉の結晶子径が、そのまま維持されるからである。 In Table 1, the powder characteristics of each core material silver powder and fine silver particle-attached silver powder of Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 are compared. Then, even if fine silver particles are adhered, it can be seen that the powder characteristics of the core material hardly change. In particular, since the value of D max hardly fluctuates before and after adhesion of the fine silver particles, it can be seen that the dispersibility of the silver powder of the core material is maintained even as the fine silver particle-attached silver powder. Therefore, it can be seen that it is very advantageous to use silver powder that is as fine and highly dispersed as possible for the silver powder used as the core material. In addition, in Table 1, although the crystallite diameter of fine silver particle adhesion silver powder is not described, it is because the crystallite diameter of the silver powder of a core material is maintained as it is.

次に、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3のそれぞれの焼結導体特性を対比すると、微粒銀粉を付着させることにより、焼結可能温度が従来の常識では考えられないほど低温化している。特に実施例1〜実施例3では、芯材及び微粒銀粒子付着銀粉としての粉体特性が異なっているにも拘わらず、焼結可能温度が150℃となっている。これに対し、比較例1〜比較例3では、微粒銀粒子層が存在しないため、粉体特性の影響を大きく受け、比較例3に到っては比抵抗の測定も不可能となっている。以上のことから、本件発明に係る微粒銀粒子付着銀粉は、銀粉の粉粒表面に微粒銀粒子を備えることで芯材の粉体特性の影響を受けることなく、低温焼結が可能と言えるのである。   Next, when the sintered conductor characteristics of Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 are compared, the fine silver powder is adhered, whereby the sinterable temperature is increased. The temperature is so low that it cannot be considered by conventional common sense. In particular, in Examples 1 to 3, the sinterable temperature is 150 ° C. even though the powder characteristics of the core material and the fine silver particle-attached silver powder are different. On the other hand, in Comparative Examples 1 to 3, since there is no fine silver particle layer, it is greatly affected by powder characteristics, and in Comparative Example 3, it is impossible to measure specific resistance. . From the above, it can be said that the fine silver particle-attached silver powder according to the present invention can be sintered at low temperature without being affected by the powder characteristics of the core material by providing fine silver particles on the surface of the silver powder. is there.

次に、上述の実施例4と比較例4とを表2を参照しつつ対比することとする。芯材フレーク銀粉と微粒銀粒子付着フレーク銀粉との粉体特性に関しては、表1に示した略球状の粉粒を持つ場合と異なる粉体特性を抽出している。フレーク粉は、物理的加工により結晶子径が変化したり、物理加工時に用いる滑剤による表面汚染を受けるため結晶子径及び炭素含有量の測定は省略した。更に、走査型電子顕微鏡で観察したDIAの値も、一視野中の変動が大きいため測定項目から除外して、レーザー回折散乱式粒度分布測定法による測定値を主に用いた。 Next, Example 4 and Comparative Example 4 will be compared with reference to Table 2. Regarding the powder characteristics of the core material flake silver powder and the fine silver particle-attached flake silver powder, powder characteristics different from those having the substantially spherical powder grains shown in Table 1 are extracted. The flake powder was changed in crystallite size by physical processing and was subjected to surface contamination by a lubricant used during physical processing, so measurement of the crystallite size and carbon content was omitted. Furthermore, the value of D IA observed with a scanning electron microscope also excluded from the measurement items for variation in one visual field is large, and mainly using measurements by a laser diffraction scattering particle size distribution measuring method.

Figure 0004047304
Figure 0004047304

表2において、実施例4と比較例4とのそれぞれの芯材フレーク銀粉と微粒銀粒子付着フレーク銀粉との粉体特性を対比すると、微粒銀粒子を付着させても、芯材の粉体特性が大きく変化していないことは、表1の略球形粉の場合と同様である。しかしながら、Dmaxの値が微粒銀粒子の付着後において、大きくなっているように感じられるが、測定誤差を考慮すれば、極めて大きな変動があったとは断言出来ない。 In Table 2, when comparing the powder characteristics of each core material flake silver powder of Example 4 and Comparative Example 4 with fine silver particle-attached flake silver powder, even if fine silver particles are attached, the powder characteristics of the core material It is the same as in the case of the substantially spherical powder in Table 1 that there is no significant change. However, although it seems that the value of D max is increased after the fine silver particles are adhered, it cannot be asserted that there is a very large variation in consideration of measurement errors.

次に、実施例4と比較例4との焼結導体特性を対比すると、微粒銀粉を付着させることにより、焼結可能温度が低温化している。これは、実施例1〜実施例3の場合と同様である。以上のことから、本件発明に係る微粒銀粒子付着フレーク銀粉は、フレーク銀粉の粉粒表面に微粒銀粒子を備えることで芯材の粉体特性に大きな変化をもたらすことなく、低温焼結が可能なフレーク粉を得ることが出来ると言えるのである。   Next, when the sintered conductor characteristics of Example 4 and Comparative Example 4 are compared, the sinterable temperature is lowered by attaching fine silver powder. This is the same as in the first to third embodiments. From the above, the fine silver particle-attached flake silver powder according to the present invention can be sintered at a low temperature without causing a significant change in the powder characteristics of the core material by providing the fine silver particles on the surface of the flake silver powder. It can be said that a simple flake powder can be obtained.

本件発明に係る微粒銀粒子付着銀粉は、銀粉の粉粒表面に、更に微粒の銀粉(銀ナノ粒子)を付着させた構成を持つため、従来の銀粉には見られないレベルの低温焼結特性を発揮するものとなる。従来にないほどの安定した低温焼結性を示すため、銀粉の利用分野を大幅に拡大することが期待され、焼結工程のエネルギーコストを大幅に低減することが可能となるのである。また、当該微粒銀粒子付着銀粉の芯材に用いる銀粉に、従来に無いほど微細で、分散性に優れ、不純物量の少ない、従来の銀粉には見られない微粒粉を用いることで、特に優れた低温焼結特性と低抵抗の焼結導体の形成を可能とするのである。   The fine silver particle-attached silver powder according to the present invention has a structure in which fine silver powder (silver nanoparticles) is further adhered to the surface of the silver powder, so that it has a low temperature sintering characteristic not seen in conventional silver powder. Will be demonstrated. Since it exhibits stable low-temperature sinterability as never before, it is expected to greatly expand the application field of silver powder, and the energy cost of the sintering process can be greatly reduced. In addition, the silver powder used for the core material of the fine silver particle-attached silver powder is particularly excellent by using a fine powder that is finer than ever, excellent in dispersibility, has a small amount of impurities, and is not found in conventional silver powder. In addition, low temperature sintering characteristics and low resistance sintered conductors can be formed.

一方、本件発明に係る微粒銀粒子付着銀粉の製造方法は、工程の操業安定性に優れ、当該微粒銀粒子付着銀粉を非常に効率よく製造できるため、市場に安価で高品質の銀粉供給を可能として、本件発明に係る微粒銀粒子付着銀粉の利用分野の拡大に資するのである。   On the other hand, the method for producing fine silver particle-attached silver powder according to the present invention is excellent in operational stability of the process, and can produce the fine silver particle-attached silver powder very efficiently, enabling the supply of inexpensive and high-quality silver powder to the market. As such, it contributes to the expansion of the field of utilization of fine silver particle-attached silver powder according to the present invention.

微粒銀粒子付着銀粉の粉粒の模式断面図。The schematic cross section of the powder grain of fine silver particle adhesion silver powder. 銀アンミン錯体水溶液と還元剤との混合概念を表した図。The figure showing the mixing concept of silver ammine complex aqueous solution and a reducing agent.

符号の説明Explanation of symbols

1 微粒銀粒子付着銀粉
2 銀粉(芯材)
3 微粒銀粒子
a 第一流路
b 第二流路
m 合流点
銀アンミン錯体水溶液
有機還元剤及び必要に応じた添加剤
1 Fine silver particle-attached silver powder 2 Silver powder (core material)
3 Fine silver particles a First flow path b Second flow path m Merge point S 1 Silver ammine complex aqueous solution S 2 Organic reducing agent and additives as required

Claims (12)

走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径D IA が0.6μm以下の銀粉の粉粒表面に、微粒銀粒子を付着させたことを特徴とした微粒銀粒子付着銀粉。 The average particle diameter D IA is less than the silver powder 0.6μm granular surface of the primary particles obtained by image analysis of a scanning electron microscope image, fine silver particles adhered silver powder is characterized in that depositing the fine silver particles. 銀粉は、略球形状のものを用いた請求項1に記載の微粒銀粒子付着銀粉。 2. The fine silver particle-attached silver powder according to claim 1, wherein the silver powder has a substantially spherical shape. 銀粉は、以下のa.及びb.の粉体特性を備えることを特徴とした請求項2に記載の微粒銀粒子付着銀粉。
a. 前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される凝集度が1.5以下。
b. 結晶子径が10nm以下。
Silver powder has the following a. And b. The fine silver particle-attached silver powder according to claim 2, comprising the following powder characteristics.
a. The average particle diameter D IA of the primary particles, the aggregation degree represented by D 50 / D IA with an average particle size D 50 by laser diffraction scattering particle size distribution measuring method of 1.5 or less.
b. The crystallite diameter is 10 nm or less.
銀粉は、以下のa.〜.の粉体特性を備えることを特徴とした請求項2に記載の微粒銀粒子付着銀粉。
a. 前記一次粒子の平均粒径DIAと、レーザー回折散乱式粒度分布測定法による平均粒径D50とを用いてD50/DIAで表される凝集度が1.5以下。
b. 結晶子径が10nm以下。
c. 有機不純物含有量が炭素量換算で0.25wt%以下。
Silver powder has the following a. ~ C. The fine silver particle-attached silver powder according to claim 2, comprising the following powder characteristics.
a. The degree of aggregation represented by D 50 / D IA using the average particle diameter D IA of the primary particles and the average particle diameter D 50 obtained by a laser diffraction / scattering particle size distribution measurement method is 1.5 or less.
b. The crystallite diameter is 10 nm or less.
c. Organic impurity content is 0.25 wt% or less in terms of carbon content.
銀粉は、扁平形状のものを用いた請求項1に記載の微粒銀粒子付着銀粉。 The fine silver particle-attached silver powder according to claim 1, wherein the silver powder has a flat shape. 焼結可能温度が170℃以下である請求項1〜請求項5のいずれかに記載の微粒銀粒子付着銀粉。 Sinterable temperature is 170 degrees C or less, The fine silver particle adhesion silver powder in any one of Claims 1-5. 請求項1〜請求項6のいずれかに記載の微粒銀粒子付着銀粉の製造方法であって、
銀粉と、硝酸銀と錯化剤とを混合して攪拌溶解させて得られる銀錯体を含む溶液とを接触させ、ここに還元剤を加え微粒銀粒子を銀粉の粉粒表面へ析出させることを特徴とした微粒銀粒子付着銀粉の製造方法。
A method for producing fine silver particle-attached silver powder according to any one of claims 1 to 6,
It is characterized by bringing silver powder into contact with a solution containing a silver complex obtained by mixing and dissolving silver nitrate and a complexing agent, and adding a reducing agent to precipitate fine silver particles on the surface of the silver powder. A method for producing fine silver particle-attached silver powder.
錯化剤は、亜硫酸塩、アンモニウム塩である請求項7に記載の微粒銀粒子付着銀粉の製造方法。 The method for producing fine silver particle-attached silver powder according to claim 7, wherein the complexing agent is a sulfite or an ammonium salt. 請求項1〜請求項6のいずれかに記載の微粒銀粒子付着銀粉の製造方法であって、
銀粉を分散媒に加えた銀粉スラリーに、硝酸銀と中和剤とを添加して攪拌溶解させ微粒酸化銀粒子を銀粉の粉粒表面へ析出させ、洗浄し、紫外線照射を行い微粒酸化銀粒子を微粒銀粒子へと還元することを特徴とした微粒銀粒子付着銀粉の製造方法。
A method for producing fine silver particle-attached silver powder according to any one of claims 1 to 6,
Add silver nitrate and neutralizing agent to a silver powder slurry with silver powder added to the dispersion medium, stir and dissolve to precipitate fine silver oxide particles on the surface of the silver powder powder, wash, and then irradiate with ultraviolet rays to remove the fine silver oxide particles. A method for producing fine silver particle-attached silver powder, characterized in that it is reduced to fine silver particles.
中和剤は、水酸化ナトリウム、水酸化カリウム、アンモニア水のいずれか一種又は二種以上である請求項9に記載の微粒銀粒子付着銀粉の製造方法。 The method for producing fine silver particle-attached silver powder according to claim 9, wherein the neutralizing agent is one kind or two or more kinds of sodium hydroxide, potassium hydroxide, and ammonia water. 請求項1〜請求項4のいずれかに記載の微粒銀粒子付着銀粉の製造方法において、
銀粉は、硝酸銀水溶液と錯化剤とを混合して反応させ銀錯体水溶液を得て、前記銀錯体水溶液に有機還元剤を接触混合させ、且つ、混合後の溶液中で銀濃度が1g/l〜6g/l、有機還元剤濃度を1g/l〜3g/lに維持して銀粒子を還元析出させ当該銀粒子を濾別し、水洗浄し、アルコール溶液で洗浄することで得られた略球形粉粒の粉体を用いることを特徴とした微粒銀粒子付着銀粉の製造方法。
In the manufacturing method of the fine silver particle adhesion silver powder in any one of Claims 1-4,
Silver powder is obtained by mixing a silver nitrate aqueous solution and a complexing agent to react to obtain a silver complex aqueous solution, contacting and mixing an organic reducing agent with the silver complex aqueous solution, and a silver concentration of 1 g / l in the mixed solution. Approx. 6 g / l, an organic reducing agent concentration maintained at 1 g / l to 3 g / l, silver particles are reduced and precipitated, the silver particles are separated by filtration, washed with water, and washed with an alcohol solution. A method for producing fine silver particle-attached silver powder, characterized by using spherical powder particles.
請求項1〜請求項4のいずれかに記載の微粒銀粒子付着銀粉の製造方法において、
銀粉は、硝酸銀水溶液と錯化剤とを混合して反応させ銀錯体水溶液を得て、前記銀錯体水溶液に有機還元剤を接触混合させ、且つ、混合後の溶液中で銀濃度が1g/l〜6g/l、有機還元剤濃度を1g/l〜3g/lに維持して銀粒子を還元析出させ当該銀粒子を濾別し、水洗浄し、アルコール溶液で洗浄することで得られた略球形粉粒の粉体を用いることを特徴とした微粒銀粒子付着銀粉の製造方法。
In the manufacturing method of the fine silver particle adhesion silver powder in any one of Claims 1-4,
Silver powder is obtained by mixing a silver nitrate aqueous solution and a complexing agent to react to obtain a silver complex aqueous solution, contacting and mixing an organic reducing agent with the silver complex aqueous solution, and a silver concentration of 1 g / l in the mixed solution. to 6 g / l, was filtered off the silver particles silver particles precipitated by reduction to maintain the organic reducing agent concentration 1g / l~3g / l, washed with water, it was obtained by washing with a alcohol solution A method for producing fine silver particle-attached silver powder, characterized by using substantially spherical powder particles.
JP2004189416A 2003-10-22 2004-06-28 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder Expired - Lifetime JP4047304B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004189416A JP4047304B2 (en) 2003-10-22 2004-06-28 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
US11/037,329 US20050183543A1 (en) 2003-10-22 2005-01-19 Silver powder made of silver particles, each to which fine silver particles adhere and process of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361480 2003-10-22
JP2004189416A JP4047304B2 (en) 2003-10-22 2004-06-28 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder

Publications (2)

Publication Number Publication Date
JP2005146408A JP2005146408A (en) 2005-06-09
JP4047304B2 true JP4047304B2 (en) 2008-02-13

Family

ID=34703082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189416A Expired - Lifetime JP4047304B2 (en) 2003-10-22 2004-06-28 Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder

Country Status (2)

Country Link
US (1) US20050183543A1 (en)
JP (1) JP4047304B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494108B2 (en) * 2004-07-22 2010-06-30 三井金属鉱業株式会社 Nickel-coated copper powder manufacturing method, nickel-coated copper powder and conductive paste
JP4613362B2 (en) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 Metal powder for conductive paste and conductive paste
EP1900471A4 (en) * 2005-05-27 2010-06-02 Neomax Materials Co Ltd Silver-coated ball and method for manufacturing same
US20070131912A1 (en) * 2005-07-08 2007-06-14 Simone Davide L Electrically conductive adhesives
JP4624222B2 (en) * 2005-09-13 2011-02-02 戸田工業株式会社 Conductive part forming particles
JP4362742B2 (en) * 2005-09-22 2009-11-11 ニホンハンダ株式会社 Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
JP5080731B2 (en) * 2005-10-03 2012-11-21 三井金属鉱業株式会社 Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
JP4839767B2 (en) * 2005-10-14 2011-12-21 東洋インキScホールディングス株式会社 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.
JP4935175B2 (en) * 2006-04-28 2012-05-23 東洋インキScホールディングス株式会社 Metal fine particle dispersion and method for producing the same
US7981327B2 (en) * 2005-10-14 2011-07-19 Toyo Ink Mfg. Co. Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
US8721931B2 (en) * 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
DE102006039858A1 (en) * 2006-01-02 2007-07-12 Ceramtec Ag Innovative Ceramic Engineering Monolithic bending element
TWI334854B (en) * 2006-07-28 2010-12-21 Method for manufacturing metal nano-particle
JP2008108539A (en) * 2006-10-25 2008-05-08 Fujitsu Ltd Conductive paste and its manufacturing method
EP2270855A1 (en) * 2009-06-29 2011-01-05 ABB Research Ltd. An electrical module
US9982322B2 (en) 2012-08-30 2018-05-29 Corning Incorporated Solvent-free syntheses of silver products produced thereby
DE112013004232T5 (en) 2012-08-31 2015-08-20 Corning Incorporated Silver recovery process and silver products produced thereby
KR20150110458A (en) * 2012-08-31 2015-10-02 코닝 인코포레이티드 Low-temperature dispersion-based syntheses of silver and silver products produced thereby
CN102837003B (en) * 2012-09-07 2014-07-02 中国科学院深圳先进技术研究院 Nano silver particles with multilevel structure and preparation method thereof
JP5510531B1 (en) * 2012-11-29 2014-06-04 住友金属鉱山株式会社 Silver powder and silver paste
CN102990077B (en) * 2012-12-24 2014-10-01 中国科学院新疆理化技术研究所 Method for growing bismuth nanoparticles on oxide substrate in situ
CN106574164A (en) 2014-08-29 2017-04-19 古河电气工业株式会社 Electrically conductive adhesive composition
JP6442240B2 (en) * 2014-11-14 2018-12-19 三菱マテリアル電子化成株式会社 Silver-coated particles and method for producing the same
CN105957580A (en) * 2016-06-22 2016-09-21 常州聚和新材料股份有限公司 Silver paste combination for secondary printing of crystalline silicon solar cell
JP7518839B2 (en) * 2019-08-26 2024-07-18 京セラ株式会社 Silver particles, method for producing silver particles, paste composition, semiconductor device, and electric/electronic component
JP7302487B2 (en) 2020-01-14 2023-07-04 トヨタ自動車株式会社 Composite particles and method for producing composite particles
CN114042909B (en) * 2021-11-01 2023-11-07 长春黄金研究院有限公司 Composite micro-nano silver powder and preparation method thereof
CN116100037A (en) * 2021-11-11 2023-05-12 达高工业技术研究院(广州)有限公司 Silver conductive paste sintering anti-sticking agent and preparation method thereof
CN114769577A (en) * 2022-03-15 2022-07-22 温州伟达贵金属粉体材料有限公司 Preparation method of high-dispersion micron-sized silver powder for electrical contact
CN114671711B (en) * 2022-04-19 2023-05-23 新明珠集团股份有限公司 Antibacterial rock plate and manufacturing method thereof
CN114871442B (en) * 2022-05-31 2024-03-29 云南斯铂林新材料有限公司 Process for preparing superfine silver powder by utilizing composite reducing agent
CN116618674B (en) * 2023-05-11 2024-02-02 湖北银科新材料股份有限公司 Preparation method of surface high-activity modified silver powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207185A (en) * 1994-01-21 1995-08-08 Kawazumi Gijutsu Kenkyusho:Kk Coated palladium fine powder and conductive paste

Also Published As

Publication number Publication date
US20050183543A1 (en) 2005-08-25
JP2005146408A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
JP4489389B2 (en) Method for producing fine silver powder
JP4489388B2 (en) Method for producing fine silver powder
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
JP4447273B2 (en) Silver ink and method for producing the same
US10207373B2 (en) Nickel particle composition, bonding material, and bonding method in which said material is used
JP4839689B2 (en) Silver ultrafine particle production method, silver powder, and silver ultrafine particle dispersion
JP2009013449A (en) Flat silver powder, method for producing flat silver powder, and electrically conductive paste
JP5176060B2 (en) Method for producing silver particle dispersion
JP4473620B2 (en) Silver paste
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
CN113593750B (en) Water-soluble nano metal slurry and preparation method and application thereof
JP4606012B2 (en) Silver paste
TWI757412B (en) Manufacturing method of silver nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term