Nothing Special   »   [go: up one dir, main page]

JP4045233B2 - Fin equipment - Google Patents

Fin equipment Download PDF

Info

Publication number
JP4045233B2
JP4045233B2 JP2003390076A JP2003390076A JP4045233B2 JP 4045233 B2 JP4045233 B2 JP 4045233B2 JP 2003390076 A JP2003390076 A JP 2003390076A JP 2003390076 A JP2003390076 A JP 2003390076A JP 4045233 B2 JP4045233 B2 JP 4045233B2
Authority
JP
Japan
Prior art keywords
wing
fin
rudder
propeller
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003390076A
Other languages
Japanese (ja)
Other versions
JP2005145397A (en
Inventor
▲栄▼治 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMABARI SHIPBUILDING CO., LTD.
Original Assignee
IMABARI SHIPBUILDING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMABARI SHIPBUILDING CO., LTD. filed Critical IMABARI SHIPBUILDING CO., LTD.
Priority to JP2003390076A priority Critical patent/JP4045233B2/en
Publication of JP2005145397A publication Critical patent/JP2005145397A/en
Application granted granted Critical
Publication of JP4045233B2 publication Critical patent/JP4045233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置に関する。   The present invention relates to a composite wing-type fin device that is mounted at a height position of a propeller shaft at a front edge portion of a rudder located behind a propeller in order to save fuel consumption during ship operation.

従来の技術としては、例えば特許文献1の特許第3004238号公報及び特許文献2の特許第2837948号公報に示すようなものがある。
すなわち、特許文献1では、プロペラ後方の舵に翼断面をもつフィンと、平坦部をもつお椀状の先端部を有する小型バルブで構成された推進性能向上装置に関する技術、また、特許文献2では、舵の両面から横方向に延出するフィンを有し、舵の前縁でフィン取付け位置に、プロペラボスキャップに近接するように前方に略半球面をもつ突部で構成された船舶用舵に関する技術が開示されている。
Examples of conventional techniques include those shown in Japanese Patent No. 3004238 of Patent Literature 1 and Japanese Patent No. 2837948 of Patent Literature 2.
That is, in Patent Document 1, a technique related to a propulsion performance improving device configured by a small valve having a fin having a blade cross-section on a rudder behind a propeller and a bowl-shaped tip having a flat portion, and Patent Document 2, The present invention relates to a marine rudder having fins extending laterally from both sides of a rudder, and having a substantially hemispherical front portion so as to be close to a propeller boss cap at a fin mounting position at a front edge of the rudder. Technology is disclosed.

また、別の従来技術として、特許文献3の特開2001−138986号公報には、プロペラ位置付近でビルジ渦中心がプロペラ中心軸よりも下方の船型に対し、プロペラ前方の左右舷に、翼端部がビルジ渦のほぼ中心に位置するとともに下向きのキャンバーを有するフィンを各々1枚有し、舵の両面から横方向に延出した舵付きフィンを有する技術が開示されている。   Further, as another conventional technique, Japanese Patent Application Laid-Open No. 2001-138986 of Patent Document 3 discloses that a wing tip is located on the left and right side of the front of the propeller with respect to the hull form in which the bilge vortex center is below the propeller center axis in the vicinity of the propeller position. A technique has been disclosed that includes a fin with a rudder that is positioned approximately at the center of the bilge vortex and has one fin each having a downward camber and that extends laterally from both sides of the rudder.

特許第3004238号公報Japanese Patent No. 3004238 特許第2837948号公報Japanese Patent No. 2837948 特開2001−138986号公報JP 2001-138986 A

しかしながら、このような従来の技術では、特許文献1では、平坦部を有するお椀状の先端部の小型バルブ形状では、構造が複雑で作りづらく、更に舵側面から張出したフィンは大きく、大角度で操舵した場合プロペラと接触する恐れがあるという問題点があった。更に、特許文献2では、略半球面をもつ突部形状と舵の側面に延びるフィンの構成により、構造的に複雑でコストの高いものになるという問題点があった。   However, in such a conventional technique, in Patent Document 1, the small valve shape of the bowl-shaped tip portion having a flat portion has a complicated structure and is difficult to make, and the fins protruding from the rudder side surface are large and have a large angle. There is a problem that there is a risk of contact with the propeller when steering. Further, in Patent Document 2, there is a problem that the structure is complicated and expensive due to the shape of the protrusion having a substantially hemispherical surface and the configuration of fins extending on the side surface of the rudder.

また、特許文献3では、船体そのものにフィンを設ける構造と、舵に設けたフィンと協働させるようにしたもので、船体に設けるフィンの施工が大変でコスト高となり、更に、舵は常に作動しており、各々のフィンの相対関係が変化しており、効率の良い動作を期待しにくい場合があるという問題点があった。   Moreover, in patent document 3, it is made to cooperate with the fin provided in the hull itself, and the fin provided in the rudder. The construction of the fin provided in the hull is very expensive, and the rudder always operates. However, the relative relationship between the fins has changed, and there is a problem that it is difficult to expect an efficient operation.

本発明は、このような従来の技術が有する問題点に着目してなされたもので、舵側の施工のみで対応することができ、構造も単純で効率よく動作することができるようにしたフィン装置を提供することを目的としている。   The present invention has been made paying attention to such problems of the conventional technology, and can be handled only by the construction on the rudder side, and the fin can be operated simply and efficiently. The object is to provide a device.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。
[1] 船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵(1)の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵(1)の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィン(20)と、
前記二次元翼型フィン(20)の両端部の垂直面(25)に左右舷側で接合するよう延設された一対の非対称翼型フィン(50)と、
により構成されることを特徴とするフィン装置。
The gist of the present invention for achieving the object lies in the inventions of the following items.
[1] A composite wing-type fin device mounted at the height of the propeller shaft at the front edge of the rudder (1) located behind the propeller in order to save fuel consumption during ship operation,
A bilaterally symmetrical two-dimensional airfoil fin (20) provided from the front edge to the side of the rudder (1) and forming a central core portion;
A pair of asymmetric airfoil fins (50) extending so as to be joined to the vertical surfaces (25) at both ends of the two-dimensional airfoil fin (20) on the left and right sides;
It is comprised by this fin apparatus characterized by the above-mentioned.

[2] 船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵(1)の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵(1)の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィン(20)と、前記二次元翼型フィン(20)の両端部の垂直面(25)に左右舷側で接合するよう延設された一対の非対称翼型フィン(50)とより成り、
前記中央コア部分を形成する左右舷対称の二次元翼型フィン(20)の縦断面形状は、先端部(21)を横向き半円筒形状で形成し、舵(1)の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状としたことを特徴とするフィン装置。
[2] A composite wing-type fin device mounted at the height of the propeller shaft at the front edge of the rudder (1) located behind the propeller in order to reduce fuel consumption during ship operation,
A bilaterally symmetric two-dimensional airfoil fin (20) provided from the front edge to the side of the rudder (1) and forming a central core portion, and vertical surfaces of both ends of the two-dimensional airfoil fin (20) (25) and a pair of asymmetric airfoil fins (50) extended to be joined on the left and right side,
The longitudinal cross-sectional shape of the left-right symmetrical two-dimensional wing-shaped fin (20) forming the central core portion is such that the tip (21) is formed in a horizontal semi-cylindrical shape and the wing on the side of the rudder (1) is rearward. A fin device characterized by a water droplet type shape that is squeezed entirely toward the edge and tied with a smooth curve.

[3] 船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵(1)の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵(1)の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィン(20)と、前記二次元翼型フィン(20)の両端部の垂直面(25)に左右舷側で接合するよう延設された一対の非対称翼型フィン(50)とより成り、
左右舷一対の前記非対称翼型フィン(50)は、前記二次元翼型フィン(20)の左右舷両端部の垂直面(25)内に収まる翼断面形状で取付け迎角をもって接合され、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面としたことを特徴とするフィン装置。
[3] A composite wing-type fin device mounted at the height of the propeller shaft at the front edge of the rudder (1) located behind the propeller in order to save fuel consumption during ship operation,
A bilaterally symmetric two-dimensional airfoil fin (20) provided from the front edge to the side of the rudder (1) and forming a central core portion, and vertical surfaces of both ends of the two-dimensional airfoil fin (20) (25) and a pair of asymmetric airfoil fins (50) extended to be joined on the left and right side,
The pair of left and right asymmetrical wing fins (50) is joined with a mounting angle of attack in a blade cross-sectional shape that fits within the vertical surfaces (25) at both ends of the left and right wings of the two-dimensional wing fin (20), and propeller rotation In the case of the right rotation, the fin apparatus is characterized in that the starboard wing has a pressure surface as an upper surface and the port wing has a pressure surface as a lower surface.

[4] 船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵(1)の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵(1)の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィン(20)と、前記二次元翼型フィン(20)の両端部の垂直面(25)に左右舷側で接合するよう延設された一対の非対称翼型フィン(50)とより成り、
前記中央コア部分を形成する左右舷対称の二次元翼型フィン(20)の縦断面形状は、先端部(21)を横向き半円筒形状で形成し、舵(1)の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状とし、
左右舷一対の前記非対称翼型フィン(50)は、前記二次元翼型フィン(20)の左右舷両端部の垂直面(25)内に収まる翼断面形状で取付け迎角をもって接合され、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面としたことを特徴とするフィン装置。
[4] A composite wing-type fin device mounted at the height of the propeller shaft at the front edge of the rudder (1) located behind the propeller in order to save fuel consumption during ship operation,
A bilaterally symmetric two-dimensional airfoil fin (20) provided from the front edge to the side of the rudder (1) and forming a central core portion, and vertical surfaces of both ends of the two-dimensional airfoil fin (20) (25) and a pair of asymmetric airfoil fins (50) extended to be joined on the left and right side,
The longitudinal cross-sectional shape of the left-right symmetrical two-dimensional wing-shaped fin (20) forming the central core portion is such that the tip (21) is formed in a horizontal semi-cylindrical shape and the wing on the side of the rudder (1) is rearward. A water drop shape that is narrowed down toward the edge and tied with a smooth curve,
The pair of left and right asymmetrical wing fins (50) is joined with a mounting angle of attack in a blade cross-sectional shape that fits within the vertical surfaces (25) at both ends of the left and right wings of the two-dimensional wing fin (20), and propeller rotation In the case of the right rotation, the fin apparatus is characterized in that the starboard wing has a pressure surface as an upper surface and the port wing has a pressure surface as a lower surface.

[5] 前記二次元翼形フィンは、先端部半円の円弧形状の最大直径はプロペラ径の0.16から0.18倍程度とし、最大幅はプロペラ径の0.18から0.20倍程度で、被装着部である舵(1)の最大厚さより大き目の値とし、翼最大弦長はプロペラ径の0.4倍程度、翼前縁の後退角度は0度、取付け迎角はプロペラ軸心高さ位置に平行の0度、翼前縁を舵(1)前端より突出させ、プロペラボスキャップとの間隔を実船寸法において100ミリメートルから200ミリメートル程度としたことを特徴とする項1,2,3または4に記載のフィン装置。   [5] In the two-dimensional airfoil fin, the maximum diameter of the arc shape of the tip semicircle is about 0.16 to 0.18 times the propeller diameter, and the maximum width is 0.18 to 0.20 times the propeller diameter. The blade has a larger value than the maximum thickness of the rudder (1), which is the mounted part, the blade maximum chord length is about 0.4 times the propeller diameter, the blade leading edge receding angle is 0 degrees, and the mounting angle of attack is the propeller. Item 1 is characterized in that the blade leading edge protrudes from the front end of the rudder (1) parallel to the axial center height position, and the distance from the propeller boss cap is about 100 mm to 200 mm in actual ship dimensions. , 2, 3 or 4.

すなわち、上記の課題を解決するために本発明では新しい発想に基づく複合翼型フィン装置を提案するものである。その基本骨子は、中央部コア部分として、低速船から中速船及び高速船の伴流利得効果に有効に働く最適な翼縦断面形状を有する左右舷対称の二次元翼型フィン(20)を、またサイド部分として、推進効率の向上に最も寄与するスラスト減少係数を改善するために、最適翼断面形状と最適取付け迎角を有する左右舷一対の非対称翼型フィン(50)を採用し、複合的に推進性能の向上を狙っている。   That is, in order to solve the above problems, the present invention proposes a composite wing fin device based on a new idea. The basic structure is a two-dimensional wing-shaped fin (20) that is symmetrical to the left and right with an optimal blade longitudinal cross-sectional shape that works effectively for the wake gain effect of low-speed ships to medium-speed ships and high-speed ships. In addition, in order to improve the thrust reduction coefficient that contributes most to the improvement of propulsion efficiency, a pair of left and right asymmetric wing fins (50) having an optimum blade cross-sectional shape and an optimum mounting angle of attack are adopted as side portions, and combined The aim is to improve propulsion performance.

中央部コア部分を形成する最適翼縦断面形状に至ったのは、従来の小型バルブ形状を有する省エネルギー装置の水槽試験結果に基づき、伴流利得効果を左右する重要なパラメーターの一つとして、中央部を形成する小型バルブ等の最大横断面積に着目し、中央部を形成するコア形状が従来の小型バルブ形状と異なっても、その形状が有する最大横断面積が従来の最適最大横断面積と同等であれば、同等の伴流利得効果が期待できることがわかった。   Based on the results of a water tank test of a conventional energy-saving device with a small valve shape, the optimum blade longitudinal cross-sectional shape that forms the central core portion is one of the important parameters that influence the wake gain effect. Paying attention to the maximum cross-sectional area of the small valve that forms the part, even if the core shape forming the central part is different from the conventional small valve shape, the maximum cross-sectional area that the shape has is the same as the conventional optimum maximum cross-sectional area It was found that the same wake gain effect can be expected.

この結論に基づき、中央部コア部分の形状として、左右舷対称形状の二次元翼型フィン(20)が提案された。この二次元翼型フィン(20)の最大の特徴である縦断面形状は、翼の先端部(21)を半円の円弧形状で形成し、翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状としてある。また、舵(1)中心線より左右舷に張り出す翼の最大幅は、装着部の舵(1)の最大厚さより若干大きめの値としてある。   Based on this conclusion, a two-dimensional airfoil fin (20) having a symmetrical shape was proposed as the shape of the central core portion. The longitudinal cross-sectional shape that is the greatest feature of the two-dimensional wing fin (20) is that the tip (21) of the wing is formed in a semicircular arc shape, and the whole is narrowed toward the trailing edge of the wing to be smooth. It is a water drop shape connected by a curve. In addition, the maximum width of the wings projecting from the center line of the rudder (1) to the left and right side is a value slightly larger than the maximum thickness of the rudder (1) of the mounting portion.

このような二次元翼型フィン(20)であれば最大横断面形状は四角形となり、同一寸法で設計した場合、従米の小型バルブ形状の円弧最大横断面積より大きな最大横断面積を有するように出来るため、伴流利得効果の観点から有利に働く。具体的に低速船から中速船及び高速船に最適な二次元翼型フィン(20)の形状を示すと、翼先端部(21)における半円の円弧形状の最大直径はプロペラ径の約0.16から約0.18倍程度、舵(1)中心線より左右舷に張り出す翼最大幅はプロペラ径の約0.18から約0.20倍程度として、必ず舵(1)の最大厚さより大きくするものである。   With such a two-dimensional airfoil fin (20), the maximum cross-sectional shape is a quadrangle, and when designed with the same dimensions, it is possible to have a maximum cross-sectional area that is larger than the maximum cross-sectional area of the arc of the small valve shape of the United States. It works advantageously from the viewpoint of the wake gain effect. Specifically, the shape of the two-dimensional airfoil fin (20) that is optimal for a low-speed ship to a medium-speed ship and a high-speed ship is shown. The maximum diameter of the semicircular arc shape at the blade tip (21) is about 0 of the propeller diameter. .16 to about 0.18 times, the maximum width of the wings extending from the rudder (1) to the left and right side of the rudder is about 0.18 to about 0.20 times the propeller diameter, and the maximum thickness of the rudder (1) It is something larger than that.

次に、左右舷に張り出したサイド部分の翼型フィンについては、プロペラ後流の回転エネルギーを効率的に回収してスラスト減少係数の改善を狙い、最適な翼断面形状と低速船から中速船及び高速船に最適な取付け迎角を有する左右舷一対の非対称翼型フィン(50)を提案した。具体的には、舵(1)中心線より左右舷に張り出す翼の最大幅はプロペラ径の約0.35倍程度、舵(1)中心線における翼最大弦長は二次元翼型フィン(20)の翼最大弦長と同じ、さらに、翼前縁の後退角度を約35度程度と最適化を図っている。   Next, for the wing-shaped fins on the side parts that protrude from the left and right sides, the optimal blade cross-section shape and low-speed to medium-speed ship aim to improve the thrust reduction coefficient by efficiently recovering the rotational energy of the propeller wake. And a pair of left and right asymmetric wing fins (50) with an optimum angle of attack for high speed ships was proposed. Specifically, the maximum width of the wings projecting from the rudder (1) center line to the left and right sides is about 0.35 times the propeller diameter, and the maximum chord length at the rudder (1) center line is the two-dimensional wing fin ( 20) The same as the maximum chord length of the wing, and the retraction angle of the wing leading edge is about 35 degrees for optimization.

翼断面形状及び取付け迎角については、プロペラ回転が右回転の場合、右舷翼では圧力面を上面とし、取付け迎角は翼の後縁を基点に低速船では0度から−4度、中速船及び高速船では0度から+4度とする。左舷翼では圧力面を下面とし、取付け迎角は翼の後縁を基点に低速船から中速船及び高速船まで0度から−4度とする。   Regarding the blade cross-sectional shape and mounting angle of attack, when the propeller rotation is right rotation, the starboard wing has the pressure surface as the top surface, and the mounting angle of attack is 0 to -4 degrees for low speed ships with the wing trailing edge as the base point. For ships and high-speed ships, it is 0 to +4 degrees. For port wings, the pressure surface is the lower surface, and the angle of attack for installation is 0 to -4 degrees from low speed ships to medium speed ships and high speed ships with the trailing edge of the wing as the base point.

なお、翼断面形状及び取付け迎角の全ては二次元翼型フィン(20)の左右舷両端部の形状に収まるようにする。また、左右舷の非対称翼型フィン(50)の接合方法についても新しい工夫がなされている。すなわち、コア部分を形成している二次元翼型フィン(20)の翼最大幅を、装着位置における舵(1)の最大厚さより大きくし、二次元翼型フィン(20)の左右舷端部に平らな垂直面(25)を確保することにより、ここに左右舷非対称翼型フィン(50)を接合するものである。複雑な曲面への接合と異なり、少ない手間で精度の高い接合が可能である。   It should be noted that the blade cross-sectional shape and the mounting angle of attack are all set to the shape of the left and right end portions of the two-dimensional airfoil fin (20). Also, a new idea has been made for the method of joining the left and right asymmetric wing fins (50). That is, the maximum blade width of the two-dimensional airfoil fin (20) forming the core portion is made larger than the maximum thickness of the rudder (1) at the mounting position, and the left and right heel ends of the two-dimensional airfoil fin (20) By securing a flat vertical surface (25), the left and right asymmetric wing fins (50) are joined here. Unlike joining to complicated curved surfaces, highly precise joining is possible with little effort.

前記本発明は次のように作用する。
本発明に係るフィン装置は、複合翼型をしており、プロペラ後方に位置する舵(1)の前縁部のプロペラ軸の高さ位置に装着して船舶運航時の燃費節減がなされる。すなわち、フィン装置は、プロペラの後流を先端部(21)の二次元翼型フィンで受け、続く非対称翼型フィンに流すことにより、推力として回収し、省エネルギーを図るものである。
The present invention operates as follows.
The fin device according to the present invention has a composite wing shape, and is mounted at the height of the propeller shaft at the front edge portion of the rudder (1) located behind the propeller, thereby reducing fuel consumption during ship operation. In other words, the fin device receives the wake of the propeller by the two-dimensional airfoil fin at the tip (21) and flows it to the subsequent asymmetric airfoil fin, thereby collecting it as thrust and saving energy.

二次元翼型フィン(20)は、舵(1)の前縁部から側部にかけて設けられ、左右舷対称の二次元形状をしているので、形状を作るのに大きなコストはかからない。特に縦断面形状を、先端部(21)を横向き半円筒形状で形成し、舵(1)の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状とし、抵抗削減を計っている。   Since the two-dimensional airfoil fin (20) is provided from the front edge to the side of the rudder (1) and has a two-dimensional shape that is symmetrical to the left and right sides, it does not cost much to make the shape. In particular, the longitudinal cross-sectional shape is a waterdrop type shape in which the tip (21) is formed in a horizontal semi-cylindrical shape, and the whole is squeezed toward the trailing edge of the wing on the side of the rudder (1) and tied with a smooth curve, We are trying to reduce resistance.

一対の非対称翼型フィン(50)は、二次元翼型フィン(20)の両端部の垂直面(25)に左右舷側で接合するよう延設されるので、舵(1)の形状とは関わらず、平面的な接合となる。また、二次元翼型フィン(20)の左右舷両端部の垂直面(25)内に収まる翼断面形状で取付け迎角をもって接合され、二次元翼型フィンの範囲内にあるので、コンパクトで干渉の恐れもない。   The pair of asymmetric airfoil fins (50) are extended so as to be joined to the vertical surfaces (25) of both ends of the two-dimensional airfoil fin (20) on the left and right sides, so that the shape of the rudder (1) is related. Instead, it becomes a planar connection. In addition, the cross-sectional shape of the blade that fits within the vertical planes (25) at both the left and right ends of the two-dimensional airfoil fin (20) is joined with a mounting angle of attack and is within the range of the two-dimensional airfoil fin. There is no fear of it.

また、左右舷一対の非対称翼型フィン(50)は、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面とし、プロペラ後流の回転エネルギーを効率よく回収する。   The pair of left and right asymmetric wing-type fins (50), when propeller rotation is right rotation, the starboard wing has the pressure surface as the upper surface, the port wing has the pressure surface as the lower surface, and the rotational energy of the wake of the propeller Collect efficiently.

本発明にかかるフィン装置によれば、二次元翼型フィンに非対称フィンを接合するようにしたので構造的に単純で、形状が簡単で、通常の舵と同様に鋼板の曲げ・溶接加工での製作も可能であり、余計なコストをかけることなく、優秀な性能の省エネルギー用のフィン装置とすることができる。   According to the fin device of the present invention, since the asymmetrical fin is joined to the two-dimensional wing fin, the structure is simple and the shape is simple. Manufacturing is also possible, and it is possible to provide an energy-saving fin device with excellent performance without extra cost.

以下、図面に基づき本発明の好適な一実施の形態を説明する。
図1〜図4は本発明の一実施の形態を示している。
フィン装置10は、船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵1の前縁部のプロペラ軸の高さ位置2に装着される複合翼型をしており、舵1の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィン20と、二次元翼型フィン20の両端部の垂直面25に左右舷側で接合するよう延設された一対の非対称翼型フィン50とより成る。
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
1 to 4 show an embodiment of the present invention.
The fin device 10 has a composite wing shape that is mounted at the height position 2 of the propeller shaft at the front edge of the rudder 1 located behind the propeller in order to reduce fuel consumption during ship operation. The two-dimensional airfoil fins 20 that are provided from the front edge part to the side part and that form the central core part and are symmetrically extended to the vertical surfaces 25 at both ends of the two-dimensional airfoil fins 20 are extended. And a pair of asymmetric airfoil fins 50.

中央コア部分を形成する左右舷対称の二次元翼型フィン20の縦断面形状は、先端部21を横向き半円筒形状で形成し、舵1の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状に形成されている。二次元翼型フィン20の両端面は垂直面25をなしている。   The vertical cross-sectional shape of the two-dimensional wing-shaped fin 20 that is symmetrical to the left and right sides forming the central core portion is such that the tip portion 21 is formed in a horizontal semi-cylindrical shape, and the whole is narrowed toward the trailing edge of the wing on the side portion of the rudder 1. It is formed in a water droplet shape connected with a smooth curve. Both end surfaces of the two-dimensional airfoil fin 20 form a vertical surface 25.

中央コア部分である左右舷対称形状の二次元翼型フィン20は、舵1の最大厚さより若干大きく、左右舷に張り出した翼最大幅26を有し、かつ舵1前縁より突出している。図1中に破線で示しているように、二次元翼型フィン20の左右舷両端部の先端部は、最大横断面積に影響を及ぼさない範囲で中心部に向かって端部27を斜めに切断してもよい。これは、二次元翼型フィン20の誘導抵抗を少しでも減少させることを狙ったものである。   The two-dimensional airfoil fin 20 having a symmetrical shape that is the central core portion is slightly larger than the maximum thickness of the rudder 1, has a maximum blade width 26 projecting from the left and right reeds, and protrudes from the front edge of the rudder 1. As shown by a broken line in FIG. 1, the end portions of the left and right end portions of the two-dimensional airfoil fin 20 are cut obliquely toward the center within a range that does not affect the maximum cross-sectional area. May be. This is intended to reduce the induction resistance of the two-dimensional airfoil fin 20 as much as possible.

また、二次元翼型フィン20から両側に張り出す左右舷一対の非対称翼型フィン50は、二次元翼型フィン20の左右舷両端部の垂直面25内に収まる翼断面形状と最適な取付け迎角で接合されている。プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面が下面となっている。また、プロペラ回転が左回転の場合は、この逆となる。   The pair of left and right asymmetric wing fins 50 projecting from the two-dimensional wing fins 20 on both sides is a blade cross-sectional shape that fits within the vertical surfaces 25 at both left and right wing end portions of the two-dimensional wing fins 20 and an optimum mounting reception. Joined at the corner. When the propeller rotation is a right rotation, the pressure surface is the upper surface of the starboard wing, and the pressure surface is the lower surface of the port wing. When the propeller rotation is counterclockwise, the reverse is true.

さらに具体的に説明すると、二次元翼型フィン20は、先端部21の半円の円弧形状の最大直径22はプロペラ径の0.16から0.18倍程度とし、左右舷に張り出した翼最大幅26は、プロペラ径の0.18から0.20倍程度で、被装着部である舵1の最大厚さ2より大き目の値とされている。   More specifically, in the two-dimensional airfoil fin 20, the maximum diameter 22 of the semicircular arc shape of the tip 21 is about 0.16 to 0.18 times the diameter of the propeller, and the blades that protrude from the left and right side are the largest. Large 26 is about 0.18 to 0.20 times the diameter of the propeller, and is a value larger than the maximum thickness 2 of the rudder 1 which is the mounted portion.

二次元翼型フィン20の翼最大弦長24はプロペラ径の0.4倍程度、翼前縁の後退角度は0度、取付け迎角はプロペラ軸心高さ位置に平行の0度、翼前縁21を舵1前端より突出させ、プロペラボスキャップ5との間隔6を実船寸法において100ミリメートルから200ミリメートル程度とされている。   The maximum chord length 24 of the two-dimensional airfoil fin 20 is about 0.4 times the propeller diameter, the receding angle of the blade leading edge is 0 degree, the mounting angle of attack is 0 degree parallel to the height of the propeller axis, and the front of the blade The edge 21 protrudes from the front end of the rudder 1 and the distance 6 from the propeller boss cap 5 is about 100 to 200 millimeters in actual ship dimensions.

さらに、非対称翼型フィン50は、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、取付け迎角51は翼後縁を基点に低速船では0度から−4度、中速船及び高速船では0度から+4度とし、左舷翼では圧力面を下面とし、取付け迎角は翼後縁を基点に低速船から中速船及び高速船まで0度から−4度とし、舵1中心線より左右舷に張り出す翼最大幅52はプロペラ径の0.35倍程度、舵1中心線における翼最大弦長はプロペラ径の0.4倍程度、翼前縁の後退角度53を35度程度で形成されている。   Further, when the propeller rotation is right rotation, the asymmetric wing fin 50 has a pressure surface on the starboard wing and an attachment angle of attack 51 based on the wing trailing edge. For speedboats and high-speed ships, the angle is 0 to +4 degrees, for port wings, the pressure surface is the bottom surface, and the mounting angle of attack is from 0 degrees to -4 degrees from low-speed ships to medium-speed ships and high-speed ships based on the trailing edge of the wings. The maximum blade width 52 extending from the rudder 1 center line to the left and right side is about 0.35 times the propeller diameter, the maximum chord length on the rudder 1 center line is about 0.4 times the propeller diameter, and the blade leading edge retraction angle 53 Is formed at about 35 degrees.

次に作用を説明する。
フィン装置10は、複合翼型をしており、プロペラ後方に位置する舵1の前縁部のプロペラ軸の高さ位置に装着して船舶運航時の燃費節減がなされる。すなわち、フィン装置10は、プロペラの後流を先端部の二次元翼型フィン20で受け、続く非対称翼型フィン50に流すことにより、推力として回収し、省エネルギーを図るものである。
Next, the operation will be described.
The fin device 10 has a composite wing shape, and is mounted at the height of the propeller shaft at the front edge of the rudder 1 located behind the propeller to save fuel consumption during ship operation. That is, the fin device 10 receives the wake of the propeller by the two-dimensional airfoil fin 20 at the tip and flows it to the subsequent asymmetric airfoil fin 50 to collect it as thrust, thereby saving energy.

二次元翼型フィン20は、舵1の前縁部から側部にかけて設けられ、左右舷対称の二次元形状をしているので、形状を作るのに大きなコストはかからない。特に縦断面形状を、先端部を横向き半円筒形状で形成し、舵1の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状とし、抵抗削減を計っている。   Since the two-dimensional airfoil fin 20 is provided from the front edge portion to the side portion of the rudder 1 and has a two-dimensional shape that is symmetrical to the left and right sides, it does not cost much to make the shape. In particular, the vertical cross-sectional shape is a waterdrop type shape with the tip part formed in a horizontal semi-cylindrical shape and squeezed entirely toward the trailing edge of the wing on the side of the rudder 1 and connected with a smooth curve to reduce resistance. Yes.

一対の非対称翼型フィン50は、二次元翼型フィン20の両端部の垂直面25に左右舷側で接合するよう延設されるので、舵1の形状とは関わらず、平面的な接合となる。また、二次元翼型フィン20の左右舷両端部の垂直面25内に収まる翼断面形状で取付け迎角をもって接合され、二次元翼型フィン20の範囲内にあるので、コンパクトで干渉の恐れもない。   The pair of asymmetric airfoil fins 50 are extended so as to be joined to the vertical surfaces 25 at both ends of the two-dimensional airfoil fins 20 on the left and right sides, so that they are joined in a planar manner regardless of the shape of the rudder 1. . Further, since the blade cross-sectional shape fits within the vertical planes 25 at both the left and right end portions of the two-dimensional airfoil fin 20 and is joined with the mounting angle of attack, and is within the range of the two-dimensional airfoil fin 20, it is compact and may cause interference. Absent.

また、左右舷一対の非対称翼型フィン50は、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面とし、プロペラ後流の回転エネルギーを効率よく回収する。   Also, when the propeller rotation is right rotation, the pair of left and right asymmetric wing fins 50 has the pressure surface as the upper surface of the starboard wing and the pressure surface as the lower surface of the port wing, and efficiently uses the rotational energy of the propeller wake. to recover.

大型低速船を対象に実施した水槽試験によると、本発明による複合翼型フィン装置の省エネルギー効果(馬力節減効果)は、満載状態の常用出力時に約5.2%、バラスト状態の常用出力時に約3.5%であった。下記に水槽試験結果の比較を示す。なお、中速船及び高速船に本装置を装着した場合の水槽試験については今後引き続き実施を予定している。   According to a tank test conducted on a large-scale low-speed ship, the energy saving effect (horsepower saving effect) of the composite wing fin device according to the present invention is about 5.2% at full load full output and about at ballast normal output. It was 3.5%. The comparison of the water tank test results is shown below. In addition, the tank test will be continued in the future when this device is installed on medium-speed ships and high-speed ships.

<大型低速船の水槽試験結果>
・満載状態(Fn=0.15)
・本装置なしの状態で推進効率0.713(BHP=16,499kw)
・本装置装備の状態で推進効率0.752(BHP=15,639kw)
馬力節減効果5.2%
・バラスト状態(Fn=0.16)
・本装置なしの状態で推進効率0.759(BHP=17,616kw)
・本装置装備の状態で推進効率0.786(BHP=16,991kw)
馬力節減効果3.5%
<Results of tank test for large low-speed ship>
・ Full load (Fn = 0.15)
-Propulsion efficiency of 0.713 (BHP = 16,499 kW) without this device
・ Propulsion efficiency 0.752 (BHP = 15,639kw)
Horsepower saving effect 5.2%
・ Ballast state (Fn = 0.16)
・ Propulsion efficiency 0.759 (BHP = 17,616kw) without this device
・ Propulsion efficiency 0.786 (BHP = 16,991 kW) with this equipment equipped
Horsepower saving effect 3.5%

本発明の一実施の形態に係るフィン装置を示す斜視図である。It is a perspective view which shows the fin apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係るフィン装置を示す平面図である。It is a top view which shows the fin apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係るフィン装置を示す正面図である。It is a front view which shows the fin apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係るフィン装置の縦断面図である。It is a longitudinal cross-sectional view of the fin apparatus which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1…舵
10…フィン装置
20…二次元翼型フィン
21…先端部
25…垂直面
50…非対称翼型フィン
DESCRIPTION OF SYMBOLS 1 ... Rudder 10 ... Fin apparatus 20 ... Two-dimensional airfoil fin 21 ... Tip part 25 ... Vertical surface 50 ... Asymmetric airfoil fin

Claims (5)

船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィンと、
前記二次元翼型フィンの両端部の垂直面に左右舷側で接合するよう延設された一対の非対称翼型フィンと、
により構成されることを特徴とするフィン装置。
In order to save fuel consumption during ship operation, it is a composite wing type fin device mounted at the height of the propeller shaft at the front edge of the rudder located behind the propeller,
A bilaterally symmetric two-dimensional airfoil fin provided from the front edge to the side of the rudder and forming a central core portion;
A pair of asymmetric airfoil fins extending so as to be joined to the vertical surfaces of both ends of the two-dimensional airfoil fins on the left and right sides;
It is comprised by this fin apparatus characterized by the above-mentioned.
船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィンと、前記二次元翼型フィンの両端部の垂直面に左右舷側で接合するよう延設された一対の非対称翼型フィンとより成り、
前記中央コア部分を形成する左右舷対称の二次元翼型フィンの縦断面形状は、先端部を横向き半円筒形状で形成し、舵の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状としたことを特徴とするフィン装置。
In order to save fuel consumption during ship operation, it is a composite wing type fin device mounted at the height of the propeller shaft at the front edge of the rudder located behind the propeller,
A bilaterally symmetric two-dimensional airfoil fin that is provided from the front edge to the side of the rudder and forms a central core portion, and extends so as to be joined to the vertical surfaces of both ends of the two-dimensional airfoil fin on the left and right side. A pair of asymmetric wing fins,
The vertical cross-sectional shape of the bilaterally symmetric two-dimensional wing-shaped fin forming the central core portion is formed with a semi-cylindrical tip at the tip and smoothed down to the trailing edge of the wing on the side of the rudder. A fin device characterized in that it has a water drop shape connected by a simple curve.
船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィンと、前記二次元翼型フィンの両端部の垂直面に左右舷側で接合するよう延設された一対の非対称翼型フィンとより成り、
左右舷一対の前記非対称翼型フィンは、前記二次元翼型フィンの左右舷両端部の垂直面内に収まる翼断面形状で取付け迎角をもって接合され、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面としたことを特徴とするフィン装置。
In order to save fuel consumption during ship operation, it is a composite wing type fin device mounted at the height of the propeller shaft at the front edge of the rudder located behind the propeller,
A bilaterally symmetric two-dimensional airfoil fin that is provided from the front edge to the side of the rudder and forms a central core portion, and extends so as to be joined to the vertical surfaces of both ends of the two-dimensional airfoil fin on the left and right side. A pair of asymmetric wing fins,
The pair of left and right asymmetrical wing fins are joined with a mounting angle of attack with a blade cross-sectional shape that fits within the vertical planes at both ends of the two-dimensional wing fins of the two-dimensional wing fin. The fin device is characterized in that the pressure surface is the upper surface of the wing and the pressure surface is the lower surface of the port wing.
船舶運航時の燃費節減を図るために、プロペラ後方に位置する舵の前縁部のプロペラ軸の高さ位置に装着する複合翼型のフィン装置であって、
前記舵の前縁部から側部にかけて設けられ、中央コア部分をなす左右舷対称の二次元翼型フィンと、前記二次元翼型フィンの両端部の垂直面に左右舷側で接合するよう延設された一対の非対称翼型フィンとより成り、
前記中央コア部分を形成する左右舷対称の二次元翼型フィンの縦断面形状は、先端部を横向き半円筒形状で形成し、舵の側部の翼の後縁に向かって全体を絞り込んで滑らかな曲線で結んだ水滴型形状とし、
左右舷一対の前記非対称翼型フィンは、前記二次元翼型フィンの左右舷両端部の垂直面内に収まる翼断面形状で取付け迎角をもって接合され、プロペラ回転が右回転の場合には、右舷翼では圧力面を上面とし、左舷翼では圧力面を下面としたことを特徴とするフィン装置。
In order to save fuel consumption during ship operation, it is a composite wing type fin device mounted at the height of the propeller shaft at the front edge of the rudder located behind the propeller,
A bilaterally symmetric two-dimensional airfoil fin that is provided from the front edge to the side of the rudder and forms a central core portion, and extends so as to be joined to the vertical surfaces of both ends of the two-dimensional airfoil fin on the left and right side. A pair of asymmetric wing fins,
The vertical cross-sectional shape of the bilaterally symmetric two-dimensional wing-shaped fin forming the central core portion is formed with a semi-cylindrical tip at the tip and smoothed down to the trailing edge of the wing on the side of the rudder. A water drop shape connected by a simple curve,
The pair of left and right asymmetrical wing fins are joined with a mounting angle of attack with a blade cross-sectional shape that fits within the vertical planes at both ends of the two-dimensional wing fins of the two-dimensional wing fin. The fin device is characterized in that the pressure surface is the upper surface of the wing and the pressure surface is the lower surface of the port wing.
前記二次元翼型フィンは、先端部半円の円弧形状の最大直径はプロペラ径の0.16から0.18倍程度とし、最大幅はプロペラ径の0.18から0.20倍程度で、被装着部である舵の最大厚さより大き目の値とし、翼最大弦長はプロペラ径の0.4倍程度、翼前縁の後退角度は0度、取付け迎角はプロペラ軸心高さ位置に平行の0度、翼前縁を舵前端より突出させ、プロペラボスキャップとの間隔を実船寸法において100ミリメートルから200ミリメートル程度としたことを特徴とする請求項1,2,3または4に記載のフィン装置。   The maximum diameter of the arc shape of the tip semicircle is about 0.16 to 0.18 times the propeller diameter, and the maximum width is about 0.18 to 0.20 times the propeller diameter. It is a value larger than the maximum thickness of the rudder, which is the mounted part, the maximum blade chord length is about 0.4 times the propeller diameter, the blade leading edge receding angle is 0 degree, and the installation angle of attack is at the propeller shaft center height position The parallel 0 degree, the wing leading edge protrudes from the rudder front end, and the distance from the propeller boss cap is about 100 to 200 millimeters in actual ship dimensions. Fin device.
JP2003390076A 2003-11-20 2003-11-20 Fin equipment Expired - Lifetime JP4045233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390076A JP4045233B2 (en) 2003-11-20 2003-11-20 Fin equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390076A JP4045233B2 (en) 2003-11-20 2003-11-20 Fin equipment

Publications (2)

Publication Number Publication Date
JP2005145397A JP2005145397A (en) 2005-06-09
JP4045233B2 true JP4045233B2 (en) 2008-02-13

Family

ID=34696569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390076A Expired - Lifetime JP4045233B2 (en) 2003-11-20 2003-11-20 Fin equipment

Country Status (1)

Country Link
JP (1) JP4045233B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619302B1 (en) * 2005-04-26 2006-09-06 현대중공업 주식회사 The thrust fin for ships
JP2010095181A (en) * 2008-10-17 2010-04-30 Ihi Corp Propulsion device for marine vessel
JP5416154B2 (en) * 2011-03-22 2014-02-12 Hoya株式会社 Substrate storage container, glass substrate storage body with film, mask blank storage body, and transfer mask storage body
DE102014210451A1 (en) * 2014-06-03 2015-12-03 Robert Bosch Gmbh Turbocharger with electric machine
JP6494235B2 (en) * 2014-10-07 2019-04-03 ジャパン・ハムワージ株式会社 Ship rudder
KR102640152B1 (en) * 2019-07-31 2024-02-23 삼성중공업 주식회사 A rudder for ship

Also Published As

Publication number Publication date
JP2005145397A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4939269B2 (en) Stern horizontal duct and ship
JP3004238B2 (en) Ship propulsion performance improvement device
JP5276670B2 (en) Twin Skeg ship
EP2163471A1 (en) Propulsion and steering arrangement
US7192322B2 (en) Line design and propulsion system for a directionally stable, seagoing boat with rudder propeller drive system
JP2008260445A (en) Vessel
JP2009255835A (en) Finned rudder
JP4045233B2 (en) Fin equipment
JP3944462B2 (en) Rudder with fins, ship
JP3842189B2 (en) Pod propeller
CN213168507U (en) Energy-saving rudder combined by ship rudder blade streamline water leveling fins and rudder sleeve resistance-reducing flow-guiding fins
JP2002178993A (en) Rudder for ship
JPH09136693A (en) Bilge voltex energy recovery device for ship
JP6292551B2 (en) Ship equipped with torsion rudder and torsion rudder
JP4575985B2 (en) Rudder and ship for ships
JP2002274490A (en) High lift rudder for ship
KR102209083B1 (en) A rudder for ship
JPH0485194A (en) Ship rudder
JP4363795B2 (en) High lift twin rudder system for ships
JP2013132937A (en) Ship
JP3134464U (en) Composite fin device for ships
JPH063758Y2 (en) Stern fin
JP4380975B2 (en) Ship
JP2006123849A (en) Rudder device for ship
JP2002178991A (en) High lift rudder for ship

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Ref document number: 4045233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term