JP6292551B2 - Ship equipped with torsion rudder and torsion rudder - Google Patents
Ship equipped with torsion rudder and torsion rudder Download PDFInfo
- Publication number
- JP6292551B2 JP6292551B2 JP2013263072A JP2013263072A JP6292551B2 JP 6292551 B2 JP6292551 B2 JP 6292551B2 JP 2013263072 A JP2013263072 A JP 2013263072A JP 2013263072 A JP2013263072 A JP 2013263072A JP 6292551 B2 JP6292551 B2 JP 6292551B2
- Authority
- JP
- Japan
- Prior art keywords
- rudder
- ship
- airfoil
- torsion
- vertical plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Sliding-Contact Bearings (AREA)
Description
本発明は、船体の船尾に装着する船舶用捩れ舵、及び捩れ舵を装備した船舶に関する。 The present invention relates to a torsion rudder for a ship to be mounted on a stern of a hull, and a ship equipped with a torsion rudder.
図8に示すように、非対称船尾又はツインスケグ船型の船舶では、その船型形状により、スケグの左右で非対称な流れが形成されるとともに、高さ方向でその非対称性が異なる流れが形成される。この流れはプロペラ面がある高さでは、プロペラの作動により非対称性の流れの一部がプロペラ回転方向のカウンターフローとなることで、非対称な流れが作るエネルギーロスを回収し、輸送効率の向上に寄与している。しかしながら、プロペラで回収できなかった非対称な流れ及びプロペラ面上を通り抜ける流れについては、回収されず、舵の後方に流れ去り、エネルギーロスとなっている。
ところで、特許文献1では、後縁が中心面から湾曲した船体において、ラダホーンの下端部で稜線を有するごとく屈曲され、下半分を傾斜させた舵が開示されている(公報第3ページ左上欄)。
また、特許文献2では、少なくとも1つの捩られた方向舵板を備えた船舶を開示している(段落番号(0012))。
また、特許文献3では、舵前縁がプロペラ回転方向と反対方向を指向する捻りを与えられ、かつ捻り量が下方と上方のほぼ中間位置で最大となる形状の高さ方向において部分的に捩りを有する舵を開示している。
また、特許文献4では、プロペラシャフト中心高さ位置の上下に互いに反対方向に捩られたリアクション舵が開示されている。
また、特許文献5では、二軸船において、下方に向かって船体幅方向外側に傾斜する左右一対の舵が開示されている。
As shown in FIG. 8, in an asymmetrical stern or twin-skeg type ship, an asymmetrical flow is formed on the left and right sides of the skeg, and a flow with different asymmetry is formed in the height direction. At a height where the propeller surface is at this height, a part of the asymmetric flow becomes a counter flow in the propeller rotation direction due to the operation of the propeller, thereby recovering energy loss created by the asymmetric flow and improving transportation efficiency. Has contributed. However, the asymmetrical flow that cannot be recovered by the propeller and the flow that passes through the propeller surface are not recovered and flow away to the rear of the rudder, resulting in energy loss.
By the way, Patent Document 1 discloses a rudder that is bent as if it has a ridge line at the lower end portion of a ladder horn and has a lower half inclined in a hull whose rear edge is curved from the center surface (upper left column of Japanese Patent Publication No. 3). .
Patent Document 2 discloses a ship provided with at least one twisted rudder plate (paragraph number (0012)).
In Patent Document 3, the rudder leading edge is twisted in the direction opposite to the propeller rotation direction, and the twist amount is partially twisted in the height direction of the shape where the twist amount is maximized at a substantially middle position below and above. A rudder having
Patent Document 4 discloses a reaction rudder that is twisted in the opposite directions above and below the center height position of the propeller shaft.
Patent Document 5 discloses a pair of left and right rudders that incline outward in the hull width direction downward in a biaxial ship.
しかし、特許文献1における舵は、舵の断面形状が翼型ではなく、船舶の船型形状によって形成される船尾部での非対称流れに対応するように、舵の回転軸をプロペラ軸面に位置させた上、翼型の捩れ角を舵の高さ方向に連続的に変化させているものではない。
また、特許文献2における舵は、舵の前部に回転中のスクリューを配置しないことを条件としている(段落番号(0012))。
また、特許文献3における舵は、プロペラボスよりも上方と下方とを逆方向に捩ったS型リアクション舵である。
また、特許文献4における舵は、プロペラシャフトの近傍で最大に捩られている上に、上下で互いに反対方向に捩られている。
また、特許文献5における舵は、左右一対の舵が、傾斜しているだけで、船舶の船型形状によって形成される船尾部での非対称流れに対応するように、舵の回転軸をプロペラ軸面に位置させた上、翼型の捩れ角を舵の高さ方向に連続的に変化させているものではない。
However, in the rudder in Patent Document 1, the rudder's cross-sectional shape is not a wing shape, and the rudder's rotation axis is positioned on the propeller shaft surface so as to correspond to the asymmetrical flow at the stern part formed by the hull shape of the ship. In addition, the twist angle of the airfoil is not continuously changed in the height direction of the rudder.
Moreover, the rudder in patent document 2 is on condition that the rotating screw is not arrange | positioned in the front part of a rudder (paragraph number (0012)).
The rudder in Patent Document 3 is an S-type reaction rudder in which the upper side and the lower side are twisted in the opposite directions with respect to Propellerabos.
Further, the rudder in Patent Document 4 is twisted to the maximum in the vicinity of the propeller shaft and is twisted in the opposite directions vertically.
In addition, the rudder in Patent Document 5 is such that the pair of left and right rudder is inclined, and the rotation axis of the rudder is propeller shaft surface so as to correspond to the asymmetric flow at the stern part formed by the hull shape of the ship. In addition, the airfoil twist angle is not continuously changed in the rudder height direction.
そこで、本発明は、プロペラで回収できなかった非対称な流れ及びプロペラ面上を通り抜ける流れのエネルギーロスを舵翼断面が作る揚力として回収し、推進システム全体として最大の輸送効率を得ることができる船舶用捩れ舵、及び捩れ舵を装備した船舶を提供することを目的とする。 Therefore, the present invention recovers the energy loss of the asymmetric flow that could not be recovered by the propeller and the energy loss of the flow passing through the propeller surface as lift created by the cross section of the rudder blade, and can obtain the maximum transport efficiency as the entire propulsion system An object is to provide a torsional rudder and a ship equipped with a torsional rudder.
請求項1記載の本発明に対応した船舶用捩れ舵においては、船舶のプロペラの後方の船尾部に取り付けられる舵であって、舵を回転させる回転軸をプロペラ軸を通る仮想垂直面に位置させ、舵の断面形状を翼型とし、船尾部での非対称流れに対応するように、翼型の仮想垂直面に対する捩れ角が、仮想垂直面の左右いずれか一方に、舵の高さ方向に連続的に変化するとともに、舵の翼後縁が、上端に向かって仮想垂直面から漸次離隔することを特徴とする。請求項1に記載の本発明によれば、船尾部での非対称な流れを利用して揚力を発生させることで、抵抗低減及び推力減少係数を向上させ、舵による排除効果の向上により有効伴流率を向上させることができる。また、プロペラ上部のプロペラ面上を通り過ぎる流れによるエネルギーロスを揚力として回収できる。 In a torsional rudder for a ship corresponding to the present invention as set forth in claim 1, the rudder is attached to a stern part behind a propeller of a ship, and a rotation axis for rotating the rudder is positioned on a virtual vertical plane passing through the propeller axis. The cross-sectional shape of the rudder is a wing shape, and the torsional angle of the wing shape with respect to the virtual vertical plane is continuous in the height direction of the rudder on either the left or right side of the virtual vertical plane so as to correspond to the asymmetric flow at the stern. And the wing trailing edge of the rudder is gradually separated from the virtual vertical plane toward the upper end . According to the first aspect of the present invention, the lift is generated by using the asymmetric flow at the stern part, so that the resistance reduction and the thrust reduction coefficient are improved, and the effective wake is improved by the improvement of the exclusion effect by the rudder. The rate can be improved. In addition, energy loss due to the flow passing over the propeller surface above the propeller can be recovered as lift.
請求項2記載の本発明は、回転軸を中心として翼型を捩ることで捩り角を形成したことを特徴とする。請求項2に記載の本発明によれば、舵の設計を容易にする。 The present invention according to claim 2 is characterized in that the torsion angle is formed by twisting the airfoil about the rotation axis. According to the second aspect of the present invention, the design of the rudder is facilitated.
請求項3記載の本発明は、翼型がキャンバーを有することを特徴とする。請求項3に記載の本発明によれば、対称翼型の舵だけでなく、非対称翼型の舵についても適用でき、より大きな揚力を得ることができる。 The present invention according to claim 3 is characterized in that the airfoil has a camber. According to the third aspect of the present invention, not only a symmetrical wing-type rudder but also an asymmetric wing-type rudder can be applied, and a larger lift can be obtained.
請求項4記載の本発明は、キャンバーが舵の上方に向かうほど大きくなることを特徴とする。請求項4に記載の本発明によれば、キャンバーを大きくすることで、プロペラ上部のプロペラ面上を通り過ぎる流れによる揚力をより発生させるとともに舵による排除効果を向上できる。 The present invention according to claim 4 is characterized in that the camber becomes larger toward the upper side of the rudder. According to the present invention described in claim 4 , by increasing the camber, it is possible to generate more lift due to the flow passing over the propeller surface above the propeller, and to improve the elimination effect by the rudder.
請求項5記載の本発明は、仮想垂直面に対する翼後縁の成す角度が0°を越え12°以下であることを特徴とする。請求項5に記載の本発明によれば、抵抗低減及び推力減少係数を向上させ、有効伴流率を確実に向上させることができる。 The present invention according to claim 5 is characterized in that the angle formed by the blade trailing edge with respect to the virtual vertical plane is more than 0 ° and not more than 12 °. According to the fifth aspect of the present invention, the resistance reduction and the thrust reduction coefficient can be improved, and the effective wake ratio can be reliably improved.
請求項6記載の本発明に対応した船舶用捩れ舵においては、船舶のプロペラの後方の船尾部に取り付けられる舵であって、舵を回転させる回転軸をプロペラ軸を通る仮想垂直面に位置させ、舵の断面形状を翼型とし、船尾部での非対称流れに対応するように、翼型の仮想垂直面に対する捩れ角が、仮想垂直面の左右いずれか一方に、舵の高さ方向に連続的に変化するとともに、翼型がキャンバーを有し、キャンバーが舵の上方に向かうほど大きくなることを特徴とする。請求項6に記載の本発明によれば、船尾部での非対称な流れを利用して揚力を発生させることで、抵抗低減及び推力減少係数を向上させ、舵による排除効果の向上により有効伴流率を向上させることができる。また、対称翼型の舵だけでなく、非対称翼型の舵についても適用でき、より大きな揚力を得ることができる。また、キャンバーを大きくすることで、プロペラ上部のプロペラ面上を通り過ぎる流れによる揚力をより発生させるとともに舵による排除効果を向上できる。In a torsional rudder for a ship corresponding to the present invention as set forth in claim 6, the rudder is attached to a stern part behind the propeller of the ship, and a rotation axis for rotating the rudder is positioned on a virtual vertical plane passing through the propeller axis. The cross-sectional shape of the rudder is a wing shape, and the torsional angle of the wing shape with respect to the virtual vertical plane is continuous in the height direction of the rudder on either the left or right side of the virtual vertical plane so as to correspond to the asymmetric flow at the stern. The airfoil has a camber, and the camber becomes larger toward the upper side of the rudder. According to the sixth aspect of the present invention, the lift is generated by utilizing the asymmetric flow at the stern part, so that the resistance reduction and the thrust reduction coefficient are improved, and the effective wake is improved by the improvement of the exclusion effect by the rudder. The rate can be improved. Moreover, it can be applied not only to a symmetrical airfoil rudder but also to an asymmetric airfoil rudder, and a larger lift can be obtained. Further, by increasing the camber, it is possible to generate more lift due to the flow passing over the propeller surface above the propeller, and to improve the elimination effect by the rudder.
請求項7記載の本発明は、仮想垂直面に対する舵の翼後縁の成す角度が0°を越え12°以下であることを特徴とする。請求項7に記載の本発明によれば、抵抗低減及び推力減少係数を向上させ、有効伴流率を確実に向上させることができる。The present invention according to claim 7 is characterized in that the angle formed by the trailing edge of the rudder blade with respect to the virtual vertical plane is more than 0 ° and not more than 12 °. According to the seventh aspect of the present invention, the resistance reduction and the thrust reduction coefficient can be improved, and the effective wake ratio can be reliably improved.
請求項8記載の本発明は、舵の上部における翼型と舵の下部における翼型とを異なった断面形状とし、下部における翼型の断面形状から、上部における翼型の断面形状まで、高さ方向に滑らかに収束する形状であることを特徴とする。請求項8に記載の本発明によれば、船舶の船型形状によって形成される高さ方向の非対称な流れに対して効果的に揚力を発生させるとともに舵による排除効果を向上できる。 The present invention is claimed in claim 8, a sectional shape different from the airfoil in the lower portion of the airfoil and the steering at the top of the rudder, the airfoil cross sectional shape at the bottom, until the cross-sectional shape of the airfoil at the top, height A shape that smoothly converges in a direction. According to the eighth aspect of the present invention, it is possible to effectively generate lift with respect to the asymmetrical flow in the height direction formed by the hull shape of the ship, and to improve the elimination effect by the rudder.
請求項9記載の本発明は、舵の下部における翼型の断面形状が対称翼型であることを特徴とする。請求項9に記載の本発明によれば、流れの非対称性が大きくない舵の下部では、対称翼型でプロペラの後の流れによるエネルギーロスを回収することができる。 The present invention according to claim 9 is characterized in that the cross-sectional shape of the airfoil at the lower portion of the rudder is a symmetrical airfoil. According to the present invention as set forth in claim 9 , at the lower part of the rudder where the flow asymmetry is not large, energy loss due to the flow after the propeller can be recovered with a symmetric wing shape.
請求項10記載の本発明に対応した船舶用捩れ舵を装備した船舶は、船舶用捩れ舵を装備したことを特徴とする。請求項10に記載の本発明によれば、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させることができる船舶を提供できる。 A ship equipped with a ship twist rudder corresponding to the present invention according to claim 10 is equipped with a ship twist rudder. According to the tenth aspect of the present invention, it is possible to provide a ship that can improve the resistance reduction and the thrust reduction coefficient by the ship torsion rudder and improve the effective wake ratio.
請求項11記載の本発明は、船舶が船尾双胴型船舶であることを特徴とする。請求項11に記載の本発明によれば、船尾双胴型船舶では、特にその船型形状により左右で非対称な流れであるとともに高さ方向でもその非対称性が異なる流れとなるため、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させる効果が高い。 The present invention according to claim 11 is characterized in that the ship is a stern catamaran type ship. According to the eleventh aspect of the present invention, in a stern catamaran type ship, the flow is asymmetrical in the left and right directions and the asymmetry is different in the height direction. Thus, the resistance reduction and the thrust reduction coefficient are improved, and the effect of improving the effective wake ratio is high.
請求項12記載の本発明は、船尾双胴型船舶がスケグを有したことを特徴とする。請求項12に記載の本発明によれば、スケグの左右で流れの非対称性が大きいため、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させる効果が高い。 The present invention according to claim 12 is characterized in that the stern catamaran vessel has a skeg. According to the twelfth aspect of the present invention, since the flow asymmetry is large between the left and right sides of the skeg, the resistance reduction and the thrust reduction coefficient are improved by the torsional rudder for a ship, and the effect of improving the effective wake ratio is high.
請求項13記載の本発明は、プロペラをスケグの後方に取り付けたことを特徴とする。請求項13に記載の本発明によれば、プロペラ効率比を改善し、さらに後方の船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させることができる船舶を提供できる。 The present invention according to claim 13 is characterized in that the propeller is attached to the rear of the skeg. According to the present invention as set forth in claim 13, there is provided a ship capable of improving the propeller efficiency ratio, further improving the drag reduction coefficient and the thrust reduction coefficient by the rear ship twisted rudder, and improving the effective wake ratio. it can.
本発明の船舶用捩れ舵によれば、船尾部での非対称な流れを利用して揚力を発生させることで、抵抗低減及び推力減少係数を向上させ、舵による排除効果の向上により有効伴流率を向上させることができる。 According to the torsional rudder for a ship of the present invention, the lift is generated by utilizing an asymmetric flow at the stern part to improve the resistance reduction and the thrust reduction coefficient, and the effective wake ratio due to the improvement of the exclusion effect by the rudder. Can be improved.
また、舵の翼後縁が、上端に向かって仮想垂直面から漸次離隔する場合には、プロペラ上部のプロペラ面上を通り過ぎる流れによるエネルギーロスを揚力として回収できる。 Further, when the trailing edge of the rudder blade is gradually separated from the virtual vertical surface toward the upper end, energy loss due to the flow passing over the propeller surface above the propeller can be recovered as lift.
また、回転軸を中心として翼型を捩ることで捩り角を形成した場合には、舵の設計を容易にする。 Further, when the torsion angle is formed by twisting the airfoil around the rotation axis, the rudder can be easily designed.
また、翼型がキャンバーを有する場合には、対称翼型の舵だけでなく、非対称翼型の舵についても適用でき、より大きな揚力を得ることができる。 Further, when the airfoil has a camber, it can be applied not only to a symmetrical airfoil rudder but also to an asymmetric airfoil rudder, and a larger lift can be obtained.
また、キャンバーが舵の上方に向かうほど大きくなる場合には、キャンバーを大きくすることで、プロペラ上部のプロペラ面上を通り過ぎる流れによる揚力をより発生させるとともに舵による排除効果を向上できる。 Further, when the camber becomes larger toward the upper side of the rudder, by increasing the camber, it is possible to generate more lift due to the flow passing over the propeller surface above the propeller and to improve the elimination effect by the rudder.
また、仮想垂直面に対する翼後縁の成す角度が0°を越え12°以下である場合には、抵抗低減及び推力減少係数を向上させ、有効伴流率を確実に向上させることができる。 Further, when the angle formed by the blade trailing edge with respect to the virtual vertical plane is greater than 0 ° and equal to or less than 12 °, the resistance reduction and the thrust reduction coefficient can be improved, and the effective wake ratio can be reliably improved.
また、舵の上部における翼型と舵の下部における翼型とを異なった断面形状とし、下部における翼型の断面形状から、上部における翼型の断面形状まで、高さ方向に滑らかに収束する形状である場合には、船舶の船型形状によって形成される高さ方向の非対称な流れに対して効果的に揚力を発生させるとともに舵による排除効果を向上できる。 In addition, the airfoil at the top of the rudder and the airfoil at the bottom of the rudder have different cross-sectional shapes, and the shape that smoothly converges in the height direction from the cross-sectional shape of the airfoil at the bottom to the cross-sectional shape of the airfoil at the top In this case, it is possible to effectively generate lift with respect to the asymmetrical flow in the height direction formed by the hull shape of the ship and to improve the elimination effect by the rudder.
また、舵の下部における翼型の断面形状が対称翼型である場合には、流れの非対称性が大きくない舵の下部では、対称翼型でプロペラの後の流れによるエネルギーロスを回収することができる。 In addition, when the cross-sectional shape of the airfoil at the lower part of the rudder is a symmetric airfoil, energy loss due to the flow after the propeller can be recovered at the lower part of the rudder where the flow asymmetry is not large. it can.
本発明の船舶用捩れ舵を装備した船舶によれば、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させることができる船舶を提供できる。 According to the ship equipped with the torsional rudder for a ship of the present invention, it is possible to provide a ship that can improve the resistance reduction and the thrust reduction coefficient by the torsional rudder for the ship and improve the effective wake ratio.
また、船舶が船尾双胴型船舶である場合には、船尾双胴型船舶では、特にその船型形状により左右で非対称な流れであるとともに高さ方向でもその非対称性が異なる流れとなるため、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させる効果が高い。 In addition, when the ship is a stern catamaran vessel, the stern catamaran vessel has a flow that is asymmetrical in both the left and right sides depending on the shape of the hull, and the asymmetrical flow in the height direction is also different. The effect of improving the effective wake ratio by reducing the resistance reduction and the thrust reduction coefficient by the torsional rudder is high.
また、船尾双胴型船舶がスケグを有した場合には、スケグの左右で流れの非対称性が大きいため、船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させる効果が高い。 In addition, when the stern catamaran vessel has a skeg, the flow asymmetry is large on the left and right of the skeg, so the resistance reduction and thrust reduction coefficient are improved by the torsion rudder for the vessel, and the effective wake ratio is improved. High effect.
また、プロペラをスケグの後方に取り付けた場合には、プロペラ効率比を改善し、さらに後方の船舶用捩れ舵により抵抗低減及び推力減少係数を向上させ、有効伴流率を向上させることができる船舶を提供できる。 In addition, when the propeller is attached to the rear of the skeg, the propeller efficiency ratio is improved, and further, the vessel can improve the effective wake ratio by improving the drag reduction coefficient and the thrust reduction coefficient by the rear vessel torsional rudder. Can provide.
本発明の一実施形態による船舶用捩れ舵について図を用いて説明する。
図1は同船舶用捩れ舵を取り付けた状態を示す船舶の要部斜視図、図2は同船舶を後方から前方視した状態を示す要部正面図、図3は同船舶の要部側面図である。なお、本実施形態では、船尾双胴型船舶を用いて説明するが、本船舶用捩れ舵は非対称船尾のように、船型形状が船尾部2で非対称な流れを形成する単胴型等の船舶にも適用することができる。
特に図1に示すように、本実施形態による船舶用捩れ舵10は、船体1の船尾部2に取り付けたプロペラ3の後方に取り付けられる。
A marine torsion rudder according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a main part of the ship showing a state where the torsion rudder for the ship is attached, FIG. 2 is a front view of the main part showing a state of the ship as viewed from the rear, and FIG. 3 is a side view of the main part of the ship. It is. Although this embodiment will be described using a stern catamaran type vessel, the torsion rudder for this vessel is a single-hull type vessel in which the shape of the hull forms an asymmetric flow at the stern portion 2 like an asymmetric stern. It can also be applied to.
In particular, as shown in FIG. 1, the torsion rudder 10 for a ship according to the present embodiment is attached to the rear of a propeller 3 attached to the stern part 2 of the hull 1.
また、図2及び図3に示すように、船舶用捩れ舵10を回転させる舵用の回転軸11は、プロペラ軸3xを通る仮想垂直面Vに位置させている。なお、回転軸11の中心とプロペラ軸3xの中心とを完全に一致させる必要はなく、プロペラ軸3xの直径内に、回転軸11の一部でも重なっていればよい。すなわち、仮想垂直面Vは、プロペラ軸3xの直径内に位置すればよく、この仮想垂直面Vに対して回転軸11の少なくとも一部が位置すればよい。 Further, as shown in FIGS. 2 and 3, the rudder rotation shaft 11 for rotating the marine vessel torsion rudder 10 is positioned on a virtual vertical plane V passing through the propeller shaft 3x. Note that the center of the rotating shaft 11 and the center of the propeller shaft 3x do not have to be completely coincident with each other as long as a part of the rotating shaft 11 overlaps the diameter of the propeller shaft 3x. That is, the virtual vertical plane V only needs to be positioned within the diameter of the propeller shaft 3x, and at least a part of the rotation shaft 11 only needs to be positioned with respect to the virtual vertical plane V.
図4は、同船舶用捩れ舵の構造を示す説明図である。
図4(a)は図3の要部拡大図であり、図4(b)は図4(a)に示す位置での船舶用捩れ舵の翼型の断面形状と捩れを示し、図4(c)は図4(a)に示す位置での船舶用捩れ舵の回転軸に対する翼後縁を示している。
FIG. 4 is an explanatory view showing the structure of the torsion rudder for the ship.
4 (a) is an enlarged view of the main part of FIG. 3, and FIG. 4 (b) shows the cross-sectional shape and twist of the ship's torsional wing shape at the position shown in FIG. 4 (a). (c) has shown the wing | wing trailing edge with respect to the rotating shaft of the torsion rudder for ships in the position shown to Fig.4 (a).
船舶用捩れ舵10は、舵の断面形状を翼型とし、特に船舶の船型形状によって形成される船尾部2での非対称流れに対応するように、舵の翼型の仮想垂直面Vに対する捩れ角θが、仮想垂直面Vの左右いずれか一方に、舵の高さ方向に連続的に変化する。
船舶用捩れ舵10の翼後縁10rは、少なくとも舵の下部では仮想垂直面Vから離隔しない部分があり、上端に向かって仮想垂直面Vから漸次離隔する。
この翼後縁10rが仮想垂直面Vから漸次離隔することにより、船舶用捩れ舵10の上端に向かって非対称性が次第に大きくなる非対称流れに的確に対応ができる。
船舶用捩れ舵10は、上部において回転軸11を中心として翼型を捩ることで捩り角θを形成している。
仮想垂直面Vに対する翼後縁10rの成す角度δは、0°を越え12°以下としている。なお、本実施形態に示すように、翼型の断面形状が全ての高さにおいて対称翼型である場合には、仮想垂直面Vに対する翼後縁10rの成す角度δは、翼厚の中心線10cの仮想垂直面Vに対する捩れ角θと等しい。
The torsion rudder 10 for ships has a cross-sectional shape of the rudder as a wing shape, and in particular, a twist angle with respect to the virtual vertical plane V of the rudder wing shape so as to correspond to the asymmetric flow in the stern portion 2 formed by the ship hull shape. θ continuously changes in the height direction of the rudder on either the left or right side of the virtual vertical plane V.
The wing trailing edge 10r of the marine torsion rudder 10 has a portion that is not separated from the virtual vertical plane V at least in the lower part of the rudder, and gradually separates from the virtual vertical plane V toward the upper end.
By gradually separating the blade trailing edge 10r from the virtual vertical plane V, it is possible to accurately cope with an asymmetric flow in which the asymmetry gradually increases toward the upper end of the marine vessel rudder rudder 10.
The torsion rudder 10 for a ship forms a torsion angle θ by twisting the airfoil about the rotation shaft 11 in the upper part.
The angle δ formed by the blade trailing edge 10r with respect to the virtual vertical plane V is greater than 0 ° and not greater than 12 °. As shown in the present embodiment, when the cross-sectional shape of the airfoil is a symmetric airfoil at all heights, the angle δ formed by the blade trailing edge 10r with respect to the virtual vertical plane V is the center line of the blade thickness. It is equal to the twist angle θ with respect to the virtual vertical plane V of 10c.
本実施形態に示す船舶用捩れ舵10は、上部位置Hhにおける翼型と、下部位置Hlにおける翼型とを異なった寸法の断面形状とし、下部位置Hlにおける翼型の断面形状から、上部位置Hhにおける翼型の断面形状まで、高さ方向に滑らかに収束する形状としている。なお、本実施形態では、下部位置Hlから中間位置Hmまでの翼型の断面形状を寸法的に同じとし、中間位置Hmから上部位置Hhまで、高さ方向に滑らかに漸次翼型を大きくしている。ここで、中間位置Hmは、プロペラ軸3xの高さよりも上方に設定している。上部位置Hhは船舶用捩れ舵10の上端でよく、下部位置Hlは船舶用捩れ舵10の下端でよい。
また、本実施形態では、翼厚の中心線10cは回転軸11と一致しているが、翼厚の中心線10cは回転軸11と必ずしも一致していなくてもよい。
The torsional rudder 10 for a ship shown in the present embodiment has a cross-sectional shape with different dimensions for the airfoil at the upper position Hh and the airfoil at the lower position H1, and the upper position Hh from the cross-sectional shape of the airfoil at the lower position Hl. A shape that smoothly converges in the height direction up to the airfoil cross-sectional shape in FIG. In this embodiment, the cross-sectional shape of the airfoil from the lower position H1 to the intermediate position Hm is dimensionally the same, and the airfoil is gradually increased in the height direction from the intermediate position Hm to the upper position Hh. Yes. Here, the intermediate position Hm is set above the height of the propeller shaft 3x. The upper position Hh may be the upper end of the marine torsion rudder 10, and the lower position Hl may be the lower end of the marine torsion rudder 10.
In the present embodiment, the blade thickness center line 10 c coincides with the rotation axis 11, but the blade thickness center line 10 c does not necessarily coincide with the rotation axis 11.
図5は、他の実施形態による船舶用捩れ舵の構造を示す説明図である。
なお、図4と異なる構成だけを説明し、その他の構成については同一符号を付して説明を省略する。
本実施形態による船舶用捩れ舵10は、上部が非対称翼型であり、キャンバー10cを有している。
キャンバー10cは、舵の上方に向かうほど大きくしている。
本実施形態に示す船舶用捩れ舵10は、中間位置Hmから上部位置Hhまでを非対称翼型とし、高さ方向に滑らかに漸次翼型を大きくするとともにキャンバー10cを大きくしている。また、下部位置Hlから中間位置Hmまでを対称翼型としている。
本実施形態では、仮想垂直面Vに対する翼後縁10rの成す角度δが捩れ角θであり、0°を越え12°以下としている。
船舶用捩れ舵10は、非対称翼型である場合には、キャンバー10cを変化させずに翼型を回転軸11の周りに徐々に捩ることで、又はキャンバー10cを徐々に変化させて翼型を捩ることで捩り角θを形成している。また、キャンバー10cを徐々に変化させるとともに、翼型を回転軸11の周りに徐々に捩ることで捩り角θを形成することもできる。
なお、捩り角θを下端から徐々に高さ方向に連続的に変化させて形成することも可能である。
FIG. 5 is an explanatory view showing the structure of a torsion rudder for a ship according to another embodiment.
Only the configuration different from that in FIG. 4 will be described, and the other components will be denoted by the same reference numerals and description thereof will be omitted.
The torsion rudder 10 for a ship according to the present embodiment has an asymmetric wing shape at the top and has a camber 10c.
The camber 10c is enlarged toward the upper side of the rudder.
The torsion rudder 10 shown in the present embodiment has an asymmetric wing shape from an intermediate position Hm to an upper position Hh, and gradually increases the wing shape in the height direction and the camber 10c. Further, the symmetric airfoil is formed from the lower position H1 to the intermediate position Hm.
In the present embodiment, the angle δ formed by the blade trailing edge 10r with respect to the virtual vertical plane V is the twist angle θ, which exceeds 0 ° and is 12 ° or less.
When the torsion rudder 10 is an asymmetric wing shape, the wing shape is changed by gradually twisting the wing shape around the rotating shaft 11 without changing the camber 10c, or by gradually changing the camber 10c. Twisting angle θ is formed by twisting. Further, while the camber 10c is gradually changed, the torsion angle θ can be formed by gradually twisting the airfoil around the rotating shaft 11.
It is also possible to form the torsion angle θ by gradually changing it in the height direction from the lower end.
図6は、図2の要部拡大図であり、二軸船尾双胴型の船舶において、プロペラ3が内回りの回転である場合の船舶用捩れ舵10を示している。
プロペラ3が内回りの回転である場合には、右舷側のプロペラ3は反時計回り、左舷側のプロペラ3は時計回りである。
この場合には、右舷側の船舶用捩れ舵10は、仮想垂直面Vに対する捩れ角θを仮想垂直面Vの左舷側(船体1内側)に、舵の高さ方向に連続的に変化させている。また左舷側の船舶用捩れ舵10は、仮想垂直面Vに対する捩れ角θを仮想垂直面Vの右舷側(船体1内側)に、舵の高さ方向に連続的に変化させている。
特に、船尾双胴型船舶がスケグを有し、プロペラ3をスケグの後方に取り付けた場合には、一対のプロペラ3間での上昇流が、船体1の側部の流れよりも大きいため、船舶用捩れ舵10は、仮想垂直面Vに対する捩れ角θが仮想垂直面Vの船体1内側に、舵の高さ方向に連続的に変化させることが有効である。
捩じれ角θを付けることは、結果的に船尾部での非対称流れに対応するように舵の迎角を付けることに他ならない。
翼型の仮想垂直面Vに対する捩れ角を、仮想垂直面Vの左右いずれか一方に舵の高さ方向に連続的に変化させることにより、非対称流に対して適切な迎角を付け、船舶用捩れ舵10に揚力を発生させ、抵抗低減及び推力減少係数の向上と有効伴流率の向上を図る効果に繋がる。
FIG. 6 is an enlarged view of a main part of FIG. 2, and shows a torsion rudder 10 for a ship when the propeller 3 rotates inward in a biaxial stern catamaran type ship.
When the propeller 3 is rotating inward, the starboard side propeller 3 is counterclockwise and the port side propeller 3 is clockwise.
In this case, the starboard side ship twisted rudder 10 continuously changes the twist angle θ with respect to the virtual vertical plane V to the port side (inside the hull 1) of the virtual vertical plane V in the height direction of the rudder. Yes. In addition, the ship-side twisted rudder 10 on the port side continuously changes the twist angle θ with respect to the virtual vertical plane V toward the starboard side (inside the hull 1) of the virtual vertical plane V in the height direction of the rudder.
In particular, when the stern catamaran vessel has a skeg and the propeller 3 is attached to the rear of the skeg, the upward flow between the pair of propellers 3 is larger than the flow at the side of the hull 1. It is effective for the torsion rudder 10 to continuously change the twist angle θ with respect to the virtual vertical plane V in the hull 1 inside the virtual vertical plane V in the height direction of the rudder.
The addition of the twist angle θ is nothing but the addition of the rudder angle of attack so as to correspond to the asymmetrical flow at the stern.
By changing the torsion angle with respect to the virtual vertical plane V of the airfoil continuously in the height direction of the rudder on either the left or right side of the virtual vertical plane V, an appropriate angle of attack is provided for the asymmetrical flow, The lift is generated in the torsion rudder 10, which leads to the effect of reducing resistance, improving the thrust reduction coefficient, and improving the effective wake ratio.
非対称船尾又は二軸船尾双胴型の船舶では、船型形状は左右方向の流れ、すなわち、例えばスケグを有する船尾双胴型船舶では、スケグの左右で非対称な流れを誘起する。これがそのまま船体1の後方に流れ去ると、この流れを作るために船体1が使ったエネルギーはそのまま失われ、抵抗状態では抵抗増加として表れる。
本実施形態では、舵の翼厚の中心線10cの仮想垂直面Vに対する捩れ角θを、仮想垂直面Vの左右いずれか一方に、舵の高さ方向に連続的に変化させ、上下方向の舵の断面分布を最適化することでこのエネルギーロスを揚力として回収する。プロペラ3が作動した状態では、この非対称な流れの一部はプロペラ3の回転方向のカウンターフローとなることでプロペラ3により回収されるが、プロペラ3上部のプロペラ面上を通り過ぎる流れは回収されない。よって、舵高さ方向の上部の翼形状を仮想垂直面Vから捩る量を大とする舵形状とすることにより強い揚力が発生し、プロペラ3により回収されなかった流れ及びプロペラ3の作る流れによる回転流が作る舵の揚力を含め、舵全体が出す推力が最大化され通常舵と比べて推力減少係数が改善される。
In an asymmetric stern or biaxial stern catamaran vessel, the hull shape induces a flow in the left-right direction, i.e., in a stern catamaran vessel with skeg, for example, an asymmetric flow is induced on the left and right of the skeg. If this flows away to the rear of the hull 1, the energy used by the hull 1 to create this flow is lost as it is, and appears as an increase in resistance in the resistance state.
In the present embodiment, the torsion angle θ of the center line 10c of the rudder blade thickness with respect to the virtual vertical plane V is continuously changed in the height direction of the rudder on either one of the left and right sides of the virtual vertical plane V. This energy loss is recovered as lift by optimizing the cross-sectional distribution of the rudder. In a state where the propeller 3 is operated, a part of this asymmetric flow becomes a counter flow in the rotation direction of the propeller 3 and is collected by the propeller 3, but a flow passing over the propeller surface above the propeller 3 is not collected. Therefore, strong lift is generated by making the upper blade shape in the rudder height direction into a rudder shape with a large amount twisted from the virtual vertical plane V, and the flow that is not collected by the propeller 3 and the flow created by the propeller 3 The thrust generated by the entire rudder, including the lift of the rudder created by the rotating flow, is maximized, and the thrust reduction coefficient is improved compared to the normal rudder.
図7に水槽実験による通常舵に対する本実施形態による船舶用捩れ舵の効果を示す。
非対称な流れの強さとプロペラ3の作る流れの干渉の程度に合うよう捩れ角θ及び舵角(あて舵)を調整(図中3°)して比較すると、通常舵と比較し船舶用捩れ舵を装備することで2.9%推力減少係数が改善し、また通常舵の舵角(あて舵)無しの場合と比較しても2%以上改善する。する。また、このときの有効伴流率は、舵の排除効果が通常舵に比べ向上することにより有効伴流係数も0.5%改善する。さらに、舵角(あて舵)分の効果は捩れ角θを調整することで、舵角(あて舵)無しでも同様の効果が得られる。
FIG. 7 shows the effect of the torsional rudder for a ship according to this embodiment with respect to a normal rudder by a water tank experiment.
When the twist angle θ and the rudder angle (the rudder) are adjusted (3 ° in the figure) to match the strength of the asymmetrical flow and the interference of the flow created by the propeller 3, the twisted rudder for the ship is compared with the normal rudder. The 2.9% thrust reduction coefficient is improved by installing, and it is improved by 2% or more compared to the case without the rudder angle of the normal rudder. To do. The effective wake rate at this time is also improved by 0.5% in the effective wake coefficient as the rudder elimination effect is improved as compared with the normal rudder. Furthermore, the effect for the rudder angle (the steering rudder) can be obtained by adjusting the twist angle θ, and the same effect can be obtained without the rudder angle (the rudder).
以上のように本実施形態によれば、船型形状によって形成される非対称な流れを利用して揚力を発生させることで、抵抗低減及び推力減少係数を向上させ、舵による排除効果の向上により有効伴流率を向上させることができる。 As described above, according to the present embodiment, the asymmetric flow formed by the hull shape is used to generate lift, thereby improving the resistance reduction and the thrust reduction coefficient and improving the removal effect by the rudder. The flow rate can be improved.
本発明は、非対称船尾又はツインスケグ船型等の船型形状が船尾部で非対称な流れを形成する船舶に適用することで、最大の輸送効率を得ることができる。 The present invention can be applied to a ship whose hull shape such as an asymmetric stern or a twin-skeg hull forms an asymmetric flow at the stern, thereby obtaining the maximum transportation efficiency.
1 船体
2 船尾部
3 プロペラ
3x プロペラ軸
10 船舶用捩れ舵
10r 翼後縁
10c 中心線(キャンバー)
11 回転軸
Hh 上部位置
Hm 中間位置
Hl 下部位置
V 仮想垂直面
θ 捩れ角
δ 翼後縁の成す角度
DESCRIPTION OF SYMBOLS 1 Hull 2 Stern part 3 Propeller 3x Propeller shaft 10 Torsion rudder 10r Wing trailing edge 10c Center line (camber)
11 Rotating shaft Hh Upper position Hm Intermediate position H1 Lower position V Virtual vertical plane θ Torsion angle δ Angle formed by blade trailing edge
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013263072A JP6292551B2 (en) | 2013-12-19 | 2013-12-19 | Ship equipped with torsion rudder and torsion rudder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013263072A JP6292551B2 (en) | 2013-12-19 | 2013-12-19 | Ship equipped with torsion rudder and torsion rudder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015116986A JP2015116986A (en) | 2015-06-25 |
JP6292551B2 true JP6292551B2 (en) | 2018-03-14 |
Family
ID=53530099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013263072A Expired - Fee Related JP6292551B2 (en) | 2013-12-19 | 2013-12-19 | Ship equipped with torsion rudder and torsion rudder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6292551B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6380848B2 (en) * | 2015-02-26 | 2018-08-29 | 三菱造船株式会社 | Ship |
DE202019102807U1 (en) * | 2018-11-29 | 2020-03-05 | Becker Marine Systems Gmbh | Rudder for ships and double propeller ship with two oars |
CN114954872B (en) * | 2022-06-29 | 2024-06-11 | 中国人民解放军海军工程大学 | Twisted rudder for noise reduction and synergy of underwater vehicle and design method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930456A (en) * | 1973-10-01 | 1976-01-06 | Lennart Ludvigsson | Ship's afterbody, especially for a full-form ship fitted with more than one propeller |
JPS5355893A (en) * | 1976-10-28 | 1978-05-20 | Shiyouzou Yamamoto | Rudder mounted onto center line of hull |
JPS5777282A (en) * | 1980-11-01 | 1982-05-14 | Sanoyasu:Kk | Ship with catamaran-type stern |
JPS5816996A (en) * | 1981-07-22 | 1983-01-31 | Ishikawajima Harima Heavy Ind Co Ltd | Rudder |
JPS5830896A (en) * | 1981-08-18 | 1983-02-23 | Ishikawajima Harima Heavy Ind Co Ltd | Reaction rudder without discontinuous part |
JPS5948294A (en) * | 1982-09-13 | 1984-03-19 | Tomoo Oyama | Rudder for screw propeller ship |
JPH02151596A (en) * | 1988-12-05 | 1990-06-11 | Sumitomo Heavy Ind Ltd | Rudder for two-shaft two-rudder ship |
US5415122A (en) * | 1993-10-13 | 1995-05-16 | The United States Of America As Represented By The Secretary Of The Navy | Twisted rudder for a vessel |
JPH07237594A (en) * | 1994-02-28 | 1995-09-12 | Hitachi Zosen Corp | Rudder in ship |
JP2012035785A (en) * | 2010-08-09 | 2012-02-23 | Ihi Corp | Twin-screw vessel |
-
2013
- 2013-12-19 JP JP2013263072A patent/JP6292551B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015116986A (en) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2338783B1 (en) | Twin skeg ship | |
JP2011016512A (en) | Rudder for ship | |
JP5578931B2 (en) | High lift rudder for ships | |
JP6292551B2 (en) | Ship equipped with torsion rudder and torsion rudder | |
DK2077961T3 (en) | Twisted shipwreck and ship equipped with this | |
KR101310965B1 (en) | rudder of ship | |
KR102701700B1 (en) | Sunmi Pin | |
RU2533955C2 (en) | Rudder and vessel with such rudder | |
JP4515471B2 (en) | Marine 1-axis 2-rudder system and 1-axis 2-rudder ship | |
JP6494235B2 (en) | Ship rudder | |
JP2012111488A (en) | Two-shaft twin skeg ship | |
JP6246960B1 (en) | Ship propulsion device and ship | |
JP4363789B2 (en) | High lift rudder for ships | |
JP6241905B2 (en) | Stern shape with stern duct and ship | |
JP4363795B2 (en) | High lift twin rudder system for ships | |
KR20110108696A (en) | Rudder for ship and ship including the same | |
WO2014125881A1 (en) | Propeller wake flow straightener device | |
KR102331923B1 (en) | Ship Keys and Vessels | |
JP6380848B2 (en) | Ship | |
KR102659729B1 (en) | Asymmetric rudder structure for twin propeller ship | |
JP6516466B2 (en) | Ship steering gear | |
JP4362519B2 (en) | Marine single-axis two-rudder system and single-axis two-rudder ship | |
KR20150008568A (en) | Rudder for ship | |
JP4703244B2 (en) | Marine 1-axis 2-rudder system and 1-axis 2-rudder ship | |
KR102129140B1 (en) | Rudder for ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170815 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6292551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |