Nothing Special   »   [go: up one dir, main page]

JP3888784B2 - Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet - Google Patents

Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet Download PDF

Info

Publication number
JP3888784B2
JP3888784B2 JP26676198A JP26676198A JP3888784B2 JP 3888784 B2 JP3888784 B2 JP 3888784B2 JP 26676198 A JP26676198 A JP 26676198A JP 26676198 A JP26676198 A JP 26676198A JP 3888784 B2 JP3888784 B2 JP 3888784B2
Authority
JP
Japan
Prior art keywords
plating layer
mist
edge
plating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26676198A
Other languages
Japanese (ja)
Other versions
JP2000096202A (en
Inventor
幸一 渡辺
太佳夫 辻村
信彦 山木
敦司 安藤
敏晴 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26676198A priority Critical patent/JP3888784B2/en
Publication of JP2000096202A publication Critical patent/JP2000096202A/en
Application granted granted Critical
Publication of JP3888784B2 publication Critical patent/JP3888784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,連続溶融めっきラインで溶融Zn−Al−Mg系めっき鋼板を製造するさいに発生することがあるエッジしわの発生を防止し,さらには表面外観の良好な金属組織をもつめっき層を得る方法に関する。
【0002】
【従来の技術】
鋼帯の連続溶融めっき設備にて溶融Zn基系めっき鋼板を製造する場合,浴組成(ひいてはめっき層の組成),通板速度,冷却条件,浴から出た鋼帯が曝される雰囲気等のめっき条件によっては,エッジしわの発生を見ることがある。本発明者らの経験では,酸化され易い元素特にAlやMg等を含む浴組成の場合に,エッジしわが発生し易いことを知った。
【0003】
ここで「エッジしわ」とは,浴からの引き上げを仮想して鋼帯を垂直にして見たときに,板の端縁(単にエッジと呼ぶ)側から斜め下向きに延びる互いにほぼ平行な多数の線の集合からなるしわ模様を言う。その代表例を図1に示した。
【0004】
図1は,図中のL方向を浴からの引き上げ方向として写した実物の約1.5倍の写真である。図中の右側に見える一方のエッジの側から,斜め下向きに細い線が無数に延びているのが見える。これが「エッジしわ」である。また,このエッジしわと直交する方向に(エッジ側から斜め上向きに)やや太いヒゲ様の単線がところどころに見られる。このヒゲ様の単線は,エッジしわに比べると良く目立つが,実際には金属光沢をもつ滑らかな表面を有している。後者のヒゲ様の金属光沢をもつ部分を「ヒゲ模様」と呼ぶことにする。
【0005】
図2は,図1の金属光沢部と記した矢視点の拡大写真であり,右上方部の黒い部分がヒゲ模様の金属光沢部,左下方部において無数の白線が発生しているように見えるのがエッジしわである。エッジしわは,同方向にしわが寄った凹凸構造をしており,この凹凸で光の乱反射がおこり,めっき表面が白っぽく見えるようになる。
【0006】
エッジしわが発生しても,ヒゲ模様は発生したりしなかったりする。すなわちヒゲ模様のあるエッジしわと,ヒゲ模様のないエッジしわがあるが,本明細書では両者を含めた意味でエッジしわと呼ぶ。いずれにしても,エッジしわが発生するとめっき鋼板の表面外観を著しく損ね,製品としての実用に耐えないことになる。
【0007】
従来,このエッジしわの発生機構やその防止について具体的な報告例はない。わずかに,特公昭61−33069号公報において,Mg:0.1〜2.0%,Al:0.1〜0.5%を含むZnめっき浴を用いた場合には,めっき面に「ヘア」が発生することがあること,そして,浴面から鋼帯表面に付着しためっき金属が凝固するまでの間をシールボックスで囲い,このシールボックス内の酸素濃度をワイピングノズルの上下で所定の範囲に制御すると,このヘアの発生が抑制できると教示している。しかし,このヘアが前記のエッジしわに対応するか否かは不明である。
【0008】
また,特公昭60−55593号公報には,Mgを0.1〜2.0%含有する溶融Zn合金めっき鋼板の製造に際して,浴面から出ためっき面を酸素濃度5000ppm以下に制御したシールボックスで囲み,さらにこのシールボックスから出た未凝固のめっき面に水または水溶液のミストで強制冷却すると,均一なゼロスパングルが得られると教示し,さらにMgを添加した浴では,ワイピング時の酸化により表面が酸化マグネシウムに変化し,皮張り現象および皮張り下の溶融金属の流れにより不均一な縞状の流れ外観となると記載されている。この縞状の流れ外観が前記のエッジしわに対応するか否か不明である。とくに,該公報の開示はAlを含有しない浴に対してのものであるから,MgとAlを複合添加した場合のめっき層表面に生じる酸化皮膜の挙動については参考にはならない。
【0009】
他方,本願と同一出願人に係る特開平10−226865号公報において,本発明者らは,Al:4.0〜10重量%,Mg:1.0〜4.0重量%,残部がZnおよび不可避的不純物からなる溶融Zn−Al−Mg系めっき鋼板のめっき層を,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔初晶Al相〕と,場合によってはさらに〔Zn単相〕が混在した金属組織にすれば,工業製品として十分な耐食性と表面外観をもつ溶融Zn−Al−Mg系めっき鋼板が得られることを提案し,この金属組織を得るための製造条件も明らかにしたが,その後の経験として,このようなAlとMgを比較的多量に含有する溶融Zn基めっき鋼板ではエッジしわが発生し易いことを知見した。
【0010】
【発明が解決しようとする課題】
前記の特公昭61−33069号公報の酸素濃度を制御する方法は,特定のめっき組成を有するものを対象としたものであり,且つ酸素濃度の制御自体も,ワイピングノズルの上下では異なる濃度に制御するものであるから,めっき組成が異なったり,めっき条件が異なった場合にも汎用的に適用できるというものではない。また,エッジしわの発生原因に基づいての対策であるとも考えられないので,エッジしわの発生を確実に防止できるというものでない。とくに,AlやMgが該公報の浴組成のものより多い場合についてまで,エッジしわ防止に効果があるか否かは全く不明である。また特公昭60−55593号公報のものもAlを含有しない浴についてのものであるから,溶融Zn−Al−Mg系めっき鋼板を製造する場合に発生するエッジしわやZn11Mg2系相の晶出に対して有益な防止対策を教えるものではない。
【0011】
したがって本発明の課題は,AlとMgを比較的多量に含有する溶融Zn基めっき鋼板に発生しやすいエッジしわの発生原因を究明し,その発生を防止して,表面性状が良好な溶融Zn基めっき鋼板を安定して製造することにある。さらには,Zn−Al−Mg系溶融めっき鋼板特有の現象,とくに前記特開平10− 226865号公報に記載したようにZn11Mg2系相とZn2Mg系相の併存を防止しながら(Zn11Mg2系相の晶出を防止しながら),エッジしわの発生を抑制することにある。
【0012】
【課題を解決するための手段】
前記の課題は,エッジしわの発生原因であるめっき層中央部のたれ落ちを軽減することによって達成できる。後に詳述するが,未凝固のめっき層が凝固するまでの間にエッジ部よりも板幅中央部においてめっき層がたれ落ち,これに伴って表層の酸化皮膜にエッジ部から斜め下向きの張力が発生することがエッジしわの原因であることを本発明者らは知見し,このめっき層のたれ落ちを軽減すれば,エッジしわも軽減することを知った。そして,未凝固のめっき層に水または水溶液のミストを噴霧すればこのたれ落ちが軽減し,ミストを噴霧しない場合にはエッジしわが発生する条件でも,エッジしわが発生しないことを知見した。
【0013】
したがって,本発明によれば,1.0重量%以上のAlおよび1.0重量%以上のMgを含有した溶融Znめっき浴に連続的に通板される鋼帯を該浴から連続的に引き上げる過程でめっき層の表面に水または水溶液のミストを吹付けるにさいし前記ミストの吹付けを,該めっき層が未だ凝固を完了していない370℃以上の温度で開始し、該めっき層が未だ凝固を完了していない350℃を超える温度で終了することを特徴とする溶融Zn基めっき鋼板のエッジしわ防止法を提供する。
【0014】
とくに,該ミストの吹付けを該めっき層の温度が350℃を超える温度域で終了すれば,Zn11Mg2系相の晶出が防止され,前掲の特開平10−226865号公報で提案したZn2Mg系相の金属組織とすることができることを知見した。
【0015】
したがって,本発明はまた,溶融Znめっき浴中のAl含有量が4.0〜10重量%,Mg含有量が1.0〜4.0重量%であり,該ミストの吹付けを該めっき層が未だ凝固を完了していない350℃を超える温度で終了してZn11Mg2系相の晶出を抑制する前記のエッジしわ防止法を提供する。
【0016】
さらに,ミスト噴霧によるエッジしわ防止に加え,該ミストの粒径を選択すると,この系統の溶融Zn基めっき鋼板の表面肌の制御ができることがわかった。すなわち,該ミストの平均粒径を3μm以上17μm未満にするとめっき層に光沢肌を付与することができ,該ミストの平均粒径を17μm以上100μm以下とするとめっき層に白色肌を付与することができる。
【0017】
したがって,本発明はまた,該ミストの平均粒径を3μm以上17μm未満としてめっき層に光沢肌を付与する前記のエッジしわ防止法,および該ミストの平均粒径を17μm以上100μm以下としてめっき層に白色肌を付与する前記のエッジしわ防止法を提供するものである。
【0018】
【発明の実施の形態】
本発明者らは,溶融Zn−Al−Mg系めっき鋼板に顕れる「エッジしわ」の発生原因を究明すべく種々の試験研究を重ねたところ,未だ凝固を完了していないめっき層が凝固するまでの過程でめっき層表面に生成する「酸化皮膜」の挙動がエッジしわに関与していることを知見した。AlとMgを含有するめっき浴では,これらの元素は酸素との親和力が大きいので,ストリップ表面に被着しためっき層が凝固を完了するまでの間に,その表層にMg(Al)の酸化物を含有した酸化皮膜が生成しやすいが,このMg(Al)系酸化皮膜は,エッジしわ発生原因となるような性質を有していることがわかった。この酸化皮膜に対して,板のエッジ側から板面中央部に向けて斜め下向きの張力が加わるとエッジしわが発生するのである。その発生機構は次のように考えられる。
【0019】
図4と図5は,溶融Zn−Al−Mg系めっきを,通常の溶融Zn基めっき同様のラインでストリップに対して施す場合の浴近傍の状態を,各々方向を変えて見た概略図であり,1は溶融Zn−Al−Mg系めっき浴,2は鋼帯,3はスナウト,4はシンクロール,5は気体絞り装置(ワイピングノズル),6はめっき層の凝固完了位置を示している。浴1から垂直方向に引き上げられた鋼帯は,気体絞り装置5で,その表面に付着しためっき層厚が調整され,凝固完了位置6で凝固を完了することになる。そのさい,気体絞り装置5を通過後の鋼帯表面に付着している未凝固状態のめっき層は重力により下方にたれ落ちようとする。すなわち,母材鋼帯に対してめっき層は下方に相対移動する。そのため,めっき層表面に生成した酸化皮膜も,図5の中央部の矢印7に示すように,たれ落ちるめっき層に引きずられるように母材鋼帯に対して下方に落ちようとする。
【0020】
一方,エッジ部においては,図3のエッジ部の拡大写真に見られるように,めっき層が非常に薄くなっている部分が存在し,この部分では酸化皮膜と母材がくっついた状態になっている。そして,エッジ近傍では板中央付近よりも放熱効果が高いので早くめっき層の凝固が開始し,表面酸化皮膜は母材に対して固定された状態になる。
【0021】
したがって,酸化皮膜は,めっき層の未凝固位置において,板面中央部ほどたれ落ちる程度が高くなり,このためにエッジ部から斜め下向きに図5の矢印で示すような張力8が発生する。また,この張力8の発生により,これと直交する方向には圧縮応力がかかることになる。この斜め下向きの張力8とこれと直交する方向の圧縮応力により,前記した斜め下向きのエッジしわが発生する。めっき層のたれがさらに大きく,すなわち張力が大きくなると,表面の酸化皮膜は破断し,エッジしわとほぼ直交する方向に新たに溶融金属表面が生成する。これが前記の太い単線つまりヒゲ模様となる。すなわち,ヒゲ模様の単線は酸化皮膜の破断跡であると考えられる。図5において,エッジしわとヒゲ模様が発生する領域を9で示した。
【0022】
以上から,めっき層表面の酸化皮膜に前記のような張力8が発生しないか,発生してもその程度が低い場合にはエッジしわは発生しない。通常の溶融Znめっき鋼板の製造ラインでエッジしわが見られない場合には,そのような条件下にあると見てよい。しかし,酸化皮膜に対して前記のような張力8の発生する条件下では,その張力8の発生を緩和すればエッジしわを防止できる筈である。
【0023】
本発明者らは,溶融Zn−Al−Mg系めっき鋼板の製造において,未凝固状態にあるめっき層表面に水または水溶液のミストを吹付けると,エッジしわの発生を防止することができることを見い出した。ミストの吹付けにより,前記のような酸化皮膜に加わる張力8が緩和されたからであろと考えられる。ミスト吹付けにより未凝固状態のめっき層が強制的に冷却される結果,板中央部のたれ落ちの程度が少なくなり,これに伴って酸化皮膜に加わる張力8が緩和されるのであろう。
【0024】
このミストの吹付けは,未凝固状態にあるめっき層の全面(板幅いっぱい)に対して行うのが実際的であるが,エッジ近傍だけに行ってもエッジしわ防止に効果がある。前者の場合には,未凝固状態のめっき層が全体的に強制冷却される結果,板中央部のたれ落ちの程度が少なくなるものと考えてよいが,後者の場合には,ミスト吹付けの圧力により表面酸化皮膜がミクロ的に分断される現象が起きるか,吹付け圧力によって表面に凹凸が形成されて表面積が増加する現象が起きる結果,或いは両現象が複合して起きる結果,めっき層表面の酸化皮膜にかかる前記の張力が緩和されるのではないかと考えられる。めっき層全面に吹付ける場合には,この様な現象に加えて,前記のたれ落ちの低減の効果が加わるものと考えられる。
【0025】
このように,エッジしわ防止に対してミスト吹付けが著効を示すが,このミスト吹付けが溶融Zn−Al−Mg系めっき鋼板の製造にとって,さらに有利な結果をもたらすことがわかった。その一つは,Zn11Mg2系相の晶出を抑制する点であり,他の一つは表面肌の制御ができる点である。
【0026】
特開平10−226865号公報に提案したように,めっき層(ひいてはめっき浴)の成分組成がAl:4.0〜10重量%,Mg:1.0〜4.0重量%,残部がZnおよび不可避的不純物からなる場合,めっき浴温とめっき層凝固までの冷却速度を適正に制御すると,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に〔初晶Al相〕または〔初晶Al相〕と〔Zn単相〕が混在しためっき層組織(Zn2Mg系相と呼ぶ)にすることができ,工業製品として十分な耐食性と表面外観を有する溶融Zn−Al−Mg系めっき鋼板を得ることができる。このZn2Mg系相は一種の非平衡相であり,Zn11Mg2系相の平衡相とは区別される。ここで,Zn11Mg2系相の平衡相とは,〔Al/Zn/Zn11Mg2三元共晶組織〕の素地中に〔初晶Al相〕または〔初晶Al相〕と〔Zn単相〕が混在しためっき層組織を言う。
【0027】
適正にミスト吹付けを行うと,このZn11Mg2系の平衡相の晶出を抑制することができ,Zn2Mg系の非平衡相が安定して得られることがわかった。すなわち,ミストの吹付けを該めっき層の温度が350℃を超える温度域,好ましくは370℃以上の領域で行った場合に,Zn11Mg2系相の晶出を抑制できる。凝固完了までミスト吹付けを行うとZn11Mg2系相が晶出してしまい,Zn2Mg系相中に目視できる大きさの斑点状のZn11Mg2系相が晶出した組織となり,製品の表面外観を悪くすると共に,両相の耐食性の違いから使用中に一層表面外観を悪くするようになる。めっき相の凝固完了温度は,浴組成がAl:4.0〜10重量%,Mg:1.0〜4.0重量%,残部がZnおよび不可避的不純物からなる場合,平衡状態図上の三元共晶組成が晶出する温度である343℃であると考えてよく,実ラインでは図4に示すように気体絞り装置5から所定の高さのところに,この凝固完了位置6が存在することになる。
【0028】
したがって,ミスト吹付けはこの凝固完了位置6よりも所定の距離だけ下方の350℃以上の領域で行うのがよい。図6に,このミスト吹付け状態を図解的に示した。
【0029】
図6は,噴霧ノズル7を設置した以外は,図4と同様の概略図である。図6の例では,ワイピングノズル5と凝固完了位置6との間の未凝固めっき層の両面に対して噴霧できるように,高さ方向にほぼ等間隔で5段に噴霧ノズル7を設置した例を示しており,最高段ノズルの噴霧位置は,凝固完了位置6よりも距離Lだけ下方である。すなわち,最高段ノズルで噴霧された状態でも,めっき層の温度は350℃より高く,好ましくは370℃以上を維持しており,距離Lだけ移動する間は未凝固状態である。この距離Lだけ未凝固状態であることが,エッジしわの発生を防止しながら且つZn11Mg2系相の晶出を抑制するうえで肝要であることが明らかとなった。この関係を満たす以上は,噴霧ノズル7は図6の例に限らず,任意の段数で配置することができる。
【0030】
図7は,図6の噴霧ノズルを鋼帯を横切る水平面で見た図である。図示のように,鋼帯2の幅方向両面に設置したヘッダー9に,噴霧ノズル7が等間隔で多数取付けてあり,これら全ての噴霧ノズル7から水または水溶液のミストを一様に吹付けることにより,鋼帯2の幅方向一杯にミストが吹付けられる。噴霧ノズルとしては,所定圧力の水または水溶液と,所定圧力の気体を同時に供給する,いわゆる二流体ノズルを用いるのが便宜である。これらの圧力を調整することにより,ミストの粒径を制御することができる。また,めっき層と噴霧ノズルとの間の距離を調整することにより,めっき層への吹付け圧力も調整できる。
【0031】
図示の例では,水溶液源10からポンプ11で各ヘッダー9に水溶液を管路12を経て供給すると共に,圧縮気体13を導入管路14を経て各ヘッダー9に供給し,各噴霧ノズル7内で水溶液と圧縮気体を合流させてミストを噴霧する。そのさい,管路12の弁15と,管路14の弁16の開度調整により,液と気体の圧力を個別に制御できるようにしてある。図例のほか,特にヘッダー使用せず,独立した複数のノズルを並設し,各ノズル個別に所定圧力の水または水溶液と,所定圧力の気体を同時に供給するようにしてもよい。なお,圧縮気体13としては,不活性ガスを使用することができるが,空気を使用してもよい。
【0032】
図8は,図7と同じく噴霧ノズルを鋼帯を横切る水平面で見た図であるが,未凝固のめっき層のエッジ近くの表面だけに対してミストを噴霧する状態を示している。この場合にも,前述したとおり,エッジしわの発生を防止することができる。
【0033】
図9は,各噴霧ノズル7を噴霧ボックス18内に設置した装置例を示す。噴霧ボックス18は,ストリップ2が通過するに必要な開口を上下に有した上下動可能なボックスであり,この中に各噴霧ノズル7が設置されると共に,ボックス内の流体を常時排気できるように,排気装置(図示せず)に,排気口19を通じて接続されている。適正に排気を行いながら,噴霧ノズル7からミストをめっき面に対して噴霧すると,過剰のミストが噴霧ボックス18内に飛散し,噴霧ノズル7から直接的に吹付けられたミストに加え,飛散しているミストによってもめっき面全体を冷却することができる。このため,図8のように,エッジ近傍だけにミストを吹付けても,中央部も冷却する効果が得られる。また,噴霧ボックス18を上下し且つ噴霧量を調整することにより,所望のめっき層温度域に対してミスト吹付けを行うことができる。
【0034】
さらに,ワイピングノズル5をシールボックス20内に設置し,このシールボックス5内の雰囲気を調整することも望ましい。しかし,本発明が対象とするような溶融Zn−Al−Mg系めっき浴では,特公昭60−55593号公報のようにシールボックス内を酸素濃度5000ppm以下にまで低減することは必ずしも必要ではなく,酸素濃度5vol.%以下であれば本発明の目的は十分に達成できることがわかった。
【0035】
また,噴霧ボックス18を出たあとは,上下動が可能なエアジエットクーラー21で強制冷却することも好ましい。実際には,このエアジエットクーラー21内に凝固完了位置がくるように,ライン操業条件に合わせてエアジエットクーラー21の位置を制御するのがよい。
【0036】
めっき層の冷却速度については,めっき浴立ち上がりからめっき層の凝固完了までの平均冷却速度が4℃/秒以上となるようにするのがよい。また,本発明が対象とする溶融Zn−Al−Mg系めっきにおいては,めっき層温度が480℃以上になるとFe−Al系金属間化合物からなる合金層が成長しやすく,このためめっき層と鋼板との密着性を低下させるので,めっき浴の温度は480℃未満とするのがよい。
【0037】
このようにしてミストの吹付けにより,溶融Zn−Al−Mg系めっき鋼板製造時に発生しやすいエッジしわの防止を図ることができ且つZn11Mg2系相の晶出を防止して均一なZn2Mg系相の金属組織とすることができるが,そのうえ更に,ミスト吹付けのさいの平均ミスト粒径を異ならしめると,めっき層の表面肌を光沢肌を有するものと白色肌を有するものに区分けして調整できることがわかった。
【0038】
具体的には,後記の実施例で示すように,ミストの平均粒径を3μm以上17μm未満にすると表面凹凸の小さな光沢肌となり,17μm以上100μm以下にすると白色肌になることが判明した。ミストの粒径は二流体ノズルを用いる場合には,空気圧と水圧を調整することにより制御できる。ミストは水を用いて形成することができるが,水溶液を用いてもよい。水溶液としては,リン酸2水素アンモニウム水溶液,リン酸水素2ナトリウム水溶液,2リン酸ナトリウム水溶液,硝酸コバルト水溶液等が使用できる。
【0039】
本発明は,エッジしわの発生が問題となる溶融Zn−Al−Mg系溶融めっきを対象とするものであり,その浴組成は1.0重量%以上のAl,好ましくは4.0〜10重量%のAl,および1.0重量%以上のMg,好ましくは1.0〜4.0重量%のMgを亜鉛中に含有したものである。このAl量およびMg量を含有する以上は,さらに種々の理由から他の成分を含有したものも本発明は対象とすることができる。他の成分の代表的なものとしてTiとBがある。このTiとBはTi−B合金または化合物として添加されてもよい。なお,AlおよびMgの含有量を前記範囲とする理由は次のとおりである。
【0040】
めっき層中のAlは,当該めっき鋼板の耐食性の向上と当該めっき鋼板製造時のドロス発生を抑制する作用を供する。Al含有量が1.0重量%未満では耐食性向上効果が十分ではなく,またMg酸化物系のドロス発生を抑制する効果も低い。好ましくはAlは4.0重量%以上とするのがよい。他方,Al含有量が10重量%を越えると,めっき層と母材鋼板との界面でFe−Al合金層の成長が著しくなり,めっき密着性が悪くなる。好ましいAl含有量は4.5〜9.0重量%,更に好ましいAl含有量は5.0〜8.5重量%,一層好ましいAl含有量は5.0〜7.0重量%である。
【0041】
めっき層中のMgは,めっき層表面に均一な腐食生成物を生成させて当該めっき鋼板の耐食性を著しく高める作用を供する。Mg含有量が1.0%未満ではかような腐食生成物を均一に生成させる作用が十分ではなく,他方,Mg含有量が4.0%を越えてもMgによる耐食性向上効果は飽和し,かえってMg酸化物系のドロスが発生しやすくなるので,Mg含有量は好ましくは1.0〜4.0重量%とする。好ましいMg含有量は1.5〜4.0重量%,さらに好ましいMg含有量は2.0〜3.5重量%,一層好ましいMg含有量は2.5〜3.5重量%である。
【0042】
また,TiとBはめっき層の金属組織を先の特願平8−352467号で提案したようにZn2Mg系三元共晶の金属組織とする場合に外観および耐食性に悪い影響を与えるZn11Mg2相の生成・成長を抑制する作用を供する。この効果を得るために,Ti,BまたはTi−B合金もしくは化合物を浴に添加する場合には,いずれも0.005重量%以上とすればよい。しかし,0.1重量%を超えると,めっき層中にTi−Al系の析出物が成長し,めっき層に凹凸が生じ(現場用語でブツと呼ばれるものに対応する),外観を損ねるようになるので好ましくはない。
【0043】
以下に本発明の実施例を挙げるが,めっき鋼板に生成したエッジしわの発生状況を次の基準で3段階評価した(ただし,表3ではしわ幅の測定値を具体的に記入した)。
(1) エッジしわ(ヒゲ模様を含む)が全く発生しない(表中に◎で示す)
(2) エッジしわが僅かに発生することがあったが,そのしわ幅(図5の符号9で示すように,エッジしわが発生したエッジ端からの距離)が10mm未満であったもの(表中に○で示す)。
(3) ヒゲ模様の有無に拘わらず,しわ幅10mm以上のエッジしわが発生したもの(表中に×印で示す)。
【0044】
また,Zn11Mg2系相の晶出の程度(平衡相の有無)を次の基準で3段階評価した。
(1) Zn11Mg2系相が発生しなかった(表中に○で示す)。
(2) Zn11Mg2系相が斑点状に晶出した(表中に△で示す)。
(3) Zn11Mg2系相が全面に晶出した(表中に×で示す)。
【0045】
【実施例】
〔実施例1〕
下記の「めっき条件」で溶融Zn−Al−Mg系めっき鋼板を製造した際に,下記の「ミスト吹付け条件」でめっき層の表裏全面に,その吹付け位置を変えてミストを吹付けた。
【0046】
「めっき条件」
処理設備:遵続溶融めっきライン
処理鋼帯:板厚2.3mmの熱延鋼帯
めっき浴組成:A1=6.1重量%,Mg=2.9重量%,残部=Zn
めつき浴温:430℃
目付量:90g/m2
通板速度:65m/min
【0047】
「ミスト吹付け条件」
使用ノズル:2流体ノズル,
使用流体:水(水圧=1.0kgf/cm2)+空気(空気圧=2.5kgf/cm2
噴霧水量:ノズル1本当たり40mL/min
噴霧空気量:ノズル1本当たり60NL/min
平均ミスト粒径:12μm
めっき層までの吹き付け距離:150mm
ミスト吹付開始温度:ミスト吹付装置入側のめっき層の温度(表1に表示)
ミスト吹付終了温度:ミスト吹付装置出側のめっき層の温度(表1に表示)
【0048】
上記の条件でミスト吹付け位置(吹付開始・終了時のめっき層温度)を変えた場合に得られた各めっき鋼板のエッジしわの発生状況とZn11Mg2系相(平衡相)の晶出状況を調べ,その結果を表1に示した。
【0049】
【表1】

Figure 0003888784
【0050】
表1の結果から,ミスト吹付けを適正に行うと,エッジしわを防止しながら且つZn11Mg2系相の晶出を防止できることがわかる。具体的には,溶融状態にあるめっき層の温度が370℃以上のところからミスト吹付けを開始するとエッジしわを低減できる。さらに,380℃以上でミスト吹付を開始すれぱ,エツジしわをほぼ完全に消滅させることができる。370℃未満でミストを吹付け始めても充分な効果が得られないのは,板中央部のめっき層のたれ落ちを軽減するミストの強制冷却効果が小さいことや,めっき層の粘性が高いことや,表面の酸化皮膜が厚く成長していることなどが影響していると考えられる。
【0051】
他方,ミスト吹付けの終了温度については,350℃以下の温度まで吹付けると,Zn11Mg2系相が晶出して表面外観ムラが発生するようになる。これは,三元共晶組成が晶出する温度(平衡状態図的には343℃)の近傍でミストを吹き付けると,めっき層表面でのZn11Mg2系相の核形成が促進されるためと考えられる。
【0052】
したがって,めっき浴から立ち上がり所定付着量に制御した後のめっき層に対し,その温度が370℃以上,さらに好適には380℃以上である未凝固のめっき層の表面にミストを吹付け,且つ350℃を超える温度すなわちめっき層が凝固を完了する前までに吹付けを終了することによって,エッジしわを防止しながらZn11Mg2系相の晶出を防止でき,表面外観の良好な溶融Zn−Al−Mg系めっき鋼板が得られることがわかる。
【0053】
〔実施例2〕
実施例1と同一の「めっき条件」のもとで溶融Zn−Al−Mg系めっき鋼板を製造した際に,下記の「ミスト吹付け条件」でめっき層のエッジ近傍の表裏面面に,その吹付け位置を変えてミストを吹付けた。なお,ミストの吹付けは図9に示したように排気装置付きの噴霧ボックス内で行った。
【0054】
「ミスト吹付け条件」
使用ノズル:2流体ノズル
使用流体:水(水圧=2.5kgf/cm2)+空気(空気圧=4.5kgf/cm2
噴霧水量:ノズル1本当たり90mL/min
噴霧空気量:ノズル1本当たり90NL/min
平均ミスト粒径:15μm
めっき層までの吹き付け距離:200mm
ミスト吹付け位置:鋼帯のエッジから200mmの範囲
ミスト吹付開始温度:ミスト吹付装置入側のめっき層の温度(表2に表示)
ミスト吹付終了温度:ミスト吹付装置出側のめっき層の温度(表2に表示)
【0055】
【表2】
Figure 0003888784
【0056】
表2の結果から,エッジ近傍に対してミスト吹付けを行った場合にも,実施例1と同様の結果が得られたことがわかる。すなわち,鋼帯のエッジ近傍にミスト吹き付けた場合でも,実施例1と同様にめっき層の温度が370℃以上の温度域で吹き付けるとしわは低減され,380℃以上ならばほぼ完全に消滅できる。また,350℃以下の温度域までミストを吹き付けると,エツジ近傍にはZn11Mg2系の平衡相が晶出し,外観を損なうので好ましくない。なお,350℃以上の温度域でミストを吹付けた例では,ミストが直接的には噴霧されない中央部のめっき層にもZn11Mg2系の平衡相は晶出していなかった。
【0057】
したがって,めっき浴から立ち上がり所定付着量に制御した後のめっき層に対し,その温度が370℃以上,さらに好適には380℃以上である未凝固のめっき層のエッジ近くの表面だけにミストを吹付け,350℃を超える温度すなわちめっき層が凝間を完了する前までに吹付けを終了することによって,表面外観の良好な溶融Zn−Al−Mgめっき鋼板を得ることができる。
【0058】
〔実施例3〕
浴中Al量とMg量を表3に示したように種々変化させためっき浴を使用し,下記の「めっき条件」と「ミスと吹付け条件」のもとで,溶融Zn−Al−Mg系めっき鋼板を製造した。
【0059】
「めっき条件」
処理設備:連続溶融めっきライン
処理鋼帯:板厚1.0mmの冷延鋼帯
めっき浴組成:表3に表示
めっき浴温:465℃
目付量:200g/m2
通板速度:100m/min
【0060】
「ミスト吹付け条件」
使用ノズル:2流体ノズル
使用流体:水(水圧=2.0kgf/cm2)+空気(空気圧=4.5kgf/cm2
噴霧水量:ノズル1本当たり45mL/min
噴霧空気量:ノズル1本当たり90NL/min
平均ミスト粒径:10μm
めっき層までの吹き付け距離:100mm
めっき層への吹付け幅:めっき層の表裏全面
ミスト吹付開始温度:ミスト吹付装置入側のめっき層の温度(表3に表示)
ミスト吹付終了温度:ミスト吹付装置出側のめっき層の温度(表3に表示)
【0061】
各浴組成で実施した結果を表3に示した。表中のエッジしわ幅は,めっき層凝固後の鋼帯のエッジから内側に延びたしわ模様の幅(図5の符号9で示す領域)の測定値である。
【0062】
【表3】
Figure 0003888784
【0063】
表3の結果に見られるように,ミスト吹付けを行わない場合には,1.0重量%以上のAlと1.0重量%以上のMgを複合添加した溶融Znめっき浴ではエッジしわが発生し易くなること,特に4.0重量%以上のAlと1.0重量%以上のMgを複合添加した溶融Znめっき浴ではエッジしわの発生が顕著になることがわかる。これは,酸化しやすいMgとA1を一定量以上含むと,めっき層の表面に形成される酸化皮膜の性状が変化してエッジしわの成長が促進されるものと考えられる。
【0064】
しかし,このエッジしわは,めっき付着量を制御した後の370℃以上の溶融状態にあるめっき層表面にミストを吹き付けることによって低減でき,とくに,380℃以上でミスト吹き付けを行うとほぼ完全に消減させることができることがわかる。なお,A1:1.0〜10.0重量%,Mg:1.0〜4.0重量%,残部が亜鉛のめっき浴組成の場合,めっき層の凝囲完了温度は三元共晶組成の343℃である。
【0065】
370℃未満の温度域でミスト吹き付けを行ってもエッジしわを低減する効果が得られないのは,板中央部のめっき層のたれ落ちを軽減するミストの強制冷却効果が小さいことや,めっき層の粘性が低下するか,あるいは表面の酸化皮膜が厚く成長するために,ミスト吹付けの圧力による皮膜の分断効果や凹凸形成効果が得られ難くなるものと考えられる。
【0066】
〔実施例4〕
下記の「めっき条件」のもとで溶融Zn−Al−Mg系めっき鋼板を製造する際に,下記の「ミスト吹付け条件」でめっき層の表裏全面にミストを吹付けた。
【0067】
「めっき条件」
処理設備:連続溶融めっきライン
処理鋼帯:板厚3.2mmの熱延鋼帯
めっき浴組成:A1=6.3重量%,Mg=3.3重量%,Ti=0.04重量%,B=0.01重量%,残部=Zn
めっき浴温:420℃
目付量:150g/m2
通板速度:50m/min
【0068】
「ミスト吹付け条件」
使用ノズル:2流体ノズル
使用流体:水(水圧:0.5〜5kgf/cm2)+空気(空気圧:1〜10kgf/cm2)
噴霧水量:ノズル1本当たり5〜1000mL/min
めっき層までの吹付け距離:250mm
ミスト吹付開始温度:400℃,
ミスト吹付終了温度:385℃
ミスト平均粒径:1〜110μm
【0069】
前記のように,使用流体の水・空気比を変化させてミスト粒径を変化させ,種々の粒径のミストを吹付けて得られためっき鋼板について,その表面肌とエッジしわの発生状況を調べ,その結果を表4に示した。また,入射光角度を60oとして光沢度計で測定しためっき表面の光沢度の測定結果も表4に併記した。
【0070】
【表4】
Figure 0003888784
【0071】
表4に見られるように,未凝固状態のめっき層に吹付けるミストの平均粒径により,エッジしわの抑制効果および凝固後の表面肌は異なったものとなる。すなわち,平均ミスト粒径が1μmでは充分なエッジしわ低減効果が得られないが,4μm以上のミストを吹付けるとエッジしわを防止できる。そして,平均ミスト粒径が3μm以上17μm未満の場合は,光沢のある表面肌となる。他方,平均ミスト粒径が17μm以上100μm以下の場合は,表面が白色肌となる。
【0072】
白色肌のめっき層表面には微細な凹凸が観測される。このために光が乱反射して白く見えるものと見てよい。微細な凹凸はミストの衝突圧力により形成されたものと考えられる。ただし,平均ミスト粒径が100μmを越えると,めっき層に流れ模様が発生し,外観ムラを呈するようになるので好ましくない。平均粒径が大きすぎると,ミスト衝突時に,溶融状態のめっき層が局部的に押しのけられることによって流れ模様が発生するのではないかと考えられる。
【0073】
なお,水に代えて1.5%リン酸2水素アンモニウム水溶液を用いた以外は実施例4と同様に実施したところ,表4と同様の結果が得られることを確認した。また,空気に代えて窒素ガスを用いた以外は実施例4と同様に実施したところ,やはり表4と同様の結果が得られることを確認した。
【0074】
〔実施例5〕
下記の「めっき条件」に記した溶融Zn−Al−Mg系めっき浴を用いて,処理鋼帯の種類,厚み,幅,通板速度,目付量を種々変え,また下記の「ミスト吹付け条件」に記したようにその吹付け条件を変化させて溶融Zn−Al−Mg系めっきを施した。いずれも連続24時間の運転を行った。また,いずれもめっき浴立ち上がりから,めっき層の凝固完了までの平均冷却速度は4℃/秒以上とした。
【0075】
そのさい,図9に示したように,ワイピングノズルはシールボックス内に設置し,このシールボックス内の雰囲気を酸素濃度5vo1%以下に保持した。また,噴霧ノズルも排気装置付きの噴霧ボックス内に配置し,このボックス全体を上下することにより,めっき層の温度が該ボックス入側で380℃以上,該ボックス出側で360℃以上となるように該ボックス高さ並びにミスト噴霧量を調整した。さらに,この噴霧ボックスの上方にはエアージエットクーラーを設置し,このクーラーの位置をライン操業条件に合わせて上下することにより,クーラー内でめっき層の凝固が完了するようにした。
【0076】
「めっき条件」
処理鋼帯:冷延鋼帯または熱延鋼帯
鋼帯の厚み:0.4〜3.2mm,幅:900〜1500mm
通板速度:45〜150m/min
めっき浴温:420℃
めっき浴組成:A1=6.0重量%,Mg=3.1重量%,残部=Zn
目付量:40〜250g/m2(片面当たり)
【0077】
「ミスト吹付け条件」
使用ノズル:2流体ノズル
使用流体:水(水圧:1〜3kgf/cm2)十空気(空気圧:2〜7kgf/cm2
平均ミスト粒径:10〜15μm
噴霧水量:ノズル1本当たり25〜100mL/min
噴霧空気量:ノズル1本当たり50〜100NL/min
めっき層までの吹付け距離:200mm
【0078】
前記のめっき条件並びにミスト吹付け条件において,いずれの場合にも,エッジしわのない光沢肌を持つ溶融Zn−Al−Mg系めっき鋼板が得られた。
【0079】
【発明の効果】
以上説明したように,本発明によると,溶融Zn−Al−Mg系めっき鋼板を製造する場合に遭遇するエッジしわの発生を抑制若しくは防止することができる。そして,このエッジしわ防止を図りながら,溶融Zn−Al−Mg系めっき鋼板特有のZn11Mg2系相の晶出を抑制し,Zn2Mg系相からなる表面外観と耐食性に優れためっき層を形成することができ,しかも,溶融Zn−Al−Mg系めっき鋼板の表面肌の選択・調整も可能であるという優れた効果を奏する。したがって,本発明によると,高品質の溶融Zn−Al−Mgめっき鋼板を安定して製造できるようになった。
【図面の簡単な説明】
【図1】溶融Zn基めっき鋼板のエッジ近傍の金属表面を写した写真である。
【図2】図1の金属光沢部の境界部の電子顕微鏡写真である。
【図3】溶融Zn基めっき鋼板のエッジ部断面の組織を示す金属顕微鏡写真である。
【図4】一般的な溶融Zn基めっき設備の浴近傍の状態を示す略側断面図である。
【図5】図4の状態を方向を変えて見た略側面外観図である。
【図6】本発明法を実施する溶融Zn−Al−Mg系めっき設備の浴近傍の状態を示す略側断面図である。
【図7】図6の設備における噴霧ノズル部分を示す略平断面図である。
【図8】図6の設備における噴霧ノズル部分を示す他の略平断面図である。
【図9】本発明法を実施する他の溶融Zn−Al−Mg系めっき設備の浴近傍の状態を示す略側断面図である。
【符号の説明】
1 めっき浴
2 鋼帯(ストリップ)
3 スナウト
4 シンクロール
5 気体絞り装置(ワイピングノズル)
6 めっき層の凝固完了位置(高さ)
7 噴霧ノズル
9 ヘッダー
18 噴霧ボックス
19 排気口
20 シールボックス
21 エアージエットクーラー[0001]
BACKGROUND OF THE INVENTION
The present invention prevents the generation of edge wrinkles that may occur during the production of a hot-dip Zn-Al-Mg-based steel sheet in a continuous hot dipping line, and further provides a plating layer having a metal structure with a good surface appearance. On how to get.
[0002]
[Prior art]
When manufacturing hot-dip Zn-based coated steel sheets with steel strip continuous hot dipping equipment, the bath composition (and hence the composition of the plating layer), plate feed speed, cooling conditions, atmosphere to which the steel strip from the bath is exposed, etc. Depending on the plating conditions, edge wrinkles may be observed. The inventors' experience has shown that edge wrinkles are likely to occur in the case of a bath composition containing an easily oxidizable element, particularly Al or Mg.
[0003]
Here, “edge wrinkles” refers to a number of substantially parallel lines extending obliquely downward from the edge of the plate (simply referred to as an edge) when the steel strip is viewed vertically with virtually no pulling up from the bath. A wrinkle pattern consisting of a set of lines. A typical example is shown in FIG.
[0004]
FIG. 1 is a photograph about 1.5 times the actual size, with the L direction in the figure taken as the pulling direction from the bath. From the side of one edge visible on the right side of the figure, it can be seen that countless thin lines extend diagonally downward. This is an “edge wrinkle”. In addition, in the direction perpendicular to the edge wrinkles (from the edge side obliquely upward), a slightly thick beard-like single line can be seen in some places. This beard-like single line stands out better than edge wrinkles, but actually has a smooth surface with a metallic luster. The latter part with a beard-like metallic luster will be referred to as a “beard pattern”.
[0005]
FIG. 2 is an enlarged photograph of the arrow pointed as the metallic luster part of FIG. 1, and the black part in the upper right part appears to have a bearded metallic luster part, and innumerable white lines appear in the lower left part. Is an edge wrinkle. The edge wrinkle has a concavo-convex structure with wrinkles in the same direction, and the irregular reflection of light occurs in this concavo-convex, making the plating surface appear whitish.
[0006]
Even if an edge wrinkle occurs, a beard pattern may or may not occur. That is, there are edge wrinkles with a beard pattern and edge wrinkles without a beard pattern, but in this specification, these wrinkles are called edge wrinkles. In any case, when the edge wrinkle occurs, the surface appearance of the plated steel sheet is remarkably impaired, and the product cannot be put into practical use.
[0007]
Conventionally, there has been no specific report on the generation mechanism of this edge wrinkle and its prevention. Slightly, in Japanese Patent Publication No. 61-33069, when a Zn plating bath containing Mg: 0.1-2.0% and Al: 0.1-0.5% is used, the , And the period from the bath surface until the plated metal adhering to the surface of the steel strip solidifies is surrounded by a seal box, and the oxygen concentration in the seal box is within a predetermined range above and below the wiping nozzle. It is taught that the generation of this hair can be suppressed by controlling to. However, it is unclear whether this hair corresponds to the edge wrinkles.
[0008]
Japanese Patent Publication No. 60-55593 discloses a sealed box in which the plated surface coming out of the bath surface is controlled to an oxygen concentration of 5000 ppm or less when manufacturing a hot-dip Zn alloy plated steel sheet containing 0.1 to 2.0% Mg. Furthermore, it is taught that uniform zero spangle can be obtained by forced cooling with an mist of water or aqueous solution on the unsolidified plating surface coming out of this seal box, and in the bath added with Mg, oxidation is caused by wiping. It is described that the surface changes to magnesium oxide, and a non-uniform striped flow appearance is caused by the skinning phenomenon and the flow of molten metal under the skinning. It is unclear whether this striped flow appearance corresponds to the edge wrinkles. In particular, since the disclosure of the publication is for a bath containing no Al, the behavior of the oxide film formed on the surface of the plating layer when Mg and Al are added in combination is not helpful.
[0009]
On the other hand, in Japanese Patent Application Laid-Open No. 10-226865, which belongs to the same applicant as the present application, the present inventors made Al: 4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, the balance being Zn and A plated layer of a molten Zn-Al-Mg based steel sheet made of inevitable impurities is used as [Al / Zn / Zn2A metal structure with [primary crystal Al phase] and possibly [Zn single phase] mixed in the Mg ternary eutectic structure may have a sufficient corrosion resistance and surface appearance as an industrial product. It was proposed that a Zn-Al-Mg plated steel sheet could be obtained, and the manufacturing conditions for obtaining this metal structure were clarified. However, as a subsequent experience, melting containing a relatively large amount of such Al and Mg It was found that edge wrinkles are likely to occur in a Zn-based plated steel sheet.
[0010]
[Problems to be solved by the invention]
The method for controlling the oxygen concentration described in the above Japanese Patent Publication No. 61-33069 is intended for one having a specific plating composition, and the oxygen concentration control itself is controlled to a different concentration above and below the wiping nozzle. Therefore, it cannot be applied universally even when the plating composition is different or the plating conditions are different. Further, since it cannot be considered as a countermeasure based on the cause of the occurrence of edge wrinkles, the occurrence of edge wrinkles cannot be reliably prevented. In particular, it is unclear whether or not there is an effect in preventing edge wrinkles even when there is more Al or Mg than that of the bath composition of the publication. Japanese Patent Publication No. 60-55593 also relates to a bath not containing Al, so that edge wrinkles and Zn generated when a hot-dip Zn—Al—Mg-based plated steel sheet is produced.11Mg2It does not teach useful preventive measures against the crystallization of the system phase.
[0011]
Therefore, an object of the present invention is to investigate the cause of the occurrence of edge wrinkles that are likely to occur in a hot-dip Zn-based plated steel sheet containing a relatively large amount of Al and Mg, to prevent the occurrence, and to produce a molten Zn-base with good surface properties. It is to manufacture a plated steel plate stably. Furthermore, a phenomenon peculiar to a Zn—Al—Mg based hot-dip plated steel sheet, particularly Zn as described in the above-mentioned Japanese Patent Application Laid-Open No. 10-226865.11Mg2System phase and Zn2While preventing coexistence of Mg-based phases (Zn11Mg2The purpose is to suppress the generation of edge wrinkles while preventing the crystallization of the system phase.
[0012]
[Means for Solving the Problems]
The above-described problem can be achieved by reducing the falling of the central portion of the plating layer, which is the cause of edge wrinkles. As will be described in detail later, the plating layer drips at the center of the plate width rather than the edge until the unsolidified plating layer solidifies, and along with this, a downward downward tension is applied to the surface oxide film from the edge. The present inventors have found that the occurrence of edge wrinkles is a cause of the wrinkles, and knew that edge wrinkles can be reduced by reducing the falling of the plating layer. It was also found that spraying water or an aqueous solution mist on the unsolidified plating layer alleviated this dripping, and that no edge wrinkle would occur even under conditions where edge crease would occur if mist was not sprayed.
[0013]
  Therefore, according to the present invention, 1.0 wt% or more of Al and 1.0 wt%More thanA steel strip that is continuously passed through a hot-dip Zn plating bath containing Mg is continuously pulled up from the bath.In the process, water or aqueous mist is sprayed on the surface of the plating layer.,The spraying of the mist is started at a temperature of 370 ° C. or higher where the plating layer has not yet completed solidification, and is finished at a temperature exceeding 350 ° C. where the plating layer has not yet completed solidification.An edge wrinkle prevention method for a hot dip Zn-based plated steel sheet is provided.
[0014]
  Especially, Spraying the mist in a temperature range where the temperature of the plating layer exceeds 350 ° C.If finished, Zn11Mg2Crystallization of the system phase is prevented, and Zn proposed in the above-mentioned JP-A-10-226865 is disclosed.2It was found that the metal structure of the Mg-based phase can be obtained.
[0015]
  Therefore, the present invention also provides that the Al content in the hot dip Zn plating bath is 4.0 to 10% by weight and the Mg content is 1.0 to 4.0% by weight.Finishing at a temperature exceeding 350 ° C. where the plating layer has not yet solidified.Zn11Mg2The edge wrinkle prevention method for suppressing crystallization of a system phase is provided.
[0016]
Furthermore, in addition to preventing edge wrinkles due to mist spraying, it was found that the surface skin of this series of hot-dip Zn-based plated steel sheets can be controlled by selecting the particle size of the mist. That is, if the average particle size of the mist is 3 μm or more and less than 17 μm, the skin can be given glossy skin, and if the average particle size of the mist is 17 μm or more and 100 μm or less, white skin can be given to the plating layer. it can.
[0017]
Accordingly, the present invention also provides the edge wrinkle prevention method for imparting glossy skin to the plating layer by setting the average particle size of the mist to 3 μm or more and less than 17 μm, and the plating layer having an average particle size of the mist of 17 μm or more and 100 μm or less. The present invention provides the edge wrinkle prevention method for imparting white skin.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have conducted various test studies in order to investigate the cause of the occurrence of “edge wrinkles” that appear in the hot-dip Zn—Al—Mg-based plated steel sheet, and until the plating layer that has not yet been solidified has solidified. It was found that the behavior of the “oxide film” formed on the surface of the plating layer during the process was related to edge wrinkles. In a plating bath containing Al and Mg, these elements have a high affinity for oxygen, so the Mg (Al) oxide is formed on the surface layer of the plating layer deposited on the strip surface until solidification is completed. However, it was found that this Mg (Al) -based oxide film has properties that cause edge wrinkles. When this oxide film is applied with a diagonally downward tension from the edge side of the plate toward the center of the plate surface, edge wrinkles are generated. The generation mechanism is considered as follows.
[0019]
4 and 5 are schematic views of the state in the vicinity of the bath when the hot-dip Zn-Al-Mg-based plating is applied to the strip in the same line as normal hot-dip Zn-based plating, with the direction changed. Yes, 1 is a molten Zn-Al-Mg plating bath, 2 is a steel strip, 3 is a snout, 4 is a sink roll, 5 is a gas squeezing device (wiping nozzle), and 6 is a solidification completion position of the plating layer. . The steel strip pulled up from the bath 1 in the vertical direction is adjusted in the thickness of the plating layer adhering to the surface by the gas squeezing device 5, and solidification is completed at the solidification completion position 6. At that time, the unsolidified plating layer adhering to the surface of the steel strip after passing through the gas throttle device 5 tends to sag downward due to gravity. That is, the plating layer moves downward relative to the base steel strip. Therefore, the oxide film generated on the surface of the plating layer also tends to fall downward with respect to the base steel strip so as to be dragged by the falling plating layer as indicated by an arrow 7 in the center of FIG.
[0020]
On the other hand, in the edge portion, as shown in the enlarged photograph of the edge portion in FIG. 3, there is a portion where the plating layer is very thin, and in this portion, the oxide film and the base material are stuck together. Yes. Since the heat dissipation effect is higher in the vicinity of the edge than in the vicinity of the center of the plate, solidification of the plating layer starts earlier and the surface oxide film is fixed to the base material.
[0021]
Therefore, the oxide film has a higher degree of dripping at the center of the plate surface at the unsolidified position of the plating layer, and for this reason, a tension 8 as shown by the arrow in FIG. 5 is generated obliquely downward from the edge portion. In addition, due to the generation of the tension 8, a compressive stress is applied in a direction perpendicular to the tension. The diagonally downward edge wrinkles are generated by the diagonally downward tension 8 and the compressive stress in the direction perpendicular thereto. If the plating layer sagging is further increased, that is, the tension is increased, the oxide film on the surface is broken, and a new molten metal surface is formed in a direction substantially perpendicular to the edge wrinkles. This is the thick single line, that is, the mustache pattern. That is, it is considered that the beard pattern single line is a fracture mark of the oxide film. In FIG. 5, a region where edge wrinkles and a beard pattern are generated is indicated by 9.
[0022]
From the above, edge wrinkles do not occur when the tension 8 as described above does not occur in the oxide film on the surface of the plating layer or when the tension is low even if it occurs. When edge wrinkles are not observed on the production line of a normal hot-dip Zn-plated steel sheet, it can be considered that such a condition is satisfied. However, edge wrinkles should be prevented by reducing the generation of the tension 8 under the conditions in which the tension 8 is generated on the oxide film as described above.
[0023]
The inventors of the present invention have found that edge creases can be prevented by spraying mist of water or an aqueous solution on the surface of a plating layer in an unsolidified state in the production of a hot-dip Zn—Al—Mg based steel sheet. It was. This is probably because the tension 8 applied to the oxide film as described above was relaxed by the mist spraying. As a result of the mist spraying forcibly cooling the unsolidified plating layer, the degree of sagging at the center of the plate will be reduced, and the tension 8 applied to the oxide film will be relaxed accordingly.
[0024]
This mist spraying is practically performed on the entire surface of the plating layer in the unsolidified state (full plate width), but it is effective in preventing edge wrinkles even if it is performed only in the vicinity of the edge. In the former case, it may be considered that the degree of dripping at the center of the plate is reduced as a result of the forced cooling of the unsolidified plating layer as a whole, but in the latter case, mist spraying is not possible. As a result of the phenomenon that the surface oxide film is microscopically divided by the pressure, the phenomenon that the surface is increased due to the formation of irregularities on the surface by the spraying pressure, or the combination of both phenomena, the plating layer surface It is considered that the above tension applied to the oxide film is relaxed. In the case of spraying on the entire surface of the plating layer, in addition to such a phenomenon, it is considered that the effect of reducing the above-mentioned dripping is added.
[0025]
Thus, although mist spraying is effective in preventing edge wrinkles, it has been found that this mist spraying has a more advantageous result for the production of hot-dip Zn-Al-Mg plated steel sheets. One of them is Zn11Mg2The other is to suppress the crystallization of the system phase, and the other is to control the surface skin.
[0026]
As proposed in JP-A-10-226865, the component composition of the plating layer (and thus the plating bath) is Al: 4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, the balance being Zn and In the case of unavoidable impurities, if the plating bath temperature and the cooling rate until solidification of the plating layer are properly controlled, [Al / Zn / Zn2[Primary Al phase] or [Primary Al phase] and [Zn single phase] mixed plating layer structure (Zn) in the Mg ternary eutectic structure2A molten Zn—Al—Mg based steel sheet having sufficient corrosion resistance and surface appearance as an industrial product can be obtained. This Zn2Mg-based phase is a kind of non-equilibrium phase, Zn11Mg2It is distinguished from the equilibrium phase of the system phase. Where Zn11Mg2The equilibrium phase of the system phase is [Al / Zn / Zn11Mg2This refers to a plated layer structure in which [primary Al phase] or [primary Al phase] and [Zn single phase] are mixed in the ternary eutectic structure.
[0027]
When the mist is sprayed properly, this Zn11Mg2Crystallization of the equilibrium phase of the system can be suppressed, Zn2It was found that a Mg-based non-equilibrium phase can be obtained stably. That is, when the mist is sprayed in a temperature range in which the temperature of the plating layer exceeds 350 ° C., preferably in a range of 370 ° C. or higher, Zn11Mg2Crystallization of the system phase can be suppressed. When mist is sprayed until solidification is completed, Zn11Mg2The system phase crystallizes out and Zn2Spot-like Zn with a size visible in the Mg-based phase11Mg2The system phase becomes a crystallized structure, which deteriorates the surface appearance of the product and further deteriorates the surface appearance during use due to the difference in corrosion resistance between the two phases. When the bath composition is Al: 4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, and the balance is Zn and inevitable impurities, the solidification completion temperature of the plating phase is three. It may be considered that the original eutectic composition is 343 ° C., which is the crystallization temperature, and in the actual line, this solidification completion position 6 exists at a predetermined height from the gas throttle device 5 as shown in FIG. It will be.
[0028]
Therefore, the mist spraying is preferably performed in a region of 350 ° C. or more below the solidification completion position 6 by a predetermined distance. FIG. 6 schematically shows the mist spraying state.
[0029]
FIG. 6 is a schematic view similar to FIG. 4 except that the spray nozzle 7 is installed. In the example of FIG. 6, the spray nozzles 7 are installed in five steps at almost equal intervals in the height direction so that spraying can be performed on both surfaces of the unsolidified plating layer between the wiping nozzle 5 and the solidification completion position 6. The spray position of the highest nozzle is lower than the solidification completion position 6 by a distance L. That is, even when sprayed with the highest nozzle, the temperature of the plating layer is higher than 350 ° C., preferably maintained at 370 ° C. or higher, and is in an unsolidified state while moving by the distance L. This distance L is in an unsolidified state while preventing generation of edge wrinkles and Zn11Mg2It became clear that it was important to suppress the crystallization of the system phase. As long as this relationship is satisfied, the spray nozzle 7 is not limited to the example of FIG. 6 and can be arranged in any number of stages.
[0030]
FIG. 7 is a view of the spray nozzle of FIG. 6 as seen in a horizontal plane across the steel strip. As shown in the figure, a number of spray nozzles 7 are mounted at equal intervals on headers 9 installed on both sides of the steel strip 2 in the width direction, and water or aqueous solution mist is sprayed uniformly from all these spray nozzles 7. Thus, the mist is sprayed to the full width of the steel strip 2. As the spray nozzle, it is convenient to use a so-called two-fluid nozzle that supplies water or an aqueous solution at a predetermined pressure and a gas at a predetermined pressure at the same time. By adjusting these pressures, the particle size of the mist can be controlled. Moreover, the spraying pressure to the plating layer can be adjusted by adjusting the distance between the plating layer and the spray nozzle.
[0031]
In the example shown in the figure, an aqueous solution is supplied from an aqueous solution source 10 to each header 9 by a pump 11 via a pipe line 12, and a compressed gas 13 is supplied to each header 9 via an introduction pipe line 14. The mist is sprayed by combining the aqueous solution and the compressed gas. At that time, the pressures of the liquid and the gas can be individually controlled by adjusting the opening degree of the valve 15 of the pipe line 12 and the valve 16 of the pipe line 14. In addition to the illustrated example, a plurality of independent nozzles may be provided side by side without using a header, and water or an aqueous solution of a predetermined pressure and a gas of a predetermined pressure may be supplied to each nozzle simultaneously. As the compressed gas 13, an inert gas can be used, but air may be used.
[0032]
FIG. 8 is a view of the spray nozzle as seen in a horizontal plane across the steel strip, as in FIG. 7, but shows a state where mist is sprayed only on the surface near the edge of the unsolidified plating layer. Also in this case, as described above, the generation of edge wrinkles can be prevented.
[0033]
FIG. 9 shows an example of an apparatus in which each spray nozzle 7 is installed in a spray box 18. The spray box 18 is a vertically movable box having openings necessary for the passage of the strip 2 up and down, in which each spray nozzle 7 is installed, and so that the fluid in the box can be exhausted at all times. , Connected to an exhaust device (not shown) through an exhaust port 19. When the mist is sprayed from the spray nozzle 7 onto the plating surface while properly evacuating, excessive mist is scattered in the spray box 18 and is added to the mist directly sprayed from the spray nozzle 7 and scattered. The entire plating surface can be cooled also by the mist. For this reason, as shown in FIG. 8, even if mist is sprayed only in the vicinity of the edge, the effect of cooling the central portion can be obtained. Moreover, mist spraying can be performed to a desired plating layer temperature range by moving the spray box 18 up and down and adjusting the spray amount.
[0034]
Further, it is desirable to install the wiping nozzle 5 in the seal box 20 and adjust the atmosphere in the seal box 5. However, in a molten Zn—Al—Mg based plating bath as the subject of the present invention, it is not always necessary to reduce the inside of the seal box to an oxygen concentration of 5000 ppm or less as disclosed in JP-B-60-55593. It was found that the object of the present invention can be sufficiently achieved if the oxygen concentration is 5 vol.% Or less.
[0035]
Moreover, after leaving the spray box 18, it is also preferable to perform forced cooling with an air jet cooler 21 capable of moving up and down. Actually, it is preferable to control the position of the air jet cooler 21 in accordance with the line operating conditions so that the solidification completion position comes within the air jet cooler 21.
[0036]
As for the cooling rate of the plating layer, the average cooling rate from the start of the plating bath to the completion of solidification of the plating layer should be 4 ° C./second or more. Further, in the hot-dip Zn—Al—Mg based plating targeted by the present invention, when the plating layer temperature is 480 ° C. or higher, an alloy layer made of Fe—Al based intermetallic compound tends to grow. Therefore, the temperature of the plating bath is preferably less than 480 ° C.
[0037]
Thus, by spraying mist, it is possible to prevent edge wrinkles that are likely to occur during the production of molten Zn-Al-Mg based steel sheet, and Zn11Mg2Uniform Zn prevents crystallization of system phase2The metal structure of the Mg-based phase can be made, but in addition, if the average mist particle size during mist spraying is made different, the surface skin of the plating layer can be divided into those with glossy skin and those with white skin. And found that it can be adjusted.
[0038]
Specifically, as shown in the examples described later, it has been found that when the average particle size of the mist is 3 μm or more and less than 17 μm, glossy skin with small surface irregularities is obtained, and when it is 17 μm or more and 100 μm or less, white skin is obtained. The mist particle size can be controlled by adjusting the air pressure and water pressure when a two-fluid nozzle is used. The mist can be formed using water, but an aqueous solution may be used. As the aqueous solution, an aqueous solution of ammonium dihydrogen phosphate, an aqueous solution of disodium hydrogen phosphate, an aqueous solution of sodium diphosphate, an aqueous solution of cobalt nitrate, or the like can be used.
[0039]
  The present invention is intended for hot-dip Zn-Al-Mg hot-dip plating in which the occurrence of edge wrinkles is a problem, and its bath composition is 1.0 wt% or more of Al, preferably 4.0 to 10 wt%. % Al, and 1.0% by weightMore thanMg, preferably 1.0 to 4.0% by weight of Mg is contained in zinc. As long as the Al content and the Mg content are contained, the present invention can be applied to those containing other components for various reasons. Typical examples of other components include Ti and B. Ti and B may be added as a Ti-B alloy or a compound. The reason why the contents of Al and Mg are within the above ranges is as follows.
[0040]
Al in the plating layer provides an effect of improving the corrosion resistance of the plated steel sheet and suppressing the generation of dross during the production of the plated steel sheet. If the Al content is less than 1.0% by weight, the effect of improving the corrosion resistance is not sufficient, and the effect of suppressing the generation of Mg oxide dross is low. Preferably, Al is 4.0% by weight or more. On the other hand, if the Al content exceeds 10% by weight, the growth of the Fe—Al alloy layer becomes remarkable at the interface between the plating layer and the base steel plate, resulting in poor plating adhesion. The preferable Al content is 4.5 to 9.0% by weight, the more preferable Al content is 5.0 to 8.5% by weight, and the more preferable Al content is 5.0 to 7.0% by weight.
[0041]
  Mg in the plating layer serves to generate a uniform corrosion product on the surface of the plating layer and remarkably increase the corrosion resistance of the plated steel sheet. Mg content is 1.0%Less thanHowever, the effect of uniformly generating such corrosion products is not sufficient. On the other hand, even if the Mg content exceeds 4.0%, the effect of improving the corrosion resistance by Mg is saturated and Mg oxide dross is generated. Therefore, the Mg content is preferably 1.0 to 4.0% by weight. A preferable Mg content is 1.5 to 4.0% by weight, a more preferable Mg content is 2.0 to 3.5% by weight, and a more preferable Mg content is 2.5 to 3.5% by weight.
[0042]
In addition, Ti and B are Zn metal structures as proposed in Japanese Patent Application No. 8-352467.2Zn that adversely affects appearance and corrosion resistance when Mg-based ternary eutectic metal structure is used11Mg2Serves to suppress phase formation and growth. In order to obtain this effect, when Ti, B, or a Ti-B alloy or compound is added to the bath, it may be 0.005% by weight or more. However, if it exceeds 0.1% by weight, Ti-Al-based precipitates grow in the plating layer, resulting in irregularities in the plating layer (corresponding to what is called a spot in the field), and the appearance is impaired. This is not preferable.
[0043]
Examples of the present invention will be described below. The occurrence of edge wrinkles generated in the plated steel sheet was evaluated in three stages according to the following criteria (however, in Table 3, the measured values of wrinkle width were specifically entered).
(1) No edge wrinkles (including beard pattern) occur (indicated by ◎ in the table)
(2) Edge wrinkles may occur slightly, but the width of the wrinkles (distance from the edge where the edge wrinkle occurred as shown by reference numeral 9 in FIG. 5) was less than 10 mm (Table (Indicated with a circle).
(3) Edge wrinkles with a wrinkle width of 10 mm or more with or without a beard pattern (indicated by x in the table).
[0044]
Zn11Mg2The degree of crystallization of the system phase (presence or absence of equilibrium phase) was evaluated in three stages according to the following criteria.
(1) Zn11Mg2A system phase did not occur (indicated by a circle in the table).
(2) Zn11Mg2The system phase crystallized in spots (indicated by Δ in the table).
(3) Zn11Mg2The system phase crystallized over the entire surface (indicated by x in the table).
[0045]
【Example】
[Example 1]
When a hot-dip Zn-Al-Mg plated steel sheet was manufactured under the following "plating conditions", the mist was sprayed on the entire front and back surfaces of the plating layer under the following "mist spraying conditions". .
[0046]
"Plating conditions"
Processing equipment: Follow-up hot dipping line
Treated steel strip: Hot-rolled steel strip with a thickness of 2.3 mm
Plating bath composition: A1 = 6.1 wt%, Mg = 2.9 wt%, balance = Zn
Bath temperature: 430 ° C
Weight per unit area: 90 g / m2
Plate speed: 65m / min
[0047]
"Mist spraying conditions"
Use nozzle: 2-fluid nozzle,
Fluid used: Water (Water pressure = 1.0kgf / cm2) + Air (Air pressure = 2.5kgf / cm2)
Spray water volume: 40 mL / min per nozzle
Atomizing air amount: 60 NL / min per nozzle
Average mist particle size: 12 μm
Spraying distance to plating layer: 150mm
Mist spray start temperature: Temperature of the plating layer on the inlet side of the mist spray device (shown in Table 1)
Mist spraying end temperature: Temperature of plating layer on the mist spraying device outlet side (shown in Table 1)
[0048]
Occurrence of edge wrinkles in each plated steel sheet when the mist spraying position (plating layer temperature at the start and end of spraying) was changed under the above conditions and Zn11Mg2The crystallization status of the system phase (equilibrium phase) was examined, and the results are shown in Table 1.
[0049]
[Table 1]
Figure 0003888784
[0050]
From the results of Table 1, when mist spraying is performed properly, edge wrinkles are prevented and Zn is11Mg2It can be seen that crystallization of the system phase can be prevented. Specifically, edge wrinkles can be reduced when mist spraying is started from a place where the temperature of the molten plating layer is 370 ° C. or higher. Furthermore, when the mist spraying is started at 380 ° C. or higher, the edge wrinkles can be almost completely eliminated. Even if the mist starts to be sprayed at less than 370 ° C, sufficient effects cannot be obtained because the mist forced cooling effect that reduces the falling of the plating layer at the center of the plate is small, the viscosity of the plating layer is high, This is thought to be due to the fact that the oxide film on the surface grows thick.
[0051]
On the other hand, when the mist spraying end temperature is sprayed to a temperature of 350 ° C. or lower, Zn11Mg2The system phase crystallizes and surface appearance unevenness occurs. When mist is sprayed near the temperature at which the ternary eutectic composition is crystallized (equilibrium diagram is 343 ° C), Zn on the surface of the plating layer11Mg2This is probably because nucleation of the system phase is promoted.
[0052]
Therefore, mist is sprayed on the surface of the unsolidified plating layer whose temperature is 370 ° C. or higher, more preferably 380 ° C. or higher, with respect to the plating layer after rising from the plating bath and controlled to a predetermined adhesion amount, and 350 By stopping the spraying before the solidification of the plating layer before the solidification of the plating layer, the edge is prevented from wrinkling.11Mg2It can be seen that crystallization of the system phase can be prevented, and a hot-dip Zn-Al-Mg-based plated steel sheet having a good surface appearance can be obtained.
[0053]
[Example 2]
When a hot-dip Zn—Al—Mg-based plated steel sheet was manufactured under the same “plating conditions” as in Example 1, the following “mist spraying conditions” were applied to the front and back surfaces near the edges of the plating layer. Mist was sprayed at different spray positions. The mist was sprayed in a spray box with an exhaust device as shown in FIG.
[0054]
"Mist spraying conditions"
Use nozzle: 2 fluid nozzle
Fluid used: Water (Water pressure = 2.5kgf / cm2) + Air (Air pressure = 4.5kgf / cm2)
Spray water amount: 90 mL / min per nozzle
Atomizing air amount: 90 NL / min per nozzle
Average mist particle size: 15 μm
Spraying distance to plating layer: 200mm
Mist spraying position: 200mm from the edge of steel strip
Mist spray start temperature: Temperature of the plating layer on the inlet side of the mist spray device (shown in Table 2)
Mist spray end temperature: Temperature of plating layer on the mist spraying device outlet side (shown in Table 2)
[0055]
[Table 2]
Figure 0003888784
[0056]
From the results in Table 2, it can be seen that the same results as in Example 1 were obtained when mist spraying was performed near the edge. That is, even when mist is sprayed in the vicinity of the edge of the steel strip, wrinkles are reduced if the temperature of the plating layer is sprayed in a temperature range of 370 ° C. or higher as in Example 1, and can be almost completely eliminated if the temperature is 380 ° C. or higher. In addition, when mist is sprayed to a temperature range of 350 ° C or lower, Zn near the edge11Mg2Since the equilibrium phase of the system crystallizes and the appearance is impaired, it is not preferable. In the example in which mist was sprayed in a temperature range of 350 ° C. or higher, Zn was also applied to the central plating layer where mist was not sprayed directly.11Mg2The equilibrium phase of the system did not crystallize.
[0057]
Therefore, mist is blown only on the surface near the edge of the unsolidified plating layer whose temperature is 370 ° C. or higher, more preferably 380 ° C. or higher, with respect to the plating layer after rising from the plating bath and being controlled to a predetermined adhesion amount. When the spraying is finished before the temperature exceeding 350 ° C., that is, before the plating layer completes the gap, a hot-dip Zn—Al—Mg plated steel sheet having a good surface appearance can be obtained.
[0058]
Example 3
Using a plating bath in which the amount of Al and Mg in the bath was varied as shown in Table 3, and under the following “plating conditions” and “missing and spraying conditions”, molten Zn—Al—Mg A galvanized steel sheet was produced.
[0059]
"Plating conditions"
Processing equipment: Continuous hot dipping line
Treated steel strip: Cold-rolled steel strip with a thickness of 1.0 mm
Plating bath composition: Indicated in Table 3
Plating bath temperature: 465 ° C
Weight per unit area: 200 g / m2
Plate speed: 100m / min
[0060]
"Mist spraying conditions"
Use nozzle: 2 fluid nozzle
Fluid used: Water (Water pressure = 2.0kgf / cm2) + Air (Air pressure = 4.5kgf / cm2)
Spray water amount: 45 mL / min per nozzle
Atomizing air amount: 90 NL / min per nozzle
Average mist particle size: 10 μm
Spraying distance to plating layer: 100mm
Spray width on plating layer: Front and back of plating layer
Mist spray start temperature: Temperature of the plating layer on the inlet side of the mist spray device (shown in Table 3)
Mist spray end temperature: Temperature of the plating layer on the outlet side of the mist spray device (shown in Table 3)
[0061]
The results of each bath composition are shown in Table 3. The edge wrinkle width in the table is a measured value of the width of a wrinkle pattern (indicated by reference numeral 9 in FIG. 5) extending inward from the edge of the steel strip after solidification of the plating layer.
[0062]
[Table 3]
Figure 0003888784
[0063]
As can be seen from the results in Table 3, edge creases occur in the hot dip Zn plating bath with a combined addition of 1.0 wt% or more of Al and 1.0 wt% or more of Mg when mist spraying is not performed. It can be seen that edge wrinkling is particularly noticeable in a hot-dip Zn plating bath in which 4.0% by weight or more of Al and 1.0% by weight or more of Mg are added in combination. This is presumably that when Mg and A1 that are easily oxidized are contained in a certain amount or more, the properties of the oxide film formed on the surface of the plating layer change to promote the growth of edge wrinkles.
[0064]
However, this edge wrinkle can be reduced by spraying mist on the surface of the plating layer in a molten state of 370 ° C. or higher after controlling the amount of plating adhesion, and in particular, it disappears almost completely when mist spraying is performed at 380 ° C. or higher. You can see that In addition, when A1: 1.0 to 10.0% by weight, Mg: 1.0 to 4.0% by weight, and the balance is zinc plating bath composition, the temperature at which the plating layer is surrounded is the ternary eutectic composition. 343 ° C.
[0065]
The effect of reducing edge wrinkles is not obtained even if mist spraying is performed in a temperature range of less than 370 ° C. The reason is that the mist forced cooling effect that reduces the sagging of the plating layer at the center of the plate is small, and the plating layer It is considered that the effect of splitting the film and the formation of unevenness due to the pressure of mist spraying are difficult to obtain because the viscosity of the film decreases or the oxide film on the surface grows thick.
[0066]
Example 4
When manufacturing a molten Zn—Al—Mg based steel sheet under the following “plating conditions”, mist was sprayed on the entire front and back surfaces of the plating layer under the following “mist spraying conditions”.
[0067]
"Plating conditions"
Processing equipment: Continuous hot dipping line
Treated steel strip: Hot-rolled steel strip with a thickness of 3.2 mm
Plating bath composition: A1 = 6.3 wt%, Mg = 3.3 wt%, Ti = 0.04 wt%, B = 0.01 wt%, balance = Zn
Plating bath temperature: 420 ° C
Weight per unit area: 150 g / m2
Plate speed: 50 m / min
[0068]
"Mist spraying conditions"
Use nozzle: 2 fluid nozzle
Fluid used: Water (Water pressure: 0.5-5kgf / cm2) + Air (Air pressure: 1-10kgf / cm2)
Spray water amount: 5 to 1000 mL / min per nozzle
Spraying distance to the plating layer: 250mm
Mist spray start temperature: 400 ° C
Mist spray end temperature: 385 ° C
Mist average particle diameter: 1-110 μm
[0069]
As described above, the surface skin and edge wrinkles are observed for the plated steel sheets obtained by changing the water / air ratio of the fluid used to change the mist particle size and spraying mists of various particle sizes. The results are shown in Table 4. Also, the incident light angle is set to 60oTable 4 also shows the measurement results of the glossiness of the plating surface measured with a gloss meter.
[0070]
[Table 4]
Figure 0003888784
[0071]
As seen in Table 4, the effect of suppressing edge wrinkles and the surface skin after solidification differ depending on the average particle diameter of the mist sprayed on the unsolidified plating layer. That is, when the average mist particle size is 1 μm, a sufficient edge wrinkle reduction effect cannot be obtained, but edge creases can be prevented by spraying mist of 4 μm or more. When the average mist particle size is 3 μm or more and less than 17 μm, the surface becomes glossy. On the other hand, when the average mist particle size is 17 μm or more and 100 μm or less, the surface becomes white skin.
[0072]
Fine irregularities are observed on the surface of the white skin plating layer. For this reason, it can be seen that the light is irregularly reflected and looks white. It is considered that fine irregularities are formed by the impact pressure of mist. However, when the average mist particle size exceeds 100 μm, a flow pattern is generated in the plating layer, and the appearance unevenness is exhibited. If the average particle size is too large, it is considered that the flow pattern is generated due to local displacement of the molten plating layer at the time of mist collision.
[0073]
In addition, it carried out similarly to Example 4 except having used 1.5% ammonium dihydrogenphosphate aqueous solution instead of water, and it was confirmed that the same result as Table 4 was obtained. Moreover, when it implemented similarly to Example 4 except having used nitrogen gas instead of air, it confirmed that the same result as Table 4 was obtained.
[0074]
Example 5
Using the hot-dip Zn-Al-Mg plating bath described in "Plating conditions" below, the type, thickness, width, plate speed, and basis weight of the treated steel strips were varied, and the following "Mist spraying conditions" As described above, the molten Zn—Al—Mg-based plating was performed while changing the spraying conditions. All were operated continuously for 24 hours. In all cases, the average cooling rate from the start of the plating bath to the completion of solidification of the plating layer was set to 4 ° C./second or more.
[0075]
At that time, as shown in FIG. 9, the wiping nozzle was installed in a seal box, and the atmosphere in the seal box was maintained at an oxygen concentration of 5 vo 1% or less. In addition, the spray nozzle is also placed in a spray box with an exhaust device, and by moving the entire box up and down, the temperature of the plating layer becomes 380 ° C. or higher on the inlet side of the box and 360 ° C. or higher on the outlet side of the box. The height of the box and the amount of mist spray were adjusted. Furthermore, an air jet cooler was installed above the spray box, and the position of this cooler was moved up and down according to the line operating conditions, so that the solidification of the plating layer in the cooler was completed.
[0076]
"Plating conditions"
Treated steel strip: Cold-rolled steel strip or hot-rolled steel strip
Steel strip thickness: 0.4-3.2 mm, width: 900-1500 mm
Plate speed: 45-150 m / min
Plating bath temperature: 420 ° C
Plating bath composition: A1 = 6.0% by weight, Mg = 3.1% by weight, balance = Zn
Weight per unit area: 40 to 250 g / m2(Per one side)
[0077]
"Mist spraying conditions"
Use nozzle: 2 fluid nozzle
Fluid used: Water (Water pressure: 1-3kgf / cm2) Ten air (air pressure: 2-7kgf / cm2)
Average mist particle size: 10-15 μm
Spray water amount: 25 to 100 mL / min per nozzle
Spraying air amount: 50 to 100 NL / min per nozzle
Spraying distance to plating layer: 200mm
[0078]
Under either of the above-described plating conditions and mist spraying conditions, a hot-dip Zn—Al—Mg-based plated steel sheet having a bright skin without edge wrinkles was obtained.
[0079]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress or prevent the occurrence of edge wrinkles encountered when manufacturing a molten Zn—Al—Mg based steel sheet. And while preventing this edge wrinkle, Zn peculiar to hot-dip Zn-Al-Mg system plated steel sheet11Mg2Suppresses crystallization of system phase, Zn2A plated layer excellent in surface appearance and corrosion resistance composed of a Mg-based phase can be formed, and the surface skin of the molten Zn-Al-Mg-based plated steel sheet can be selected and adjusted. Therefore, according to the present invention, it has become possible to stably produce a high-quality molten Zn—Al—Mg plated steel sheet.
[Brief description of the drawings]
FIG. 1 is a photograph showing a metal surface near an edge of a hot-dip Zn-based plated steel sheet.
FIG. 2 is an electron micrograph of a boundary portion of the metallic luster portion of FIG.
FIG. 3 is a metallographic micrograph showing the structure of the cross section of the edge part of a hot-dip Zn-based plated steel sheet.
FIG. 4 is a schematic cross-sectional side view showing a state in the vicinity of a bath of a general molten Zn-based plating facility.
5 is a schematic side view showing the state of FIG. 4 when the direction is changed. FIG.
FIG. 6 is a schematic sectional side view showing a state in the vicinity of a bath of a hot-dip Zn—Al—Mg plating apparatus for carrying out the method of the present invention.
7 is a schematic cross-sectional view showing a spray nozzle portion in the facility of FIG. 6. FIG.
8 is another schematic cross-sectional view showing a spray nozzle portion in the facility of FIG. 6. FIG.
FIG. 9 is a schematic sectional side view showing a state in the vicinity of a bath of another hot-dip Zn—Al—Mg-based plating facility for carrying out the method of the present invention.
[Explanation of symbols]
1 Plating bath
2 Steel strip
3 Snout
4 Syncroll
5 Gas throttle device (wiping nozzle)
6 Solidification completion position (height) of plating layer
7 Spray nozzle
9 Header
18 Spray box
19 Exhaust port
20 Seal box
21 Air Jet Cooler

Claims (9)

1.0重量%以上のAlおよび1.0重量%以上のMgを含有した溶融Znめっき浴に連続的に通板される鋼帯を該浴から連続的に引き上げる過程でめっき層の表面に水または水溶液のミストを吹付けるにさいし,前記ミストの吹付けを,該めっき層が未だ凝固を完了していない370℃以上の温度で開始し、該めっき層が未だ凝固を完了していない350℃を超える温度で終了することを特徴とする溶融Zn基めっき鋼板のエッジしわ防止法。  In the process of continuously pulling up a steel strip continuously passed through a hot dip Zn plating bath containing 1.0% by weight or more of Al and 1.0% by weight or more of Mg, water is applied to the surface of the plating layer. Alternatively, when the mist of the aqueous solution is sprayed, the spraying of the mist is started at a temperature of 370 ° C. or higher at which the plating layer has not yet completed solidification, and the plating layer has not yet completed solidification at 350 ° C. The method for preventing edge wrinkling of a hot-dip Zn-based plated steel sheet, characterized in that it is terminated at a temperature exceeding 30 ° C. 溶融Zn基めっき浴中のAl含有量が4.0〜10重量%,Mg含有量が1.0〜4.0重量%であり,該ミストの吹付けを,該めっき層が未だ凝固を完了していない350℃を超える温度で終了してZn11Mg2系相の晶出を抑制する請求項1に記載のエッジしわ防止法。The Al content in the molten Zn-based plating bath is 4.0 to 10% by weight, and the Mg content is 1.0 to 4.0% by weight. The mist is sprayed and the plating layer is still solidified. The edge wrinkle prevention method according to claim 1, wherein the method is terminated at a temperature exceeding 350 ° C. and the crystallization of the Zn 11 Mg 2 phase is suppressed. 該ミストの吹付けは,めっき層の全面(板幅いっぱい)に対して行われる請求項1または2に記載のエッジしわ防止法。  The edge wrinkle prevention method according to claim 1 or 2, wherein the spraying of the mist is performed on the entire surface of the plating layer (full plate width). 該ミストの吹付けは,めっき層のエッジ近くの表面だけに対して行われる請求項1または2に記載のエッジしわ防止法。  3. The edge wrinkle prevention method according to claim 1, wherein the mist is sprayed only on a surface near the edge of the plating layer. 該ミストの平均粒径を3μm以上17μm未満としてめっき層に光沢肌を付与する請求項1,2または3に記載のエッジしわ防止法。  The edge wrinkle prevention method according to claim 1, wherein the mist has an average particle size of 3 μm or more and less than 17 μm to give the plating layer glossy skin. 該ミストの平均粒径を17μm以上100μm以下としてめっき層に白色肌を付与する請求項1,2または3に記載のエッジしわ防止法。  The edge wrinkle prevention method according to claim 1, 2 or 3, wherein the mist has an average particle size of 17 µm or more and 100 µm or less to impart white skin to the plating layer. めっき浴の浴温からめっき層の凝固完了温度まで平均4℃/秒以上の冷却速度で冷却する請求項1ないし6のいずれかに記載のエッジしわ防止法。  The edge wrinkle prevention method according to any one of claims 1 to 6, wherein cooling is performed at an average cooling rate of 4 ° C / second or more from the bath temperature of the plating bath to the solidification completion temperature of the plating layer. 溶融Zn基めっき浴は,Al:4.0〜10重量%,Mg:1.0〜4.0重量%,Ti:0.002〜0.1重量%,B:0.001〜0.045重量%,残部がZnおよび不可避的不純物からなる請求項1ないし7のいずれかに記載のエッジしわ防止法。  The hot dip Zn-based plating baths are Al: 4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, Ti: 0.002 to 0.1% by weight, B: 0.001 to 0.045%. The edge wrinkle prevention method according to any one of claims 1 to 7, wherein the weight percentage and the balance are made of Zn and inevitable impurities. 溶融Zn基めっき浴の浴温は480℃未満である請求項1ないし8のいずれかに記載のエッジしわ防止法。  The edge wrinkle prevention method according to any one of claims 1 to 8, wherein the bath temperature of the molten Zn-based plating bath is less than 480 ° C.
JP26676198A 1998-09-21 1998-09-21 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet Expired - Fee Related JP3888784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26676198A JP3888784B2 (en) 1998-09-21 1998-09-21 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26676198A JP3888784B2 (en) 1998-09-21 1998-09-21 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet

Publications (2)

Publication Number Publication Date
JP2000096202A JP2000096202A (en) 2000-04-04
JP3888784B2 true JP3888784B2 (en) 2007-03-07

Family

ID=17435350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26676198A Expired - Fee Related JP3888784B2 (en) 1998-09-21 1998-09-21 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet

Country Status (1)

Country Link
JP (1) JP3888784B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE484605T1 (en) * 2002-07-24 2010-10-15 Nisshin Steel Co Ltd HOT DIP GALVANIZED ZINC BASE STEEL SHEET WITH EXCELLENT GLOSS RETENTION
JP5253090B2 (en) * 2008-10-28 2013-07-31 日新製鋼株式会社 Method for producing Mg, Al-containing hot-dip Zn-plated steel sheet
BR112017000200B1 (en) 2014-07-24 2021-06-01 Nippon Steel Corporation COOLING METHOD AND COOLING INSTALLATION FOR STRIP STEEL
US20180209011A1 (en) * 2015-07-17 2018-07-26 Salzgitter Flachstahl Gmbh Method of producing a hot strip of a bainitic multi-phase steel having a zn-mg-al coating, and a corresponding hot strip
JP6983153B2 (en) * 2015-10-26 2021-12-17 ポスコPosco Zinc alloy plated steel sheet with excellent bendability and its manufacturing method
JP7064289B2 (en) * 2017-03-24 2022-05-10 Jfeスチール株式会社 Manufacturing method of molten Zn-Al plated steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055593B2 (en) * 1980-04-25 1985-12-05 新日本製鐵株式会社 Manufacturing method of zero spangle molten zinc alloy plated steel sheet
JP2530908Y2 (en) * 1991-08-07 1997-04-02 住友金属工業株式会社 Exhaust device for zero spangle plating
JP3179401B2 (en) * 1996-12-13 2001-06-25 日新製鋼株式会社 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Also Published As

Publication number Publication date
JP2000096202A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
KR100324893B1 (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
JP4460610B2 (en) Method for producing hot-dip galvanized steel sheet without spangle and apparatus used therefor
EP0172030B1 (en) Flow coating of metals
JP3201469B2 (en) Mg-containing hot-dip Zn-base plated steel sheet
JP4064634B2 (en) Hot-dip Zn-based plated steel sheet with good gloss retention and method for producing the same
JP3888784B2 (en) Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet
US4792499A (en) Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling and method for producing the same
EP0151511A1 (en) Spray deposition of metal
JP3148542B2 (en) Hot-dip galvanized steel sheet with excellent glare resistance
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP3385970B2 (en) Manufacturing method of galvannealed steel sheet with excellent surface appearance
JP3762722B2 (en) Cooling apparatus and cooling method for hot dipped steel sheet
JP4409007B2 (en) Method for producing highly corrosion-resistant hot-dip Zn-Al-Mg plated steel sheet with excellent surface properties
JP3224208B2 (en) Method for preventing adhesion of bath surface splash in continuous hot metal plating line
JPH04160142A (en) Hot dip galvanizing steel sheet and its manufacture
JPH042756A (en) Gas wiping method for continuous hot dipping
JP3814170B2 (en) Method and apparatus for cooling hot dipped steel sheet
JP3330333B2 (en) Hot-dip Zn-coated steel sheet with good surface appearance
JP3291111B2 (en) Method for producing hot-dip Al-coated steel sheet having Zn diffusion layer
JP2004107717A (en) ANTIDAZZLE HOT-DIP Zn-BASE PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JPH07113154A (en) Method and device for hot-dipping
JPS6357754A (en) Method for eliminating spangle of nonalloying hot dipped steel sheet
JPH07180014A (en) Method for suppressing evaporation of zn from bath surface in snout for hot dip metal coating
KR20030039905A (en) Manufacturing method of galvannealed steel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees