JP4362742B2 - Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board - Google Patents
Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board Download PDFInfo
- Publication number
- JP4362742B2 JP4362742B2 JP2007536559A JP2007536559A JP4362742B2 JP 4362742 B2 JP4362742 B2 JP 4362742B2 JP 2007536559 A JP2007536559 A JP 2007536559A JP 2007536559 A JP2007536559 A JP 2007536559A JP 4362742 B2 JP4362742 B2 JP 4362742B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- paste
- particle composition
- ultrasonic vibration
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002923 metal particle Substances 0.000 title claims description 172
- 239000000203 mixture Substances 0.000 title claims description 128
- 229910052751 metal Inorganic materials 0.000 title claims description 114
- 239000002184 metal Substances 0.000 title claims description 114
- 238000000034 method Methods 0.000 title claims description 71
- 238000005304 joining Methods 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000002245 particle Substances 0.000 claims description 113
- 239000000758 substrate Substances 0.000 claims description 46
- 238000003825 pressing Methods 0.000 claims description 40
- 239000002612 dispersion medium Substances 0.000 claims description 39
- 238000010438 heat treatment Methods 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 235000011837 pasties Nutrition 0.000 claims description 16
- 239000000853 adhesive Substances 0.000 claims description 15
- 230000001070 adhesive effect Effects 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 79
- 229910052709 silver Inorganic materials 0.000 description 76
- 239000004332 silver Substances 0.000 description 76
- 239000007787 solid Substances 0.000 description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 28
- 229910052782 aluminium Inorganic materials 0.000 description 27
- 229910052802 copper Inorganic materials 0.000 description 26
- 239000010949 copper Substances 0.000 description 26
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 22
- 229910052737 gold Inorganic materials 0.000 description 22
- 239000010931 gold Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000005245 sintering Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 238000007665 sagging Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 4
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 4
- 229910001923 silver oxide Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- -1 aliphatic carboxylic esters Chemical class 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000009766 low-temperature sintering Methods 0.000 description 2
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 description 2
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- WSABWUUWLYRSNX-UHFFFAOYSA-N 2,6-dimethylheptan-4-one nonan-5-one Chemical compound CC(C)CC(CC(C)C)=O.C(CCC)C(=O)CCCC WSABWUUWLYRSNX-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- GMWUGZRYXRJLCX-UHFFFAOYSA-N 2-methoxypentan-2-ol Chemical compound CCCC(C)(O)OC GMWUGZRYXRJLCX-UHFFFAOYSA-N 0.000 description 1
- SYTQFBVTZCYXOV-UHFFFAOYSA-N 3,5,5-trimethylcyclohex-2-en-1-one Chemical compound CC1=CC(=O)CC(C)(C)C1.CC1=CC(=O)CC(C)(C)C1 SYTQFBVTZCYXOV-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 239000005640 Methyl decanoate Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/10—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/107—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/093—Compacting only using vibrations or friction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/28—Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
- H01C17/281—Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
- H01C17/283—Precursor compositions therefor, e.g. pastes, inks, glass frits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
- H01G2/06—Mountings specially adapted for mounting on a printed-circuit support
- H01G2/065—Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10636—Leadless chip, e.g. chip capacitor or resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0278—Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0285—Using ultrasound, e.g. for cleaning, soldering or wet treatment
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1131—Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Manufacturing Of Electric Cables (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
本発明は、金属粒子と揮発性分散媒とからなるペースト状金属粒子組成物に加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することにより金属粒子を焼結させて固化する方法;複数の金属製部材間にペースト状金属粒子組成物を介在させ、加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することにより金属粒子を焼結させて固化することにより金属製部材を接合する方法;および、基板上に塗布したペースト状金属粒子組成物を、加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することにより、金属粒子を焼結させ固化することにより、金属配線を形成するプリント配線板の製造方法に関するものである。 The present invention, by applying a pressurized while ultrasonic vibration to Lupe paste-like metal particle composition such from metal particles and volatile dispersion medium, in particular by applying pressure, while heating ultrasonic vibration A method of sintering and solidifying metal particles by means of: interposing a paste-like metal particle composition between a plurality of metal members, and applying ultrasonic vibration while applying pressure; A method of joining metal members by sintering and solidifying metal particles by applying sonic vibration; and applying ultrasonic vibration while pressing a paste-like metal particle composition applied on a substrate In particular, the present invention relates to a method of manufacturing a printed wiring board in which metal wiring is formed by sintering and solidifying metal particles by applying ultrasonic vibration while applying pressure and heating.
導電性ペーストは、固形分として主に金属微粉末を含有するペーストであり、例えば、プリント配線板の導電配線を形成する場合に導電路として用いられている。また、両面プリント配線板やビルドアップ多層プリント配線板では、スルーホールを導電性銀ペーストで充填して、各層の配線パターンを接続する方法が採用されている。セラミック基板に、厚膜導体配線を形成するための導電性ペーストも知られている。 The conductive paste is a paste mainly containing fine metal powder as a solid content, and is used as a conductive path, for example, when forming a conductive wiring of a printed wiring board. Further, in a double-sided printed wiring board and a build-up multilayer printed wiring board, a method of filling through holes with conductive silver paste and connecting the wiring patterns of each layer is adopted. A conductive paste for forming thick film conductor wiring on a ceramic substrate is also known.
金属微粉末としては、一般に、空気中で酸化しない金、白金、銀、パラジウムなどの貴金属の微粉末が用いられているが、最近では、非酸化性雰囲気下で焼成する方法を採用することにより、ニッケルや銅などの卑金属も用いられている。導電性ペーストは、スクリーン印刷、グラビア印刷、コーティングなどにより基材(基板)上に塗布される。塗膜は、乾燥後、熱処理されて、導電性膜となる。従来の導電性ペーストは、固化方法の観点で、高温焼結型と熱硬化型と低温焼結型とに大別される。 In general, fine metal powders such as gold, platinum, silver, and palladium that are not oxidized in air are used as fine metal powders, but recently, by adopting a method of firing in a non-oxidizing atmosphere. Base metals such as nickel and copper are also used. The conductive paste is applied onto a substrate (substrate) by screen printing, gravure printing, coating, or the like. The coating film is heat-treated after drying to become a conductive film. Conventional conductive pastes are roughly classified into a high temperature sintering type, a thermosetting type, and a low temperature sintering type from the viewpoint of a solidification method.
例えば、高温焼結型導電性ペーストに関する特許文献1では、導電性金属粉末(例えば、銅粉末)を含有するペースト状導電性樹脂組成物を基板に塗布して硬化させ、20分間かけて350℃に昇温し20分間保持して該樹脂を熱分解させ、ついで900℃に昇温し30分間保持して銅粉末を焼結している。
For example, in
高温焼結型導電性ペーストは、樹脂を熱分解させ、金属粉末を焼結させるのに、極めて高温と長時間を要しており、大量生産するには生産効率が低く、エネルギー費用が多大であるという問題がある。 High-temperature sintering type conductive paste requires extremely high temperature and long time to thermally decompose resin and sinter metal powder, low production efficiency for mass production and high energy cost. There is a problem that there is.
熱硬化型導電性ペーストに関する特許文献2では、鱗片状銀粉末を含有するポリイミドワニスからなる導電性ペーストをポリイミドフィルムに塗布して、120℃で30分間保持して乾燥し、乾燥皮膜を170℃で30分間、ついで230℃で10分間熱処理して導電性膜を得ている。
In
熱硬化型導電性ペーストは、高温焼結型導電性ペーストに比べ硬化温度が低いが、硬化に長時間を要するので、大量生産するには生産効率が低く、エネルギー費用が多大であるという問題がある。また、本来電気絶縁性である樹脂がバインダーとして残存するので、電気伝導率をあまり大きくすることができないという問題がある。 The thermosetting conductive paste has a lower curing temperature than the high-temperature sintered conductive paste, but it takes a long time to cure, so there is a problem that the production efficiency is low for mass production and the energy cost is great. is there. In addition, since the resin that is inherently electrically insulating remains as a binder, there is a problem that the electrical conductivity cannot be increased too much.
特許文献3では、配線素子の電極と基板の電極とを対向させ、電極間を電気的および機械的に接続するフリップチップ実装方法において、上記配線素子の電極または基板の電極上の少なくとも一方に、平均粒径が1〜100nmの金属微粒子を溶媒中に分散させた金属ペーストを供給する工程と、上記配線素子の電極と基板の電極とを上記金属ペーストを間にして位置合わせする工程と、上記配線素子側および基板側の少なくとも一方に超音波振動を印加することにより、上記金属ペーストとの界面における電極表面を活性化させる工程と、上記金属ペーストを構成する溶媒の沸点以上、金属微粒子の融点以下の温度(100℃〜300℃)で5分〜60分間加熱することにより、溶媒を蒸発させて配線素子の電極と基板の電極とを電気的および機械的に接続する工程とを有することを特徴とする。この実装方法は、100℃〜300℃で焼結させるので、低温焼結型ということができる。前記フリップチップ実装方法における超音波振動は、電極表面の酸化物や汚染物を除去し電極表面を活性状態にするために行うものであり、金属ペースト中の金属粒子と電極表面の金属との接合、並びに、金属粒子同士の焼結は、加熱工程によってなされる。
In
この実装方法は、高温焼結型導電性ペーストに比べ加熱温度が低いが、長時間を要するので、大量生産するには生産効率が低く、エネルギー費用が多大であるという問題がある。 Although this mounting method has a heating temperature lower than that of the high-temperature sintered conductive paste, it takes a long time, so that there is a problem in that the production efficiency is low and the energy cost is high for mass production.
また、被着体である電極等上の酸化物除去のため、前処理として超音波振動を印加する必要があり、複数の工程が必要という問題がある。 In addition, there is a problem in that ultrasonic vibration needs to be applied as a pretreatment for removing oxide on the electrode or the like, which is an adherend, and a plurality of processes are required.
また、焼結性を向上させるために、表面活性の高い平均粒径1〜100nmというナノレベルの金属粒子を必要とする。しかしながら、平均粒径1〜100nmの金属微粒子は、微粉末状でも溶媒中でも、常温で凝集しやすく、保存安定性が悪いという問題がある。さらには、平均粒径1〜100nmの金属微粒子は、平均粒径が100nm、すなわち0.1μmより大きい金属粒子に比べ極めて高価であるという問題がある。 Further, in order to improve the sinterability, nano-level metal particles having an average particle diameter of 1 to 100 nm with high surface activity are required. However, metal fine particles having an average particle diameter of 1 to 100 nm have a problem that they are easily aggregated at room temperature in a fine powder form or in a solvent and storage stability is poor. Furthermore, the metal fine particles having an average particle diameter of 1 to 100 nm have a problem that the average particle diameter is extremely expensive as compared with metal particles having an average particle diameter of 100 nm, that is, larger than 0.1 μm.
本発明者らは、上記問題のないペースト状金属粒子組成物の固化方法を開発すべく鋭意研究した結果、特定のペースト状金属粒子組成物に加圧しつつ超音波振動を印加することにより、短時間で金属粒子同士が焼結し、ペースト状金属粒子組成物が固化することを見出し、本発明を完成するに至った。本発明の目的は、ペースト状金属粒子組成物を短時間で効率的に固化する方法;ペースト状金属粒子組成物を使用して、短時間で効率的に金属製部材を接合する方法、および、ペースト状金属粒子組成物を使用して、短時間で効率的に金属配線を形成するプリント配線板の製造方法を提供することにある。 As a result of diligent research to develop a solidification method for a paste-like metal particle composition that does not have the above-mentioned problems, the inventors of the present invention have achieved a short by applying ultrasonic vibration while applying pressure to a specific paste-like metal particle composition. The metal particles were sintered with time, and the paste-like metal particle composition was found to solidify, and the present invention was completed. How to use the pasty metal particle composition, joining efficiently metallic member in a short time; object of the present invention, a method of efficiently solidify in a short time pasty metal particle composition and, using the pasty metal particle composition in a short time efficiently is to provide a method for manufacturing a printed wiring board forming a metal wiring.
この目的は、
[1] (A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物に、加圧しつつ周波数が2kHz以上である超音波振動を印加することにより、該金属粒子同士を焼結させることを特徴とする、ペースト状金属粒子組成物の固化方法。
[2] 加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することを特徴とする、[1]記載のペースト状金属粒子組成物の固化方法。
[3] 超音波振動の振幅が0.1〜40μmであることを特徴とする、[1]または[2]記載のペースト状金属粒子組成物の固化方法。
[4] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[1]または[2]記載のペースト状金属粒子組成物の固化方法。
[5] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[3]記載のペースト状金属粒子組成物の固化方法。
[6] 複数の金属製部材間に、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を介在させ、加圧しつつ周波数が2kHz以上である超音波振動を印加して該金属粒子同士を焼結させることを特徴とする、金属製部材の接合方法。
[7] 加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することを特徴とする、[6]記載の金属製部材の接合方法。
[8] 金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、[6]記載の金属製部材の接合方法。
[9] 金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、[7]記載の金属製部材の接合方法。
[10] 超音波振動の振幅が0.1〜40μmであることを特徴とする、[6]〜[9]のいずれかに記載の金属製部材の接合方法。
[11] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[6]〜[9]のいずれかに記載の金属製部材の接合方法。
[12] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[10]記載の金属製部材の接合方法。
[13] (A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、硬化性接着剤が塗布された基板上に塗布し、該ペースト状金属粒子組成物に加圧しつつ周波数が2kHz以上である超音波振動を印加して該金属粒子同士を焼結させ、同時に該接着剤を硬化させることにより、金属配線を形成することを特徴とする、プリント配線板の製造方法。
[14] 加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することを特徴とする、[13]記載のプリント配線板の製造方法。
[15] 超音波振動の振幅が0.1〜40μmであることを特徴とする、[13]または[14]記載のプリント配線板の製造方法。
[16] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[13]または[14]記載のプリント配線板の製造方法。
[17] 加圧が0.9kPa(0.09gf/mm2)以上であることを特徴とする、[15]記載のプリント配線板の製造方法。;により達成される。
This object is achieved,
[1 ] A paste-like metal particle composition comprising (A) metal particles having an average particle size of greater than 0.1 μm and 30 μm or less and a carbon content of 2.0% by weight or less and (B) a volatile dispersion medium. A method for solidifying a paste-like metal particle composition, wherein the metal particles are sintered together by applying ultrasonic vibration having a frequency of 2 kHz or higher while applying pressure.
[ 2 ] Applying ultrasonic vibration having a frequency of 2 kHz or more while applying pressure and heating at a temperature higher than normal temperature and not higher than 400 ° C. and lower than the melting point of the metal particles, [ 1 ] The solidification method of the paste-like metal particle composition of description.
[ 3 ] The method for solidifying a paste-like metal particle composition according to [ 1 ] or [ 2 ], wherein the amplitude of ultrasonic vibration is 0.1 to 40 μm.
[ 4 ] The method for solidifying a paste-like metal particle composition according to [ 1 ] or [ 2 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more.
[ 5 ] The method for solidifying a paste-like metal particle composition according to [ 3 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more.
[ 6 ] Between a plurality of metal members, (A) metal particles having an average particle size of more than 0.1 μm and not more than 30 μm and a carbon content of not more than 2.0% by weight, and (B) a volatile dispersion medium, A method for joining metal members, comprising interposing a paste-like metal particle composition comprising: and applying ultrasonic vibration having a frequency of 2 kHz or more while applying pressure to sinter the metal particles.
[7] while pressing, and while heating at a temperature below the melting point of at most 400 ° C. higher than the normal temperature the metal particles, and applying the ultrasonic vibration frequency is not less than 2 kHz, [6 ] The joining method of the metal members of description.
[ 8 ] The method for joining metal members according to [ 6 ], wherein the metal member is a metal member of an electronic component or an electrical component.
[ 9 ] The method for joining metal members according to [ 7 ], wherein the metal member is a metal member of an electronic component or an electrical component.
[ 10 ] The method for joining metal members according to any one of [ 6 ] to [ 9 ], wherein the amplitude of the ultrasonic vibration is 0.1 to 40 [mu] m.
[ 11 ] The method for joining metal members according to any one of [ 6 ] to [ 9 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more.
[ 12 ] The method for joining metal members according to [ 10 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more.
[ 13 ] A paste-like metal particle composition comprising (A) metal particles having an average particle size of more than 0.1 μm and not more than 30 μm and a carbon content of not more than 2.0% by weight, and (B) a volatile dispersion medium. Is applied onto a substrate coated with a curable adhesive, and the metal particles are sintered by applying ultrasonic vibration having a frequency of 2 kHz or higher while applying pressure to the paste-like metal particle composition, A method of manufacturing a printed wiring board, wherein the metal wiring is formed by curing the adhesive.
[14] while pressing, and while heating at a temperature below the melting point of at most 400 ° C. higher than the normal temperature the metal particles, and applying the ultrasonic vibration frequency is not less than 2 kHz, [13 ] The printed wiring board manufacturing method of description.
[ 15 ] The method for producing a printed wiring board according to [ 13 ] or [ 14 ], wherein the amplitude of the ultrasonic vibration is 0.1 to 40 μm.
[ 16 ] The method for producing a printed wiring board according to [ 13 ] or [ 14 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more.
[ 17 ] The method for producing a printed wiring board according to [ 15 ], wherein the pressure is 0.9 kPa (0.09 gf / mm 2 ) or more. Achieved by;
本発明のペースト状金属粒子組成物の固化方法では、加圧しつつ、特には加圧、加熱しつつ周波数が2kHz以上である超音波振動を印加するので、極めて短時間に該組成物中の金属粒子同士が焼結して、強度、導電性、熱伝導性が優れている固形状金属が得られる。特には、加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上の超音波振動を印加するので、効率良く揮発性分散媒が揮散し、極めて短時間に該組成物中の金属粒子同士が焼結して、強度、導電性、熱伝導性が優れている固形状金属が得られる。 In the method for solidifying a paste-like metal particle composition of the present invention, ultrasonic vibration having a frequency of 2 kHz or higher is applied while applying pressure, in particular, applying pressure and heating, so that the metal in the composition can be obtained in a very short time. The particles are sintered to obtain a solid metal having excellent strength, conductivity, and thermal conductivity. In particular, while applying pressure and applying ultrasonic vibration having a frequency of 2 kHz or higher while heating at a temperature higher than normal temperature and not higher than 400 ° C. and lower than the melting point of the metal particles, the volatile dispersion medium can be efficiently produced. It volatilizes and the metal particles in the composition sinter in a very short time, and a solid metal having excellent strength, conductivity and thermal conductivity is obtained.
本発明の金属製部材の接合方法では、ペースト状金属粒子組成物を複数の金属製部材間に介在させ、加圧しつつ周波数が2kHz以上である超音波振動を印加するので、極めて短時間に該組成物中の金属粒子同士が焼結して、複数の金属製部材が強固に耐久性よく接合する。特には加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ周波数が2kHz以上の超音波振動を印加するので、効率良く揮発性分散媒が揮散し、極めて短時間に該組成物中の金属粒子同士が焼結して、複数の金属製部材が強固に耐久性よく接合する。 In the metal member joining method of the present invention, the paste-like metal particle composition is interposed between a plurality of metal members, and ultrasonic vibration having a frequency of 2 kHz or more is applied while applying pressure. The metal particles in the composition are sintered, and a plurality of metal members are firmly bonded with high durability. In particular, while applying pressure and applying ultrasonic vibration having a frequency of 2 kHz or higher while heating at a temperature higher than room temperature and not higher than 400 ° C. and lower than the melting point of the metal particles, the volatile dispersion medium is efficiently volatilized. The metal particles in the composition are sintered in an extremely short time, and a plurality of metal members are firmly bonded with high durability.
本発明のプリント配線板の製造方法では、硬化性接着剤が塗布された基板上にペースト状金属粒子組成物を塗布し、該ペースト状金属粒子組成物に、加圧しつつ周波数が2kHz以上である超音波振動を印加するので、極めて短時間に金属粒子同士が焼結して、耐摩耗性、接着性、導電性、熱伝導性が優れた金属配線が形成される。特には、加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上の超音波振動を印加するので、効率良く揮発性分散媒が揮散し、極めて短時間に金属粒子同士が焼結して、耐摩耗性、接着性、導電性、熱伝導性が優れた金属配線を有するプリント配線板を製造することができる。また、前記接合方法によりチップ等を当該プリント配線板に搭載することにより、回路板を製造することができる。 In the method for producing a printed wiring board of the present invention, a paste-like metal particle composition is applied onto a substrate coated with a curable adhesive, and the frequency is 2 kHz or more while applying pressure to the paste-like metal particle composition. Since ultrasonic vibration is applied, the metal particles are sintered in an extremely short time, and a metal wiring having excellent wear resistance, adhesion, conductivity, and thermal conductivity is formed. In particular, while applying pressure and applying ultrasonic vibration having a frequency of 2 kHz or higher while heating at a temperature higher than normal temperature and not higher than 400 ° C. and lower than the melting point of the metal particles, the volatile dispersion medium can be efficiently produced. It is possible to produce a printed wiring board having a metal wiring which is volatilized and the metal particles are sintered in an extremely short time and has excellent wear resistance, adhesion, conductivity, and thermal conductivity. Moreover, a circuit board can be manufactured by mounting a chip or the like on the printed wiring board by the bonding method.
本発明のペースト状金属粒子組成物の固化方法、金属製部材の接合方法、プリント配線板の製造方法のいずれも、所要時間を極めて短くすることが可能であるから、生産効率が高く、エネルギー費用も従来に比べ大幅に節約することができる。 The solidification method of the paste-like metal particle composition of the present invention, the method of joining metal members, and the method of manufacturing a printed wiring board all can shorten the required time, so that the production efficiency is high and the energy cost is high. Can also save a lot compared to the past.
A 固着強度測定用試験体
B 超音波熱圧着装置の圧着部(プローブ)
1 ガラス繊維強化エポキシ樹脂基板
2 2012チップコンデンサ
3 2012チップコンデンサ端子電極
4 ペースト状金属粒子組成物
5 基板ランド(パッド)部A Bonding strength test specimen B Ultrasonic thermocompression bonding equipment (probe)
1 Glass fiber reinforced
本発明のペースト状金属粒子組成物は、(A)平均粒径が0.1μmより大きく30μm以下である金属粒子と(B)揮発性分散媒とからなるので、加圧しつつ、特には加圧、加熱しつつ周波数が2kHz以上である超音波振動を印加すると、金属粒子が極めて短時間で焼結して固化する。
当該金属粒子(A)の平均粒径は、レーザー回折または電子顕微鏡写真の画像解析により得られる一次粒子の平均粒径である。平均粒径が30μmを越えると金属粒子同士の焼結性が小さくなり、優れた強度と導電性、熱伝導性、接着性を得にくい。そのため平均粒径は30μm以下であるが、10μm以下であることが好ましく、より好ましくは6μm以下である。しかし、いわゆるナノサイズである0.1μm以下の場合、表面活性が強すぎてペースト状金属粒子組成物の保存安定性が低下する恐れがあるため、0.1μmより大であり、好ましくは0.2μm以上である。The paste-like metal particle composition of the present invention comprises (A) metal particles having an average particle size of greater than 0.1 μm and 30 μm or less and (B) a volatile dispersion medium. When ultrasonic vibration having a frequency of 2 kHz or higher is applied while heating, the metal particles are sintered and solidified in an extremely short time.
The average particle diameter of the metal particles (A) is an average particle diameter of primary particles obtained by laser diffraction or image analysis of an electron micrograph. When the average particle size exceeds 30 μm, the sinterability between the metal particles decreases, and it is difficult to obtain excellent strength, conductivity, thermal conductivity, and adhesion. Therefore, the average particle diameter is 30 μm or less, preferably 10 μm or less, more preferably 6 μm or less. However, when the so-called nano-size is 0.1 μm or less, the surface activity is too strong and the storage stability of the paste-like metal particle composition may be lowered, so that it is larger than 0.1 μm, preferably 0.8. 2 μm or more.
当該金属粒子(A)は、常温で固形状であることが必要であり、特に導電性と熱伝導性が高い、金、銀、銅、アルミニウム、ニッケル、スズから選択されることが好ましい。また、それらの金属からなる合金、または、それらの金属で表面がコーティングされた金属であっても良い。合金の場合は、金、銀、銅、アルミニウム、ニッケル、または、スズの含有量が50%以上であることが好ましい。金属粒子の形状は、球状、フレーク状、針状、角状、樹枝状、粒状、不規則形状、涙滴状板状、板状、極薄板状、六角板状、柱状、棒状、多孔状、繊維状、塊状、海面状、けい角状、丸み状が例示される。好ましくは、フレーク状、針状、角状、樹枝状、粒状、不規則形状、涙滴状、板状、極薄板状、六角板状であり、より好ましくは、球状、フレーク状または粒状である。 The metal particles (A) are required to be solid at room temperature, and are preferably selected from gold, silver, copper, aluminum, nickel, and tin, which have particularly high conductivity and thermal conductivity. Moreover, the alloy which consists of those metals, or the metal by which the surface was coated with those metals may be sufficient. In the case of an alloy, the content of gold, silver, copper, aluminum, nickel, or tin is preferably 50% or more. The shape of the metal particles is spherical, flake shaped, needle shaped, square shaped, dendritic shaped, granular, irregular shaped, teardrop shaped plate shaped, plate shaped, ultrathin plate shaped, hexagonal plate shaped, columnar, rod shaped, porous, Examples include fiber, lump, sea surface, corner and round. Preferred are flakes, needles, horns, dendrites, granules, irregular shapes, tear drops, plates, ultrathin plates, hexagons, more preferably spheres, flakes or granules. .
当該金属粒子(A)は、製造過程で、有機化合物が付着することがある。その付着量が多すぎると、焼結性に悪影響を及ぼすことがあるので、炭素量は2.0重量%以下であり、好ましくは1.0重量%以下である。ここで炭素量は、金属粒子を酸素気流中で加熱することにより、金属粒子に付着していた有機化合物中の炭素を炭酸ガスに変え、炭酸ガス量を赤外線吸収スペクトル法により測定し、換算して炭素量を算出したものである。金属粒子(A)の表面は少々酸化されていても良いが、酸化銀以外の酸化膜で被覆されている場合(例えば、酸化銅、酸化アルミニウム、酸化ニッケル、酸化スズ等)には、この酸化膜を除去して用いることが好ましい。これらの酸化膜は化学的に安定であり、金属粒子同士の焼結性が低くなるからである。これらの酸化膜を除去する方法は限定されないが、例えば、水素雰囲気での還元処理、水素発生物質の添加による還元処理、公知の還元剤による還元処理、公知の還元剤の添加による還元処理等が例示される。酸化銀は加熱により容易に還元されるので、銀粒子表面の酸化銀の存在は任意である。 The metal particles (A) may adhere to organic compounds during the production process. If the adhesion amount is too large, the sinterability may be adversely affected, so the carbon content is 2.0% by weight or less, preferably 1.0% by weight or less. Here, the amount of carbon is converted by converting the carbon in the organic compound adhering to the metal particles to carbon dioxide by heating the metal particles in an oxygen stream and measuring the amount of carbon dioxide by the infrared absorption spectrum method. The amount of carbon was calculated. The surface of the metal particles (A) may be slightly oxidized. However, when the surface is covered with an oxide film other than silver oxide (for example, copper oxide, aluminum oxide, nickel oxide, tin oxide, etc.), this oxidation It is preferable to use after removing the film. This is because these oxide films are chemically stable and the sinterability between metal particles is low. The method for removing these oxide films is not limited. For example, a reduction treatment in a hydrogen atmosphere, a reduction treatment by adding a hydrogen generating material, a reduction treatment by a known reducing agent, a reduction treatment by adding a known reducing agent, etc. Illustrated. Since silver oxide is easily reduced by heating, the presence of silver oxide on the silver particle surface is optional.
本発明のペースト状金属粒子組成物は、金属粒子(A)と揮発性分散媒(B)との混合物であり、粉末状の金属粒子(A)が揮発性分散媒(B)の作用によりペースト化している。ペースト化することにより、シリンダーやノズルから細い線状に吐出でき、またメタルマスクによる印刷塗布が容易であり、電極の形状に適用しやすくなる。非揮発性分散媒ではなく、揮発性分散媒を使用する理由は、超音波振動により金属粒子(A)が焼結する際に、分散媒が前もって揮散すると、金属粒子(A)が焼結しやすく、その結果、固形状金属の強度と導電性や熱伝導性が大きくなりやすいからである。揮発性分散媒(B)は、金属粒子表面を変質させず、その沸点は60℃以上であり、300℃以下であることが好ましい。沸点が60℃未満であると、ペースト状金属粒子組成物を調製する作業中に溶媒が揮散しやすく、沸点が300℃より大であると、金属粒子(A)の焼結後も揮発性分散媒が残留しかねないからである。そのような揮発性分散媒(B)として、水;エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール等の揮発性一価アルコール;その他の揮発性アルコール;低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素;アセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3,5,5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2,6−ジメチル−4−ヘプタノン)等の揮発性ケトン;酢酸エチル(エチルアセテート)、酢酸ブチルのような揮発性酢酸エステル;酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチルのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、メチルセロソルブ、プロピレンブリコールモノメチルエーテル、メチルメトキシブタノール、ブチルカルビトール等の揮発性エーテル;低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイル;等が例示され、特にはブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール等の揮発性一価アルコールであることが好ましい。これら炭素原子数が4〜10である揮発性一価アルコールは、ペースト状金属粒子組成物にしたときに、メタルマスクでの印刷性やシリンジからの押出性、吐出性に優れ、また適度な揮発性を有しているからである。;ついで低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素が好ましい。水は純水が好ましく、その電気伝導度は100μS/cm以下が好ましく、10μS/cm以下がより好ましい。純水の製造方法は通常の方法で良く、イオン交換法、逆浸透法、蒸留法が例示される。 The paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (B), and the powder-like metal particles (A) are pasted by the action of the volatile dispersion medium (B). It has become. By making it into a paste, it can be discharged in a thin line from a cylinder or nozzle, and it can be easily applied by printing with a metal mask, and can be easily applied to the shape of an electrode. The reason for using a volatile dispersion medium instead of a non-volatile dispersion medium is that when the metal particles (A) are sintered by ultrasonic vibration, if the dispersion medium is volatilized in advance, the metal particles (A) are sintered. This is because the strength, conductivity, and thermal conductivity of the solid metal are likely to increase. The volatile dispersion medium (B) does not alter the surface of the metal particles and has a boiling point of 60 ° C. or higher and preferably 300 ° C. or lower. When the boiling point is less than 60 ° C., the solvent easily evaporates during the operation of preparing the paste-like metal particle composition, and when the boiling point is higher than 300 ° C., the volatile dispersion is performed even after the metal particles (A) are sintered. This is because the medium may remain. As such a volatile dispersion medium (B), water; volatile monohydric alcohols such as ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, and benzyl alcohol Other volatile alcohols; volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins; volatile aromatic hydrocarbons such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol ( 4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), dibutyl ketone (2,6-dimethyl-4-heptanone) Etc. Volatile ketones; Volatile acetates such as ethyl acetate and butyl acetate; Volatile aliphatic carboxylic esters such as methyl butyrate, methyl hexanoate, methyl octoate and methyl decanoate; Tetrahydrofuran and methyl cellosolve Volatile ethers such as propylene bricol monomethyl ether, methylmethoxybutanol and butyl carbitol; low molecular weight volatile silicone oils and volatile organic modified silicone oils; and the like, in particular butyl alcohol, pentyl alcohol, hexyl alcohol A volatile monohydric alcohol such as heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol is preferred. These volatile monohydric alcohols having 4 to 10 carbon atoms are excellent in printability with a metal mask, extrudability from a syringe, and dischargeability when made into a paste-like metal particle composition, and have appropriate volatilization. It is because it has sex. Then volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins are preferred. The water is preferably pure water, and its electric conductivity is preferably 100 μS / cm or less, more preferably 10 μS / cm or less. The method for producing pure water may be a normal method, and examples include an ion exchange method, a reverse osmosis method, and a distillation method.
揮発性分散媒(B)の配合量は、該金属粒子(A)をペースト状にするのに十分な量でよく、目安として金属粒子(A)との体積比率は、金属粒子(A)の体積100あたり、揮発性分散剤(B)の体積が50〜200であり、好ましくは70〜160である。なお、本発明におけるペースト状はクリーム状を含むものである。本発明のペースト状金属粒子組成物には、本発明の目的に反しない限り、その他の金属系や非金属系の粉体、金属化合物や金属錯体、チクソ剤、安定剤、着色剤等の添加物を少量ないし微量添加しても良い。 The blending amount of the volatile dispersion medium (B) may be an amount sufficient to make the metal particles (A) into a paste, and as a guide, the volume ratio with the metal particles (A) is the amount of the metal particles (A). The volume of the volatile dispersant (B) is from 50 to 200, preferably from 70 to 160 per 100 volumes. In addition, the paste form in this invention contains a cream form. Addition of other metal-based or non-metallic powder, metal compound or metal complex, thixotropic agent, stabilizer, colorant, etc. to the paste-like metal particle composition of the present invention, unless it is contrary to the object of the present invention A small amount or a small amount of the product may be added.
本発明のペースト状金属粒子組成物の固化方法は、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物に、加圧しつつ周波数が2kHz以上である超音波振動を印加することにより、金属粒子同士を焼結させることを特徴とする。本発明のペースト状金属粒子組成物の固化方法は、特には、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物に、加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子(A)の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することにより、該揮発性分散媒(B)を揮散させ、該金属粒子(A)同士を焼結させることを特徴とする。このための金属粒子(A)としては、金、銀、銅、アルミニウム、ニッケル、スズなどの金属粒子が適している。これらの金属粒子のうち、アルミニウム粒子は、常温でも加圧しつつ周波数が2kHz以上である超音波振動を印加すると容易に焼結するという利点がある。 The solidification method of the paste-like metal particle composition of the present invention comprises (A) metal particles having an average particle diameter of greater than 0.1 μm and not more than 30 μm and a carbon content of not more than 2.0% by weight, and (B) volatility. Metal particles are sintered together by applying ultrasonic vibration having a frequency of 2 kHz or more to a paste-like metal particle composition comprising a dispersion medium while applying pressure. In particular, the solidifying method of the paste-like metal particle composition of the present invention comprises (A) metal particles having an average particle size of more than 0.1 μm and not more than 30 μm and a carbon content of not more than 2.0% by weight (B ) While applying pressure to a paste-like metal particle composition comprising a volatile dispersion medium and heating at a temperature higher than room temperature and not higher than 400 ° C. and lower than the melting point of the metal particles (A), the frequency is 2 kHz or higher. The volatile dispersion medium (B) is volatilized by applying ultrasonic vibration as described above, and the metal particles (A) are sintered together. As the metal particles (A) for this purpose, metal particles such as gold, silver, copper, aluminum, nickel and tin are suitable. Among these metal particles, aluminum particles have an advantage that they are easily sintered when an ultrasonic vibration having a frequency of 2 kHz or higher is applied while being pressurized even at room temperature.
加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することにより、揮発性分散媒(B)が揮散して該金属粒子(A)同士が焼結し強度と導電性と熱伝導性が優れた固形状の金属となる。この際、揮発性分散媒(B)が揮散し、ついで金属粒子(A)同士が焼結してもよく、揮発性分散媒(B)の揮散と共に金属粒子(A)同士が焼結してもよく、または、金属粒子(A)同士が焼結し、ついで揮発性分散媒(B)が揮散してもよい。金、銀、銅、アルミニウム、ニッケル、スズなどの金属は本来大きな強度と極めて高い導電性と熱伝導性を有するため、該金属粒子(A)同士の焼結物も大きな強度ときわめて高い導電性と熱伝導性を有する。 By applying ultrasonic vibration while applying pressure, particularly by applying ultrasonic vibration while applying pressure and heating, the volatile dispersion medium (B) is volatilized and the metal particles (A) are sintered together. It becomes a solid metal having excellent strength, conductivity and thermal conductivity. At this time, the volatile dispersion medium (B) is volatilized, and then the metal particles (A) may be sintered together, and the metal particles (A) are sintered together with the volatilization of the volatile dispersion medium (B). Alternatively, the metal particles (A) may be sintered together, and then the volatile dispersion medium (B) may be volatilized. Metals such as gold, silver, copper, aluminum, nickel and tin have inherently high strength and extremely high conductivity and thermal conductivity, so the sintered product of the metal particles (A) also has high strength and extremely high conductivity. And has thermal conductivity.
超音波振動の周波数は、2kHz以上であり、10kHz以上であることが好ましい。その上限は特に制限されないが、装置の能力上500kHz位である。また、超音波振動の振幅は焼結性に影響するので、好ましくは0.1〜40μm、より好ましくは0.3〜20μm、さらに好ましくは0.5〜12μmである。なお、超音波振動がペースト状金属粒子組成物に確実に伝わるように、ペースト状金属粒子組成物に超音波振動の発信部分を直接押し当てることが好ましい。また、超音波振動を吸収しにくい素材からなるカバー材等を介して、超音波振動の発信部分を押し当てることが好ましい。ペースト状金属粒子組成物への押当て圧力は、好ましくは0.9kPa(0.09gf/mm2)以上、より好ましくは9kPa(0.92gf/mm2)以上、さらに好ましくは39kPa(3.98gf/mm2)以上である。押当て圧力の上限は、接合する部材が破壊されない圧力の最大値である。The frequency of the ultrasonic vibration is 2 kHz or more, and preferably 10 kHz or more. The upper limit is not particularly limited, but is about 500 kHz due to the capability of the apparatus. Moreover, since the amplitude of ultrasonic vibration affects sinterability, it is preferably 0.1 to 40 μm, more preferably 0.3 to 20 μm, and still more preferably 0.5 to 12 μm. In addition, it is preferable to directly press the transmitting portion of the ultrasonic vibration to the paste-like metal particle composition so that the ultrasonic vibration is reliably transmitted to the paste-like metal particle composition. Moreover, it is preferable to press the transmitting portion of the ultrasonic vibration through a cover material made of a material that hardly absorbs the ultrasonic vibration. The pressing pressure to the paste-like metal particle composition is preferably 0.9 kPa (0.09 gf / mm 2 ) or more, more preferably 9 kPa (0.92 gf / mm 2 ) or more, and even more preferably 39 kPa (3.98 gf). / Mm 2 ) or more. The upper limit of the pressing pressure is the maximum pressure at which the members to be joined are not destroyed.
加熱温度は、常温より高く、揮発性分散媒(B)が揮散し金属粒子(A)が焼結できる温度であればよい。しかし、400℃を越えると揮発性分散媒(B)が突沸的に蒸発して固形状金属の形状に悪影響が出る可能性があるため、400℃以下、かつ該金属粒子(A)の融点未満の温度であることが必要であり、より好ましくは300℃以下である。該金属粒子(A)が焼結してできた固形状金属の導電性は、体積抵抗率で1×10-4Ω・cm以下であることが好ましく、1×10-5Ω・cm以下であることがより好ましい。その熱伝導性は、5W/m・K以上であることが好ましく、10W/m・K以上であることがより好ましい。該金属粒子(A)が焼結してできた固形状金属の形状は特に限定されず、シート状、フィルム状、テープ状、線状、円盤状、ブロック状、スポット状、不定形状が例示される。The heating temperature may be any temperature that is higher than normal temperature and at which the volatile dispersion medium (B) can be volatilized and the metal particles (A) can be sintered. However, if it exceeds 400 ° C, the volatile dispersion medium (B) may suddenly evaporate and adversely affect the shape of the solid metal. Therefore, it is 400 ° C or less and below the melting point of the metal particles (A). It is necessary that the temperature is 300 ° C. or less. The conductivity of the solid metal formed by sintering the metal particles (A) is preferably 1 × 10 −4 Ω · cm or less in terms of volume resistivity, and is 1 × 10 −5 Ω · cm or less. More preferably. The thermal conductivity is preferably 5 W / m · K or more, and more preferably 10 W / m · K or more. The shape of the solid metal formed by sintering the metal particles (A) is not particularly limited, and examples thereof include a sheet shape, a film shape, a tape shape, a linear shape, a disk shape, a block shape, a spot shape, and an indefinite shape. The
本発明の金属製部材の接合方法は、複数の金属製部材間に、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を介在させ、加圧しつつ周波数が2kHz以上である超音波振動を印加して金属粒子(A)同士を焼結させることを特徴とする。特には、複数の金属製部材間に、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を介在させ、加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子(A)の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することにより、該揮発性分散媒(B)を揮散させ、該金属粒子(A)同士を焼結させることを特徴とする。このための金属粒子(A)としては、金、銀、銅、アルミニウム、ニッケル、スズなどの金属粒子が適している。これらの金属粒子のうち、アルミニウム粒子は常温でも加圧しつつ周波数が2kHz以上である超音波振動を印加すると容易に焼結するという利点がある。 The metal member joining method of the present invention includes: (A) metal particles having an average particle size of greater than 0.1 μm and not greater than 30 μm and a carbon content of not greater than 2.0% by weight between a plurality of metal members; (B) A paste-like metal particle composition comprising a volatile dispersion medium is interposed, and ultrasonic vibration having a frequency of 2 kHz or more is applied while being pressed to sinter the metal particles (A). To do. In particular, between a plurality of metal members, (A) metal particles having an average particle size of greater than 0.1 μm and 30 μm or less and a carbon content of 2.0% by weight or less, and (B) a volatile dispersion medium, An ultrasonic wave having a frequency of 2 kHz or more while being heated at a temperature higher than normal temperature and not higher than 400 ° C. and lower than the melting point of the metal particles (A) while interposing a paste-like metal particle composition comprising By applying vibration, the volatile dispersion medium (B) is volatilized and the metal particles (A) are sintered together. As the metal particles (A) for this purpose, metal particles such as gold, silver, copper, aluminum, nickel and tin are suitable. Among these metal particles, aluminum particles have an advantage that they are easily sintered by applying ultrasonic vibration having a frequency of 2 kHz or more while being pressurized even at room temperature.
本発明の金属製部材の接合方法において、超音波振動の周波数、振幅、押当て圧力および加熱温度は、前記ペースト状金属粒子組成物の固化方法における超音波振動の周波数、振幅、押当て圧力および加熱温度と同じである。 In the method for joining metal members of the present invention, the frequency, amplitude, pressing pressure and heating temperature of ultrasonic vibration are the frequency, amplitude, pressing pressure and ultrasonic vibration frequency in the solidifying method of the paste-like metal particle composition. It is the same as the heating temperature.
金属製部材間のペースト状金属粒子組成物に、加圧しつつ、特には加圧、加熱しつつ超音波振動を印加すると、揮発性分散媒が揮散し該金属粒子が焼結して、接触していた金属製部材(例えば、金メッキ板、銀板、銀メッキ板、銅板、アルミニウム板、ニッケルメッキ金属板、スズメッキ金属板等の金属板;金メッキ基板、銀基板、銀メッキ基板、銅基板、アルミニウム基板、ニッケルメッキ金属基板、スズメッキ金属基板等の金属系基板;電気絶縁性基板上の電極等金属部分;電子部品、電子装置、電気部品、電気装置の金属部分(例えば端子))への接着強度、導電性、熱伝導性が優れた固形状金属となる。したがって、本発明の金属製部材の接合方法は、複数の金属製部材の接合に有用であり、特には金属系基板もしくは電気絶縁性基板上の電極と、電子部品、電子装置、電気部品、電気装置の金属部分(例えば端子)の接合に有用である。そのような接合として、金属板同士の接合;金属板と電気絶縁性基板上の金属部分との接合;コンデンサ、抵抗等のチップ部品と配線基板との接合;ダイオード、メモリ、CPU等の半導体チップとリードフレームもしくは配線基板との接合;高発熱のCPUチップと冷却板との接合が例示される。 When ultrasonic vibration is applied to the paste-like metal particle composition between metal members while applying pressure, in particular, pressurization and heating, the volatile dispersion medium is volatilized and the metal particles are sintered and contacted. Metal plate (for example, gold-plated plate, silver plate, silver-plated plate, copper plate, aluminum plate, nickel-plated metal plate, tin-plated metal plate, etc.); gold-plated substrate, silver substrate, silver-plated substrate, copper substrate, aluminum Metal substrates such as substrates, nickel-plated metal substrates, tin-plated metal substrates; metal parts such as electrodes on electrically insulating substrates; electronic components, electronic devices, electrical components, adhesion strength to metal parts (eg terminals) of electrical devices) It becomes a solid metal having excellent conductivity and thermal conductivity. Therefore, the metal member joining method of the present invention is useful for joining a plurality of metal members, and in particular, an electrode on a metal-based substrate or an electrically insulating substrate, an electronic component, an electronic device, an electrical component, Useful for joining metal parts (eg, terminals) of devices. As such bonding, bonding between metal plates; bonding between a metal plate and a metal part on an electrically insulating substrate; bonding between a chip component such as a capacitor and a resistor and a wiring substrate; semiconductor chip such as a diode, memory, and CPU And bonding between the lead frame or the wiring board; and bonding between the CPU chip having a high heat generation and the cooling plate.
本発明のプリント配線板の製造方法は、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を硬化性接着剤が塗布された基板上に塗布し、該ペースト状金属粒子組成物に加圧しつつ周波数が2kHz以上である超音波振動を印加して金属粒子同士を焼結させ、同時に該接着剤を硬化させることにより、金属配線を形成することを特徴とする。特には、(A)平均粒径が0.1μmより大きく30μm以下であり、炭素量が2.0重量%以下である金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、硬化性接着剤が塗布された基板上に塗布し、該ペースト状金属粒子組成物に加圧しつつ、かつ、常温より高く400℃以下であり該金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上である超音波振動を印加することにより、該揮発性分散媒を揮散させ、金属粒子同士を焼結させ、同時に該接着剤を硬化させることにより、金属配線を形成することを特徴とする。このための金属粒子としては、金、銀、銅、アルミニウム、ニッケル、スズなどの金属粒子が適している。これらの金属粒子のうち、アルミニウム粒子は、常温でも加圧しつつ周波数が2kHz以上である超音波振動を印加すると容易に焼結するという利点がある。 The method for producing a printed wiring board of the present invention comprises: (A) metal particles having an average particle size of greater than 0.1 μm and 30 μm or less, and a carbon content of 2.0% by weight or less; (B) a volatile dispersion medium; The paste-like metal particle composition is applied onto a substrate coated with a curable adhesive, and ultrasonic waves having a frequency of 2 kHz or more are applied to the paste-like metal particle composition while applying pressure to the paste-like metal particle composition. The metal wiring is formed by sintering the adhesive and simultaneously curing the adhesive. In particular, a paste-like metal particle composition comprising (A) metal particles having an average particle size of greater than 0.1 μm and 30 μm or less and a carbon content of 2.0% by weight or less and (B) a volatile dispersion medium. Is applied to a substrate coated with a curable adhesive, and the paste-like metal particle composition is pressurized and heated at a temperature higher than room temperature and not higher than 400 ° C. and lower than the melting point of the metal particles. Forming a metal wiring by applying ultrasonic vibration having a frequency of 2 kHz or more to volatilize the volatile dispersion medium, sinter the metal particles, and simultaneously cure the adhesive. Features. As metal particles for this purpose, metal particles such as gold, silver, copper, aluminum, nickel and tin are suitable. Among these metal particles, aluminum particles have an advantage that they are easily sintered when an ultrasonic vibration having a frequency of 2 kHz or higher is applied while being pressurized even at room temperature.
本発明のプリント配線板の製造方法において、超音波振動の周波数、振幅、押当て圧力および加熱温度は、前記ペースト状金属粒子組成物の固化方法における超音波振動の周波数、振幅、押当て圧力および加熱温度と同じである。 In the method for manufacturing a printed wiring board of the present invention, the frequency, amplitude, pressing pressure and heating temperature of ultrasonic vibration are the frequency, amplitude, pressing pressure and ultrasonic vibration frequency in the solidifying method of the paste-like metal particle composition. It is the same as the heating temperature.
本発明のプリント配線板の製造方法によれば、ペースト状金属粒子組成物を硬化性接着剤(例えば、エポキシ樹脂系接着剤、シリコーン樹脂系接着剤、ポリイミド樹脂系接着剤)を塗布したプリント配線用基板に塗布し、当該ペースト状金属粒子組成物に加圧しつつ周波数が2kHz以上である超音波振動を印加することにより、金属粒子同士が焼結し、耐摩耗性と基板への接着性に優れた金属プリント配線を形成することができる。なお、上記プリント配線用基板は、プライマー組成物を基板上に塗布し、次いで硬化性接着剤を塗布した基板であってもよい。特には、加圧しつつ、かつ、常温より高く400℃以下であり金属粒子の融点未満の温度で加熱しつつ、周波数が2kHz以上の超音波振動を印加することにより、効率良く揮発性分散媒が揮散し、金属粒子同士が焼結して、耐摩耗性と基板への接着性と導電性と熱伝導性が優れた金属配線を有するプリント配線板を短時間で製造することができる。ペースト状金属粒子組成物を基板上へ塗布等する方法は、特に制限されず、ディスペンス塗布、印刷塗布、スプレー塗布、はけ塗り、注入等がある。また、段落0031に記載の接合方法によりチップ等を当該プリント配線板に搭載することにより、回路板を製造することができる。 According to the method for producing a printed wiring board of the present invention, a printed wiring in which a paste-like metal particle composition is applied with a curable adhesive (for example, an epoxy resin adhesive, a silicone resin adhesive, a polyimide resin adhesive). By applying ultrasonic vibration having a frequency of 2 kHz or higher while applying pressure to the paste-like metal particle composition, the metal particles are sintered with each other, resulting in wear resistance and adhesion to the substrate. An excellent metal printed wiring can be formed. The printed wiring board may be a board in which a primer composition is applied on the board and then a curable adhesive is applied. In particular, while applying pressure and applying ultrasonic vibration having a frequency of 2 kHz or more while heating at a temperature higher than normal temperature and not higher than 400 ° C. and lower than the melting point of the metal particles, the volatile dispersion medium can be efficiently obtained. It is possible to produce a printed wiring board having a metal wiring excellent in wear resistance, adhesion to a substrate, conductivity, and thermal conductivity in a short time by volatilization and sintering of metal particles. The method for applying the paste-like metal particle composition onto the substrate is not particularly limited, and includes dispense application, print application, spray application, brush application, injection, and the like. A circuit board can be manufactured by mounting a chip or the like on the printed wiring board by the bonding method described in Paragraph 0031.
本発明の超音波振動焼結用ペースト状金属粒子組成物は、揮発性分散媒を含有するので、密閉容器に保存することが好ましい。長期間保存後に使用するときは、容器を振とうしてから、あるいは容器内を攪拌してから使用することが好ましい。保存安定性を向上する目的で冷蔵保管をしても良く、保管温度として10℃以下が例示されるが、密閉容器内に保管するときは揮発性分散媒が凝固しない温度であることが好ましい。 Ultrasonic vibration sintered for pasty metal particle composition of the present invention contains a volatile dispersion medium, it is preferably stored in a closed container. When used after long-term storage, it is preferable to use the container after shaking or stirring the container. Refrigerated storage may be performed for the purpose of improving storage stability, and the storage temperature is 10 ° C. or lower. However, when storing in a sealed container, it is preferably a temperature at which the volatile dispersion medium does not solidify.
なお、本発明の超音波振動焼結用ペースト状金属粒子組成物は、加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することにより金属粒子を焼結するが、焼結した後の洗浄は不要である。しかし、水や有機溶剤で洗浄してもよい。揮発性分散媒が水または親水性溶剤である場合は水で洗浄することができるので、アルコール等の有機溶媒による洗浄の場合のようなVOC発生の問題がない。本発明における超音波振動焼結用のペースト状金属粒子組成物の各成分は不純物が少ないため洗浄が容易である。 Incidentally, the ultrasonic vibration sintered for pasty metal particle composition of the present invention, by applying ultrasonic vibration while pressing the metal particles by particularly applying pressure, while heating ultrasonic vibration However, cleaning after sintering is not necessary. However, it may be washed with water or an organic solvent. When the volatile dispersion medium is water or a hydrophilic solvent, it can be washed with water, so there is no problem of VOC generation as in the case of washing with an organic solvent such as alcohol. Each component of the paste-like metal particle composition for ultrasonic vibration sintering in the present invention is easy to clean because it contains few impurities.
本発明の実施例と比較例を掲げる。実施例と比較例中、数字の次の「部」とあるのは「重量部」を意味する。金属粒子中の炭素量、ならびに、ペースト状金属粒子組成物中の金属粒子を焼結することにより生成した固形状金属の固着強度、体積抵抗率および熱伝導率は、下記の方法により各試験体を製作し、該各試験体について25℃で測定した。 Examples and comparative examples of the present invention will be given. In Examples and Comparative Examples, “part” next to a number means “part by weight”. The amount of carbon in the metal particles and the adhesion strength, volume resistivity, and thermal conductivity of the solid metal produced by sintering the metal particles in the paste-like metal particle composition were determined by the following methods. Was measured at 25 ° C. for each test specimen.
[炭素含有量]
金属粒子を酸素気流中で高周波により加熱することにより、金属粒子に付着していた有機化合物中の炭素を炭酸ガスに変え、炭酸ガス量を赤外線吸収スペクトル法により測定し、換算して炭素量を算出した。[Carbon content]
By heating the metal particles with high frequency in an oxygen stream, the carbon in the organic compound adhering to the metal particles is changed to carbon dioxide, and the amount of carbon dioxide is measured by the infrared absorption spectrum method. Calculated.
[固着強度試験]
100mm×40mmのガラス繊維強化エポキシ樹脂基板上に1mmの間隔をおいて設けられた2つの0.8mm×1.2mmのランド(パッド)部(銀メッキ仕上げ)に150μm厚のメタルマスクを用いて、ペースト状金属粒子組成物を塗布した(塗布面積:0.6mm×1.0mm)。チップマウンタにより、2012チップコンデンサ(両端部は銀メッキ仕上げ)を搭載した。超音波熱圧着装置を用い、超音波熱圧着装置の圧着部(プローブ)を該チップコンデンサに押し当てて、超音波振動を印加しながら200℃の温度で30秒間圧着した。その結果、金属粒子が焼結してランド(パッド)部と2012チップコンデンサ(両端部銀メッキ仕上げ)が接合した。ただし、金属粒子がフレーク状アルミニウム粒子である場合は、常温で超音波振動を印加した。かくして得られた固着強度試験体のチップコンデンサの側面を、固着強度試験機により押厚速度23mm/分で加圧し、せん断破壊したときの荷重をもって固着強度(単位;kgfおよびN)とした。なお、固着強度試験の回数は5回であり、5回の平均値を固着強度とした。[Fixing strength test]
Using a metal mask with a thickness of 150 μm on two 0.8 mm × 1.2 mm land (pad) portions (silver plating finish) provided on a 100 mm × 40 mm glass fiber reinforced epoxy resin substrate with a 1 mm interval. The paste-like metal particle composition was applied (application area: 0.6 mm × 1.0 mm). A 2012 chip capacitor (both ends are silver-plated) was mounted using a chip mounter. Using an ultrasonic thermocompression bonding apparatus, the pressure bonding portion (probe) of the ultrasonic thermocompression bonding apparatus was pressed against the chip capacitor, and was subjected to pressure bonding at a temperature of 200 ° C. for 30 seconds while applying ultrasonic vibration. As a result, the metal particles were sintered, and the land (pad) portion and the 2012 chip capacitor (both ends were silver-plated) were joined. However, when the metal particles were flaky aluminum particles, ultrasonic vibration was applied at room temperature. The side surface of the chip capacitor of the thus obtained bond strength test specimen was pressed at a thickness rate of 23 mm / min with a bond strength tester, and the load when sheared was determined as the bond strength (unit: kgf and N). In addition, the frequency | count of the adhesion strength test was 5 times, and the average value of 5 times was made into the adhesion strength.
[体積抵抗率試験]
幅5mm、長さ20mmの開口部を有する厚さ100μmの金属製のマスクを用い、電気絶縁性のFR−4ガラス繊維強化エポキシ樹脂基板上にペースト状金属粒子組成物を印刷塗布した。前記エポキシ樹脂基板と同じ大きさの厚さ200μmの非接着性であるステンレススチール板を前記塗布部に張付けた。該ステンレススチール板の上から超音波熱圧着装置を用いて、超音波振動を印加しながら、温度200℃で30秒間圧着したところ、金属粒子が焼結してフィルム状となった。ただし、金属粒子がフレーク状アルミニウム粒子である場合は、常温で超音波振動を印加した。かくして得られたフィルム状の金属について、20mm長の測定端間で10ボルトの電圧を印加して抵抗を測定し、体積抵抗率(単位;Ω・cm)を算出した。[Volume resistivity test]
Using a metal mask having a thickness of 5 mm and an opening having a length of 20 mm and a thickness of 100 μm, the paste-like metal particle composition was printed on an electrically insulating FR-4 glass fiber reinforced epoxy resin substrate. A non-adhesive stainless steel plate having the same size as the epoxy resin substrate and a thickness of 200 μm was stuck to the application part. When pressure was applied for 30 seconds at a temperature of 200 ° C. while applying ultrasonic vibration using an ultrasonic thermocompression bonding apparatus from above the stainless steel plate, the metal particles were sintered to form a film. However, when the metal particles were flaky aluminum particles, ultrasonic vibration was applied at room temperature. With respect to the film-like metal thus obtained, a voltage of 10 volts was applied between 20 mm-long measuring ends to measure resistance, and volume resistivity (unit: Ω · cm) was calculated.
[熱伝導率試験]
10mm×10mm角のシリコンウエハ1とシリコンウエハ2との間に、40μmまたは80μm厚となるようペースト状金属粒子組成物を介在させ、超音波熱圧着装置を用いて、超音波振動を印加しながら200℃で30秒間加熱した。その結果、ペースト状金属粒子組成物中の金属粒子が焼結してフィルム状となった。ただし、金属粒子がフレーク状アルミニウム粒子である場合は、常温で超音波振動を印加した。かくして得られたフィルム状の金属について、各々の厚さにおける熱抵抗(単位;℃/W)を測定した。各厚さ(単位;m)と熱抵抗の関係をグラフにプロットして直線を引き、その傾きを熱伝導率(単位;W/mK)として算出した。[Thermal conductivity test]
A paste-like metal particle composition is interposed between a 10 mm × 10 mm
[実施例1〜実施例5]
市販の還元法で製造された球状銀粒子(平均粒径0.3μm、炭素量0.2重量%)20部に1−ヘキサノール(和光純薬工業株式会社発売の試薬特級)2部を添加し、へらを用いて均一に混合することにより、ペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物は、EFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から容易に吐出することができた。各実施例の各試験体を得るために、200℃の温度で加熱しつつ、各超音波振動印加条件(表1)の超音波振動を30秒間印加することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物について、焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表2に示した。体積抵抗率測定に使用したフィルム状銀は、精錬法による銀と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なことがわかる。[Example 1 to Example 5]
2 parts of 1-hexanol (special grade of reagent sold by Wako Pure Chemical Industries, Ltd.) is added to 20 parts of spherical silver particles (average particle size 0.3 μm, carbon content 0.2% by weight) produced by a commercially available reduction method. A paste-like silver particle composition was prepared by mixing uniformly using a spatula. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like silver particle composition could be easily discharged from an EFD syringe (manufactured by Sanei Tech Co., Ltd., the inner diameter of the needle attached to the tip is 1.55 mm and the discharge pressure is 50 kPa). In order to obtain each test body of each Example, this paste-like silver particle composition was applied by applying ultrasonic vibration of each ultrasonic vibration application condition (Table 1) for 30 seconds while heating at a temperature of 200 ° C. The silver particles inside were sintered. With respect to this pasty silver particle composition, solid silver strength as a sintered product, volume resistivity, and thermal conductivity were measured, and the measurement results are shown in Table 2. The film-like silver used for volume resistivity measurement had a strength comparable to that obtained by refining. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, It can also be seen that it is useful for forming a silver wiring having excellent wear resistance, adhesion to the substrate, electrical conductivity and thermal conductivity.
[比較例1]
実施例1〜実施例5と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、200℃の温度で加熱しつつ、各超音波振動印加条件(表3)の超音波振動を30秒間印加した。銀粒子が焼結せず試験体を作成することができなかった。固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 1]
Using the same paste-like silver particle composition as in Examples 1 to 5, an attempt was made to prepare a specimen for fixing strength measurement, a specimen for volume resistivity measurement, and a specimen for thermal conductivity measurement. However, in order to obtain each test body, the ultrasonic vibration of each ultrasonic vibration application condition (Table 3) was applied for 30 seconds while heating at a temperature of 200 ° C. Since the silver particles were not sintered, a specimen could not be prepared. The solid silver fixing strength, volume resistivity, and thermal conductivity could not be measured.
[実施例6]
実施例2で用いた球状銀粒子の代わりに、市販の還元法で製造された銀粒子をフレーク化したフレーク状銀(平均粒径3.0μm、炭素量0.7重量%)を用いた以外は、実施例2と同一条件でペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物は、EFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から容易に吐出することができた。各実施例の各試験体を得るために、200℃の温度で加熱しつつ、実施例2と同じ超音波印加条件の超音波振動を30秒間印加することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物について焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表4に示した。体積抵抗率測定に使用したフィルム状銀は、精錬法による銀と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なことがわかる。[Example 6]
Instead of the spherical silver particles used in Example 2, flaky silver (average particle diameter 3.0 μm, carbon content 0.7 wt%) obtained by flaking silver particles produced by a commercially available reduction method was used. Prepared a pasty silver particle composition under the same conditions as in Example 2. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like silver particle composition could be easily discharged from an EFD syringe (manufactured by Sanei Tech Co., Ltd., the inner diameter of the needle attached to the tip is 1.55 mm and the discharge pressure is 50 kPa). In order to obtain each test body of each Example, by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C., in this pasty silver particle composition The silver particles were sintered. The pasty silver particle composition was measured for solid silver solid strength, volume resistivity, and thermal conductivity, and the measurement results are shown in Table 4. The film-like silver used for volume resistivity measurement had a strength comparable to that obtained by refining. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, It can also be seen that it is useful for forming a silver wiring having excellent wear resistance, adhesion to the substrate, electrical conductivity and thermal conductivity.
[比較例2]
実施例6と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、200℃の温度で加熱しつつ、比較例1と同じ各超音波振動印加条件(表3)の超音波振動を30秒間印加した。銀粒子が焼結せず試験体を作製することができなかった。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 2]
Using the same paste-like silver particle composition as in Example 6, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each specimen, ultrasonic vibration under the same ultrasonic vibration application conditions (Table 3) as in Comparative Example 1 was applied for 30 seconds while heating at a temperature of 200 ° C. The silver particles did not sinter and the test specimen could not be produced. Therefore, it was impossible to measure solid silver fixing strength, volume resistivity, and thermal conductivity.
[比較例3]
実施例1〜実施例5と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。銀粒子同士が充分に焼結せずにもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 3]
Using the same paste-like silver particle composition as in Examples 1 to 5, an attempt was made to prepare a specimen for fixing strength measurement, a specimen for volume resistivity measurement, and a specimen for thermal conductivity measurement. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The silver particles did not sinter enough, but were easily broken when touched with a finger, making it impossible to produce a test specimen. Therefore, it was impossible to measure solid silver fixing strength, volume resistivity, and thermal conductivity.
[実施例7]
市販の還元法で製造された球状銀粒子(平均粒径0.3μm、炭素量0.3重量%、表面は酸化銀である)20部に、蒸留範囲が106℃から202℃である低級イソパラフィン(新日本石油化学株式会社製、商品名アイソゾール300)1.8部を添加し、へらを用いて均一に混合することによりペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物は、吐出量が変化しやや不安定であるが、EFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から連続して吐出できた。各試験体を得るために、200℃の温度で加熱しつつ、実施例2と同じ超音波印加条件の超音波振動を30秒間印加することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物について、焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表5にまとめて示した。体積抵抗率測定に使用したフィルム状銀は、精錬法による銀と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なことがわかる。[Example 7]
Lower isoparaffin having a distillation range of 106 ° C to 202 ° C on 20 parts of spherical silver particles (average particle size 0.3 µm, carbon content 0.3 wt%, surface is silver oxide) produced by a commercially available reduction method A paste-like silver particle composition was prepared by adding 1.8 parts (manufactured by Shin Nippon Petrochemical Co., Ltd., trade name ISOZOL 300) and mixing uniformly using a spatula. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like silver particle composition is slightly unstable due to a change in discharge amount, but is an EFD syringe (manufactured by Sanei Tech Co., Ltd. The inner diameter of the needle attached to the tip is 1.55 mm, and the discharge pressure is 50 kPa. ) Could be discharged continuously. In order to obtain each test body, by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C., the silver particles in the paste-like silver particle composition were removed. Sintered. With respect to this paste-like silver particle composition, solid silver strength as a sintered product, volume resistivity, and thermal conductivity were measured, and the measurement results are summarized in Table 5. The film-like silver used for volume resistivity measurement had a strength comparable to that obtained by refining. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, It can also be seen that it is useful for forming a silver wiring having excellent wear resistance, adhesion to the substrate, electrical conductivity and thermal conductivity.
[比較例4]
実施例7と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。銀粒子同士が充分に焼結せず、焼結物はもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 4]
Using the same paste-like silver particle composition as in Example 7, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The silver particles did not sinter enough, the sintered product was brittle, and easily broken when touched with a finger, making it impossible to produce a specimen. Therefore, it was impossible to measure solid silver fixing strength, volume resistivity, and thermal conductivity.
[実施例8]
実施例7で用いた球状銀粒子の代わりに、市販の還元法で製造された粒状銀粒子(平均粒径2.7μm、炭素量0.7重量%)を使用する以外は、実施例7と同一条件でペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物は、吐出量が変化しやや不安定であるが、EFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から連続して吐出できた。各試験体を得るために、200℃の温度で加熱しつつ、実施例2と同じ超音波印加条件の超音波振動を30秒間印加することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物について焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表6にまとめて示した。体積抵抗率測定に使用したフィルム状銀は、精錬法による銀と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なことがわかる。[Example 8]
Example 7 and Example 7 were used except that instead of the spherical silver particles used in Example 7, granular silver particles (average particle size: 2.7 μm, carbon content: 0.7% by weight) produced by a commercially available reduction method were used. A pasty silver particle composition was prepared under the same conditions. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like silver particle composition is slightly unstable due to a change in discharge amount, but is an EFD syringe (manufactured by Sanei Tech Co., Ltd. The inner diameter of the needle attached to the tip is 1.55 mm, and the discharge pressure is 50 kPa. ) Could be discharged continuously. In order to obtain each test body, by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C., the silver particles in the paste-like silver particle composition were removed. Sintered. With respect to this pasty silver particle composition, solid silver as a sintered product was measured for fixing strength, volume resistivity, and thermal conductivity, and the measurement results are summarized in Table 6. The film-like silver used for volume resistivity measurement had a strength comparable to that obtained by refining. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, It can also be seen that it is useful for forming a silver wiring having excellent wear resistance, adhesion to the substrate, electrical conductivity and thermal conductivity.
[比較例5]
実施例8と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。銀粒子同士が充分に焼結せず、焼結物はもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 5]
Using the same paste-like silver particle composition as in Example 8, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The silver particles did not sinter enough, the sintered product was brittle, and easily broken when touched with a finger, making it impossible to produce a specimen. Therefore, it was impossible to measure solid silver fixing strength, volume resistivity, and thermal conductivity.
[実施例9]
市販のアトマイズ法で製造された球状銅粒子の還元処理粉(平均粒径4μm、炭素含有量0.01重量%以下の銅粒子を、濃度15重量%のアスコルビン酸水溶液に浸漬することにより、銅粒子表面の酸化銅を銅に還元する処理をしたもの)20部に1−ヘキサノール(和光純薬工業株式会社発売の試薬特級)1.5部を添加し、へらを用いて均一に混合することによりペースト状銅粒子組成物を調製した。
このペースト状銅粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銅粒子組成物は、EFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から容易に吐出することができた。各試験体を得るために、200℃の温度で加熱しつつ、実施例2と同じ超音波印加条件の超音波振動を30秒間印加することにより、このペースト状銅粒子組成物中の銅粒子を焼結させた。このペースト状銅粒子組成物について、焼結物である固形状銅の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表7に示した。体積抵抗率測定に使用したフィルム状銅は、精錬法による銅と遜色ない強度を有していた。以上の結果より、このペースト状銅粒子組成物が、強固な固形状銅を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銅配線を形成するのに有用なことがわかる。[Example 9]
Reduction powder of spherical copper particles produced by a commercially available atomizing method (copper particles having an average particle diameter of 4 μm and a carbon content of 0.01% by weight or less are immersed in an ascorbic acid aqueous solution having a concentration of 15% by weight. Add 1.5 parts of 1-hexanol (special grade grade of Wako Pure Chemical Industries, Ltd.) to 20 parts of copper oxide on the surface of the particles, and then mix evenly using a spatula. Thus, a paste-like copper particle composition was prepared.
This paste-like copper particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like copper particle composition could be easily discharged from an EFD syringe (manufactured by Sanei Tech Co., Ltd., the inner diameter of the needle attached to the tip is 1.55 mm and the discharge pressure is 50 kPa). In order to obtain each test body, the copper particles in this paste-like copper particle composition were applied by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 while heating at a temperature of 200 ° C. Sintered. About this paste-form copper particle composition, the fixed strength, volume resistivity, and thermal conductivity of solid copper which is a sintered product were measured, and the measurement results are shown in Table 7. The film-like copper used for volume resistivity measurement had a strength comparable to copper obtained by a refining method. From the above results, this paste-like copper particle composition is useful for producing strong solid copper, useful for strongly joining metal members with good electrical and thermal conductivity, It can also be seen that it is useful for forming copper wiring having excellent wear resistance, adhesion to the substrate, electrical conductivity, and thermal conductivity.
[比較例6]
実施例9と同じペースト状銅粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。銅粒子同士が充分に焼結せず、焼結物はもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状銅の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 6]
Using the same paste-like copper particle composition as that of Example 9, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The copper particles did not sinter sufficiently, the sintered product was brittle, and easily broken when touched with a finger, making it impossible to produce a test specimen. Therefore, it was impossible to measure solid copper fixation strength, volume resistivity, and thermal conductivity.
[実施例10]
市販の球状金粒子(平均粒径1μm、炭素量0.1重量%以下)20部に1−ヘキサノール(和光純薬工業株式会社発売の試薬特級)1.0部を添加し、へらを用いて均一に混合することによりペースト状金粒子組成物を調製した。このペースト状金粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状金粒子組成物はEFDシリンジ(サンエイテック株式会社製。先端にとりつけたニードルの内径が1.55mmであり、吐出圧が50kPaである)から容易に吐出することができた。各試験体を得るために、200℃の温度で加熱しつつ、実施例2と同じ超音波印加条件の超音波振動を30秒間印加することにより、このペースト状金粒子組成物中の金粒子を焼結させた。このペースト状金粒子組成物について、焼結物である固形状金の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表8に示した。体積抵抗率測定に使用したフィルム状金は、精錬法による金と遜色ない強度を有していた。以上の結果より、このペースト状金粒子組成物が、強固な固形状金を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた金配線を形成するのに有用なことがわかる。[Example 10]
To 20 parts of commercially available spherical gold particles (average particle size of 1 μm, carbon content of 0.1% by weight or less), 1.0 part of 1-hexanol (special grade of reagent sold by Wako Pure Chemical Industries, Ltd.) is added, and a spatula is used. A paste-like gold particle composition was prepared by mixing uniformly. This paste-like gold particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. This paste-like gold particle composition could be easily discharged from an EFD syringe (manufactured by Sanei Tech Co., Ltd., the inner diameter of the needle attached to the tip is 1.55 mm and the discharge pressure is 50 kPa). In order to obtain each specimen, by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C., the gold particles in the paste-like gold particle composition were Sintered. With respect to this paste-like gold particle composition, the fixing strength, volume resistivity, and thermal conductivity of solid gold as a sintered product were measured, and the measurement results are shown in Table 8. The film-like gold used for measuring the volume resistivity had a strength comparable to that obtained by the refining method. From the above results, this paste-like gold particle composition is useful for producing strong solid gold, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, In addition, it can be seen that it is useful for forming a gold wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity, and thermal conductivity.
[比較例7]
実施例10と同じペースト状金粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。金粒子同士が充分に焼結せず、焼結物はもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状金の固着強度、体積抵抗率、熱伝導率は測定不可能であった。[Comparative Example 7]
Using the same paste-like gold particle composition as in Example 10, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The gold particles did not sinter sufficiently, the sintered product was brittle, and easily broken when touched with a finger, making it impossible to produce a specimen. Therefore, the solid gold fixing strength, volume resistivity, and thermal conductivity were not measurable.
[実施例11]
市販のフレーク状アルミニウム粒子(平均粒径20μm、炭素量0.1重量%以下)20部にイソプロパノール(和光純薬工業株式会社発売の試薬特級)6部を添加し、へらを用いて均一に混合することによりペースト状アルミニウム粒子組成物を調製した。このペースト状アルミニウム粒子組成物は、メタルマスクでの塗布において、ダレ、流れ等がわずかに認められたが、測定可能な形状に塗布できた。超音波熱圧着装置を用い、常温で、表9に示す超音波印加条件の超音波振動を60秒間印加することにより、このペースト状アルミニウム粒子組成物中のアルミニウム粒子を焼結させた。このペースト状アルミニウム粒子組成物について、焼結物である固形状アルミニウムの固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表10に示した。体積抵抗率測定に使用したフィルム状アルミニウムは、精錬法によるアルミニウムと遜色ない強度を有していた。以上の結果より、このペースト状アルミニウム粒子組成物が、強固な固形状アルミニウムを製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れたアルミニウム配線を形成するのに有用なことがわかる。[Example 11]
Add 6 parts of isopropanol (special grade reagent sold by Wako Pure Chemical Industries, Ltd.) to 20 parts of commercially available flaky aluminum particles (average particle size 20 μm, carbon content 0.1 wt% or less) and mix evenly using a spatula By doing so, a paste-like aluminum particle composition was prepared. This paste-like aluminum particle composition was able to be applied in a measurable shape, although slight sagging, flow, etc. were observed in application with a metal mask. The aluminum particles in this paste-like aluminum particle composition were sintered by applying ultrasonic vibration under the ultrasonic wave application conditions shown in Table 9 for 60 seconds at room temperature using an ultrasonic thermocompression bonding apparatus. With respect to this pasty aluminum particle composition, the fixing strength, volume resistivity, and thermal conductivity of solid aluminum as a sintered product were measured, and the measurement results are shown in Table 10. The film-like aluminum used for measuring the volume resistivity had a strength comparable to that obtained by refining. From the above results, this paste-like aluminum particle composition is useful for producing strong solid aluminum, useful for joining metal members firmly with good electrical and thermal conductivity, It can also be seen that it is useful for forming an aluminum wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity.
[比較例8]
実施例11と同じペースト状アルミニウム粒子組成物を使用して、固着強度測定用試験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成することを試みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で加熱した。アルミニウム粒子同士が充分に焼結せず、焼結物はもろく、指で触ると容易に壊れ、試験体を作製することができなかった。そのため固形状アルミニウムの固着強度、体積抵抗率、熱伝導率は測定不可であった。[Comparative Example 8]
Using the same paste-like aluminum particle composition as in Example 11, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each test body, it heated on the same conditions except not applying an ultrasonic vibration. The aluminum particles did not sinter sufficiently, the sintered product was brittle, and easily broken when touched with a finger, making it impossible to produce a test specimen. For this reason, the fixing strength, volume resistivity, and thermal conductivity of solid aluminum cannot be measured.
本発明の超音波振動焼結用ペースト状金属粒子組成物、該ペースト状金属粒子組成物の固化方法、金属製部材の接合方法は、プリント配線板上の導電性配線の形成;抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成;電磁波シールド用導電性被膜の形成;金属板同士の接合;金属板と電気絶縁性基板上の金属部分との接合;コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接合;太陽電池の電極の形成;積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に有用である。本発明のプリント配線板の製造方法は、金属配線を有するプリント配線板の製造に有用である。
Ultrasonic vibration sintered for pasty metal particle composition of the present invention, a method of solidifying the pasty metal particle composition, method of joining the metal member is formed of conductive traces on the printed circuit board; resistor Ya Formation of electrodes for various electronic components such as capacitors and various display elements; formation of conductive films for electromagnetic wave shielding; bonding between metal plates; bonding between metal plates and metal parts on an electrically insulating substrate; capacitors, resistors, diodes Bonding chip components such as memory and arithmetic elements (CPU) to substrates; forming solar cell electrodes; forming external electrodes for chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors and multilayer ceramic actuators Useful. The method for producing a printed wiring board of the present invention is useful for producing a printed wiring board having metal wiring.
Claims (17)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005276484 | 2005-09-22 | ||
JP2005276484 | 2005-09-22 | ||
JP2005309128 | 2005-10-24 | ||
JP2005309128 | 2005-10-24 | ||
PCT/JP2006/318774 WO2007034893A1 (en) | 2005-09-22 | 2006-09-21 | Pasty metal particle composition, method of hardening pasty metal particle composition, method of bonding metal member, process for producing printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007034893A1 JPWO2007034893A1 (en) | 2009-03-26 |
JP4362742B2 true JP4362742B2 (en) | 2009-11-11 |
Family
ID=37888936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007536559A Active JP4362742B2 (en) | 2005-09-22 | 2006-09-21 | Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4362742B2 (en) |
WO (1) | WO2007034893A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013045369A1 (en) * | 2011-09-30 | 2013-04-04 | Osram Opto Semiconductors Gmbh | Component, and method for producing said component using a pressure-free sintering process by applying heat and ultrasound |
WO2013185839A1 (en) * | 2012-06-15 | 2013-12-19 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor device comprising a connecting layer sintered under the action of heat, pressure and ultrasound |
CN105101658A (en) * | 2015-09-09 | 2015-11-25 | 中南大学 | Hot ultrasonic low-temperature sintering method and device of nano silver conductive ink |
DE102014117020A1 (en) * | 2014-11-20 | 2016-05-25 | Infineon Technologies Ag | METHOD FOR PRODUCING A CONNECTIVE CONNECTION BETWEEN A SEMICONDUCTOR CHIP AND A METAL LAYER |
KR20170047360A (en) * | 2014-09-01 | 2017-05-04 | 도와 일렉트로닉스 가부시키가이샤 | Bonding material and bonding method using same |
US10821558B2 (en) | 2014-09-01 | 2020-11-03 | Dowa Electronics Materials Co., Ltd. | Bonding material and bonding method using same |
FR3134021A1 (en) * | 2022-03-29 | 2023-10-06 | Safran | Ultrasonic welding process |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4858057B2 (en) * | 2006-09-29 | 2012-01-18 | 大日本印刷株式会社 | Method for manufacturing conductive substrate |
WO2009098831A1 (en) * | 2008-02-07 | 2009-08-13 | Murata Manufacturing Co., Ltd. | Method for manufacturing electronic component device |
JP5286846B2 (en) * | 2008-03-12 | 2013-09-11 | 日立化成株式会社 | Conductive substrate and method for manufacturing the same, copper wiring substrate and method for manufacturing the same |
EP2306796A1 (en) | 2009-10-05 | 2011-04-06 | ABB Research Ltd. | Method of joining components, composite of components of an electrical circuit and electrical circuit |
JP5531691B2 (en) * | 2010-03-16 | 2014-06-25 | 株式会社村田製作所 | Conductive paste and method for manufacturing ceramic electronic component |
JP2014118586A (en) * | 2012-12-14 | 2014-06-30 | Unitika Ltd | Fibrous copper fine particle composition and preservation method for fibrous copper fine particle using the fibrous copper fine particle composition |
KR101706825B1 (en) * | 2014-11-13 | 2017-02-27 | 앰코 테크놀로지 코리아 주식회사 | Semiconductor Package |
FR3039025B1 (en) * | 2015-07-16 | 2018-03-09 | Valeo Equipements Electriques Moteur | WELDING PROCESS WITH MATERIAL SUPPLY AND ELECTRONIC POWER MODULE MADE THEREBY |
JP6605718B2 (en) * | 2016-04-28 | 2019-11-13 | シャープ株式会社 | Conductive paste, electrode connection structure, and method of manufacturing electrode connection structure |
RU185234U1 (en) * | 2018-09-03 | 2018-11-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" | INSTALLATION FOR PRODUCING PRODUCTS FROM POWDERED MATERIALS |
WO2020118269A1 (en) * | 2018-12-07 | 2020-06-11 | Interlog Corporation | Method for 3d-shaped multiple-layered electronics with ultrasonic voxel manufacturing |
CN111531175A (en) * | 2020-05-09 | 2020-08-14 | 苏州大学 | Powder slurry ultrasonic field assisted embossing forming microstructure device |
CN111843281B (en) * | 2020-07-20 | 2021-09-21 | 广东省科学院中乌焊接研究所 | Preparation method of aluminum alloy welding wire and aluminum alloy welding wire |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4001438B2 (en) * | 1999-05-31 | 2007-10-31 | 三井金属鉱業株式会社 | Method for producing composite copper fine powder |
JP2005116612A (en) * | 2003-10-03 | 2005-04-28 | Murata Mfg Co Ltd | Flip chip packaging method and electronic circuit device using the same |
JP4047304B2 (en) * | 2003-10-22 | 2008-02-13 | 三井金属鉱業株式会社 | Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder |
JP4296347B2 (en) * | 2004-01-19 | 2009-07-15 | Dowaエレクトロニクス株式会社 | Flaked copper powder and method for producing the same |
JP4859362B2 (en) * | 2004-11-04 | 2012-01-25 | 三井金属鉱業株式会社 | Flake nickel powder, method for producing the same, and conductive paste |
-
2006
- 2006-09-21 JP JP2007536559A patent/JP4362742B2/en active Active
- 2006-09-21 WO PCT/JP2006/318774 patent/WO2007034893A1/en active Application Filing
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013045369A1 (en) * | 2011-09-30 | 2013-04-04 | Osram Opto Semiconductors Gmbh | Component, and method for producing said component using a pressure-free sintering process by applying heat and ultrasound |
WO2013185839A1 (en) * | 2012-06-15 | 2013-12-19 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor device comprising a connecting layer sintered under the action of heat, pressure and ultrasound |
KR20170047360A (en) * | 2014-09-01 | 2017-05-04 | 도와 일렉트로닉스 가부시키가이샤 | Bonding material and bonding method using same |
US10821558B2 (en) | 2014-09-01 | 2020-11-03 | Dowa Electronics Materials Co., Ltd. | Bonding material and bonding method using same |
KR102359193B1 (en) * | 2014-09-01 | 2022-02-04 | 도와 일렉트로닉스 가부시키가이샤 | Bonding material and bonding method using same |
DE102014117020A1 (en) * | 2014-11-20 | 2016-05-25 | Infineon Technologies Ag | METHOD FOR PRODUCING A CONNECTIVE CONNECTION BETWEEN A SEMICONDUCTOR CHIP AND A METAL LAYER |
US9659793B2 (en) | 2014-11-20 | 2017-05-23 | Infineon Technologies Ag | Method for producing a material-bonding connection between a semiconductor chip and a metal layer |
CN105101658A (en) * | 2015-09-09 | 2015-11-25 | 中南大学 | Hot ultrasonic low-temperature sintering method and device of nano silver conductive ink |
CN105101658B (en) * | 2015-09-09 | 2017-10-20 | 中南大学 | The hot ultrasonic cryogenic sintering method and device of a kind of nano silver conductive ink |
FR3134021A1 (en) * | 2022-03-29 | 2023-10-06 | Safran | Ultrasonic welding process |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007034893A1 (en) | 2009-03-26 |
WO2007034893A1 (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4362742B2 (en) | Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board | |
JP4353380B2 (en) | Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board | |
JP4347381B2 (en) | Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend | |
JP4247801B2 (en) | Paste-like metal particle composition and joining method | |
JP4247800B2 (en) | Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method | |
JP4872663B2 (en) | Joining material and joining method | |
JP5611537B2 (en) | Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby | |
JP4470193B2 (en) | Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection | |
JP5011225B2 (en) | Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method | |
JP4895994B2 (en) | Joining method and joining material using metal particles | |
JP2006339057A (en) | Resin metal composite conductive material, its manufacturing method, and electronic device using it | |
JP2010131669A (en) | Joining agent for metal component, method of producing metal component joined article, metal component joined article, and method of manufacturing bump for electric circuit connection | |
TW201011088A (en) | Conductive adhesive and LED substrate using it | |
KR20020034075A (en) | Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same | |
JP5207281B2 (en) | Conductive paste | |
WO2009122467A1 (en) | Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection | |
US20130313309A1 (en) | Conductive bonding material, method of manufacturing the same, and method of manufacturing electronic device | |
CN112272851B (en) | Conductive paste and sintered body | |
JP2010248617A (en) | Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit | |
JP2020013768A (en) | Pasty silver particle composition, manufacturing method of metal-made member conjugate, and manufacturing method of silver particle sintered article and composite of resin cured article | |
JPS61185806A (en) | Conductive resin paste | |
JP2019056158A (en) | Method for joining electronic component and method for manufacturing joined body | |
JP2022006413A (en) | CONDUCTIVE PASTE, LAMINATE AND METHOD FOR BONDING Cu SUBSTRATE OR Cu ELECTRODE AND CONDUCTOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090126 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20090126 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20090224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4362742 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |