JP3814170B2 - Method and apparatus for cooling hot dipped steel sheet - Google Patents
Method and apparatus for cooling hot dipped steel sheet Download PDFInfo
- Publication number
- JP3814170B2 JP3814170B2 JP2001240682A JP2001240682A JP3814170B2 JP 3814170 B2 JP3814170 B2 JP 3814170B2 JP 2001240682 A JP2001240682 A JP 2001240682A JP 2001240682 A JP2001240682 A JP 2001240682A JP 3814170 B2 JP3814170 B2 JP 3814170B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel sheet
- nozzle
- plated steel
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、連続溶融メッキ工程において、溶融メッキしたメッキ鋼板を冷却する方法及びその装置に関するもので、特に、冷却時のメッキ鋼板のバタツキを防止し、かつメッキ鋼板の通板方向のメッキ付着量差のバラツキによるメッキ外観不良を防止する冷却方法及びその装置に関するものである。
【0002】
【従来の技術】
溶融亜鉛メッキや溶融亜鉛合金メッキ等の溶融メッキプロセスにおいては、メッキ後にガスまたは水等を冷媒として冷却する方法が一般的である。冷却方法を大別すると、溶融メッキ後にメッキが凝固した後にメッキ鋼板を冷却する冷却方法と、メッキ凝固前に冷却する冷却方法との2つの冷却方法がある。メッキが凝固した後にメッキ鋼板を冷却する冷却方法はメッキ表面外観に影響を与えにくく、鋼板幅方向への冷却速度が比較的変動しても製品問題となりにくい。しかし、メッキ凝固前に冷却する冷却方法はメッキ表面外観に影響を与えやすく、例えば特開平08−269664号公報に記載されているように、溶融メッキ浴から引き上げられた溶融メッキ鋼板の目付け量を調整してから直ちに冷却装置において溶融メッキ鋼板を冷却し、該冷却装置の鋼板走行方向に沿って冷却速度を制御するとともに、該冷却装置による冷却開始時に溶融メッキ鋼板を急冷することによってゼロスパングル外観を制御する冷却方法や、特開平11−106881号公報に記載されているように、メッキ浴上に導出されたメッキ鋼板に冷媒流体を吹き付けるノズル集合体を、上下に分割された複数段の冷媒流体吹出しゾーンで構成すると共に、冷媒送給ダクトのそれぞれに冷媒吐出量調節器を設け風量調整する冷却方法がある。これらはメッキ後に目付け制御を行った後にメッキ鋼板を冷却する冷却方法を開示したものである。
【0003】
【発明が解決しようとする課題】
しかし、近年高耐食性メッキ鋼板の要求があり、メッキ凝固範囲が広いメッキ製品が開発され始めた。その場合には、メッキ後の冷却量は従来よりも大幅に冷却する必要がある。従来は、例えば、特開平08−269664号公報に記載されているようにスリットノズルのみで冷却を行うとスリットノズルは幅方向冷却速度の均一性は良好であるが、冷却効率は幅方向長さ方向均一ピッチに設置されたノズルよりも悪い。このため冷却効率を上げるにはスリットノズルの吐出流速を大きく上げる必要がある。ところが吐出流速を大きくすると鋼板衝突流速が非常に大きくなるため、メッキ鋼板のバタツキが激しくなり、その結果鋼板通板方向のメッキ付着量差にバラツキが生じ、メッキ外観不良が発生するという問題がある。
【0004】
そこで、上記問題点に鑑み、本発明は、メッキ鋼板を冷却する際に、メッキ鋼板のバタツキを防止し、かつメッキ付着量差のバラツキによるメッキ外観不良を防止することを解決課題とするものである。
【0005】
【課題を解決するための手段】
本発明者は、連続溶融メッキ工程における冷却時のメッキ鋼板のメッキ外観不良防止について研究した。即ち、水平スリットノズルの冷媒吐出流速度を大きく上げてメッキ鋼板を冷却すると、メッキ鋼板のバタツキが生じ、メッキ外観不良が発生するので、メッキ鋼板のバタツキを防止する技術について研究を進めた。その結果、水平スリットノズルの冷却帯域による冷却と、メッキ鋼板幅及び長さ方向に等ピッチで冷媒吐出口を設けたノズルの冷却帯域とによる冷却とを併用することにより、メッキ鋼板のバタツキが防止でき、鋼板通板方向のメッキ付着量差のバラツキによるメッキ外観不良が防止できることを知見した。本発明はこの知見に基づいて完成したもので、その発明の要旨は次の通りである。
【0006】
(1) 焼鈍後の鋼板を、溶融メッキ浴に浸漬して溶融メッキした後、メッキ鋼板を冷却する際に、まずメッキ鋼板の板幅方向に延びた多段からなる水平スリットノズルの冷却帯域で冷却し、次いでメッキ鋼板の板幅及び長さ方向に等ピッチで冷媒吐出口が設けられたノズルの冷却帯域で冷却することを特徴とする溶融メッキ鋼板の冷却方法。
【0007】
(2) スリットノズルの冷却帯域入側と鋼板幅及び長さ方向に等ピッチで冷媒吐出口を設置したノズルの冷却帯域出側の少なくとも2ヶ所に板温計を設置し、該板温計で検出した板温及び通板サイズによって各ノズル冷却帯域の冷媒吐出量を調整することを特徴とする上記(1)記載の溶融メッキ鋼板の冷却方法。
【0008】
(3) メッキ鋼板の板幅及び長さ方向に等ピッチで冷媒吐出口が設けられたノズルの冷却帯域でノズル吐出流速20m/s以上で冷却を行う場合には、溶融メッキ鋼板の温度がメッキ凝固温度+30℃からメッキ凝固温度までは、ノズル吐出バラツキ±20%以下となるように調整することを特徴とする上記(1)または(2)に記載の溶融メッキ鋼板の冷却方法。
【0009】
(4) 焼鈍後の鋼板を、溶融メッキ浴に浸漬して溶融メッキした後に、メッキ鋼板を冷却する冷却装置において、メッキ鋼板の板幅方向に延びた多段からなる水平スリットノズルの冷却帯域、該水平スリットノズルの冷却帯域の後にメッキ鋼板の板幅及び長さ方向に等ピッチで冷媒吐出口が設けられたノズルの冷却帯域を備えていることを特徴とする溶融メッキ鋼板の冷却装置。
【0010】
(5) 前記スリットノズルの冷却帯域入側及び前記等ピッチが冷媒吐出口を設置したノズルの冷却帯域出側の少なくとも2ヶ所に板温計を設置したことを特徴とする上記(4)記載の溶融メッキ鋼板の冷却装置。
【0011】
(6) 各冷却帯域のノズルから吐出する冷媒吐出量を調整する冷媒吐出量調整装置を備えていることを特徴とする上記(4)または(5)記載の溶融メッキ鋼板の冷却装置。
【0012】
【発明の実施の形態】
以下、本発明を図に基づいて詳細に説明する。
【0013】
図1は、本発明の溶融亜鉛メッキや溶融亜鉛合金メッキ等の溶融メッキ鋼板の冷却装置の概要を示す図である。
【0014】
図1に示すように、焼鈍された鋼板は、連続溶融メッキ工程の溶融メッキ浴1に浸漬される。溶融メッキ溶でメッキされ、シンクロールを周回して垂直に引き上げられたメッキ鋼板5は、エアーナイフ2でメッキ付着量を所定の付着量に調整される。その後、溶融状態或いは半溶融状態の未凝固メッキ皮膜を有する鋼板5は、メッキ鋼板の板幅方向に延びた多段からなる水平スリットノズル7を配置した第1の冷却帯域3で冷却され、次いでメッキ鋼板の板幅及び長さ方向に等ピッチで冷媒吐出口が設けられたノズル8の第2の冷却帯域6で冷却される。
【0015】
第1の冷却帯域では、多段の水平スリットノズルが鋼板の移動方向(パスライン方向)に略一定ピッチで形成されていて、スリットノズルから吐出される冷媒吐出量を調整できる冷媒吐出量調整装置が設けられている。
【0016】
また、メッキ鋼板の板幅及び長さ方向に等ピッチで冷媒吐出口が設けられたノズルの第2の冷却帯域においても、第1の冷却帯域と同様にノズルから吐出される冷媒吐出量を調整できる冷媒吐出量調整装置が設けられている。
【0017】
冷却媒体としては、気体(空気)、気体と液体との混合物などを用いることができ、格別の制限はない。
【0018】
冷媒吐出量の調整では、図1に示すように、スリットノズルの第1の冷却帯域3入側と鋼板幅及び長さ方向に等ピッチで吐出口を設置したノズルの第2の冷却帯域6出側との2ヶ所に板温計4を設置し、この板温計4によりメッキ鋼板の板温を測定する。メッキ鋼板の板温と冷媒吐出量との関係を前もって決定しておき、測定した板温に応じて冷媒吐出量を調整する。冷媒吐出量の調整は、ノズル吐出口への冷媒を供給する冷媒供給ダクトにコントロールダンパー等の流量調整器を設け、これの開閉度を制御することによって行うことができる。またメッキ鋼板のサイズによって冷却熱容量が異なるため、メッキ鋼板のサイズに応じて冷媒吐出量を調整する必要もある。したがって、本発明ではメッキ鋼板の板温及び通板サイズによって各ノズル冷却帯域の冷媒吐出量を調整するものである。
【0019】
前記図1の例では、板温計4を2ヶ所に設けたが、さらに2つの冷却帯域の間に板温計を設置すれば、一層冷却精度の良い冷媒吐出量の調整を行うことができる。
【0020】
本発明において、ノズル形状の異なる2つの冷却帯域を設けることで、冷却の際のメッキ鋼板のバタツキが防止できる理由は明確ではないが、ノズル形状が異なることで、メッキ鋼板へ衝突する冷却媒体によって引き起こされる振動が緩和され、バタツキが防止できるものと考えられる。その結果、鋼板通板方向のメッキ付着量のバラツキが防止できる。
【0021】
なお、本発明における溶融メッキとしては、亜鉛や亜鉛合金、アルミニウムやアルミニウム合金並びに錫や錫合金等の従来用いられている溶融メッキに適用できる。
【0022】
また、第2の冷却帯域における未凝固のメッキ層を有する鋼板の冷却条件について検討すると、ノズル吐出流速と板幅方向の吐出流速バラツキの条件によっては風紋と呼ばれるメッキ外観不良が発生することが見出された。
【0023】
図2は、ノズル吐出流速と板幅方向の吐出流速バラツキとの関係により風紋が発生することを示す図である。
【0024】
図2に示すように未凝固のメッキ層を有する鋼板の冷却条件として、吐出流速が20m/s以上で、ノズル吐出バラツキが±20%を超えると風紋が発生することがわかる。なお、図2中において○印は風紋発生なし、×印は風紋発生があったことを示している。
【0025】
したがって、本発明では、第2の冷却帯域においてメッキ凝固温度+30℃からメッキ凝固温度までの未凝固状態のメッキ層を有する鋼板を冷却する最適条件として、ノズル吐出流速20m/s以上の条件では、ノズル吐出バラツキ±20%以下とした。
【0026】
【実施例】
下記に実施例を示す。
【0027】
図1に示す装置を用いて溶融Zn−11%Al系メッキ鋼板の冷却試験を行った。
【0028】
第1の冷却帯域3には水平スリットノズル7を、そして第2の冷却帯域6には丸ノズル8を配置した。冷却条件としては、冷却帯域3入口板温及び冷却帯域6の出口板温を一定とし、冷却帯域3及び6の吐出風速を変えた場合の鋼板振動状態及び風紋発生有無を調査した。その結果を表1に示す。なお、ここで風紋とは鋼板5が第2の冷却帯域6の幅方向の吐出流速バラツキによって発生するメッキ外観不良である。
【0029】
【表1】
【0030】
表1に示す結果から、水準1及び2のようにスリットノズル吐出流速が大きい場合にはメッキ付着量のバラツキが大きく、また水準5及び6のように丸ノズル吐出流速が大きい場合には風紋の発生があり、これら両者の吐出流速を適正な範囲で組み合わせることにより水準3及び4のようにメッキ外観良好な製品を製造することができた。
【0031】
【発明の効果】
本発明によれば、連続溶融メッキ工程において、メッキ鋼板を冷却する際に、メッキ鋼板のバタツキを防止でき、かつメッキ鋼板の通板方向のメッキ付着量差のバラツキによるメッキ外観不良を効果的に防止できるという顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の溶融メッキ鋼板の冷却装置の概要を示す図である。
【図2】ノズル吐出流速と板幅方向の吐出流速バラツキとの関係により風紋が発生することを示す図である。
【符号の説明】
1 メッキ浴
2 エアーナイフ
3 第1の冷却帯域
4 板温計
5 メッキ鋼板
6 第2の冷却帯域
7 水平スリットノズル
8 丸ノズル
9 吐出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for cooling a hot-dip plated steel sheet in a continuous hot-dip plating process, and in particular, prevents the plating steel sheet from fluttering during cooling, and the amount of plating adhesion in the plate-passing direction of the plated steel sheet. The present invention relates to a cooling method and apparatus for preventing poor plating appearance due to variation in difference.
[0002]
[Prior art]
In a hot dip plating process such as hot dip galvanization or hot dip zinc alloy plating, a method of cooling gas or water as a refrigerant after plating is common. The cooling methods can be roughly divided into two cooling methods: a cooling method for cooling the plated steel plate after the plating has solidified after the hot dipping, and a cooling method for cooling before the solidification of the plating. The cooling method for cooling the plated steel sheet after the plating has solidified hardly affects the appearance of the plated surface, and even if the cooling rate in the width direction of the steel sheet fluctuates relatively, it does not cause a product problem. However, the cooling method of cooling before plating solidification tends to affect the appearance of the plating surface. For example, as described in Japanese Patent Application Laid-Open No. 08-269664, the basis weight of the hot dip plated steel sheet pulled up from the hot dip bath is reduced. Immediately after adjustment, the hot dip plated steel sheet is cooled in the cooling device, and the cooling rate is controlled along the steel plate traveling direction of the cooling device, and the hot dip plated steel plate is rapidly cooled at the start of cooling by the cooling device, so that the zero spangle appearance A cooling method for controlling the temperature, and a nozzle assembly that sprays a refrigerant fluid on a plated steel sheet led out onto a plating bath as described in Japanese Patent Application Laid-Open No. 11-106881 Cooling method comprising a fluid blowing zone and adjusting the air volume by providing a refrigerant discharge amount regulator in each of the refrigerant supply ducts A. These disclose a cooling method for cooling a plated steel sheet after performing a basis weight control after plating.
[0003]
[Problems to be solved by the invention]
However, in recent years, there has been a demand for highly corrosion-resistant plated steel sheets, and plated products with a wide plating solidification range have begun to be developed. In that case, the cooling amount after plating needs to be significantly cooled compared to the conventional case. Conventionally, for example, as described in Japanese Patent Application Laid-Open No. 08-269664, when cooling is performed only with a slit nozzle, the slit nozzle has good uniformity in the cooling rate in the width direction, but the cooling efficiency is the length in the width direction. Worse than nozzles installed at a uniform pitch in the direction. For this reason, in order to increase the cooling efficiency, it is necessary to greatly increase the discharge flow rate of the slit nozzle. However, when the discharge flow rate is increased, the steel plate collision flow rate becomes very large, so that the fluttering of the plated steel plate becomes severe, resulting in a variation in the amount of plating adhesion in the plate passing direction, resulting in a defective plating appearance. .
[0004]
Accordingly, in view of the above problems, the present invention has an object to solve the problem of preventing the appearance of the plated steel sheet from fluctuating and the plating appearance defect due to the difference in the amount of plating adhesion when cooling the plated steel sheet. is there.
[0005]
[Means for Solving the Problems]
The inventor has studied the prevention of plating appearance defects of the plated steel sheet during cooling in the continuous hot dipping process. That is, if the plated steel sheet is cooled by greatly increasing the refrigerant discharge flow rate of the horizontal slit nozzle, the plated steel sheet flutters and the appearance of the plating deteriorates. Therefore, research has been conducted on a technique for preventing the plated steel sheet flutter. As a result, the cooling by the cooling zone of the horizontal slit nozzle and the cooling by the cooling zone of the nozzle provided with the coolant discharge ports at equal pitches in the width and length direction of the plated steel plate can be used together to prevent fluttering of the plated steel plate. It has been found that poor plating appearance due to variations in the amount of plating adhesion in the sheet passing direction can be prevented. The present invention has been completed based on this finding, and the gist of the invention is as follows.
[0006]
(1) After the annealed steel sheet is immersed in a hot dipping bath and hot-dip plated, when the plated steel sheet is cooled, it is first cooled in the cooling zone of a multi-stage horizontal slit nozzle extending in the plate width direction of the plated steel sheet. And then cooling in a cooling zone of a nozzle provided with coolant discharge ports at equal pitches in the plate width and length direction of the plated steel plate.
[0007]
(2) Plate thermometers are installed at at least two locations on the cooling zone entry side of the slit nozzle and on the cooling zone exit side of the nozzle where the refrigerant discharge ports are installed at equal pitches in the width and length direction of the steel plate. The method for cooling a hot dipped steel sheet according to (1) above, wherein the refrigerant discharge amount of each nozzle cooling zone is adjusted according to the detected plate temperature and through plate size.
[0008]
(3) When cooling is performed at a nozzle discharge flow rate of 20 m / s or more in the cooling zone of the nozzle in which the refrigerant discharge ports are provided at equal pitches in the plate width and length direction of the plated steel plate, the temperature of the hot-dip steel plate is plated. The method for cooling a hot-dip plated steel sheet according to (1) or (2) above, wherein the solidification temperature + 30 ° C. to the plating solidification temperature is adjusted so that the nozzle discharge variation is ± 20% or less.
[0009]
(4) In a cooling device that cools a plated steel sheet after the annealed steel sheet is immersed in a hot dipping bath and hot-dip plated, the cooling zone of a multi-stage horizontal slit nozzle extending in the plate width direction of the plated steel sheet, A cooling apparatus for a hot-dip plated steel sheet, comprising a cooling zone for a nozzle provided with coolant discharge ports at equal pitches in the plate width and length direction of the plated steel plate after the cooling zone of the horizontal slit nozzle.
[0010]
(5) The thermometer according to (4) above, wherein plate thermometers are installed at at least two locations on the cooling zone entry side of the slit nozzle and on the cooling zone exit side of the nozzle where the equal pitch is installed on the refrigerant discharge port. Cooling equipment for hot dipped steel sheet.
[0011]
(6) The cooling apparatus for a hot-dip galvanized steel sheet according to (4) or (5) above, comprising a refrigerant discharge amount adjusting device for adjusting a refrigerant discharge amount discharged from a nozzle in each cooling zone.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a diagram showing an outline of a cooling apparatus for hot-dip galvanized steel sheets such as hot dip galvanizing and hot dip zinc alloy plating according to the present invention.
[0014]
As shown in FIG. 1, the annealed steel sheet is immersed in a hot dipping bath 1 in a continuous hot dipping process. The plated steel sheet 5 plated by hot dip plating and pulled up vertically around the sink roll is adjusted by the air knife 2 so that the plating adhesion amount is a predetermined adhesion amount. Thereafter, the steel plate 5 having an unsolidified plating film in a molten state or a semi-molten state is cooled in the
[0015]
In the first cooling zone, a multistage horizontal slit nozzle is formed at a substantially constant pitch in the moving direction (pass line direction) of the steel plate, and a refrigerant discharge amount adjusting device capable of adjusting the refrigerant discharge amount discharged from the slit nozzle is provided. Is provided.
[0016]
Also, in the second cooling zone of the nozzle in which the refrigerant discharge ports are provided at equal pitches in the plate width and length direction of the plated steel plate, the refrigerant discharge amount discharged from the nozzle is adjusted similarly to the first cooling zone. A refrigerant discharge amount adjusting device capable of performing the operation is provided.
[0017]
As the cooling medium, gas (air), a mixture of gas and liquid, or the like can be used, and there is no particular limitation.
[0018]
In the adjustment of the refrigerant discharge amount, as shown in FIG. 1, the second cooling zone 6 of the nozzle in which the outlets are installed at equal pitches in the
[0019]
In the example of FIG. 1, the plate thermometers 4 are provided at two locations. However, if a plate thermometer is further installed between the two cooling zones, the refrigerant discharge amount can be adjusted with better cooling accuracy. .
[0020]
In the present invention, by providing two cooling zones with different nozzle shapes, it is not clear why the plated steel sheet can be prevented from fluttering during cooling, but the nozzle shape is different, depending on the cooling medium that collides with the plated steel sheet. It is considered that the induced vibration is mitigated and flutter can be prevented. As a result, it is possible to prevent variations in the amount of plating attached in the steel plate passing direction.
[0021]
In addition, as the hot dipping in the present invention, it can be applied to conventionally used hot dipping such as zinc, zinc alloy, aluminum, aluminum alloy and tin, tin alloy.
[0022]
Further, when examining the cooling conditions of the steel sheet having an unsolidified plating layer in the second cooling zone, it can be seen that a plating appearance defect called a wind ripple occurs depending on the conditions of the nozzle discharge flow rate and the discharge flow rate variation in the plate width direction. It was issued.
[0023]
FIG. 2 is a diagram showing that a wind pattern is generated due to the relationship between the nozzle discharge flow rate and the discharge flow rate variation in the plate width direction.
[0024]
As shown in FIG. 2, it can be seen that, as a cooling condition for a steel sheet having an unsolidified plated layer, a wind ripple occurs when the discharge flow rate is 20 m / s or more and the nozzle discharge variation exceeds ± 20%. In FIG. 2, a circle mark indicates that no wind pattern has occurred, and a x mark indicates that a wind pattern has occurred.
[0025]
Therefore, in the present invention, in the second cooling zone, as the optimum condition for cooling the steel sheet having the unsolidified plating layer from the plating solidification temperature + 30 ° C. to the plating solidification temperature, the nozzle discharge flow rate is 20 m / s or more, Nozzle discharge variation ± 20% or less.
[0026]
【Example】
Examples are shown below.
[0027]
Using the apparatus shown in FIG. 1, a cooling test was performed on a molten Zn-11% Al-based plated steel sheet.
[0028]
A horizontal slit nozzle 7 is arranged in the
[0029]
[Table 1]
[0030]
From the results shown in Table 1, when the slit nozzle discharge flow rate is high as in levels 1 and 2, the amount of plating adhesion is large, and when the round nozzle discharge flow rate is high as in levels 5 and 6, wind ripples are generated. A product with a good plating appearance like
[0031]
【The invention's effect】
According to the present invention, in the continuous hot dipping process, when the plated steel sheet is cooled, it is possible to prevent the plated steel sheet from fluctuating, and to effectively prevent the plating appearance defect due to the variation in the plating adhesion amount in the plate passing direction of the plated steel sheet. There is a remarkable effect that it can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a cooling apparatus for hot-dip plated steel sheets according to the present invention.
FIG. 2 is a diagram showing that a wind pattern is generated due to the relationship between the nozzle discharge flow rate and the discharge flow rate variation in the plate width direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plating bath 2
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240682A JP3814170B2 (en) | 2001-08-08 | 2001-08-08 | Method and apparatus for cooling hot dipped steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240682A JP3814170B2 (en) | 2001-08-08 | 2001-08-08 | Method and apparatus for cooling hot dipped steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003049257A JP2003049257A (en) | 2003-02-21 |
JP3814170B2 true JP3814170B2 (en) | 2006-08-23 |
Family
ID=19071253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001240682A Expired - Fee Related JP3814170B2 (en) | 2001-08-08 | 2001-08-08 | Method and apparatus for cooling hot dipped steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3814170B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2919877B1 (en) * | 2007-08-10 | 2009-10-09 | Siemens Vai Metals Tech Sas | COOLING DEVICE AFTER GALVANIZING A BANDED PRODUCT |
US10501838B2 (en) | 2014-10-24 | 2019-12-10 | Nippon Steel Corporation | Cooling device for hot-dip plated steel sheet |
JP7473803B2 (en) | 2020-06-24 | 2024-04-24 | 日本製鉄株式会社 | Cooling system |
-
2001
- 2001-08-08 JP JP2001240682A patent/JP3814170B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003049257A (en) | 2003-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201619411A (en) | Continuous hot-dip metal plating method, hot-dip zinc-plated steel strip, and continuous hot-dip metal plating equipment | |
CA1240570A (en) | Differentially coated galvanized steel strip and method and apparatus for producing same | |
JP3814170B2 (en) | Method and apparatus for cooling hot dipped steel sheet | |
JP6500846B2 (en) | Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment | |
JP3617473B2 (en) | Method for producing hot dip galvanized steel sheet | |
JPH05247619A (en) | Vertical type galvannealing furnace for manufacturing galvannealed steel sheet | |
JP3888784B2 (en) | Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet | |
JP3762722B2 (en) | Cooling apparatus and cooling method for hot dipped steel sheet | |
US4528935A (en) | Differentially coated galvanized steel strip and method and apparatus for producing same | |
JP5386779B2 (en) | Method and apparatus for manufacturing hot-dip galvanized steel sheet | |
JP2964905B2 (en) | Method and apparatus for cooling hot-dip coated steel sheet | |
JP4410653B2 (en) | Alloying furnace outlet side water cooling method | |
EP4130328A1 (en) | Device for cooling a metal strip with a hot dip coating of high thickness | |
US20240352569A1 (en) | Method for manufacturing hot-dip metal-coated steel strip | |
KR101353547B1 (en) | Cooling device of continuous galvanizing line | |
JP4777158B2 (en) | Hot-dip galvanized wire and its cooling device | |
US20220064773A1 (en) | Apparatus for cooling metal material | |
JPS5937345B2 (en) | Molten metal plating method | |
JP3535131B2 (en) | Manufacturing method of hot dip galvanized steel strip | |
US4588658A (en) | Differentially coated galvanized steel strip | |
JPH0645854B2 (en) | Manufacturing method of beautiful zero spangle steel sheet | |
JP2002241918A (en) | Method for producing hot dip plated steel sheet and production equipment therefor | |
JP2004059945A (en) | Method for manufacturing steel sheet hot-dipped with multicomponent metal superior in surface quality | |
KR20040057723A (en) | Apparatus for hot-dipcoating without using a roll | |
JPH09195022A (en) | Method for controlling coating weight of hot dip method coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060602 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3814170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |