Nothing Special   »   [go: up one dir, main page]

JP3967472B2 - Cdma受信機 - Google Patents

Cdma受信機 Download PDF

Info

Publication number
JP3967472B2
JP3967472B2 JP25268798A JP25268798A JP3967472B2 JP 3967472 B2 JP3967472 B2 JP 3967472B2 JP 25268798 A JP25268798 A JP 25268798A JP 25268798 A JP25268798 A JP 25268798A JP 3967472 B2 JP3967472 B2 JP 3967472B2
Authority
JP
Japan
Prior art keywords
sampling
detection unit
reception state
oversamples
cdma receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25268798A
Other languages
English (en)
Other versions
JP2000082975A (ja
Inventor
嘉伸 芳賀
卓 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25268798A priority Critical patent/JP3967472B2/ja
Priority to US09/348,938 priority patent/US6507603B1/en
Priority to GB9917828A priority patent/GB2342019B/en
Priority to KR19990031769A priority patent/KR100547551B1/ko
Priority to CNB991183843A priority patent/CN1242583C/zh
Publication of JP2000082975A publication Critical patent/JP2000082975A/ja
Application granted granted Critical
Publication of JP3967472B2 publication Critical patent/JP3967472B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • H04B1/7093Matched filter type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はCDMA受信機に係わり、特に、所定の拡散符号列で拡散したデータを含む信号を受信し、受信信号を所定サンプリング速度でサンプリングして得られる拡散データ列と参照符号列との相関値を演算し、相関値が最大となるタイミングを逆拡散開始タイミングとするCDMA受信機に関する。
近年の移動通信分野においては、端末の小型化競争が激しく、低消費電力化が求められている。本発明は低消費電力化が可能なCDMA受信機を提供するものである。
【0002】
【従来の技術】
ワイヤレスマルチメディア通信を実現する次世代の移動通信システムとして、DS-CDMA(Direct Sequence Code Division Multiple Access:直接拡散符号分割多元接続)技術を用いたデジタルセルラー無線通信システムの開発が進められている。かかるCDMAデジタルセルラー無線通信システムにおいて、基地局は制御情報やユーザ情報を拡散符号で多重して伝送し、各移動局は基地局より制御情報を受信すると共に、基地局より指定された拡散符号を用いて伝送情報を拡散して伝送する。又、移動局は該制御情報を取り込むことにより種々の制御たとえば位置登録、周辺基地局の情報収集などを行なうと共に発呼、着信待ち受け制御などを行う。かかるCDMAデジタルセルラー無線通信システムにおいて、移動局が基地局より制御情報を受信するためには、拡散変調された拡散データの開始タイミング(位相)を識別することが必要である。
【0003】
図13は制御チャネル及びユーザチャネルの送信データを符号多重して伝送する基地局装置のCDMA送信機の構成図である。図中、111〜11nはそれぞれ制御/ユーザチャネルの拡散変調部であり、それぞれ、フレーム生成部21、フレームデータを並列データに変換する直列/並列変換部(S/P変換部)22、拡散回路23を備えている。フレーム生成部21は、直列の送信データD1を発生する送信データ発生部21a、パイロット信号Pを発生するパッロット信号発生部21b、直列データD1を所定ビット数毎にブロック化し、その前後にパイロット信号Pを挿入してフレーム化するフレーム化部21cを備えている。パイロット信号はたとえばオール”1”で、伝送による位相回転量を受信機において認識してデータにその分逆方向に位相回転を施すためのものである。
【0004】
S/P変換部22はフレームデータ(パイロット信号及び送信データ)を1ビットづつ交互に振り分けて同相成分(I成分:In-Phase compornent)データと直交成分(Q成分:Quadrature compornent)データの2系列DI,DQに変換する。
拡散回路23は基地局固有のpn系列(ロングコード)を発生するpn系列発生部23a、制御チャネルやユーザチャネル固有の直交ゴールド符号(ショートコード)を発生するショートコード発生器23b、ロングコードとショートコードのEOR(排他的論理和)を演算して拡散符号C1を出力するEXOR回路23c、2系列のデータDI,DQ(シンボル)と拡散符号C1の排他的論理和を演算して拡散変調するEXOR回路23d、23eを備えている。尚、”1”はレベル−1、”0”はレベル1のため、信号同士の排他的論理和は乗算と同じである。
【0005】
12iは各制御チャネル、ユーザチャネルの拡散変調部111〜11nから出力されるI成分の拡散変調信号VIを合成してI成分の符号多重信号ΣVIを出力する合成部、12qは各拡散変調部111〜11nから出力されるQ成分の拡散変調信号VQを合成してQ成分の符号多重信号ΣVQを出力する合成部、13i,13qは各符号多重信号ΣVI,ΣVQの帯域を制限するFIR構成のチップ整形フィルタ、14i,14qは各フィルタ13i,13qの出力をDA変換するDAコンバータ、15はI,Q成分の符号多重信号ΣVI,ΣVQにQPSK直交変調を施して出力する直交変調器、16は直交変調器の出力信号周波数を無線周波数に変換すると共に高周波増幅して送出する送信回路、17はアンテナである。
【0006】
図14は移動局の受信装置の構成図であり、21はアンテナ、22は受信回路であり、増幅動作やRFからIFへの周波数変換動作を行うもの、23はQPSK直交検波を行ってI,Q信号を出力するQPSK直交検波部、24は検波出力であるベースバンドのアナログI,Q信号をデジタルのI,Qデータに変換するADコンバータ、25は基地局と同一の拡散符号列をI,Qデータに乗算して逆拡散する逆拡散回路、26は同期検波、データ判定、誤り訂正等を行うデータ復調部、27はサーチャである。
【0007】
サーチャ27は、相関演算を行うマッチトフィルタ31、拡散開始タイミング(位相)を識別するタイミング同定部32、参照符号列を発生するためのコードテーブル33を備えている。マッチトフィルタ31は、逆拡散開始のタイミングを同定するために、受信した拡散データ列と参照符号列との相関演算を行う。タイミング同定部32は受信した拡散データ列と参照符号列との相関値が設定レベル以上になるタイミングに基づいて拡散開始タイミング(位相)を取得する。
【0008】
図15はマッチトフィルタの構成及び逆拡散タイミング特定法の説明図である。マッチトフィルタ31において31aはベースバンドの拡散データ列をチップ周波数で順次シフトする(n+1)チップのシフトレジスタ(s0〜sn)、31bは参照符号である拡散符号列をチップ周波数で順次シフトする (n+1)チップのシフトレジスタ(c0〜cn)、31cはベースバンドの拡散データ列と拡散符号列の対応ビットを乗算する(n+1)個の乗算器(MP0〜MPn)、31dは各乗算回路の出力を加算する加算回路である。
【0009】
受信した拡散データ列と参照符号列との相関演算をマッチトフィルタ31で行うと、これら拡散データ列と参照符号列の位相が一致した時点において相関値が大きくなる。そこで、タイミング同定部32はマッチトフィルタ31より出力する相関値を監視し、該相関値が設定レベルより大きくなった時点を逆拡散の開始タイミングと同定して出力する。
【0010】
以上は、直交検波器23(図14)の出力信号をチップ周波数でサンプリング、AD変換して得られる拡散データ列をシフトレジスタ31aに入力した場合であり、1チップ期間につき1個の相関値が得られる。しかし、サンプリング周波数を高速にすると1チップ期間に複数の相関値を得ることができる。図16はオーバーサンプリング数と相関値出力の関係を示すシミュレーション結果説明図であり、8オーバーサンプリング時のMF相関値出力を示している。シュミレーション条件は、
(1) 拡散コード:M系列(x18+x7+1)、
(2) 拡散率:16,
(3) MFタップ数:256タップ,
(4) ロールオフ特性:sin曲線で代用、
である。
【0011】
このMF相関値出力特性より明らかなように、8オーバーサンプリングにより、1チップ期間につき8個の相関値を得ることができる。例えば、アイパターンの一番開いている所をサンプリングした時の相関値出力を1とすると、1/8チップ離れると約0.5dB劣化し、2/8チップ離れると約3dB劣化し、4/8チップ離れると相関値出力なしとなる。
以上より、(1) サンプリング周波数をチップ周波数のn倍にすると、すなわち、nオーバサンプリングにすると、相関値を1/nチップの位相間隔で得ることができる。従って、サンプリング周波数がチップ周波数と等しい場合に比べn倍の位相精度で相関値が最大のタイミングすなわち逆拡散タイミングを得ることができる。
【0012】
又、MF相関値出力特性より、(2) マッチトフィルタの相関演算のタイミングが正規のタイミングからから±1/2チップ以上ずれると逆拡散出力が得られないこと、及び、又、該ズレ(位相差)が±1/2チップ以内であっても、位相差が大きくなると逆拡散出力が小さくなることがわかる。
図17はオーバサンプリング数n=4,8,16の場合における受信回線品質(C/N比)とBER(Bit Error Rate)の関係図である。1は4倍オーバサンプリング時(n=4)のBER-C/N比特性、2は8倍オーバサンプリング時のBER-C/N比特性、3は16倍オーバサンプリング時のBER-C/N比特性である。オーバサンプリング数が大きいほど同一のC/N比に対してBERは小さくなっており、これにより、受信状態が悪い場合でもオーバサンプリング数を増加すればBERを小さくできることがわかる。
【0013】
【発明が解決しようとする課題】
相関器において逆拡散を行う場合、逆拡散タイミングが1チップずれると逆拡散出力が得られない。又、位相ずれが大きくなるほど逆拡散出力が小さくなる。特に、受信レベルが小さいと、位相ずれによる影響が大きく、位相差によりビットエラーが増大する。このため、従来はマッチトフィルタのサンプルレートを大きくして逆拡散開始タイミングの検出精度を向上させている。
しかし、マッチトフィルタは図15に示すようにベースバンドの拡散データ用と参照符号列用の2つのシフトレジスタ31a,31b、それらを乗算するための乗算回路31cおよび積分するための加算回路31dからなっている。さらに,マッチトフィルタ31にはA/Dコンバータ24(図14)が接続されており、これらを含めると回路規模が非常に大きく、動作周波数が高くなれば高くなるほど消費電力が大きくなってしまい、低消費電力化のネックとなっている。このため、マッチトフィルタのサンプルレートを大きくする従来のCDMA受信機は消費電力が大きくなる問題があった。
以上より、本発明の目的は低消費電力化が可能であり、しかも、逆拡散タイミングの検出精度を維持できるCDMA受信機を提供することである。
【0014】
【課題を解決するための手段】
上課題は本発明によれば、受信状態を検出する受信状態検出部、受信状態の良否に応じてサンプリング速度を決定するサンプリング制御部、受信信号を前記サンプリング速度でサンプリングしてなる拡散データ列と参照符号列との相関値を演算する相関器(マッチトフィルタ)、相関値が最大となるタイミングを求め、該タイミングを逆拡散開始タイミングとするタイミング検出部を備えたCDMA受信機により達成される。すなわち、受信状態が良ければオーバーサンプル数を少なくしてマッチトフィルタの動作速度を低速にし、これにより低消費電力を可能にし、受信状態が悪ければオーバサンプル数を多くして逆拡散タイミングの検出精度を向上する。
【0015】
前記受信状態を検出する受信状態検出部として、▲1▼受信電界強度を検出する受信電界強度検出部、▲2▼AGC回路の制御電圧を検出するAGC制御電圧検出部、▲3▼逆拡散後の信号電力を検出するパワー検出部、▲4▼逆拡散後のSIR(信号干渉波比)を検出するSIR検出部、▲5▼受信符号のビットエラーレートを検出するビットエラーレート検出部を用いることができる。
又、制御の初期段階では受信電界強度またはAGC制御電圧に応じてサンプリング速度を制御し、ついで、逆拡散信号電力またはSIRに応じて、あるいは、更にビットエラーレートに応じてサンプリング速度を制御する。このようにすれば、初期同期時などチャネル推定が未だ行われていない段階からマッチトフィルタのサンプリング速度を制御することができ、サンプリング速度の最適速度への収束時間を短縮でき、また、CDMA受信機の消費電力を小さくできる。
【0016】
【発明の実施の形態】
(a)第1実施例
図1は受信電界強度を検出し、その検出値に応じてマッチトフィルタのオーバーサンプル数を制御する本発明の第1のCDMA受信機の構成図である。
図中、51はアンテナ、52はアンテナ受信信号を高周波増幅動作やRFからIFへの周波数変換動作などを行う無線部、53はQPSK直交検波を行ってI,Q信号を出力すると共に、該アナログI,Q信号をデジタルのI,Qデータに変換して出力するベースバンド部である。なお、ベースバンド部53のADコンバータ(後述)はチップ速度の2n倍のオーバサンプリング速度でアナログI,Q信号をサンプリングし、AD変換してベースバンドのデジタルの受信拡散データ列を出力する。
54は基地局と同一の拡散コードを用いて発生した拡散符号列をベースバンド53から出力するI,Qデータに乗算して逆拡散する逆拡散回路、55aは同期検波を行う同期検波器、55bは、データ判定及び、誤り訂正等を行う符号判定/誤り訂正部、56は SIR(Signal Interference Ratio)を検出して出力するSIR検出部、57は所定の拡散コードタイミングで参照符号列を発生する拡散符号列発生器である。
【0017】
58はマッチトフィルタ(相関器)であり、チップ速度の2n倍のオーバサンプリング速度でAD変換されたベースバンドの受信拡散データ列を入力され、該受信拡散データ列と参照符号列との相関値を演算して出力するもの、59はマッチトフィルタ58から出力する相関値が最大となるタイミングを検出して逆拡散タイミングとするタイミング検出部である。
60は受信電界強度RSSI(Receive Signal Strength Indication)を検出する RSSI検出部で、無線部52の中間周波増幅器の出力より、あるいはベースバンド部53の検波出力よりRSSIを検出する。61はサンプリング制御部であり、受信状態の良否、すなわち、受信電界強度に基づいてマッチトフィルタ31のサンプリング周波数(オーバーサンプル数)を制御し、該周波数を有するクロック信号CSPLを発生するものである。オーバサンプル数nとは、サンプリング周波数がチップ周波数のn倍であることを意味する。
【0018】
図2は無線部とベースバンド部の構成図である。無線部52において、52aはアンテナ同調部、52bは高周波増幅器、52cはRF信号をIF信号に変換する周波数変換部、52dはIF増幅器、52eはIF出力レベルに基づいて高周波増幅器のゲインを制御してIF出力が一定値になるよう制御するAGC回路で、RSSI検出部60(図1)はIF増幅器52dの出力信号よりRSSIを検出する。ベースバンド部53において、53aはQPSK直交検波を行ってI,Q信号を出力するQPSK直交検波部、53bはサンプリング制御部61から出力する所定サンプリング周波数のクロック信号CSPLに基づいてアナログI,Q信号をデジタルのI,Qデータ(ベースバンドの拡散データ列)に変換して出力するAD変換器である。
【0019】
図3はサンプリング制御部61の周辺回路構成図であり、図1、図2と同一部分には同一符号を付している。サンプリング制御部61において、61aはROMテーブルであり、検出されたRSSI値に対して最適なマッチトフィルタ58のオーバーサンプル数が予め書き込まれている。このROMテーブル61aには、例えば、(1) オーバサンプル数を22(=4)から23(=8)、あるいは8から4にする受信電界強度の第1のしきい値SH4として50dBμ、(2) オーバサンプル数を 23(=8)から24(=16)、あるいは16から8にする受信電界強度の第2のしきい値SH8として20dBμが記憶されている。61bはRSSI値に基づいてオーバサンプル数(オーバサンプリング周波数)を決定する制御回路、61cは制御回路61bが決定したオーバサンプル数に応じたサンプリング周波数のクロック信号CSPLを発生する可変クロック発生部である。この可変クロック発生部61cの出力クロックと拡散符号列発生器57に入力する拡散コードタイミングは同期制御される。
【0020】
図4はサンプリング制御部61の制御回路61bによるオーバサンプル数決定処理フローであり、受信電界強度に応じてオーバサンプル数を4,8,16の間で切り替える場合である。
CDMA受信機の起動時、オーバサンプル数Nを8に初期設定する(ステップ101)。ついで、RSSI検出部60よりRSSI値を所定時間取り込み(ステップ102)、その平均値AVGを計算して記憶する(ステップ103)。平均値算出後、ROMテーブル61aを参照して第1のしきい値SH4(=50dBμ)を読み取り(ステップ104)、AVG>SH4(=50dBμ)であるか判定する(ステップ105)。AVG>SH4であれば、すなわち、受信状態が良好であれば、オーバサンプル数Nを4に減小し(ステップ106)、ステップ102に戻り以降の処理を繰り返す。
【0021】
一方、ステップ105において、AVG≦SH4(=50dBμ)であれば、ROMテーブル61aを参照して第2のしきい値SH8(=20dBμ)を読み取り(ステップ107)、AVG>SH8(=20dBμ)であるか判定する(ステップ108)。AVG>SH8であれば、すなわち、受信電界強度が20dBμ〜50dBμであり、受信状態が普通あるいはそれほど悪くなければオーバサンプル数Nを8にし(ステップ109)、ステップ102に戻って以降の処理を繰り返す。
しかし、ステップ108において、AVG≦SH8(=20dBμ)であれば、すなわち、受信状態が悪ければ、オーバサンプル数Nを16にし(ステップ110)、ステップ102に戻り以降の処理を繰り返す。
以上のように、受信状態が良ければオーバーサンプル数を少なくしてマッチトフィルタの動作速度を低速にして低消費電力化を可能にし、受信状態が悪ければオーバサンプル数を多くして逆拡散タイミングの検出精度を向上する。
なお、以上では、受信電界強度に応じてオーバサンプル数を3段階に切り替えた場合であるが、2段階あるいは4段階以上に切り替えるよう構成することもできる。
【0022】
(b)第2実施例
図5は本発明の第2実施例の構成図であり、図1の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、RSSI検出部60を削除し、その替わりにAGC(自動利得制御)電圧を検出するAGC電圧検出部65を設けている点、サンプリング制御部61が受信状態の良否をRSSI値により決定せずAGC電圧により決定し、AGC電圧に基づいてマッチトフィルタ58のオーバサンプル数を制御する点である。
受信状態が良好の場合、IF増幅器52d(図2参照)の出力が大きくなり、AGC回路52eの出力であるAGC制御電圧が小さくなる。逆に、受信状態が良好でない場合、IF増幅器52dの出力が小さくなり、AGC制御電圧が大きくなる。AGC電圧検出部65はこのAGC制御電圧を検出してサンプリング制御部61に入力する。サンプリング制御部61はAGC制御電圧が小さければ受信状態が良好であるからオーバサンプル数を小さくしてマッチトフィルタの動作速度を低速にし、AGC制御電圧が大きければ受信状態が不良であるからオーバサンプル数を大きくしてマッチトフィルタの動作速度を高速にする。なお、AGC制御電圧値に基づいて2段階又は数段階のオーバサンプル数の制御を行うことができる。
以上では、AGC増幅器のゲインをAGC制御電圧で制御して出力を一定にする場合である。AGC増幅器の替わりにステップアッテネータを用い、その減衰度を制御して出力を一定にすることもでき、かかる場合には、ステップアッテネータ制御電圧に基づいてオーバサンプル数を制御する。
【0023】
(c)第3実施例
図6は本発明の第3実施例の構成図であり、図1の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、RSSI検出部60を削除し、替わって同期検波器55aの出力信号(逆拡散信号)の電力を検出するパワー検出部70を設けている点、サンプリング制御部61が受信状態の良否を逆拡散信号電力により決定し、逆拡散信号電力に基づいてマッチトフィルタ58のオーバサンプル数を切り替える点である。
受信状態が良好の場合、逆拡散信号電力が大きくなり、逆に、受信状態が良好でない場合、逆拡散信号電力が小さくなる。パワー検出部70はこの逆拡散信号電力を検出してサンプリング制御部61に入力する。サンプリング制御部61はパワー検出70から入力する逆拡散信号電力を参照し、電力が大きければ受信状態は良好であるとみなしてオーバサンプル数を小さくしてマッチトフィルタの動作速度を低速にし、逆拡散信号電力が小さければ受信状態は良好でないと判定してオーバサンプル数を大きくしてマッチトフィルタの動作速度を高速にする。なお、サンプリング制御部61は逆拡散信号電力値に基づいて2段階又は数段階のオーバサンプル数の制御を行うことができる。
【0024】
基地局よりの拡散データ列を1つの基地局コード(拡散符号)を用いて受信するシングルコードの場合、逆拡散信号電力をそのまま制御パラメータに使用できる。しかし、ソフトハンドオフのように複数の基地局よりの拡散データ列を複数の基地局コードを用いて同時に受信するマルチコードの場合などは、各基地局よりの拡散データ列を逆拡散して得られる逆拡散信号電力のうち最小の電力を求め、該最小電力に基づいてオーバサンプル数を決定する。
図7は逆拡散信号電力の算出構成図で、MPは乗算器、AVRは平均値回路である。逆拡散、同期検波により得られたI信号(In-Phase 信号)、Q信号(Quadrature 信号)はI-Q複素表記するとI+jQ=(I2+Q2)1/2exp(jθ)となる。従って、乗算部MPでr=(I+jQ)とその複素共役r*=(I-jQ)を掛け合わせ、しかる後、平均値回路AVRで平均化して電力(I2+Q2)を出力する。
【0025】
(d)第4実施例
図8は本発明の第4実施例の構成図であり、図1の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、RSSI検出部60を削除している点、サンプリング制御部61が受信状態の良否をSIRにより決定し、SIR値に基づいてマッチトフィルタ58のオーバサンプル数を切り替える点である。第3実施例では逆拡散信号電力が大きければ受信状態が良好であるとしている。しかし、干渉波も大きい場合があり、かかる場合には良好な受信状態と云えない。すなわち、逆拡散信号電力が大きければ受信状態が良好であると必ずしも云えない。これに対して、受信状態が良好であれば必ずSIRが大きくなり、逆に、受信状態が良好でなければSIRが小さくなる。
SIR検出部56はSIRを検出してサンプリング制御部61に入力する。サンプリング制御部61はSIR検出部56から入力するSIRの大小を判断し、SIRが大きければ受信状態が良好であるからオーバサンプル数を小さくしてマッチトフィルタの動作速度を低速にし、SIRが小さければ受信状態が不良であるからオーバサンプル数を大きくしてマッチトフィルタの動作速度を高速にする。なお、サンプリング制御部61はSIRに基づいて2段階又は数段階のオーバサンプル数の制御を行うことができる。
【0026】
図9(a)はSIR検出装置の構成図である。図中、56aは信号点位置変更部であり、図9(b)に示すようにI−jQ複素平面における受信信号点の位置ベクトルR(I成分はRI、Q成分はRQ)を第1象限に縮退するものである。具体的には、信号点位置変更部56aは受信信号点の位置ベクトルRのI成分(同相成分)RI及びQ成分(直交成分)RQの絶対値をとって該位置ベクトルをI−jQ複素平面の第1象限信号に変換する。56bはNシンボル分の受信信号点位置ベクトルの平均値mを演算する平均値演算部、56cは平均値mのI,Q軸成分を二乗して加算することによりm2(希望信号の電力S)を演算する希望波電力演算部である。56dは受信信号点の位置ベクトルRのI成分RI、Q成分RQを二乗して加算することにより、すなわち次式
P=RI 2+RQ 2
を演算することにより、受信電力Pを計算する受信電力算出部である。56eは受信電力の平均値を演算する平均値演算部、56fは受信電力の平均値からm2(希望波電力S)を減算して干渉波電力Iを出力する減算器、56gは希望波電力Sと干渉波電力Iより次式
SIR=S/I
によりSIRを演算するSIR演算部である。
【0027】
(e)第5実施例
図10は本発明の第5実施例の構成図であり、図1の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、RSSI検出部60を削除し,替わってBER測定部80を設けている点、サンプリング制御部61が受信状態の良否をBER(Bit Error Rate)により決定し、BER値に基づいてマッチトフィルタ58のオーバサンプル数を切り替える点である。
符号判定/誤り訂正部55bはデータに予め付加されている誤り検出訂正用コード(Error Correction Code)を用いて誤り検出訂正を行い、識別した符号を出力すると共に、誤り検出時に誤り検出信号をBER測定部80に入力する。BER測定部80は誤り検出信号を計数し一定時間毎の誤り検出回数をBERとしてサンプリング制御部61に入力する。サンプリング制御部61はBERとしきい値との大小を判断し、BERが小さければ受信状態が良好であるからオーバサンプル数を小さくしてマッチトフィルタの動作速度を低速にし、BERが大きければ受信状態が良好でないからオーバサンプル数を大きくしてマッチトフィルタの動作速度を高速にする。なお、サンプリング制御部61はBERに基づいて2段階又は数段階のオーバサンプル数の制御を行うことができる。
【0028】
図11は第5実施例におけるオーバサンプル数切替制御の説明図で、1は4倍オーバサンプリング時(n=4)のBER-C/N比特性、2は8倍オーバサンプリング時のBER-C/N比特性、3は16倍オーバサンプリング時のBER-C/N比特性である。サンプリング数の変更判定しきい値をBER=1×10-5とすれば、図中の太線で示すようにオーバサンプリング数が遷移する。すなわち、C/N比>15.6dBでは4オーバーサンプル動作、13dB<C/N比<15.6dBでは8オーバーサンプル動作、C/N比<13dBでは16オーバーサンプル動作となる。
以上では、ECCコードによる誤り検出によりBERを測定した場合であるが、同期ワードなどのユニークワードや既知のビット列を送信側においてあらかじめスロット挿入しておき、受信側においてそのビット列を用いてフレーム単位等の一定時間内の平均ビットエラーレート(BER)を測定し、その測定結果に応じてマッチトフィルタ58のオーバーサンプル数を制御することもできる。
【0029】
(f)第6実施例
図12は本発明の第6実施例の構成図であり、複数段階にわたってオーバサンプル数を制御する実施例であり、第1〜第5実施例と同一部分には同一符号を付している。第6実施例は、▲1▼チャネル推定が不可能な制御の初期段階では受信電界強度(RSSI値)またはAGC制御電圧値に基づいてマッチトフィルタ58のオーバサンプル数の制御を行い、▲2▼逆拡散が可能となる次の段階では、逆拡散信号電力あるいはSIRに基づいてマッチトフィルタのオーバサンプル数の最適化制御を行い、▲3▼BERが得られる最後の段階では、BER値に基づいてマッチトフィルタのオーバーサンプル数を微調整する。
【0030】
すなわち、チャネル推定が不可能な制御の初期段階において、RSSI検出部60あるいはAGC電圧検出部65は、受信電界強度RSSIあるいはAGC制御電圧を検出し、サンプリング制御部61に入力する。サンプリング制御部61は該検出値に基づいてマッチトフィルタ58のオーバーサンプル数を制御する。
ついで、逆拡散可能状態になれば、SIR検出部56あるいは逆拡散信号電力検出部70はSIRあるいは逆拡散信号電力を検出し、サンプリング制御部61に入力する。サンプリング制御部61は該検出値に基づいてマッチトフィルタ58のオーバーサンプル数を制御する。
しかる後、BERが得られる状態になれば、BER測定部80はBERを測定してサンプリング制御部61に入力する。サンプリング制御部61は該BER値に基づいてマッチトフィルタ58のオーバーサンプル数を制御する。
【0031】
以上より、制御の初期段階からマッチトフィルタのオーバサンプル数を制御できるため高速のオーバサンプル数制御ができ、しかも、オーバサンプル数の最適化制御及びオーバサンプル数の収束時間の高速化が可能になる。
なお、以上では3段階でオーバサンプル数を制御した場合であるが、3段階のいずれかを省略して2段制御とするか、または各段階の検出をさらに分割し数段階の制御を行うように構成することができる。
又、各段階のオーバーサンプル数制御において、制御ループ収束の高速化および最適化のために、制御係数に重み付けを行うことも可能である。
以上、本発明を実施例により説明したが、本発明は請求の範囲に記載した本発明の主旨に従い種々の変形が可能であり、本発明はこれらを排除するものではない。
【0032】
【発明の効果】
以上本発明によれば、受信状態が良い場合にはオーバーサンプル数を少なくしてマッチトフィルタの動作速度を低速にし、受信状態が良好でない場合のみマッチトフィルタの動作速度を高速にして逆拡散タイミングの検出精度を向上するようにしたから、低消費電力化が可能となり、しかも、受信状態が良好でない場合であっても逆拡散タイミングの検出精度を向上することができる。
又、本発明によれば、受信状態を検出する受信状態検出部として、▲1▼受信電界強度を検出する受信電界強度検出部、▲2▼AGC回路の制御電圧を検出するAGC制御電圧検出部、▲3▼逆拡散後の信号パワーを検出するパワー検出部、▲4▼逆拡散後のSIRを検出するSIR検出部、▲5▼受信符号のビットエラーを検出するビットエラー検出部を用いることができる。このため、本発明によれば、適宜の手段を用いて低消費電力化及び逆拡散タイミングの検出精度の向上が可能になる。
【0033】
又、本発明によれば、制御の初期段階では受信電界強度またはAGC制御電圧に基づいてサンプリング速度を制御し、ついで、逆拡散信号電力またはSIRに基づいて、あるいは、更にビットエラーレートに基づいてサンプリング速度を制御するようにしたから、初期起動時などチャネル推定が未だ行われていない段階からマッチトフィルタのサンプリング速度を制御することができ、このため、サンプリング速度の最適化及び制御の収束時間を短縮でき、また、消費電力を小さくできる。
【図面の簡単な説明】
【図1】本発明の第1のCDMA受信機の構成図である。
【図2】無線部及びベースバンド部の構成図である。
【図3】サンプリング制御部の周辺回路構成例である。
【図4】オーバーサンプル数決定処理フローである。
【図5】本発明の第2のCDMA受信機の構成図である。
【図6】本発明の第3のCDMA受信機の構成図である。
【図7】電力算出構成図である。
【図8】本発明の第4のCDMA受信機の構成図である。
【図9】SIR検出装置の構成及び動作説明図である。
【図10】本発明の第5のCDMA受信機の構成図である。
【図11】第5実施例によるオーバサンプル数の切替制御説明図である。
【図12】本発明の第6のCDMA受信機の構成図である。
【図13】CDMA送信機の構造図である。
【図14】移動局の受信装置の構成図である。
【図15】マッチトフィルタの構成及び逆拡散タイミング特定法の説明図である。
【図16】オーバーサンプリング数と相関値出力の関係を示す説明図である。
【図17】サンプリング数状態遷移説明図である。
【符号の説明】
51・・アンテナ
52・・無線部
53・・ベースバンド部
54・・相関器(逆拡散回路)
55・・符号判定/誤り訂正部
56・・SIR検出部
57・・拡散符号列発生器
58・・マッチトフィルタ
59・・タイミング検出部
60・・RSSI検出部
61・・サンプリング制御部

Claims (8)

  1. 所定の拡散符号列で拡散したデータを含む信号を受信し、受信信号を所定サンプリング速度でサンプリングして得られる拡散データ列と参照符号列との相関値を演算し、相関値が最大となるタイミングを逆拡散開始タイミングとするCDMA受信機において、
    受信状態を検出する受信状態検出部、
    受信状態の良否に応じてサンプリング速度を決定するサンプリング制御部、
    受信信号を前記サンプリング速度でサンプリングしてなる拡散データ列と参照符号列との相関値を演算する相関器、
    相関値が最大となるタイミングを求めるタイミング検出部を備えたことを特徴とするCDMA受信機。
  2. サンプリング制御部は、受信状態が良好であればサンプリング速度が低くなるように制御することを特徴とする請求項1記載のCDMA受信機。
  3. 前記受信状態検出部は受信電界強度を検出する受信電界強度検出部を備え、サンプリング制御部は強電界時に相関器のオーバサンプル数を小さくし、弱電界時にオーバサンプル数を大きくすることを特徴とする請求項2記載のCDMA受信機。
  4. 前記受信状態検出部はAGC回路の制御電圧を検出するAGC制御電圧検出部を備え、サンプリング制御部はAGC制御電圧が小さい時に相関器のオーバサンプル数を小さくし、大きい時にオーバサンプル数を大きくすることを特徴とする請求項2記載のCDMA受信機。
  5. 前記受信状態検出部は逆拡散後の信号パワーを検出するパワー検出部を備え、サンプリング制御部は信号パワーが大きい時にオーバサンプル数を小さくし、小さい時にオーバサンプル数を大きくすることを特徴とする請求項2記載のCDMA受信機。
  6. 前記受信状態検出部は逆拡散後のSIR(信号干渉比)を検出するSIR検出部を備え、サンプリング制御部はSIRが大きい時に相関器のオーバサンプル数を小さくし、小さい時にオーバサンプル数を大きくすることを特徴とする請求項2記載のCDMA受信機。
  7. 前記受信状態検出部は受信符号のビットエラーレートを検出するビットエラーレート検出部を備え、サンプリング制御部はビットエラーレートが小さい時に相関器のオーバサンプル数を小さくし、大きい時にオーバサンプル数を大きくすることを特徴とする請求項2記載のCDMA受信機。
  8. 前記サンプリング制御部は、制御の初期段階では受信電界強度またはAGC制御電圧に応じてサンプリング速度を制御し、ついで、逆拡散後の信号パワーまたはSIRに応じてサンプリング速度を制御し、更にビットエラーレートを取得できるようになれば該ビットエラーレートに応じてサンプリング速度を制御することを特徴とする請求項1記載のCDMA受信機。
JP25268798A 1998-09-07 1998-09-07 Cdma受信機 Expired - Lifetime JP3967472B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25268798A JP3967472B2 (ja) 1998-09-07 1998-09-07 Cdma受信機
US09/348,938 US6507603B1 (en) 1998-09-07 1999-07-07 CDMA receiver
GB9917828A GB2342019B (en) 1998-09-07 1999-07-29 CDMA receivers
KR19990031769A KR100547551B1 (ko) 1998-09-07 1999-08-03 Cdma 수신기
CNB991183843A CN1242583C (zh) 1998-09-07 1999-09-03 Cdma接收器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25268798A JP3967472B2 (ja) 1998-09-07 1998-09-07 Cdma受信機

Publications (2)

Publication Number Publication Date
JP2000082975A JP2000082975A (ja) 2000-03-21
JP3967472B2 true JP3967472B2 (ja) 2007-08-29

Family

ID=17240853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25268798A Expired - Lifetime JP3967472B2 (ja) 1998-09-07 1998-09-07 Cdma受信機

Country Status (5)

Country Link
US (1) US6507603B1 (ja)
JP (1) JP3967472B2 (ja)
KR (1) KR100547551B1 (ja)
CN (1) CN1242583C (ja)
GB (1) GB2342019B (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251261B2 (ja) 1999-04-21 2002-01-28 エヌイーシーモバイリング株式会社 Cdma受信装置
JP3519338B2 (ja) * 2000-03-24 2004-04-12 松下電器産業株式会社 受信装置及び利得制御方法
JP3424748B2 (ja) * 2000-05-25 2003-07-07 日本電気株式会社 Cdma受信装置およびレート整合処理方法
ATE326794T1 (de) * 2000-06-06 2006-06-15 Lucent Technologies Inc Kodeangepasstes filter für einen cdma funk- diversity-empfänger
AU2002249280A1 (en) * 2001-03-26 2002-10-08 Ecole Polytechnique Federale De Lausanne (Epfl) Sampling method, reconstruction method, and device for sampling and/or reconstructing signals
KR100523663B1 (ko) 2001-04-09 2005-10-24 마쯔시다덴기산교 가부시키가이샤 동기검출장치
KR100746460B1 (ko) * 2001-04-20 2007-08-03 주식회사 케이티 숏 코드 정합필터를 이용한 시각 동기신호 복조 장치 및 그 방법
JP4679768B2 (ja) * 2001-08-31 2011-04-27 三菱電機株式会社 軟判定復号装置及び軟判定復号方法
JP3479845B2 (ja) * 2001-11-21 2003-12-15 日本電気株式会社 Cdma受信装置と、その基地局、及びその受信信号を逆拡散するための受信タイミングの検出方法
GB2385498A (en) * 2002-02-13 2003-08-20 Pa Consulting Services Adjustable baseband processing of telecommunications signals
WO2004025975A2 (en) * 2002-09-11 2004-03-25 George Mason Intellectual Properties, Inc. Cellular network handoff decision mechanism
US7599629B2 (en) * 2003-06-06 2009-10-06 Scientific-Atlanta, Inc. Optical receiver having an open loop automatic gain control circuit
JP4097615B2 (ja) * 2004-03-23 2008-06-11 三洋電機株式会社 信号検出方法および装置ならびにそれを利用した送信装置および受信装置
JP4424145B2 (ja) * 2004-10-06 2010-03-03 日本電気株式会社 ソフトハンドオーバー制御方法、制御プログラム及び移動通信端末装置
US7903768B2 (en) * 2005-01-31 2011-03-08 St-Ericsson Sa Method and apparatus for implementing matched filters in a wireless communication system
US20090279650A1 (en) * 2006-03-03 2009-11-12 Nxp B.V. Method and apparatus for generating clock signals for quadrature sampling
JP4687510B2 (ja) * 2006-03-08 2011-05-25 日本電気株式会社 移動通信端末における信号処理システム及びその方法並びにそれを用いた移動通信端末
JP4182448B2 (ja) 2006-07-27 2008-11-19 ソニー株式会社 受信装置、受信方法、プログラム、並びに、記録媒体
JP4304632B2 (ja) * 2006-10-12 2009-07-29 ソニー株式会社 受信装置、受信方法、プログラム、並びに、記録媒体
JP4985386B2 (ja) * 2007-12-25 2012-07-25 住友電気工業株式会社 受信装置
US8111783B2 (en) * 2008-06-17 2012-02-07 Cisco Technology, Inc. Capturing and using radio events
US20100061424A1 (en) * 2008-09-09 2010-03-11 International Business Machines Corporation Spread Spectrum Controller with Bit Error Rate Feedback
US8374297B2 (en) * 2008-09-15 2013-02-12 Intel Corporation Circuit, controller and methods for dynamic estimation and cancellation of phase and gain imbalances in quadrature signal paths of a receiver
US8737547B2 (en) * 2009-10-26 2014-05-27 Indian Institute Of Science Adaptive digital baseband receiver
KR101363385B1 (ko) * 2009-12-18 2014-02-14 한국전자통신연구원 위치추적 시스템의 수신기
US8731118B2 (en) 2010-07-01 2014-05-20 Intelleflex Corporation Data clock recovery loop jam set using subcarrier frequency estimate
JP2012235328A (ja) * 2011-05-02 2012-11-29 Renesas Electronics Corp 周波数補正回路、無線受信装置、及び周波数補正方法
US9214970B2 (en) * 2013-10-15 2015-12-15 Alcatel Lucent Method of receiving a signal in a wireless communication network and associated network elements
EP3135010A4 (en) * 2014-04-25 2017-11-22 The Regents of The University of Michigan Short-range zigbee compatible receiver with near-threshold digital baseband

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321721A (en) 1991-09-13 1994-06-14 Sony Corporation Spread spectrum communication system and transmitter-receiver
JP3106818B2 (ja) * 1993-11-29 2000-11-06 株式会社村田製作所 ディジタル無線受信方法および装置
JP3269959B2 (ja) * 1996-01-16 2002-04-02 株式会社日立国際電気 相関フィルタ及びcdma受信装置
JP2751959B2 (ja) * 1996-07-15 1998-05-18 日本電気株式会社 Cdma受信装置の受信タイミング検出回路
JP3376224B2 (ja) * 1996-10-23 2003-02-10 株式会社エヌ・ティ・ティ・ドコモ Ds−cdma基地局間非同期セルラ方式における初期同期方法および受信機
JP3408944B2 (ja) 1997-04-24 2003-05-19 シャープ株式会社 スペクトル直接拡散通信システムにおける復調装置及び同システムにおける相関器
KR100258138B1 (ko) * 1997-10-08 2000-06-01 윤종용 가변샘플링율을이용한송수신장치및방법

Also Published As

Publication number Publication date
GB9917828D0 (en) 1999-09-29
KR20000022685A (ko) 2000-04-25
GB2342019B (en) 2003-06-04
GB2342019A (en) 2000-03-29
JP2000082975A (ja) 2000-03-21
US6507603B1 (en) 2003-01-14
KR100547551B1 (ko) 2006-01-31
CN1251485A (zh) 2000-04-26
CN1242583C (zh) 2006-02-15

Similar Documents

Publication Publication Date Title
JP3967472B2 (ja) Cdma受信機
KR100858208B1 (ko) 무선 통신 시스템에서 수신 신호의 간섭을 정확하게추정하기 위한 시스템 및 방법
JP2937994B1 (ja) セルラーシステムと移動携帯機、基地局装置、及び最適パス検出方法とその装置
JP4653917B2 (ja) 直交送信ダイバーシティ信号の品質を測定し調整するための方法とシステム
US6310856B1 (en) CDMA communications system having a searcher receiver and method therefor
TWI410069B (zh) 自動改正接收器振盪器頻率之方法及裝置
JP2003198427A (ja) Cdma受信装置
US8031757B2 (en) Time divided pilot channel detection processing in a WCDMA terminal having a shared memory
US7894508B2 (en) WCDMA terminal baseband processing module having cell searcher module
KR20020067613A (ko) 무선 통신 시스템에서 퀵 페이징 채널 복조를 용이하게하는 시스템 및 방법
JP3373457B2 (ja) 無線受信装置及び無線受信方法
AU745469B2 (en) Reception method and apparatus in CDMA system
US6707846B1 (en) Correlation energy detector and radio communication apparatus
US6724808B1 (en) Transmission power control method of measuring Eb/N0 after weighted signals are combined
JP3628247B2 (ja) 信号復調方法および受信装置
JP4065320B2 (ja) 多重アンテナを利用する信号捕捉およびチャネル推定の方法および装置
JP2002171210A (ja) ダイバーシチー受信回路
JPH0758665A (ja) スペクトル拡散通信用受信方法及び装置
JP2001168780A (ja) ダイバーシチー受信装置
JP2003209494A (ja) 移動無線端末装置
JP3610401B2 (ja) 相関エネルギー検出器
JP4022732B2 (ja) 遅延プロファイル決定方法および装置
JPH10224267A (ja) スペクトル拡散通信装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term